MacShim: Compiling MATLAB to a Scheduling-Independent
Concurrent Language

Neesha Subramaniam, Ohan Oda, and Stephen A. Edwards
Department of Computer Science, Columbia University

Abstract

Nondeterminism is a central challenge in most concurrent
models of computation. That programmers must worry
about races and other timing-dependent behavior is a key
reason that parallel programming has not been widely
adopted. ThesHImM concurrent language, intended for hard- g .
ware/software codesign applications, avoids this proldgm

providing deterministic (race-free) concurrency, butsloet

support automatic parallelization of sequential alganish Step2in de‘;;
In this paper, we present a compiler able to parallelize a
simple MATLAB -like language into concurrent SHIM pro-
cesses. From a user-provided partitioning of arrays to proste2 \
[sam]

Step 1 in detail

cesses, our compiler divides the program into coarse-gdain o
processes and schedules and synthesizes inter-process com
munication. We demonstrate the effectiveness of our ap-
proach on some image-processing algorithms.

] Figure 1: A graphical representation of the structure of our
1 Introduction MacShim compiler.
In this paper, we present a compilation technique that trans
lates embarrassingly parallel ALAB -style code (we sup-
port only a small subset of the language) irgaim, a

model and programming language that provides scheduling- -~ o \
independent concurrency, i.e., the input/output behasior ~ user-specified partition of the arrays used in the program

a SHIM process is independent of any nondeterministic [©© Parallel processes and compiles itinto a concurseni
choices made by the scheduler. In particular, race comditio Program. Our main contributions are techniques for analyz-
simply cannot occur in the model. ing the data depe'nde.nues and synthesizing the needed inter

While the general problem of translating nested loops PrO¢ess communication. _
with affine array indices into fairly efficient parallel code The ultimate target§ of our approach are multicore CPUs
hardly new, our work is novel for two reasons: the deter- and Systéms-on-a-chip. TreHiM model assumes these
ministic concurrent$HimM) model we target and the coarse- processors have local memories (i.e., not an arbltraryelarg
grained parallelism approach we take. Specifically, rather Shared central memory) and some form of message-passing
than attempting to pipeline or parallelize instruction se- Communication. Programming such systems is known to be
quences in loops, we split the code of a loop nest operatingd'ﬁ'CUIt despllte such s_tandards as .M.PI_ and OpenMP. The
on arrays into a user-specified humber of concurrent pro- goal Of.SHIM is to provide a deterministic concurrent pro-
cesses, each of which contains a customized version of thed"@mming environment that prevents many of the common
loop nest operating on a different part of the array. We do not Pitfalls of concurrent programming (e.g., nondeterminist
allow loop-carried dependencies, so our work is only appli- data races and deadlopks); the g(_)al Qf this work is to provide
cable to embarrassingly parallel algorithms. Nevertteles an even more convenient specn‘lcatlo_n for certain types of
preliminary experimental results suggests that it is catt paralielizable (loops over arrays) algorithms.

Our compiler, dubbed MacShim (“MrLAB converter for 11 Overview
SHIM"), takes a program written in a MLAB-like syntax Figure 1 depicts the structure of our compiler. Starting

“Edwards and his group are supported by CAREERaward, gifts from a MATLAB-like program and a specification of how

from Intel and Altera, and grants from tlscand New York State’siys- the arrays in the_ program should be distribute_d among
TAR program. concurrently-running processes, the compiler first deter-

that consists of a series of nested loops performing regu-
lar array accesses (with no loop-carried dependencies) and

for y = 2:imageY-1 inpUtlmage[X+ j,y-‘rl}

f = 2:i X-1
O o mage sobelX[j +2,i+2] \SobelYUJrZ,iJrZ}
sumY = 0;
for i = -1:1 \ /
sumxX

for j = -1:1 sumY
sumX = sumX + inputImage(x+j, y+i) * sobelX(j+2, i+2) / 8; \ /
sumY = sumY + inputImage(x+j, y+i) * sobelY(j+2, i+2) / 8;
end; sobellmage[x, Y]
end;
sobelImage(x, y) = sumX * sumX + sumY * sumY;
engr_‘d; Figure 4: The data dependence graph for the first loop nest
' in Figure 2
for v = 2:2:imageY
for x = 2:2:imageX
enga_‘lfo“t(x/ 2, v/2) = sobellmage(x, v); llmage, halfOut, sobelX and sobelY. We assume the first
end; three are fairly big arrays and should therefore be disteiu

among two or more processes. Figure 3 shows a particu-
lar distribution for four processes. The twgobel arrays are
Figure 2: MAaTLAB code for a Sobel-like operation followed small; each process keeps its own local copy of them.

by a half-size operation Each iteration of both loop nests are independent (a not-
uncommon feature in image processing algorithms) and are
11 320 321 640 11 160 161320 therefore easy to partition among multiple processes. The
120 PO P2 one challenge, and the one our compiler is most concerned
PO P2 121 with, is the fact that small portions of thaputlmage array
P1 P3 must be shared among multiple processes (i.e., the overlap
249 240 along boundaries since the | formi ir of
241 g boundaries since the loops are performing a pair o
halfOut convolutions). To address this, our compiler identifieshsuc
P1 P3 data dependencies and synthesizes communication actions
that make the processes first exchange just enough of each
480 array to be able to perform each part of their computation in-
inputimage and sobellmage dependently. Identifying such dependencies and synthesiz
ing the communication code they demand is the main focus
of our compiler.
Figure 3: A particular user-specified array partitions foe t In the remainder of the paper, after a review of related
example in Figure 2 work and thesHiM model that is our code generation target,

we discuss first the problem of inferring the ranges of each
array that are needed by each process (Section 4), then the al
orithm we use to synthesize the communication among pro-
cesses based on the results of the range inference algorithm
(Section 5), and finally the challenge of generating code for
each process (Section 6).
In Section 7, we present experimental results that shows
r technique can provide a modest speedup on a dual-
processor Pentium-11l system witHIM running on top of
posixthread, and finally discuss future work in Section 8.

mines, for each process, the regions of each array needed t
compute the data for which the process is responsible. This
information is summarized in a data range table; Section 4
describes this.

In the second step, the information from the first step is
used to synthesize the code for each process. This amount%u
to copying the structure and modifying details such as array
indices and loop bounds. The other important component
of the generated code performs inter-process communica-
tion. Before the execution of each loop nest, the processes? Related Work
exchange the parts of each array that are owned by otherAlthough MATLAB has traditionally been executed by a
processes. Section 5 describes the communication sysithesisingle-threaded interpreter, it has also been compiled. Fo
procedure; Section 6 describes the code generation proceexample, The MathWorks sells a compiler that translates
dure. MATLAB into C code suitable for a single processor. Our

Figure 2 shows an example we will use to illustrate the MacShim compiler tackles the harder problem of generating
operation of our compiler. It consists of two loop nests with code for multiple processors.
simple dependencies. In the first, thgputimage array is Others have attempted to either translate or interpret-M
convolved with the 33 sobel X andsobel Y arrays to produce LAB programs for parallel processors. DeRose and Padua’s
the sobellmage array. In the second, treebellmage array is FALCON compiler [2, 3] translates MrLAB scripts into For-
decimated to produce th@lfOut array. tran 90 programs. Quinn et al.'s Otter [8] compiler trans$at

This basic example uses five arrayisputimage, sobe- MATLAB programs into SPMD C programs with MPI calls.

przcisiﬁourii(ggﬁzza&‘s‘iqience and receiver must agree on when data is transferred; one al-

42: 7/ to output A ways waits for the other. A process’s arguments are input

157; and output channels. Each appearance of a channel name

8 becomes a write if it appears on the left of an assignment

and a read otherwise.

process buffer(int32 &B, int32 A) { The topology of communication channels and the num-

) for (55 B = A; // Copy A to B ber of processes is fixed and each communication channel
connects one writing process to one reader. The communica-

process sink(int32 B) { _ tion structure of a system is therefore a directed graph whos

) for (35) B; // Read and discard B nodes are processes and whose arcs are channels. The graph
may contain cycles.

A
A
A

}

network main() {
sink(); // Run processes in parallel 31 Syntax
buffer(); // port connections implicit A sHIMm program (e.g., Figure 5) consists of three kinds of

source(); // (done by name)

) declarationsstructs, processs, andnetworks.

)) Structs. Struct declarations are C-like type declarations.
Figure 5: A simplesHim program for a one-place buffer. cyrrent variable types irsHiM are Booleans, fixed-size

its output; and the sink always reads its input. are 1-bit unsigned integers. There are no pointer types.
struct s {

The RTExpress Parallel Libraries from Integrated Sensors bool b; Boolean

Inc. consist of parallel performance-tuned implementegio int32 i; signed 32-bit integer (including sign bit)

of over 200 MaTLAB functions in C with MPI calls. Multi- uintl6 t[24]; array of 24 unsigned 16-bit integers

MATLAB [7] is a parallel MaTLAB interpreter that, like our };
work, targets multiprocessors and networks of machines us-

ing MP1, but uses a parallel algorithm libraries instead of try-) _)
ing to analyze the parallelism of aAMLAB program. Processes. A process declaration looks like a C function

The AccelFPGA compiler due to Banerjee et al. [1] trans- declaration and contains imperative code that runs sequen-
lates MATLAB programs (signal-processing algorithms are tially. Itis introduced by theprocess keyword followed by
their main target) into register-transfer-level code et be ~ the name of the process, the formal arguments of the process
synthesized onto field-programmable gate arrays. This ap-beétween parentheses, and the body of the process delimited
proach seeks “instruction-level” parallelism, e.g., wieo with curly braces. E.g.,
arithmetic operations in a loop may be pipelined or executed
in parallel; by contrast, we patrtition the iterations of apo

in to multiple tasks that are executed separately. The formal arguments of a process are its ports. Mimick-
The Compaan compiler due to Kienhius et al. [6] is prob- jng the syntax of C++ pass-by-reference parametesy

ably closest in spirit to our work. Like us, they target a de- ysest to indicate an output port; all others are inputs. Here,
terministic concurrent model of computation (Kahn process 1 and7 are input portsf is an output.

networks, a superset of tiseiiM model that adds unbounded The body of a process consists of C-like code that may
buffers), but again, their focus is more on “instructiondg include if-else and switch-case-default conditionals,while
parallelism and their objective is mainly to pipeline sijna and for loops (includingbreak and continue), label and
processing algorithms. Compaan accepts a subsetst M goto statements, expressions (including assignments), block
LAB similar to ours, but richer because they allow certain statements and local variable declarations.

loop-carried dependencies; we only accept simpler compu- Expressions may mix local variable names and port names
tations. freely. Atomic assignments between structs or arrays are
3 The SHIM language supported.

In the sHIM language [5, 4], a system consists of

concurrently-running sequential processes that communi- Networks. A network declaration, which instantiates a set

cate exclusively through fixed, point-to-point communica- of processes or subnetworks, is introduced by rnigvork

tion channels with rendezvousH81 systems are described keyword followed by the name, the formal arguments, and

with an imperative language with C-like syntax. Figure 5is the body of the network. The formal arguments are the ports

an example. Each process has local variables; there are nof the network. The body of a network consists in a list of

global variables. All processes execute concurrently. local channel declarations followed by a list of process and
Inter-process communication is synchronous: both sendernetwork instances.

process xor(int8 I, int8 J, int8 &) { 0 = IAJ; }

1: procedure analyzeRangelnference(output ar@ydis-
tributionsDp[0], dependent inputg1],...,| [n])
: Notation: R[V] is the range of/
3: Determine the access regi&fo| from the indices of
0
4. for each of this output’sm processep = Py,...,Pn
do

5: if Rp[0] = R[0]NDp[o] is not emptythen
6: from Rp[0], find the ranges of variablag, ..., vi
one whicho depends
7: for eachdependent inputs= 1[1],...,1[n] do
8: figure outi’s access rangR]i]
9: if R[i] already existshen
10: let Ri] = R[i] Uthe newly-compute]i]

Figure 6: The range inference algorithm

network xor2(int8 I, int8 J, int8 K, int8 &0) {
int8 X;
xor(X/0);
xor(X/I, K/J);

}

Local channels connect one process (or subnetwork) in a
network to another process (or subnetwork) in the same net-
work. The types of ports connected through a channel must

match, i.e., an output port of typenay only be connected to
an input port of typé. Local channel declarations resemble
local variable declarations.

The ports of the network come from ports of processes
(or subnetworks) of the network that have no matching read-

ing or writing process within the network. Port declaragon
for networks are no different from port declarations for pro

cesses. Port and local channel declarations in networks may Here. it is trivial

be omitted as they are inferred by the compiler.
An instance resembles a function call. It consists of
the name of a process or network followed by a list of

actual arguments and a semicolon. The syntax for argu- r
ments associates formal and actual ports by name insteadal

of position. For example,Xor(X/I, K/J);” instantiates
processxor with actual ports “{nt8 X, int8 K, int8
&0)", i.e., port nameX is substituted for namg, namek for
nameJ, whereas name is left unchanged.

4 Range Inference

The first interesting phase in our compiler, after the usual
parsing and static semantic analysis, is range infererige (F

these two operations.

A region of ann-dimensional array is a vector afranges.

We write the ranges in a region as a comma-separated list of
ranges enclosed in brackets, e.g.aif a two-dimensional
array then[—1:2,0:3] is a range fora consisting ofa_1 o,

ao, --.,a23. Note our regions are always rectangular and
solid. Like ranges, regions are sets that are closed under
intersection, but not under union. Instead, we take the leas
upper bound when we need a union-like operation.

For each loop nest for each process, our procedure pro-
duces a range for each array with elements the process must
compute for the loop nest and the range of each array whose
elements are needed to compute this result.

4.1 Range Inference on the Example

Consider determining the range information for the firspoo
nest in Figure 2 using our algorithm (Figure 6). Here, the
output arraysobel Image depends directly on two variables:
sumX andsumY, which in turn depend omputlmage, soel X,
sobelY, and themselves. Using a simple data flow analysis,
we produce the dependency graph of Figure 4, which we use
to determine which parts of which arrays are needed by each
process to execute the first loop nest.

Next, we compute the region of each output array (here,
justsobellmage) written by the loop nest, i.e., which calcula-
tions the processes are ultimately responsible for. Fram th
dependency graph, the output array expressicsolisl|n-
age[x,y] (we assume the index expressions are always linear
functions of loop indices and constants, here, juahdy).

We evaluate such expressions in a range domain in the ob-
vious way, i.e., using the minimum and maximum values of
each variable to obtain the minimum and maximum values
of a linear function of these variables.

From the program text, we know
ranges over 2639 andy ranges over 2479 (mageX andim-

ageY are the constant values 640 and 480), so this loop nest
will compute the regiorj2:639,2:479 of the sobellmage

ray.

Next, for each process, we compute the regions of input
arrays that it will need to compute the part of the output ar-
ray for which it is responsible. The first step is to intersect
the overall region of the output array computed by this loop
nest with the part of the output array for which the particula
processes is responsible.

Consider doing this for process P1 in Figure 3. The user
has said P1 is responsible fasbelImage[1:320,241:480.

ure 6), which determines what data each process needs tdntersecting this with thesobellmage region this loop nest
execute each loop nest (e.g., the Sobel and half-size operawill compute (i.e.,[2:639,2:479, computed earlier) gives

tions in Figure 2).

Some definitions: aange is a sequence of integers,
which we write with a colon, e.g+2:1 represents the set
{-2,—1,0,1}. We use ranges to model the values of loop

[2:320,241:479. This is how the firstsobelImage row of
Table 1 is computed. Since this region is non-empty for this
process, our algorithm proceeds to determine the regions of
the other arrays this process will need to compute the output

indices, although note that our ranges always include everyarray.

integer while loop indices often have a larger stride. Range

are actually shorthands for sets, and we will take intersec-

This final step walks backward through the data depen-
dency graph. From the range required at the output array,

tions and unions of them. Note that ranges are closed underour algorithm determines the ranges required of the input ar

Table 1: Range information determined for the two loop nestEigure 2 by the algorithm in Figure 6 from the patrtitions in

Figure 3.
Array Regions required/produced for the first loop nest
PO P1 P2 P3

sobelX [1:3,1:3] [1:3,1:3] [1:3,1:3] [1:3,1:3]

sobelY [1:3,1:3] [1:3,1:3] [1:3,1:3] [1:3,1:3]
inputimage [1:3211:241] [1:321,240:480 [320:640,1:241 [320:640,240:480
sobellmage [2:320,[2:240 [2:320,241:479 [321:639,[2:240 [321:639241:479

Regions for the second loop nest

sobellmage [2:320,2:240 [2:320,242:480 [322:640,2:240 [322:640,242:480
halfOut [1:1601:120 [1:160,121:240 [161:320,1:120 [161:320,121:240

procedure generateCommunicationGraph()
for eachloop nestdo
for each processp do
for each output arraya do
Start a new communication graph
for each processp’ do
if p' # pandp’ has part of arrap needed by
processp then
Add an arcp’ — p labeled with the region
needed fronp’

Figure 8: Deriving communication graphs from range tables

rays. Unlike the output range computation, this procedure
involves solving equations (because we are looking for the
inputs that produce a given output), but the equations are
easy to solve because we assume the index expressions a
linear.

For example, consider determining the regionrgiut! m-
age required to evaluate the first loop nest in P1. Ear-
lier, we determined that P1 would compute the region
[2:320,241:479 of sobellmage. In the dependence graph
Figure 4, there are two equivalent paths fromutl mage to
sobellmage. Along either, we find index in sobellmage
is determined by index+ j in inputimage. Since the target
indexx is so simple, the range calculation for the first dimen-
sion ofinputimage is simple: 2320+ —1:1=1:321. Sim-
ilarly for the second dimension, we have 24¥Y9+ —1:1=
240:480. Together, these produce the entry forithgitl m-
agerow in the P1 column of Table 1.

5 Communication Synthesis and Scheduling
From the region tables, we look at what array regions a pro-

f

procedure scheduleCommunication()
for eachloop nestdo
Set remaining pairs to all communication pairs for
this loop nest
phase =1
while there are remaining paido
Clear the busy flag for each process
for eachremaining paiido
if both source and destination of the pair are not
busythen
Add it to the list of scheduled pairs for this
phase
Remove it from the list of remaining pairs
Mark the source and destination process as
busy
phase = phase + 1

Igigure 9: Scheduling communication from the communica-

tion graphs

the arc. We produce a separate communication graph for
each loop nest.

The main check required to determine whether data must
be transferred, i.e., whether one process needs informatio
held by another, amounts to an intersection of regions.

To execute each loop nest, we need to perform a com-
munication for each arc in the communication graph. Such
graphs are often dense, meaning each process must perform
many communications, bigHIM semantics say that each
process may communicate with at most one other process
at a time, so the data transfers must be scheduled.

We schedule the required data transfers for each loop nest

cess requires and compare them to what processes own thnto a sequence of phases using the heuristic algorithm in
data in these region to derive a communication graph suchFigure 9. In each phase, we attempt to perform as many
as Figure 7 using the algorithm in Figure 8. In such a graph, process-to-process communications as possible, sulgect t
each node represents a process and each directed arc repréie constraint that each process may communicate with at
sents a region of an array that needs to be transferred alongnost one other process in each phase. We use a greedy ap-

[320,1:240

[321,1:240

vz oze 1]
bz ov9:1z€]

[320,241:480

[321,240:480

Figure 7: Communication Graph with scheduling informationthe first loop nest for the inputimage array. Phase number
are in boxes.

for (int v =241 ; vy <=479 ; v=v + 1) {

for (dnt x =2 ; x<=320 ; x=x+ 1) {
sumX = 0;
sumY = 0;

for (dnt i =-1;i<=1;i=1+1) {
for (int j=-1; j<=1; j=3+1 {
sumX = sumX + inputImage[x+j-1][(y-239)+i-1] =
sobelX[j+2-1][i+2-1] / 8;
sumY = sumY + inputImage[x+j-1][(y-239)+i-1] =*
sobelY[j+2-1][i+2-1] / 8;

Figure 10: Structure of the synthesized processes for a four }

process partition. The 10 process distributes inputs and re sobelImage[x-11[(y-240)-1] = sumX * sumX + sumY * sumy;
ceives results from the four numbered slave processes. Each

slave process contains a copy of the loop nests to be exe?

cuted; each is responsible for computing part of each array.

Figure 11: $i1M code generated for the first loop nest in

proach: we simply pick pairs of processes that need to com- Figure 2 for process P1 (Figure 3)

municate until no more can be selected in the current phase

(i.e., the source or destination of every remaining pailisa The communication channels connecting various pro-
ready communicating in the phase). We repeat this selec-cesses are of fixed size since we determined the size of each
tion process for as many phases as necessary to perform th@rray received and sent by each process. While computing
communication requested by every arc in the communica- the range information in the input program, we identify the
tion graph. Note that this algorithm ensures the number of type of each variable, whether it is an array, loop index, or
remaining communications decreases monotonically in eachjocal variable. For each process, we declare all the local
phase, guaranteeing it will complete. variables. For the arrays, as we already have information
The labels on the arcs in Figure 7 indicate the phases inabout their size in each process, we declare them and initial
which each communication takes place for the loop nest in jze them using the data received from Process 0. Follow-
Figure 2. As can be seen, it is a fully connected graph that ing initialization, for each loop nest, communication casle
requires six phases to complete. followed by computation code. Generation of computation
6 Code Generation code is a little tricky since array indices must be adjusted.
n particular, for each array index in a process, we subtract

The code generation stage generates code for com utatiori - . . . : L
9 g€ g b he minimum index of each dimension of its region in the

corresponding to the input MLAB program and for inter- i : : .
procesps comrgnunicatiorf). Figure 1F()) sgows a block diagram process. The range of ealth Ioo_p index is denveq from Its .
of the structure of the generated system when there are fourange, computed in Fhe range inference step (line 6 in Fig-
computational processes. At the top is an 10 process res,pon-ur.e .6)' If no cqnstralned yanable fange was computgd, the
sible for reading the input image(s) and distributing them t original range is used. Finally, the computed daFa Is sent
all the processes. At the end of computation, Process IOback to Process |10 to be reassembled into the final result
receives array regions from the other processes, combine? &S

them, and writes them out. Figure 12 shows our code gener-6-1 An Example

ation algorithm that producesHimM systems with this struc- Figure 11 shows part of theHiM code our compiler gen-

ture. erates for one process from the first loop nest in Figure 2.

procedure generate()

call processg) for each procesp Table 2: Experimental results for the example program
ioprocess()
“instantiate each process”
“instantiate the 10 process”
Example Number of Processes
procedure processyg) 1 2 4
“write io variables, channel widths”
“initialize arrays, local variables” time time speedup time Speedup
for eachinput arraydo
“receive data from Process 10” One Processor (1.6 GHz Pentium M)
for eachloop nest do
communicationg, |) Sobel+Half 0.26s 0.27s 0.96 0.28s 0.9%
body(p, 1) Rotate 0.90s 1.1s 082 1.2s 0.7%
for eachoutputamaydo Blend 0.70s 0.67s 104 066s 1.0«
send data to process |10
procedure communicationg, 1) Two Processors (750 MHz Pentium I11)
for each phasedo
if psends data this phatieen Sobel+Half 0.61s 0.37s 16 0.37s 1.&
Lopy the data fo a small array” Rotate 2.8s 25s 1% 26s 1.k
“send the small array”
else if p receives this phasen Blend 1.7s 1.3s 1.3 1.3s 1.%

“receive the data into local array”
“write it to the main array”

procedure body(process_id, loop_nest) .
walk the AST 7 Experimental Results

for eachroot nodedo

print-SHIM-code(root-node) We implemented the MacShim compiler in Java and used

it to generatesHiM code for a few little MATLAB pro-

procedure ioprocess() grams, such as the example program in Figure 2, for one,
for eagh'”plt“ arraydo two, and four processes. We modified thieim compiler
read input array
split array into pieces according to user-provided pantiti t_O prOduce C code that uses_theSIX threads (pthrgad;)
send each piece to its owning process library for concurrency and inter-thread communication.
for each output arraydo This is fairly inefficient: in particular, the generated eod

receive data from each process
combine data into one array
write output array

uses memory-to-memory copies when transmitting arrays;
a more shared-memory-aware implementation would cer-
tainly improve upon this.

Figure 12: ThesHiM code generation algorithm. Code in e chose pthreads because they are fairly portable and
quotes is output (generated). provide a simple way to harness the power of multiprocessor
systems. We used the stock pthreads implementation under
Linux 2.6. No attempt was made to optimize the quality of

This code is for the lower-left process when the arrays are the C code generated from tseiim code generated by our

divided into 2x 2 grids—the compiler generates three other compiler; this important issue is outside the scope of this
processes very much like this. A few basic observations: the paper.)
control structure of the generated code is the same as the 10 €valuate the correctness of our approach, we simply
source, the ranges of thier loops have been modified, and compared the output of theHim code generated with a

the array index expressions have offsets not present in theSinglé process running some benchmarks on some images
original code. with the output from multi-processHiM code, which was

. . _ bitwise-identical.
Such transformations are typical. Our range analysis 14 gyqjuate the effective speedup of the approach, we
phase determines which parts of each array are owned andcompared the execution speed of code generated with one
therefore must be calculated by each process as well as a"process versus two and four on two platforms: a single-

the mp_ut d_ata that is needefi to calc’}JIate _each part. This 'n'processor Pentium M-based laptop (a baseline) and a dual-
formation is used to create “bloated” versions of each array processor Pentium Ill-based server. Each were running

that is owned by a process that includes room for the infor- | ;. the dual-processor system was usingsane ker-

mation from other processes. Each loop nest is then rewrit- o 1hat aytomatically migrated processes across progesso

ten for each process such that the array indices are correcCiyaither of these are particularly high-performance system

for these bloated arrays. they are intended to demonstrate the correctness and poten-
A convenient side-effect of all this bookkeeping is that tial efficiency gains of our approach.

MATLAB’s indexed-from-one arrays are automatically dealt Table 2 reports the time it took to execute the kernels of

with and converted tgHIM's indexed-from-zero arrays. the three examplesSgbel+Half is the example in Figure 2

run on a 640< 480 imagerotate turns a 2000 2000 image
ninety degrees; blend merges two 1500000 images using

is to support more complicated input code, such as allow-
ing loop-carried dependencies. Despite these shortcamning

a third image as an alpha channel). The times include somewe have shown that it is possible and realistic to compile
communication overhead: the time to distribute the images loop/array code into a coarse-grain parafielim program.
among the computation processes and to receive all the reReferences

sults plus all inter-process communication. They do not in-
clude any system I/O times (i.e., to read and write input and
input data). These are wall clock times gathered with the
Unix times command, which has 10 ms precision at best and
is affected by other processes running on the machine; the
experiments were conducted when the systems were lightly
loaded and the results presented here are averages—the raw

times differed in a few 10s of ms.

Not surprisingly, there is a penalty in splitting the code [2]
into multiple processes on a single-processor system. This

is certainly due to the additional context-switching antheo
munication overhead on a single processor.

The dual-processor results illustrate the advantage of our
approach. Splitting the system into two processes produced
a 1.6x speedup on the Sobel example, which of course is

less than the ideal>2, but is at least noticeably better. The

other two examples show a more modest speedup, but thigl3]
is because their execution time is dominated by communica-
tion. Rotate, in particular, does little more than move data

around, i.e., is much less computationally intensive tinen t

Sobel example. Blend is more computationally intensive,
but also uses three times as much data as the Sobel exampl

so it too suffers from communication overhead.

The absolute execution times for these examples are poor.

In particular, the two-processor server is slower than tie o

processor laptop (even with a single process), but this-is be
cause the two processor system is two generations behind[5]
However, our goal in this work was a compilation technique

that would generate parallel code for theim language; a
more efficientimplementation of treH1M semantics on par-
allel hardware is future work.

8 Conclusions and Future Work

We designed and implemented a compiler that translates

simple array operations coded in aAVLAB -like language

into the sHIM concurrent language. The compiler performs
three main operations: data range analysis from a simple
static analysis of the source code, communication analysis

[1] Prithviraj Banerjee, Malay Haldar, Anshuman Nayak,

Victor Kim, Vikram Saxena, Steven Parkes, Debabrata
Bagchi, Satrajit Pal, Nikhil Tripathi, David Zaretsky,
Robert Anderson, and Juan Ramon Uribe. Overview
of a compiler for synthesizing MATLAB programs onto
FPGAs. |IEEE Transactions on Very Large Scale Inte-
gration (VL) Systems, 12(3):312—-324, March 2004.

Luiz De Rose, Kyle Gallivan, Efstratios Gallopoulos,
Bret A. Marsolf, and David A. Padua. FALCON: A
MATLAB interactive restructuring compiler. IfPro-
ceedings of the Workshop on Languages and Compil-
ers for Parallel Computing (LCPC), volume 1033 of
Lecture Notes in Computer Science, pages 269-288,
Columbus, Ohio, August 1995.

Luiz De Rose and David Padua. Techniques for the
translation of MATLAB programs into Fortran 98CM
Transactions on Programming Languages and Systems,
21(2):286—-323, March 1999.

Stephen A. Edwards and Olivier Tardieu. SHIM: A
deterministic model for heterogeneous embedded sys-
tems. InProceedings of the International Conference

on Embedded Software (Emsoft), pages 37-44, Jersey
City, New Jersey, September 2005.

Stephen A. Edwards and Olivier Tardieu. SHIM: A
deterministic model for heterogeneous embedded sys-
tems.|EEE Transactions on Veery Large Scale Integrated
(VLY) Systemns, 14(8):854-867, August 2006.

Bart Kienhuis, Edwin Rijpkema, and Ed Deprettere.
Compaan: deriving process networks from Matlab for
embedded signal processing architecturesPrivceed-
ings of the International Conference on Hardware Soft-
ware Codesign (CODES), pages 13-17, San Diego, Cal-
ifornia, May 2000.

from this analysis, andHim code generation that makes a [7] Vijay Menon and Anne E. Trefethen. MultiMATLAB:

modified copy of the original code for each computation pro-
cess and adds code for inter-process communication code.
We make many simplifying assumptions about the input
code to make our task easier. In particular, we do not support
loop-carried dependencies, dynamically sized arrays; non

affine array indices, and complex loop ranges. This is @stri
tive, but remains useful for a variety of image-processing a
gorithms.

Much remains to be done. The quality of the C code gen-

erated fromsHIM will be improved. Work on improving the

speed of this code and in particular inter-process communi-
cation is ongoing. The obvious next step in our compiler

integrating MATLAB with high-performance parallel
computing. InProceedings of the ACM/IEEE Confer-
ence on Supercomputing, pages 1-18, San Jose, CA,
November 1997.

Michael J. Quinn, Alexey G. Malishevsky, and Na-
gajagadeswar Seelam. Otter: Bridging the gap be-
tween MATLAB and ScaLAPACK. InProceedings

of High Performance Distributed Computing (HPDC),
pages 114-121, Chicago, lllinois, July 1998.

