
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009 231

Synthesis and Optimization of Pipelined
Packet Processors

Cristian Soviani, Ilija Hadz̆ić, Member, IEEE, and Stephen A. Edwards, Senior Member, IEEE

Abstract—We consider pipelined architectures of packet proces-
sors consisting of a sequence of simple packet-processing mod-
ules interconnected by first-in first-out buffers. We propose a
new model for describing their function, an automated synthesis
technique that generates efficient hardware for them, and an
algorithm for computing minimum buffer sizes that allow such
pipelines to achieve their maximum throughput. Our functional
model provides a level of abstraction familiar to a network pro-
tocol designer; in particular, it does not require knowledge of
register-transfer-level hardware design. Our synthesis tool imple-
ments the specified function in a sequential circuit that processes
packet data a word at a time. Finally, our analysis technique
computes the maximum throughput possible from the modules
and then determines the smallest buffers that can achieve it.
Experimental results conducted on industrial-strength examples
suggest that our techniques are practical. Our synthesis algorithm
can generate circuits that achieve 40 Gb/s on field-programmable
gate arrays, equal to state-of-the-art manual implementations,
and our buffer-sizing algorithm has a practically short runtime.
Together, our techniques make it easier to quickly develop and
deploy high-speed network switches.

Index Terms—High-level synthesis, model checking, packet
editing, pipelines, routers, switches.

I. INTRODUCTION

MOST DATA communication systems, such as packet
switches and routers, adopt the architecture shown in

Fig. 1. The fabric is responsible for transferring data among the
line cards, which do the actual network communication. Most
of the switch’s intelligence resides in the line cards. They are
responsible for understanding protocols and deciding where to
forward packets. Thus, much of the value of a switch resides in
the algorithms implemented on these line cards.

Most line cards have an ingress packet processor, an ingress
traffic manager, an egress packet processor, and an egress traffic
manager. Packet processors parse the packet content (typi-
cally, headers), construct search keys, perform table lookups,
transform the packet according to lookup results, and classify
packets into flows. They also collect statistics, analyze arrival
patterns, apply filtering policies, and select any packets to be
dropped. Traffic managers queue packets waiting to be sent to
the fabric or the network and schedule their departures based on

Manuscript received March 7, 2008; revised June 17, 2008 and September 8,
2008. Current version published January 21, 2009. The work of S. A. Edwards
and his group was supported in part by the NSF and in part by the SRC through
an award. This paper was recommended by Associate Editor G. E. Martin.

C. Soviani is with Synopsys, Inc., Mountain View, CA 94043 USA.
I. Hadz̆ić is with Bell Laboratories, Alcatel-Lucent, Murray Hill, NJ 07974

USA.
S. A. Edwards is with the Department of Computer Science, Columbia

University, New York, NY 10027 USA (e-mail: sedwards@cs.columbia.edu).
Digital Object Identifier 10.1109/TCAD.2008.2009168

Fig. 1. Architecture of a typical switch. Line cards connected to a shared
switching fabric.

traffic patterns, queue states, and flow information generated by
the packet processors.

Designing a packet-processing circuit for an application-
specific integrated circuit (ASIC) or a field-programmable gate
array (FPGA) is a challenging task for which few high-level
tools are available. A designer often starts by partitioning the
system into functional blocks arranged roughly, such as the flow
of packets and data, and then hand-codes the blocks at the regis-
ter transfer level (RTL). The gap between the “whiteboard” sys-
tem and the circuit renders the development process inefficient
and error prone. Contrast this to signal processing, which has
tools such as Matlab for high-level model design and verifica-
tion and for converting such models into RTL [1]. We want a set
of analogous tools for the design of packet-processing systems.

The diversity of architectures in a packet-processing system
makes developing a comprehensive synthesis system difficult.
A common high-level representation for the queue-based archi-
tecture of a traffic manager and a pipelined packet processor
would be unlikely. Heterogeneity can be found in tools such as
Agere’s Functional Programming Language. It targets pattern
matching and packet parsing but does not describe the behavior
of the traffic manager [2], [3].

Thus, the automatic synthesis of packet-processing com-
ponents is a set of separate related problems. Each type of
component is best described in its own domain-specific lan-
guage and synthesized with a custom set of algorithms. Above
these domain-specific synthesis procedures, we envision an
integration tool enabling the designer to compose a system from
synthesized blocks and explore architectural options.

The work is part of a set of development tools for packet-
processing systems, not a comprehensive solution. Our goal is
to simplify the creation and maintenance of packet-processing
modules with performance comparable to hand-coded designs.
We address packet editing functions because they provide much
of a switch’s value and are tedious to code manually. We
propose novel methods for specifying packet transformations
(Section IV), generating a synthesizable VHSIC Hardware
Description Language (VHDL) code from these specifications
(Section V), and sizing the buffers that connect the elements in
a pipeline (Section VI).

0278-0070/$25.00 © 2009 IEEE

Authorized licensed use limited to: Columbia University. Downloaded on January 26, 2009 at 16:02 from IEEE Xplore. Restrictions apply.

232 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

II. PACKET-PROCESSING PIPELINES

In general, a pipelined packet processor is a linear sequence
of processing elements (modules). Each module performs
packet editing, and every packet is processed by all modules
in the same order. Logical forks and joins in the data flow are
possible by using flags in the control word; a module at the fork
point may decide that only a subset of downstream modules
should process a packet and set the flags accordingly. This is
a way to implement logical branches while preserving packet
ordering and near-constant latency.

A packet usually moves through a pipeline in one of three
ways: in its entirety (header plus payload); as a descriptor,
where the header flows through the pipeline and the payload
is stored in a separate memory; and as a series of small units
(bursts) that are interleaved with those from other packets
to reduce the effective speed of a single packet. Currently,
our tools support the first two processing styles and would
need extensive but straightforward modification to handle the
interleaved burst-style processing. We used descriptors when
implementing a real-world system described in detail in
Section II-A. We also implemented an experimental system
that consisted of an off-the-shelf traffic manager, switching
fabric, and an FPGA in which we moved complete pack-
ets through the pipeline (the egress traffic manager used in
that system guaranteed transmission of a full packet over the
SPI4.2 bus).

A central challenge in pipelines such as ours involves non-
constant data rates, which arise because a module may change
the size of the packet or need data that appear later in the packet
to complete a computation. To avoid having to run modules
in a lock step, we connect pairs of modules with first-in first-
out (FIFO) buffers. Choosing appropriate sizes for these is
important, as overly large FIFOs consume area and power while
small ones unnecessarily constrain the throughput.

A. Real-World Example

We used our model to implement a packet-processing
pipeline for a gigabit-capable passive optical network (GPON)
[4] optical line termination (OLT) fiber-to-the-home system.
Each line card serves six physical GPON ports, each supporting
2.5-Gb/s throughput in the egress and 1.25-Gb/s throughput in
the ingress,1 resulting in an aggregate line-card throughput of
15 Gb/s (egress) and 7.5 Gb/s (ingress). Each physical port is
shared across 32 subscribers using a passive optical splitter in
the field. We implemented traffic management and multiplexing
across physical ports with an off-the-shelf Ethernet switching
chip and used an FPGA for multiplexing across subscribers on
the same splitter. This multiplexing is achieved by mapping the
media access control (MAC) address [5] and virtual local area
network (VLAN) [6] tag (Ethernet packet fields that identify
the packet flow) to the PortID, a GPON-specific field used to
uniquely identify a specific packet flow for a subscriber.

1We use “ingress” and “egress” from the perspective of the central office,
i.e., facing the subscriber and synonymous with “upstream” and “downstream,”
respectively.

Fig. 2. Packet-processing pipeline.

Fig. 2 shows our GPON system’s pipeline. We synthesized
the seven highlighted modules using our techniques.

For each arriving packet, our pipeline stores the packet’s
payload in an external memory (not shown) and constructs an
80-byte packet descriptor that consists of the first 64 bytes of the
packet’s header followed by a 16-byte control word that carries
information such as the packet size, a payload pointer, and
various control flags. Our pipeline then transforms the packet
descriptor by adding, modifying, and removing header fields; it
also modifies fields in the control word. Once the packet reaches
the end of the pipeline, the packet’s payload is reunited with the
now-modified header and is transmitted.

The modules shown in Fig. 2 work together to steer packets.
The ingress and egress “drop” modules perform range checks
and decide if a packet should be dropped. To drop a packet,
these modules set a flag in the packet descriptor’s control
header. A to-be-dropped descriptor continues to move through
the pipeline but is ignored by other modules and discarded at
the end of the pipeline, releasing its payload buffer. The two
drop modules are typical of modules that do not perform any
memory lookups and instead base their processing solely on
packet content and their internal state.

Egress and ingress VLAN processors translate between the
subscriber- and network-side VLANs. The VLAN tag of an
incoming packet is used as an index into the VLAN table,
which gives the transformation descriptor. The resulting packet
may have one or two VLAN tags added, removed, or modified.
Priority bits may also be modified, or a packet may be dropped.
The need to handle all these cases and consult a lookup table
renders these modules complex.

The address learn and lookup modules do not transform
packets but are important nonetheless. They parse each packet
to construct a search key built from the MAC address and
VLAN tag and then pass this key to the MAC table. The MAC
table learns addresses from packets flowing in the ingress di-
rection and searches for information along the egress direction.
These passive modules are simple and compact.

The PortID edit module uses the result of the MAC ad-
dress search to edit the PortID field and hence works in
concert with the address lookup module; the latter creates a
query whose result is consumed by the former. To hide the
latency of consulting the MAC table, we inserted a module
(egress drop) whose behavior does not depend on any pos-
sible action taken by the PortID edit module. The additional
delay from this module ensures that the search result will
be available by the time the packet reaches the PortID edit
module.

Authorized licensed use limited to: Columbia University. Downloaded on January 26, 2009 at 16:02 from IEEE Xplore. Restrictions apply.

SOVIANI et al.: SYNTHESIS AND OPTIMIZATION OF PIPELINED PACKET PROCESSORS 233

Fig. 3. Simple PEG that copies the first 2 B, and then, depending on the first
3 B, either duplicates the third or modifies it before copying a modified version
of the fourth. Thin arrows denote dataflow; thick arrows denote control flow.

III. MEMORY LOOKUP MODULES

Any practical packet-processing pipeline interacts with
memory lookup modules that store and retrieve information
from switching, routing, statistics, and metering tables. We
hand-coded lookup modules for our GPON system in VHDL,
although we would like to also synthesize lookup modules from
high-level descriptions. Unfortunately, their behavior differs
enough from pipeline modules to warrant a separate tool whose
design is outside the scope of this paper. In any case, our
synthesized pipeline modules need to interact with such lookup
modules; hence, our synthesis technique includes provisions for
doing so.

A packet editing module can extract fields from the packet
header, construct a search key, and issue a search request to a
memory lookup module. If a memory module is fast enough,
the lookup may be direct; a single pipeline module may both
issue the read request and process the result. In our GPON
system, the VLAN table operates this way. More commonly,
the lookup is split across two pipeline modules to hide memory
latency. Instead of holding the packet while waiting for the re-
sult, the module that issues the lookup request passes the packet
to the next module and immediately starts forming the request
for the next packet. A module several stages downstream will
consume the search result and edit the packet accordingly. The
MAC table in our GPON system is implemented as a hash table;
the bin is located by hashing the MAC address followed by a
linear search within the bin. This can take up to 12 clock cycles.

Two conditions must be satisfied to prevent the memory
lookup from becoming a throughput bottleneck. First, the time
required to propagate the packet from the module that issued
the search request to the module that consumes the result must
be at least as long as the latency of the lookup module. Second,
a lookup module must support at least one search per packet
that can arrive during the search latency period.

In the methodology we propose, the designer is responsible
for partitioning the function of a packet processor into modules,
formally defining the function of each module, and finding the
order in which the modules can be connected into a pipeline
given the constraints imposed by the memory lookup latencies.
Once the design problem is solved at this level, our algorithms
can generate circuits that implement the details of the pipeline.

IV. PEG

One of our contributions is the packet editing graph (PEG,
Fig. 3), a compiler-style intermediate representation for the

operations performed by a packet header editing module. The
synthesis procedure we describe in Section V starts from PEG.

PEG is meant to be derived from a human-readable pro-
gramming language. The concrete syntax we proposed for it
elsewhere [7] is meant as an intertool exchange format rather
than a language for humans. We generated PEG from a propri-
etary language in our experiments; however, we could, just as
easily, have started from one of the many languages targeted at
specifying packet operations, such as Baker [8] or CAL [9].

We had two conflicting goals in designing PEG. It had to
offer a natural level of abstraction and enable an efficient syn-
thesis procedure. We aimed it at languages for designers who
are experts in system architecture and network protocols, not
necessarily ones versed in RTL digital design. Such designers
see packet header editing as arithmetic and logical operations
performed on fields and not as sequences of operations or state
machines, and both the high-level source language and PEG
need to reflect this. However, for performance, the semantics of
PEG needed to be close to that of the synthesized hardware to
minimize the need for sophisticated optimization algorithms.

Our solution is a compromise; we describe arithmetic and
logical operations in a hardware-like style and have the tool
infer and synthesize sequential behavior. In particular, a PEG
description is agnostic about word length; however, we generate
a circuit for a given length. Our synthesis algorithm is mechani-
cal but not purely syntax directed. Although it does not perform
optimization, we designed it to generate circuits that are well
suited to optimization with common logic synthesis algorithms
such as retiming.

Three things differentiate PEG from more traditional repre-
sentations. Unlike the register-transfer style typically used in
high-level synthesis [10], PEG is more dataflow-like in that
it models memoryless pipeline stages that each consume and
produce a single packet stream (registers are inferred during
synthesis). However, unlike typical dataflow models, such as
synchronous dataflow [11], PEG allows for data-dependent
processing rates by providing a simple facility for inserting and
deleting bytes flowing past. Finally, it is agnostic about word
width; the same PEG specification can just as easily produce a
pipeline that produces a 128-bit word each clock cycle as one
that produces a single byte. We know of few other formalisms
that support variable blocking factors.

A. Structure of the Graph

A PEG is a pair of directed acyclic graphs (Fig. 3). The
dataflow graph describes how the packet is transformed; its
sources are input nodes (rectangles), which are fields in the
input packet or auxiliary inputs, e.g., from memory lookup
modules. The nodes in the dataflow graph describe arithmetic
and logical operators, which we draw as circles.

The sinks in the dataflow graph are nodes in the packet flow
graph—the second directed acyclic graph. This graph describes
how to assemble the output packet from bits generated by
the dataflow graph. It contains two types of nodes: bit se-
quences (rectangles) and conditionals (diamonds). Bits from the
dataflow graph affect how control flows at conditional nodes in
the packet flow graph. The sinks in the packet flow graph are

Authorized licensed use limited to: Columbia University. Downloaded on January 26, 2009 at 16:02 from IEEE Xplore. Restrictions apply.

234 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

Fig. 4. Synthesizing a PEG model. (a) Initial specification labels the bits in the incoming packet header and from auxiliary inputs, processes them with an acyclic
network of arithmetic and logical operations, and assembles them according to an acyclic control-flow graph. (b) Synthesis divides the packets into words (here,
64 b). (c) Assigns read cycle indexes and inserts delay bubbles.

nodes marked with dots, which copy the remainder of the input
packet (i.e., its payload) to the output unchanged.

In our diagrams, data flow from left to right, and time (i.e.,
bits entering and leaving the module) flows from top to bottom.
Fig. 4(a) shows a more elaborate PEG. Depending on the
descriptor retrieved from the memory (shown in the top left
corner), this module inserts up to three new fields in the packet
[labeled SHIM in Fig. 4(a)] and modifies the control header.
We derived the function of this module (including the packet
field names) from a packet-processing pipeline that pushed
multiprotocol label switching [12] labels to the packet header.
We use it here as an example to explain the features of the
synthesis process.

V. SYNTHESIZING THE PEG

Our synthesis procedure translates a PEG into synthesizable
VHDL (RTL) targeting FPGAs, although it could also be used
for ASICs or even software.

The fundamental synthesis challenge is translating the purely
functional PEG description into an RTL model that computes
the function over multiple clock cycles. Input and output
packets take multiple clock cycles to arrive and depart; how
many depends on the width of the buses and the length of the
packets. Consequently, different fields of the packet may arrive
in different clock cycles; the module’s controller has to ensure
that the right operations are performed in each clock cycle.

PEG’s ability to insert and remove data from the output
packet further complicates things. Inserting data may demand
that the input be stalled until the module is ready to pass more
input data to the output. Deleting data from the output packet
may mean that the output data are not available for one or more
cycles. Finally, if an output word depends on a later input word,

Fig. 5. A module’s I/O signals and its two components.

the output must stall until the needed data have arrived at the
input. In short, data do not move through the module uniformly;
valid data tokens are interleaved with idle ones.

Our technique strives to keep the data flow steady (i.e., to
insert as few idle cycles as possible). However, this is not
always beneficial since the overall performance depends not
only on the number of cycles but also on the clock period.
Concentrating complex operations in a single cycle may
improve the cycle count but require an unacceptable increase
in the clock period.

A. Module I/O Protocol

Within the pipeline, each packet editor module interacts with
the adjacent FIFOs through packet input and output interfaces
and with memory lookup modules through optional auxiliary
inputs and outputs, as shown in Fig. 5 (the gray area represents
the module).

The module sees the input packet as a sequence of w-byte
words arriving on the idata port; w = 8 (64 b) is a typical
value. Similarly, the odata port generates w-byte words. Data

Authorized licensed use limited to: Columbia University. Downloaded on January 26, 2009 at 16:02 from IEEE Xplore. Restrictions apply.

SOVIANI et al.: SYNTHESIS AND OPTIMIZATION OF PIPELINED PACKET PROCESSORS 235

words are accompanied by two framing signals that identify the
beginning and the end of the packets. “Start of packet” (sop)
indicates the first word of the packet; “end of packet” (eop)
indicates the last. For a packet small enough to fit in a single
word, both are asserted. Since a packet may not be an exact
multiple of w bytes, the last word may contain between one
and w bytes. The log2 w-bit mod signal indicates the number
of valid bytes in the last word, i.e., when eop is asserted. It is
otherwise ignored.

We currently use the same w for the input and output of every
module in a pipeline; however, alternatives would be possible,
such as a 2w-wide word in a block that would otherwise only
be able to produce a word every cycle. Multiple clock domains
are also possible, although on an FPGA they would consume
already-scarce clock distribution resources.

The input interface consists of the idata, isop, ieop, and imod
signals plus two handshaking signals: val and rd. The input
FIFO generates the val signal when it presents valid input data.
The module generates the rd signal to request new data from the
FIFO in the next cycle. If rd is false and val is true, the FIFO
holds its output. If val is false, the FIFO will present the next
valid data word as soon as it can, regardless of rd.

The output interface consists of the odata, osop, oeop, and
omod signals, plus two handshaking signals: wr and bkpress.
The module generates the wr signal when it writes to the output
port. When the FIFO is full, it asserts bkpress and ignores wr.

The optional auxiliary ports use the same handshaking
scheme as mentioned earlier, i.e., they use val, rd, wr, and
bkpress. However, these ports may have different bit widths
and do not use framing flags (sop, eop, and mod). The module
makes exactly one access to each auxiliary port for each packet,
unlike the packet input and output ports, which transfer packets
as a sequence of words across multiple cycles. For the auxiliary
input, the read request auxird is asserted at the start of each
packet, thereby requiring the value on this port to remain stable
for the current packet. The module asserts the auxowr write
request when it has computed the data.

B. Core and Wrapper

A module may have to suspend its operation when it tries to
request data from an empty input FIFO or when it wants to write
to a full output FIFO. Thus, we construct each of our modules to
hold its state when a suspend signal is asserted and enclose each
module in a wrapper consisting of an OR and two AND gates
(Fig. 5). Our wrapper stalls the module under either condition.
This is conservative since there may be cases where the module
can generate data without additional input data; however, these
are rare cases since the upstream FIFO is rarely empty (properly
sized FIFOs can ensure this). The details are subtle; we describe
a corner case in Section V-G.

C. Splitting Data Into Words

The synthesis procedure begins by dividing the input and out-
put packets into words. Dividing the input packet is straightfor-
ward. For the (output) packet flow graph, we use the algorithm
shown in Fig. 6. Fig. 4(b) shows the result of dividing Fig. 4(a)

Fig. 6. Structuring a packet flow graph into words.

into words. We restructure the packet flow graph such that
conditions are only checked at word boundaries. For example,
we moved the > 0 condition in Fig. 4(a) four bytes earlier
in Fig. 4(b). To preserve the semantics, we made two copies
of the intervening 4 B, placing one under each branch of the
conditional.

The algorithm shown in Fig. 6 recursively walks the packet
flow graph to build a new one whose nodes are all w bytes long
(the word size). Each node is visited with a vector ν of bits that
are “pending” in the current word. Output nodes are added to
this vector until 8w bits are accumulated; a new output node n′

is created by build-node by assembling the pending bits in ν.
When the algorithm reaches a conditional node, the algorithm
copies the conditional node to a new node n′ and visits the two
conditional’s successors. The same ν is passed to each recursive
call because any bits that appeared before the conditional have
not yet been written out and need to be written later.

Duplication from hoisting conditionals is potentially expo-
nential but turns out not to be a problem in practice. For exam-
ple, although there are four paths in Fig. 4(b), they only lead
to two final states. We handle reconvergence by maintaining a
cache of already-visited nodes that we only consult when ν is
empty. In such a case, when visiting a node that has already
been visited (i.e., is in the cache), the traversal is stopped, and
the node from the previous visit is returned.

D. Assigning Read Cycle Indexes

After splitting the packet flow graph into uniform-length
words, we assign to each node in the dataflow graph a read
index that indicates how many input words must arrive before
the output of the node can be computed—a representation of
causality. Input packet nodes are labeled consecutively starting
from zero, the optional auxin node is also labeled zero since we
assume its value is known at the beginning of the packet, and
we label the root of the packet flow graph with −1.

We label each remaining node in the dataflow and the
packet flow graphs with the maximum index of all of its
predecessors, thus guaranteeing that no node will be computed

Authorized licensed use limited to: Columbia University. Downloaded on January 26, 2009 at 16:02 from IEEE Xplore. Restrictions apply.

236 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

earlier than its inputs. For example, the “&” node in Fig. 4(c)
has two operands, namely, the flags field from the auxiliary
input and the flags from the input packet. They are labeled
“0” and “1,” respectively; thus, the “&” node is labeled 1.
Note that under these rules, two consecutive words in the
packet flow graph may have the same label. We resolve such
situations in the scheduling step described in the following
section.

E. Scheduling

After assigning read cycle indexes, we schedule the graph to
assign a clock cycle to each operation. An index may be mapped
to more than one cycle.

Our scheduling algorithm inserts “bubbles” (cycle bound-
aries) according to two constraints. There must be at least
n bubbles between an arc connected to nodes labeled k and
k + n, and there must be at least one bubble between any
two nodes in the packet flow graph. The former rule ensures
that a node’s data are held until it can be used; the latter
ensures that the module never attempts to output two words in a
cycle.

Fig. 4(c) has been scheduled according to these rules. Black
squares on edges represent cycle boundaries. The first rule
forced us to insert two bubbles between the top node in
the packet flow graph (index −1) and the first output node
(index 2); the second had us insert bubbles after the first and
third conditionals.

F. Synthesizing the Controller

After assigning read cycle indexes and adding bubbles,
generating the module’s datapath and controlling finite state
machine is easy. The datapath comes from the input nodes and
dataflow graph; the packet flow graph dictates the controller.

The structure of the controller follows the structure of the
packet flow graph. Fig. 7 shows the algorithmic state machine
(ASM) chart generated from the scheduled graph shown in
Fig. 4(c). Bubbles in the packet flow graph become states in
the controller; conditionals become conditionals. For example,
the topmost bubble become the init state in Fig. 7; the next
one becomes S1, the first conditional is copied, and then, the
bubbles on its outgoing arcs become states S2 and S3.

The bubbles before the sinks of the packet flow graph are
merged into a common rep state that handles the variable-length
payload and the end-of-packet condition. We describe this in the
next section.

Each normal node in the packet flow graph becomes a
statement in the ASM chart that sends data to the odata bus.
Such nodes also assert owr to indicate valid output data. In other
states, owr is not asserted, and odata is a don’t-care.

The ird signal is asserted on each arc that joins two nodes
with different indexes. The first scheduling rule ensures that,
at most, one such arc is present between two states. This
guarantees that two words are never read from the input in the
same cycle. The ird signal remains de-asserted for state transi-
tions where the index remains constant, effectively stalling the
input FIFO.

Fig. 7. ASM chart for the controller synthesized from Fig. 4(c).

G. Handling the End of a Packet

The sinks in the packet flow graph make the module directly
copy its input (often the packet’s payload) to its output. The rep
state in the ASM chart handles this.

The PEG shown in Fig. 4(c) has two such sinks. The right one
runs when zero or two SHIM fields are inserted in the header.
Since w = 8 in this example, the output alignment is the same
as the input. The left leaf corresponds to the case when one or
three fields (4 or 12 bytes) are inserted. Here, the input data are
misaligned for the output, and the module has to assemble each
output word from two consecutive input words.

Rather than generate a separate state for each leaf, our algo-
rithm generates an align_reg register and a common state (the
rep state shown in Fig. 7) that handles all the alignment cases.
In the rep state, the generated state machine first tests align_reg
and assembles the output word. When the packet is misaligned,
it combines part of the input word from the previous clock cycle
with part of the input word from the current clock cycle.

When ieop is asserted, the current input word is the last in
the packet; thus, the module must output the pending bytes
plus the valid bytes from the current word before going to the
init state. Two cases are possible. If the remaining data can be
sent in a single word, the module goes directly to the init state;
otherwise, a second cycle is needed to finish the transfer.

The eop_reg 1-byte register helps to handle the second case.
It is set in the cycle ieop is first detected and it forces the

Authorized licensed use limited to: Columbia University. Downloaded on January 26, 2009 at 16:02 from IEEE Xplore. Restrictions apply.

SOVIANI et al.: SYNTHESIS AND OPTIMIZATION OF PIPELINED PACKET PROCESSORS 237

controller to the init state in the next cycle, preventing the
machine from looping forever.

It may appear that a module could stall on the last word of a
packet when no new packet is waiting on the upstream FIFO;
but this turns out not to be the case. The details of this corner
case are worth explaining in part to illustrate the challenge of
constructing such circuits by hand. The worrisome scenario is
this: The module is processing the last word of the “last” packet
(i.e., there is no packet immediately following it in the upstream
FIFO) and is thus about to suspend itself; however, the length
of the packet has extended into another word so that another
clock cycle is needed to produce the final word of the output
packet. In this case, the module recognizes that it must continue
to output words without consuming its input; hence, it does not
assert ird in the second-to-last cycle. This prompts the FIFO to
continue to assert val in the next (final) cycle, thus preventing
the module from being stalled. Only when the module knows
that it has finished emitting the last word of the output packet
does it assert ird, which may prompt the FIFO to deassert val
in the next cycle and suspend itself. The bottom states in Fig. 7
induce this behavior.

H. Synthesizing the Datapath

We directly translate the nodes in the dataflow graph into
combinational logic to form the datapath, which also includes
the output multiplexer that generates the odata output word.

Our algorithm transforms each bubble on an arc in the
dataflow graph into parallel registers, one for each bit of the arc.
This guarantees that each node has valid data starting in the
clock cycle corresponding to its read cycle index.

The “bubble” registers need load-enable signals since a sin-
gle read cycle index may correspond to multiple clock cycles.
We add logic to compute the load-enable signals; however, most
of this logic becomes trivial after logic optimization.

Although many datapath registers could be removed during
this step, we do not do so because they help in retiming during
logic synthesis. Our simple as-soon-as-possible scheduling pol-
icy is almost certainly not optimal for balancing computation
across multiple clock cycles; however, doing better requires a
detailed understanding of low-level logic details. Instead, we
let logic synthesis address this problem by generating circuits
that are well suited for retiming.

VI. PIPELINE ANALYSIS

By design, connecting our modules to form pipelines is
straightforward because we synthesize modules that speak
matching protocols on their input and output ports. While it
would be possible to connect modules directly, doing so would
force them to run in lock step and greatly reduce throughput;
hence, modules are invariably connected with FIFO buffers.
Such buffering smooths out variations in data flow rate among
the modules; sufficiently large buffers isolate each adjacent
module, allowing the pipeline performance to be improved by
improving the performance of each module separately.

In this section, we address the challenge of selecting appro-
priate FIFO sizes. Making them too small reduces throughput

Fig. 8. Packet pipeline. How big should the FIFOs be?

by constraining the behavior of adjacent modules; making them
too big needlessly consumes area and power.

While pipelines in general have been analyzed extensively,
ours have unique properties that warrant specialized analysis.
Uneven data flow is their key distinguishing feature; modules
can insert and remove data based on state and input data. This is
what makes them algorithmically rich and difficult to analyze.
However, our pipelines are simple in other ways. Throughput,
not latency, is the figure of merit because overall latency in a
switch tends to be dominated by queuing and forwarding; a
few extra clock cycles in the packet-processing pipeline do not
matter. Moreover, our pipelines are linear. Finally, the function
of each stage in our pipelines is fairly simple because of high
performance requirements.

We describe how to compute the performance of a module in
isolation, how to combine these results to compute the overall
performance of a pipeline with FIFOs that are big enough to
isolate the modules, and, finally, how to determine the smallest
FIFOs that deliver such isolation. We propose two algorithms
for the latter problem: one exact and one heuristic. While both
are fairly costly to run (they repeatedly call a model checker),
we believe that they are practical because FIFO sizes are
typically chosen only once during development, and the answer
only affects pipeline performance and not its function.

A. Example

Consider the pipeline shown in Fig. 8, which processes
packets that start with one or more 112-bit Ethernet headers
followed by a payload. The first module can swap the first
two headers, the second can remove the first header, and the
third can duplicate the first header. Each module only modifies
packets with certain headers and passes others unmodified. This
pipeline can modify packets in eight different ways. Although a
single module could do all this, our multimodule architecture
is representative of real packet-processing pipelines, which
eschew complex modules for performance reasons.

These simple module processors have complex data rates.
While the first module does not change the packet length, swap-
ping headers means that the output must stall until the second
header arrives at the input, then the input must stall while the
output writes the first header. The second module stalls the
output while the first header is being discarded, and the third
stalls the input while it makes a second copy of the first header.
Such data- and state-dependent behaviors combined with FIFOs
makes pipelines like this complex sequential systems.

We want to answer two questions. First, what is the pipeline’s
worst-case throughput? We have observed many engineers use a
questionable rule of thumb and simply assume that any pipeline
can only process data every other clock cycle on average;

Authorized licensed use limited to: Columbia University. Downloaded on January 26, 2009 at 16:02 from IEEE Xplore. Restrictions apply.

238 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

however, our experiments suggest this is often wasteful and
even optimistic for certain pipelines. Second, for an achievable
throughput, how small can the FIFOs be for them to still
guarantee that performance? Most designers use intuition, often
leading to overprovisioning. Even for simple pipelines, these
questions are difficult to answer manually.

Our methods take less than 30 s to tell us that the worst-case
throughput of this pipeline is 0.6 and the FIFO sizes of 4, 5, and
5 can guarantee this. Furthermore, if we reduce the throughput
requirement to 0.5, FIFOs of sizes 4, 4, and 4 suffice, as do 4,
5, and 3.

B. Analyzing an Isolated Module

We first analyze the performance of a module in isolation and
assume that later, we will add enough buffering to the pipeline
to make it behave as if it is isolated. Later, we show how to
combine these measures to analyze a complete pipeline.

For performance analysis, we abstract the interface of each
module to an input and an output bus; two control signals rd and
wr, which indicate when the module wants to communicate;
and a suspend signal that stalls the module when input data are
unavailable or the downstream FIFO is full.

An ideal module always asserts rd and wr; but, most modules
are not ideal. For example, the Remove1st module shown in
Fig. 8 does not write in cycles where the second header arrives
at the input. In general, the sequence of values on rd and wr
depends on the function of the module and the arriving packet.

Let rp
i , wp

i , and i = 0, 1, 2, . . . be the sequences of values
observed on the rd and wr signals for an input data pattern p. In
general, a module reads and writes data at different rates; thus,
we define separately the worst-case read throughput ρ and the
worst-case write throughput ν.

For the input, the worst case arises from sequences rp
i with

the smallest number of ones in a given time

ρ = min
p

(
lim
t→∞

1
t

∑
i<t

rp
i

)
. (1)

The limit—actually the mean of a Bernoulli
sequence—exists because rp

i ∈ {0, 1} so that 0 ≤
∑

i<t rp
i ≤ t.

In fact, 0 ≤ ρ ≤ 1.
This ρ is useful for guaranteeing that a module can process

any input flow at a given rate (assuming sufficient input buffer-
ing). For example, if ρ = 0.4, the pipeline must be clocked at
500 MHz to guarantee a 200-MS/s input throughput for any
data pattern since 500 × 0.4 = 200. Similarly

ν = min
p

(
lim
t→∞

1
t

∑
i<t

wp
i

)
. (2)

Computing ρ and ν from (1) and (2) is impractical because
the limits are over sequences of unbounded length. Instead,
we analyze an abstraction of a module’s behavior—the state
transition graph (STG) of the controller—and compute the
lower bounds by considering all simple cycles in the graph.

An STG (Fig. 9) is a nondeterministic finite state machine
(V,E, r, w), where V is the set of states, E ⊆ V × V is the

Fig. 9. STG for the DwVLANproc module.

set of transitions, and r, w : E → {0, 1} represents the values
of the rd and wr signals on each transition. While each module
is deterministic, the STG abstracts data computations, making
it nondeterministic. In Fig. 9, the reset state is on the left;
branching is due to different operations, and the state with the
self-loop handles the packet payload (see Section V-F).

A simple cycle is a sequence of transitions, which forms a
nonintersecting path whose tail connects to its head. Consider-
ing that our STGs are finite and strongly connected, every path
in them follows simple cycles, i.e., if C is the set of all simple
cycles

S = C ∪ C2 ∪ C3 ∪ · · · =
∞⋃

i=1

Ci (3)

contains all finite and infinite paths through the STG, including
many that cannot occur on real data because of abstraction.

Each path si ∈ S has the associated read throughput Ri with
it. Define a set 	 of all read throughputs that can be achieved
by traversing the STG

	 =

⎧⎨
⎩Ri

∣∣∣si ∈ S ∧ Ri =

∑|si|
j=1,cj=si(j)

∑
e∈cj

r(e)∑|si|
j=1,cj=si(j)

|cj |

⎫⎬
⎭ (4)

where
∑|si|

j=1,cj=si(j)
denotes a sum over the elements of a

sequence si and |cj | denotes the number of transitions in a
simple cycle cj . The minimum throughput (i.e., the minimum
element of set) is

R = min
c∈C

∑
e∈c r(e)
|c| . (5)

To see this, consider the well-known inequality∑
ai/

∑
bi ≥ min(ai/bi). It follows that ∀Ri ∈ 	, Ri ≤ R.

Further, since C ⊂ S, it follows that R ∈ 	.
By a similar argument, the worst-case write throughput is

W = min
c∈C

∑
e∈c w(e)
|c| . (6)

Note that the minimum-weight path in (5) and (6) may be
impossible when the module runs with actual data; thus, in
reality the worst-case throughput defined by (1) and (2) may
be higher. However, this only makes our computations more
conservative; we may report the need for larger FIFOs than
necessary.

Finally, we define a related metric, namely, the read/write
ratio. This is useful for relating the input rate to the output rate,

Authorized licensed use limited to: Columbia University. Downloaded on January 26, 2009 at 16:02 from IEEE Xplore. Restrictions apply.

SOVIANI et al.: SYNTHESIS AND OPTIMIZATION OF PIPELINED PACKET PROCESSORS 239

Fig. 10. An STG to illustrate computing R. (a) Edges labeled with r(e).
Edges labeled with weights for α = 0.4, (b) 0.5, (c), and 0.6 (d). Since α = 0.5
is the largest α with no negative-weight cycles, it follows R = 0.5.

as discussed later in Section VI-C

T = min
c∈C

∑
e∈c r(e)∑
e∈c w(e)

. (7)

Graph metrics such as (5)–(7) are known as minimum-cycle
means [13]. Our formulation matches that of Dasdan [14];
however, we use a slightly different notation.

Dasdan assigns each edge two weights ω(e) and τ(e), which
we derive from our r(e) and w(e). To compute R, ω(e) = r(e),
and τ(e) = 1; for W , ω(e) = w(e), and τ(e) = 1; and for T ,
ω(e) = r(e), and τ(e) = w(e).

We compute R, W , and T using a Bellman–Ford-based
algorithm proposed by Lawner (see Dasdan [14]). We chose
it for its simplicity.

Let G = (V,E) be a directed graph with edge weights we

for e ∈ E. The O(V E) Bellman–Ford algorithm can determine
whether there is any negative-weight cycle in G. By cleverly
choosing the weights and performing a binary search, we can
quickly estimate R, W , and T .

Consider computing R. From (5), we have

R = max(α) s.t. ∀c ∈ C, α ≤
∑

e∈c r(e)
|c| . (8)

Assigning we = r(e) − α, it follows that∑
e∈c r(e)
|c| ≥ α ⇔

∑
e∈c

r(e) − |c| · α ≥ 0 ⇔
∑
e∈c

we ≥ 0.

(9)

Therefore, we have to find the maximum α such that all
cycles are positive. Bellman–Ford can verify the absence of
negative cycles for a given α; thus, α can be approximated with
a binary search to any desired accuracy.

Similarly, to compute T , let we = r(e) − α · w(e) and note∑
e∈c r(e)∑
e∈c w(e)

≥α ↔
∑
e∈c

r(e)−α·
∑
e∈c

w(e)≥0 ↔
∑
e∈c

we≥0.

(10)

Fig. 10 shows the computation of R for a small STG.
Fig. 10(a) shows the STG with edges labeled with r(e). This
graph has only two simple cycles, namely, (S0, S1, S2) and (S0,
S1, S3, S4). Their read/time ratios

∑
e∈c r(e)/|c| are 2/3 ≈

0.666 and 2/4 = 0.5. Thus, from (5), R = 0.5.
For more complex graphs, we use Bellman–Ford as de-

scribed earlier. Fig. 10(b) shows the edge weights for α = 0.4.
Since both cycles have a positive weight, we conclude that
R > 0.4. Fig. 10(d) shows the weights for α = 0.6. Here, the

Fig. 11. Throughput (R) under optimally sized FIFOs.

small cycle has a positive weight but the large one has a negative
weight (0.4 + 0.4 − 0.6 − 0.6 = −0.4); thus, we conclude that
R < 0.6. Fig. 10(c) has a positive- and a zero-weight cycle,
confirming that R = 0.5.

C. Analyzing a Pipeline of Isolated Modules

It is easy to compute the throughput of a pipeline by combin-
ing the values of R, W , and T computed for isolated modules.
The analysis remains valid if we assume that the modules
are interconnected using finite-size FIFOs, provided that they
are large enough to avoid causing a performance bottleneck.
Further, we show that such a set of FIFOs exists for any set of
pipeline modules. First, note that packet lengths are bounded
in all practical network protocols. By construction, no module
will start reading the next packet until it has finished writing
the previous packet; so FIFOs large enough to accommodate
two packets (one being read, one being written) never block
a module because of insufficient capacity. Such large FIFOs
are wasteful and unnecessary in practice; we discuss how to
compute the exact bound in Section VI-D.

Consider computing the throughput of the pipeline shown in
Fig. 8. Let R123 be the overall throughput (because the pipeline
consists of M1, M2, and M3). First, compute R and T for
each of the modules, following Section VI-B. Now, consider
the “module” M23 obtained by merging M2, M3, and their
connecting FIFO. We assume that the FIFO never limits the
throughput; hence, either M2 or M3 is the bottleneck. If M2

writes slower than M3 can read, M2 is the bottleneck, M3

is effectively an ideal sink, and R23 = R2. If, however, M3

reads slower than M2 writes, the FIFO will eventually fill up.
The fraction of time M2 is not stalled is exactly the ratio
between the read of M3 and the write rate of M2. T2 is the
ratio of the read rate of M2 to its write rate; hence, the over-
all throughput of the pipeline is R23 = T2R3. Overall, then,
R23 = min(R2, T2R3). Following the same reasoning, R123 =
min(R1, T1R23). In general, this process can be applied from
output to input—Fig. 11—to compute the throughput of the
whole pipeline.

D. Analyzing a Pipeline of Interacting Modules

In this section, we use a model-checking technique to estab-
lish how small the FIFOs can be and still guarantee the perfor-
mance we computed in the previous section. Small FIFOs force
upstream modules to wait on stalled downstream modules even
if the downstream modules have sufficient average throughput.
The problem can be avoided by using very large FIFOs; the
objective is to find their minimum sizes.

The problem is that the minimum FIFO size depends on
the cycle-by-cycle behavior of the modules and not just on
aggregate measures, such as R. For example, a single-element
buffer is sufficient to connect a module that (at worst) writes

Authorized licensed use limited to: Columbia University. Downloaded on January 26, 2009 at 16:02 from IEEE Xplore. Restrictions apply.

240 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

Fig. 12. Pipeline model suitable for model checking.

Fig. 13. Data source state machine for (a) T = 1/3 and (b) T = 2/5.

every other cycle to one that reads every other cycle. On the
other hand, connecting a module that stalls for ten cycles then
writes for ten cycles would demand a larger FIFO, although
its average throughput is the same. Such interactions grow
complicated quickly when they involve multiple modules.

For these reasons, we resort to performing model checking
to analyze the behavior of our pipelines. To make it practical,
we abstract away all data behavior by only analyzing STGs for
the modules and the FIFOs. This makes it possible to analyze
small pipelines exactly in reasonable time; however, an exact
approach does not scale so that we also propose a heuristic that
runs much faster and comes reasonably close to the ideal.

Broadly, our algorithms work by building a model of the
pipeline that can answer whether the pipeline operates smoothly
at a particular throughput by feeding it a specific pattern of valid
and invalid words, and then asking a model checker whether
the model ever asserts the “backpressure” signal. Fig. 12 shows
such a model. We connect the output of the pipeline to an
ideal sink that is always able to accept another word. We could
also only allow a sink with 50% throughput, for example, by
connecting a different module at the sink.

We connect the input of the pipeline to a constant-rate data
source—a simple STG such as those shown in Fig. 13—that
supplies a repeating pattern of valid and invalid data words to
the pipeline. For example, to test 33% throughput, the driving
STG writes for one cycle and stalls for two. This approach only
allows us to consider rational rates.

Overall, model checking is very different from simulation
which only tests a specific series of data values. Instead,
our approach tests all possible data values but constrains the
throughput by supplying a fixed pattern of valid words.

Fig. 14 shows a representative STG for a three-element FIFO.
For efficiency, our FIFOs are Moore machines; their inputs can
only affect their outputs after a cycle.

E. FIFO Size Monotonicity

Since we use costly model checking in the inner loop of the
search algorithm to determine whether a pipeline configuration
can achieve a given throughput, we make the following obser-
vation to reduce the search space.

For two pipelines with the same modules Mi but different
FIFO sizes fi and f ′

i,

∀i, fi < f ′
i implies R ≤ R′ (11)

Fig. 14. STG of a three-place FIFO. Inputs: wr, rd. Outputs: bp, val.

Fig. 15. Exact algorithm for computing minimum FIFOs.

because increasing the size of a FIFO can never decrease the
throughput; decreasing the throughput requires more backpres-
sure; however, a larger FIFO never induces any.

This is not a total ordering, e.g., it does not discriminate
when fi < f ′

i and fj > f ′
j for some i �= j. Nevertheless, it helps

reduce the search space when trying to find overall minimum
FIFO sizes. When ∀i, fi < f ′

i, we write F ≺ F ′.

F. Exact Depth-First Search Algorithm

Fig. 15 shows our exact algorithm for determining minimum
FIFO sizes. It is a variant of a depth-first search that uses (11)
to prune the search space (the GeThanAny and LeThanAny
functions). It is slow—later, we present a heuristic variant—but
it can be practical. We also used it to evaluate our heuristics.

The core function is ThroughputAchieved (not shown),
which calls the VIS model checker [15] to determine if the
pipeline with a given set of FIFO sizes can achieve the desired
throughput. The algorithm first considers pipelines with all
FIFOs of size 1, then all of size 2, etc., until a feasible one is
found; this is the starting place for the search.

We maintain three lists of FIFO size assignments: good, bad,
and try, which contain assignments that have worked, failed,
and not been checked, respectively. The Succ function returns
the next points in the search space if the current state works. The
depth-first behavior arises by adding and removing elements
from the beginning of the try list in a stack-like fashion.

Authorized licensed use limited to: Columbia University. Downloaded on January 26, 2009 at 16:02 from IEEE Xplore. Restrictions apply.

SOVIANI et al.: SYNTHESIS AND OPTIMIZATION OF PIPELINED PACKET PROCESSORS 241

Fig. 16. Greedy search for minimum size FIFOs.

The MinSize function returns the best solution found; our
cost metric is simply the sum of FIFO sizes, reflecting their
area. Other metrics would be easy to accommodate.

G. Heuristic Search Algorithm

The exact algorithm we presented earlier is often too slow to
be useful; so we modified it to use a heuristic: Fig. 16. Like the
exact algorithm, it begins by increasing FIFO sizes uniformly
until it finds a solution, and then, it decreases the largest FIFO
until doing so would prevent the pipeline from operating at the
desired throughput.

Once the size of a particular FIFO has been decreased to
the point that it violates the throughput constraint, we mark the
FIFO as “held” (the members of the H array) and do not attempt
to further modify its size. The algorithm terminates when every
FIFO has been marked.

This algorithm can miss the optimal FIFO sizes because
it assumes that the FIFO sizes are independent, which is not
always true. Relations between FIFO sizes can be complex. For
example, increasing the size of one may allow two or more
FIFOs to shrink (this does not violate the monotonicity result).
Nevertheless, we find our heuristic works well in practice.

VII. EXPERIMENTAL RESULTS

Using PEG, we implemented modules from the GPON OLT
system (Section II), as well as a subset of modules from another
(experimental) system. We synthesized them using the tech-
niques of Section V, assembled them into a variety of pipelines,
and used the techniques of Section VI to determine appropriate
FIFO sizes. The data bus width was 128 b; we targeted a Xilinx
Virtex 4 XC4VLX40-FF668-10 FPGA.

Table I shows the size and performance of synthesized mod-
ules. The top half of the table shows the modules from the ex-
perimental system; the bottom half shows the modules from the
GPON packet-processing pipeline described in Section II. The
row labeled “Full Pipeline” is the result for a fully assembled
GPON pipeline, including the interconnecting FIFO buffers.

We measured the performance of each module using the
Xilinx post-routing static timing analyzer. Each delay is of the
longest register-to-register path plus register setup time. For
area, we report the number of lookup-table primitives and of
flip-flops used in the Virtex 4 device for the module minus its

TABLE I
PEG MODULE SYNTHESIS RESULTS

wrapper. The rightmost column shows the estimated module
throughput, which is the product of the module bit width and the
frequency in the previous column. This is an overapproximation
that does not consider for what fraction of cycles the module is
actually producing or consuming data; however, it is still a rea-
sonable indicator of performance. For both case studies, synthe-
sized modules are consistently showing the throughput between
25 and 40 Gb/s. We observed no performance penalty between
modules placed and routed in isolation and those in a pipeline.

In the production system, the GPON pipeline runs at
166 MHz—a 6-ns period. All synthesized modules are capable
of running considerably faster and, thus, were not the bottle-
neck. Instead, the external packet memory interface was the
main system bottleneck; at no time during the development
process did we see a timing violation in the pipeline modules.

Wide buses let us achieve the required throughput—an ob-
vious technique for overcoming FPGA clock frequency limi-
tations. However, it is exactly these kind of designs that make
the hand-coding at the register transfer level lengthy, tedious,
and error prone. The results demonstrate the merit of our
proposed techniques; the throughput requirement of the system
was easily met (and, in some cases, exceeded), while the design
time and code maintainability were vastly improved.

To try to quantify “maintainability,” we surveyed the code
repository of the GPON design and focused on modules written
by a single developer. Twenty-two modules were handwritten;
nine were synthesized using our tools. The handwritten mod-
ules had a total of 131 check-ins (5.95 per module, on average),
41 of which (31%) were bug fixes. The nine automatically
synthesized modules had 35 check-ins (3.88, on average), five
of which (14%) were bug fixes. While these results are limited
(e.g., we did not have time to do independent hand implementa-
tion of any modules), they suggest that our technique improves
productivity.

To evaluate the FIFO sizing algorithms, we arbitrarily se-
lected four modules from Table I, synthesized them, and
ran our algorithms on various combinations. Table II shows
throughputs for a 32-bit bus. For some modules, the reported
throughput may appear too conservative, e.g., the VLANedit
module does not enforce the minimum payload size and the
low throughput results from analyzing short packets that do
not appear in practice. A more detailed model that included

Authorized licensed use limited to: Columbia University. Downloaded on January 26, 2009 at 16:02 from IEEE Xplore. Restrictions apply.

242 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

TABLE II
STATISTICS FOR MODULES IN FIFO SIZE EXPERIMENTS

TABLE III
EXPERIMENTAL RESULTS FOR FIFO SIZING

padding states would be more accurate; however, our goal was
to evaluate our algorithms and not to analyze specific pipelines.

We narrowed the bus to 32 bits to increase the sequential
complexity and challenge the FIFO sizing algorithm. This also
illustrates our maintainability argument; we were able to regen-
erate the modules by changing one parameter and recompiling.
Manually rewriting a VHDL implementation for a new bus
width would be a lengthy painful task.

The pipelines in our experiments (Table III) are “random”
combinations of three and five modules. Although their func-
tionality is nonsensical, their complexity is representative.

The “Ideal Throughput” column lists R as computed by the
algorithm in Fig. 11. We ran the greedy (Fig. 16) and exact
(Fig. 15) algorithms with the slightly smaller throughput than
ideal (listed in the “Used Throughput” column) because it must
be a ratio of small integers. The last four columns list the total
size of all FIFOs in the pipeline, as well as the time needed
to obtain this solution. Although the results vary substantially,
it appears that shorter pipelines and those containing simple
modules have a higher throughput and require smaller FIFOs.
Not surprisingly, our algorithm runs faster on such examples.

The results show that module sequence is important. For
example, BCD requires ten words of storage in the FIFOs; DCB
only requires eight. Thus, the interaction of adjacent modules is
a critical factor that cannot be ignored for an accurate analysis.

VIII. RELATED WORK

This paper intersects three areas: domain-specific lan-
guages for network applications, hardware synthesis of
those applications, and pipeline performance analysis and
provisioning.

The architecture of a typical packet processor is some
combination of deep pipelining and multithreading [16].
Brebner et al. [17] have shown how to automate the synthesis
of multithreaded architectures on FPGAs. Their systems are
state machines that execute a pool of threads that collectively
process a single packet. By contrast, we focus on pipelined
architectures, specifically the algorithms for high-level syn-
thesis of modules that implement the pipeline stages. Which
architectural style is superior depends on the application, its
performance requirements, and so forth. We do not attempt to
answer this question; if the pipelined architecture is chosen, our
tool spares the designer from much low-level coding.

A. Languages for Networking

Our PEG notation is meant to be generated from a language
for networking applications. We do not consider the design
of such a language; others have. For example, the Click ar-
chitecture of Kohler et al. [18] allows router algorithms to be
described as directed dataflow graphs, much like our pipelines.
However, they consider only software and code their modules
in C++. While its details are very different from this paper, it
validates the pipeline-centric semantics of our PEG.

Kulkarni et al.’s Cliff [19] is an embedding of Click in
Verilog for FPGAs that uses a library of predesigned compo-
nents. Their contribution is in defining an interface that allows
such components to be assembled and a compiler that does
so. However, we feel designing the components is the major
challenge in implementing router algorithms in hardware.

Mihal et al. [20] use a Click-like formalism to synthesize
and program networks of horizontally microcoded processors
for packet-processing tasks. Like us, they have the goal of
generating customized hardware for packet processing from
high-level descriptions; however, their approach requires the
designer to supply the structure of the datapath. Moreover,
unlike our word-by-word approach to processing packets, they
consume an entire packet header in one cycle (their sample uses
a 344-bit datapath) and process a few cycles before producing
the entire packet header. Although we have not made any ex-
perimental comparison of the two techniques, we suspect theirs
would require more hardware to achieve the same throughput,
although they should be able to support more complex opera-
tions.

Like Cliff, Schelle and Grunwald’s [21] CUSP assembles
prewritten hardware blocks. It improves upon Cliff by allowing
multiple modules to run simultaneously and permits them to
execute speculatively. Our pipelines appear to provide ten times
the throughput, probably because of wider datapaths.

B. High-Level Synthesis

Our technique to generate pipeline modules can be consid-
ered high-level synthesis but differs in many ways from the
classical approach described by De Micheli [10] and others.
For example, scheduling and binding are two key operations
in classical high-level synthesis; yet, we deliberately use only
basic versions of each because of our model of computation. We
use as-soon-as-possible scheduling because we expect detailed
scheduling decisions to be made by a retiming procedure during

Authorized licensed use limited to: Columbia University. Downloaded on January 26, 2009 at 16:02 from IEEE Xplore. Restrictions apply.

SOVIANI et al.: SYNTHESIS AND OPTIMIZATION OF PIPELINED PACKET PROCESSORS 243

logic synthesis. Since our computational model is loop-free,
retiming our circuits is very effective.

Since most of our operations are small (e.g., not multipliers),
we do not consider resource sharing; overhead from additional
multiplexers and wiring would be self-defeating. Unlike the
arithmetic-intensive applications usually considered in high-
level synthesis, our modules mostly shuffle and forward data.
However, even for costly operations, we would not consider
resource sharing since we want the highest performance; the
area of our elements is often dwarfed by intermodule buffering.

Our computational model differentiates us from classical
high-level synthesis. Instead of assuming that data are held in
memories, we assume that data arrive and depart a word at a
time. This leads to the main problem that our algorithm ad-
dresses; our PEG specifications are functional so that we must
schedule operations into clock cycles based on when data arrive
and can be sent. The main challenge here is making sure every-
thing is performed as early as possible. Delaying an operation
for a cycle may cause a periodic pipeline stall. For a module that
takes just three cycles to operate, such a stall could reduce the
throughput of the pipeline by 33%; thus, avoiding stalls is key.

C. Pipeline Performance Analysis

Since performance is the point of pipelines, it is not surpris-
ing that many have considered analyzing their performance. It is
a difficult problem in general; hence, practical approaches tend
to either approximate the solution or simplify the problem by
constraining the systems being considered. Considering that we
are working with data-dependent pipelines and want to compute
reasonably tight worst-case bounds, no existing technique is
satisfactory, although many address very similar problems.

The asynchronous logic community has addressed this prob-
lem more than any other. There, buffering is termed “slack.”
Manohar and Martin [22] determine slack elasticity, i.e., when
buffering can be added and removed without affecting behavior.
This is trivial for linear pipelines such as ours; they consider
fan-in and cycles, which complicate things.

Modeling pipelines stochastically is usually easier. Tradi-
tional queuing theory is helpful if packets arrive with a dis-
tribution such as the Poisson; however, we want to know the
worst-case behavior. Similarly, Xie et al. [23] analyze large
stochastic Petri nets to report average delays, which are not our
concern.

Our need to model pipeline elements with choice is unfor-
tunate; many existing techniques do not consider choice to
simplify the analysis. For example, although synchronous data
flow [11] graphs permit arbitrary topologies, not just the linear
pipelines to which we restrict ourselves, they are fairly easy
to analyze. For example, Murthy and Bhattacharyya [24] show
how input and output buffer spaces can be shared when exact
data lifetimes are known. Similarly, Le Boudec and Thiran’s
[25] network calculus, which provides an effective mathemati-
cal framework for analyzing the throughput and FIFO sizing for
pipelines of modules with variable delays, requires each module
to have constant read and write throughputs.

The latency-insensitive design approach of Carloni et al. [26]
models systems with marked graphs—a choice-free subset of

Petri nets. In this choice-free setting, Lu and Koh [27], [28]
attack a buffer-sizing problem much like ours and propose a
mixed-integer-linear-programming solution. The work of Casu
and Macchiarulo [29] is representative of more floorplan-driven
approaches; their buffer sizes are driven by expected wire
delays, something we do not consider.

Most in the asynchronous community also prohibit pipelines
with choice. Nielsen and Kishinevsky [30] only compute per-
formance. Holgaard and Amon [31] do so as well but enable
parametric analysis by adding symbolic element delays. Kim
and Beerel [32] go a step further and consider where to insert
delays in such pipelines—an operation similar to retiming.
Prakash and Martin [33] and Beerel et al. [34] consider how
much buffering to add to systems for maximum throughput;
however, again, they do not consider systems with choice.

Venkataramani et al. [35], [36] allow choice but resort to
testing; they collect simulation traces to estimate performance.
Like most testing-based approaches, theirs is efficient but is
only as good as the user-supplied test cases.

Burns and Martin [37] consider systems with choice but
rely on an explicit representation of the state space of the
(concurrent) system, making it scale poorly. While we have not
directly compared their technique with ours, it seems doubtful
that their explicit approach would scale as well as VIS.

IX. CONCLUSION

Establishing a strict formalism for describing packet editing
operations (our PEG) enables a hardware synthesis procedure
that can be used to create high-performance packet processors.
Our procedure synthesizes circuits whose performance is com-
parable with those in state-of-the-art switches while dramat-
ically raising the level of abstraction above that of standard
RTL. Our main contribution is a procedure for scheduling a
purely functional specification into a sequential one performed
across multiple clock cycles. The direct benefit of our technique
is improved designer productivity and code maintainability.
Experimental results on modules from actual product-quality
designs suggest that our approach is viable.

We also addressed worst-case performance analysis and
FIFO sizing for linear pipelines of modules with data-
dependent throughput. The performance of such a pipeline
depends on both its elements and their interaction. Interaction
makes the analysis of a real pipeline, with finite FIFOs, difficult.
To answer the problem, we proposed two algorithms, one exact
and one heuristic, which use a model-checking algorithm to
evaluate the feasibility of candidate solutions.

As presented, our FIFO sizing technique uses a simple cost
function, which is the sum of all FIFO sizes. This is a good
metric for ASICs, where each FIFO can be custom sized.
However, the algorithm is easily modified to use a different cost
function; for example, FIFO implementations on FPGAs take
advantage of the FPGA built-in primitives, which have fixed
sizes; thus, the resource usage does not increase linearly with
the FIFO size.

Although the analysis algorithms require substantial running
time, we consider them practical since they can be run in
parallel with the synthesis of the individual modules.

Authorized licensed use limited to: Columbia University. Downloaded on January 26, 2009 at 16:02 from IEEE Xplore. Restrictions apply.

244 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

REFERENCES

[1] Matlab for Synthesis—Style Guide, Xilinx Inc., San Jose, CA, Mar. 2008.
release 10.1.

[2] D. E. Comer, Network Systems Design Using Network Processors.
Englewood Cliffs, NJ: Prentice-Hall, 2004, ch. 20/21, pp. 293–330. Agere
Version.

[3] B. Klein and J. Garza, “Agere systems-communications optimized
PayloadPlus network processor architecture,” in Network Processor
Design: Issues and Practices, vol. 1. San Mateo, CA: Morgan
Kaufmann, 2002, pp. 219–233.

[4] Gigabit-Capable Passive Optical Networks (G-PON): Transmission Con-
vergence Layer Specification, ITU-T Rec. G.984.3, Feb. 2004.

[5] Carrier Sense Multiple Access With Collision Detection (CSMA/CD) Ac-
cess Method and Physical Layer Specification, IEEE Std. 802.3-2005,
May 2005.

[6] Virtual Bridged Local Area Networks, IEEE Std. 802.1Q-2005,
May 2006.

[7] C. Soviani, “High level synthesis for packet processing pipelines,” Ph.D.
dissertation, Columbia Univ., New York, Oct. 2007. cUCS–041–07.

[8] L. Liu, X.-F. Li, M. Chen, and R. D. C. Ju, “A throughput-driven task
creation and mapping for network processors,” in Proc. HiPEAC. Ghent,
Belgium: Springer-Verlag, Jan. 2007, vol. 4367, pp. 227–241.

[9] E. D. Willink, J. Eker, and J. W. Janneck, “Programming specifications
in CAL,” in Proc. OOPSLA Workshop Generative Tech. Context Model-
Driven Archit., Seattle, WA, Nov. 2002.

[10] G. De Micheli, Synthesis and Optimization of Digital Circuits. New
York: McGraw-Hill, 1994.

[11] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proc. IEEE,
vol. 75, no. 9, pp. 1235–1245, Sep. 1987.

[12] T. Li, “MPLS and the evolving Internet architecture,” IEEE Commun.
Mag., vol. 37, no. 12, pp. 38–41, Dec. 1999.

[13] R. M. Karp, “A characterization of the minimum cycle mean in a digraph,”
Discrete Math., vol. 23, no. 3, pp. 309–311, Sep. 1978.

[14] A. Dasdan, “Experimental analysis of the fastest optimum cycle ratio and
mean algorithms,” ACM Trans. Des. Autom. Electron. Syst., vol. 9, no. 4,
pp. 385–418, Oct. 2004.

[15] R. K. Brayton et al., “VIS: A system for verification and synthesis,” in
Proc. CAV. New Brunswick, NJ: Springer-Verlag, Jul. 1996, vol. 1102,
pp. 428–432.

[16] N. Weng and T. Wolf, “Pipelining vs. multiprocessors—Choosing the
right network processor system topology,” in Proc. Adv. Netw. Commun.
Hardw., Munich, Germany, Jun. 2004.

[17] G. J. Brebner, P. James-Roxby, E. Keller, and C. Kulkarni, “Hyper-
programmable architectures for adaptable networked systems,” in Proc.
Int. Conf. ASAP, Galveston, TX, Sep. 2004, pp. 328–338.

[18] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The click
modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297,
Aug. 2000.

[19] C. Kulkarni, G. Brebner, and G. Schelle, “Mapping a domain specific
language to a platform FPGA,” in Proc. 41th ACM/IEEE Des. Autom.
Conf., San Diego, CA, 2004, pp. 924–927.

[20] A. Mihal, S. Weber, and K. Keutzer, “Sub-RISC processors,” in Customiz-
able Embedded Processors, P. Ienne and R. Leupers, Eds. Amsterdam,
The Netherlands: Elsevier, 2006, ch. 13, pp. 303–338.

[21] G. Schelle and D. Grunwald, “CUSP: A modular framework for high
speed network applications on FPGAs,” in Proc. FPGA, Monterey, CA,
2005, pp. 246–257.

[22] R. Manohar and A. J. Martin, “Slack elasticity in concurrent comput-
ing,” in Proc. MCP. Marstrand, Sweden: Springer-Verlag, Jun. 1998,
vol. 1422, pp. 272–285.

[23] A. Xie, S. Kim, and P. A. Beerel, “Bounding average time separations
of events in stochastic timed Petri nets with choice,” in Proc. Int. Symp.
ASYNC, Barcelona, Spain, Apr. 1999, pp. 94–107.

[24] P. K. Murthy and S. S. Bhattacharyya, “Buffer merging—A powerful
technique for reducing memory requirements of synchronous dataflow
specifications,” ACM Trans. Des. Autom. Electron. Syst., vol. 9, no. 2,
pp. 212–237, Apr. 2004.

[25] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Determin-
istic Queuing Systems for the Internet, vol. 2050. New York: Springer-
Verlag, 2001.

[26] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli, “Theory
of latency-insensitive design,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 20, no. 9, pp. 1059–1076, Sep. 2001.

[27] R. Lu and C.-K. Koh, “Performance optimization of latency insensitive
systems through buffer queue sizing of communication channels,” in
Proc. ICCAD, 2003, pp. 227–231.

[28] R. Lu and C.-K. Koh, “Performance analysis of latency-insensitive sys-
tems,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 25,
no. 3, pp. 469–483, Mar. 2006.

[29] M. R. Casu and L. Macchiarulo, “Throughput-driven floorplanning with
wire pipelining,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 24, no. 5, pp. 663–675, May 2005.

[30] C. D. Nielsen and M. Kishinevsky, “Performance analysis based on timing
simulation,” in Proc. 31st ACM/IEEE Des. Autom. Conf., San Diego, CA,
Jun. 1994, pp. 70–76.

[31] H. Holgaard and T. Amon, “Symbolic timing analysis of asynchro-
nous systems,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 19, no. 10, pp. 1093–1104, Oct. 2000.

[32] S. Kim and P. A. Beerel, “Pipeline optimization for asynchronous circuits:
Complexity analysis and an efficient optimal algorithm,” in Proc. ICCAD,
San Jose, CA, Nov. 2000, pp. 296–302.

[33] P. Prakash and A. J. Martin, “Slack matching quasi delay-insensitive
circuits,” in Proc. Int. Symp. ASYNC, Grenoble, France, Mar. 2006, p. 195.

[34] P. A. Beerel, A. Lines, M. Davies, and N.-H. Kim, “Slack matching
asynchronous designs,” in Proc. Int. Symp. ASYNC, Grenoble, France,
Mar. 2006, p. 184. pp. 11.

[35] G. Venkataramani, M. Budiu, C. Tiberiu, and S. C. Goldstein, “Global
critical path: A tool for system-level timing analysis,” in Proc. ACM/IEEE
Des. Autom. Conf., San Diego, CA, Jun. 2007, pp. 783–786.

[36] G. Venkataramani and S. C. Goldstein, “Leveraging protocol knowl-
edge in slack matching,” in Proc. ICCAD, San Jose, CA, Nov. 2006,
pp. 724–729.

[37] S. M. Burns and A. J. Martin, “Performance analysis and optimization
of asynchronous circuits,” in Proc. UC Santa Cruz Conf. Adv. Res. VLSI,
1991, pp. 71–86.

Cristian Soviani received the B.S. degree in
computer science and electrical engineering from
Bucharest Polytechnic University, Bucharest,
Romania, in 1998 and the Ph.D. degree in computer
science from Columbia University, New York, NY,
in 2007.

Since 2007, he has been with Synopsys, Inc.,
Mountain View, CA, where he currently works with
a team developing a static timing analysis tool.
His research interests include high-level synthe-
sis, programmable logic devices, and optimization

algorithms.

Ilija Hadz̆ić (S’96–M’99) received the B.S. de-
gree in electrical engineering from the University of
Novi Sad, Novi Sad, Serbia (formerly Yugoslavia),
in 1995 and the M.S. and Ph.D. degrees in electrical
engineering from the University of Pennsylvania,
Philadelphia, in 1996 and 1999, respectively.

While at Penn, his research intersected the fields of
dynamically reconfigurable hardware and program-
mable (active) networks. Since 1999, he has been
with Bell Laboratories, Lucent Technologies (now
Alcatel-Lucent), Murray Hill, NJ, where he currently

works as a Distinguished Member of the Technical Staff. His research and
professional interests include data, optical, and converged broadband access
networks, all with an emphasis on hardware and system-level software.

Stephen A. Edwards (S’93–M’97–SM’06) received
the B.S. degree in electrical engineering from the
California Institute of Technology, Pasadena, in
1992, and the M.S. and Ph.D. degrees in electri-
cal engineering from the University of California,
Berkeley, in 1994 and 1997, respectively.

He is currently an Associate Professor with the
Department of Computer Science, Columbia Univer-
sity, New York, NY, where he has been with since
2001 after a three-year stint with Synopsys, Inc.,
Mountain View, CA. His research interests include

embedded system design, domain-specific languages, and compilers.

Authorized licensed use limited to: Columbia University. Downloaded on January 26, 2009 at 16:02 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

