FIFO Sizing for High-Performance Pipelines

Cristian Soviani and Stephen A. Edwards
Columbia University, New York
{soviani, sedwards@cs.columbia.edu

Swap Removelst Duplst
Abstract

128 128 128

u FIFO din dout
L]

rd
bp mt

din dout
rd

din dout
rd

ource

Performance-critical pipelines—such as a packet procgsssln
pipeline in a network device—are built from a sequence © =
simple processing modules, connected by FIFOs. Due to their
complex sequential behavior, the worst case throughput, as
well as the size of the interconnecting FIFOs, are curresitly Figure 1: A packet pipeline: how big should the FIFOs be?
signed using very rough heuristics. Such systems are ysuall

validated by simulation, or worse, field testing.

In this paper, we propose a methodology that address theseonsider Figure 1, a pipeline from a network switch. We
two issues. First, we propose a fast technique for computignt to process packets that start with an arbitrary number o
the maximum possible throughput assuming unbounded EL2-bit Ethernet headers followed by a payload.

FOs. Then, we describe two algorithms, one exact, one heurisThe first module swaps the first two headers, the second re-
tic, that compute minimum FIFO sizes that can achieve ttves the first header, and the third duplicates the firstdread
throughput (i.e., FIFOs that do not introduce bottlenecks) Each module performs its operation on certain packets éthos

Experimental results suggest our algorithm is applicablewith a matching “type” field) and leaves the others alone.
pipelines of at least five modules with runtimes generally in This pipeline can modify packets in eight different ways.
minutes. Since such a computation is only needed a few tiMé&ough this simple pipeline could be replaced by a single
for any design, we consider our technique practical. module, stringing these operations is more representafiae
real packet processing pipeline.

The first module leaves the packet length unchanged, but the
High performance pipelines are critical in many moderntdigi second and third may shrink and increase it respectivedy: th
systems. A typical application is a packet processing p'ipelﬂow through the pipeline is not constant. Moreover, this flow
found on the line cards of modern network switches. varies according to the contents of the packets.

The performance requirements of such applications (per-The combination of data- and state-dependent computation
haps tens of gigabits per second) mean that the functionbthe modules plus FIFOs makes this a complex sequential
individual pipeline modules tend to be very simple; theimzo Systems. Our goal is to address two related questions.
plexity arises when they are chained together. First, what is a pipeline’s worst-case throughput? One rule

In contrast with a pipeline in which each stage does a lit@é thumb is that typical pipelines work at 50% throughput, so
bit more of a larger, regular computation (e.g., multiplion), doubling the clock frequency should be enough to process any
the computation of each module in the pipelines we consid@ta pattern. Our experiments show that for real pipelithés,
can vary substantially. For example, one module might p@pproximation is often wasteful and may even be incorrect.
form a VLAN (Virtual Local Area Network) computation; the Second, given an achievable throughput, what are the mini-
next may handle PPPoE (Point-to-Point Protocol over Ethgtum FIFO sizes for which we can guarantee that performance?
net). These very common protocols use Ethernet packets wigre, the designer usually over-approximates these ssieg u
augmented headers to provide additional functionality. his experience. However, we notice that individual modules

Another particularity of the pipelines we are consideriag are simple, and consist mostly of combinational logic, whil
that the data flow through each module is not constant; sofrlEOs contain many sequential elements. Over-provisiéited
modules may insert or remove data. Specifically, each modbf@s waste chip area and power and are therefore obvious can-
has state and is free to perform different computationsfat diidates for optimization. Our techniques allow us to safely
ferent times depending both on its state and the data fed télitce FIFO sizes, i.e., without fear of decreasing the perfor
As such it is not always ready to produce or receive more dafzance of the pipeline.

Its environment must comply with such wishes. Even for such a simple pipeline, answering questions about

Such pipelines consist of modules connected by FIFOstigoughput and FIFO size is challenging and not something
mitigate the effect of variable data rates. Such FIFOs decéme can do by hand.
ple the behavior of the modules, making the pipeline’s diera Using the methods in this paper, it takes less than thirty sec
throughput follow the average module throughput. onds to determine the worst-case throughput of this pipe$in

wr

wr

wr

suspend suspend suspend

1 Introduction

0.6 and that this can be guaranteed with a minimum total FIBO Single module analysis

capacity of fourteen (specifically, 4, 5, and 5 for the thrée E

o 4 Our pipelines consist of a linear array of FSMs (Figure 1).
FOs in Figure 1). Furthermore, if we decrease the through i o ; -
requirement to 0.50, 4,44 and 4,5.3 are both valid solstion%e assume the whole pipeline runs synchronously with a sin

X . : . le clock, a typical implementation technique. While we coul
Below, we first define some metrics to characterize the se-_~. : :
) .) - . consider an asynchronous implementation, the analysiseof t
guential behavior of a single pipeline element (Sectioff Bgn

we analvze the worst-case agareqate throughout of theimd e‘ndividual modules would be much more complicated (see,
y ggreg gnp mep &g Burns and Matrtin [2]). Data for each module comes from

assuming ideal FIFO sizes (Section 4.1). Next we propose t\ﬁe source and goes to the sink through direanddout sig-

algorithms, one exact and one heuristic (Section 5), that éa
gorthms, i . ' hals. For efficiency, these are wide busses, e.g., 128 hits.
determine these ideal FIFO sizes. We support these results : .)
experiment (Section 6) he module interacts with source and sink through two con-
' trol signalsyd andwr, which the module asserts when it wants
2 Related Work to read and write 128-bit blocks of data. None, either, ohbot

Traditional queuing theory is not able to answer these qutca):fs:chese signals may be asserted each clock cycle.

tions. First, it assumes arrival rates can be modeled ssbieha Additionally, the source proy|des tat (*empty”) S|gnal,

. . asserted when no data is available (e.g., the FIFO is empty).
cally, yet network traffic rarely follows standard distrtimns ikewise, the sink asserts t (‘back pressure” status sig-
such as the Poisson. Second, even if we had appropriate Idi ' . P 9

tributions, queting theory only provides stochastic (pe Ral when the sink can not accept data. As shown, these two

. signals areORed to form thesuspendsignal, which stalls the
average-case) results. Here we are concerned with the worst . . L .
A module in cycles in which it asserted. Thus, in our model, the
case, not a distribution.

Le Boudec and Thiran's network calculus [8] provides rgodule is stalled regardless of whether it intends to read or

. C write in a particular cycle. While it would be possible for the
helpful methodology for analyzing the pipeline throughpad module to ignore the suspend signal in cycles in which it nei-

FIFO sizing, given modules with variable delays, but it re; ~ : .
.) . her intended to read nor write, we expect a module imple-
quires that each module has a fixed read and write throughput. . S
nting such a rule would have a longer combinational delay

Th'.s is not the case here, yvhere each modulg may have h|g[rﬁ§/t would lead to a lower clock rate and probably a net reduc-
variable, data-dependent input/output behavior.

Many have addressed analyzing and reducing buffer rnet|o_n in throughput. Withsuspendasserted, the module holds
S state for that cycle and de-assedsandwr.

ory consumption for synchronous dataflow graphs (SDF [gﬁ "To evaluate the performance of a single module, we assume

While the arbitrary topology of SDF graphs is richer than %%at the source and the sink are ideal, i.e., butiand bp are

linear pipelines, they assume their modules produce and S88ver asserted. In this case, the FSM will never be stalled, b
sume data at a fixed rate. As such, SDF admits fixed sched%hes X ’ '
and very aggressive analysis. For example, Murthy and Bhat: module may not always assert bedrandwr. In general,

y agg ySIS. Pi€, y Weir status may depend on the data being fed to the module.

tacharyya [12] show how input and output buffer space can’ . rip, Wip' i 2 01,2, ... be the sequences of values ian

be shared when exact data lifetimes are known. Such precisg : ;
andwr for a given input pattermp.

analysis is generally impossible for our models since they a We are primarily interested in the worst case throughp.

low data-dependent production and consumption rates. . o
Like SDF, latency-insensitive design [3] allows richeratgp For the input, the worst case corresponds to sequerices
' with the smallest number of 1s in a given time. Formally,

gies than our pipelines, but insists on simple module com-

munication patterns. Lu and Koh [10, 11] attack essentially _ _ zidrp
the same problem as we do, but in this semantically differ- R:Jm (mpln t|> (1)

ent setting. They propose a mixed integer-linear programmi

solution. Casu and Macchiarulo [4] is representative ofenor Intuitively, such a limit exists because we are only consid-
floorplan-driven concerns: their buffer sizes are driverely €ring finite systems that ultimately exhibit repeating hebia
pected wire delays, something we do not consider. We present a more formal argument later.

The asynchronous community also considers buffer sizingR IS interesting for pipelines such as ingress packet proces-
(e.g., Burns and Martin [2]), but again consider richer topo SOrs when we want to be able to guarantee we can process any
gies, simpler communication, and fancier delay models. input flow at a given rate. For example, if we fifi= 0.4,

The obvious question arises: is worst-case analysis jegtifit follows that to guarantee a 200 MS/s input throughput for
for real world applications, or would a statistical one st any data pattern, we have to clock the pipeline at 500 MHz (as
Are corner cases significant in real data patterns? 500x 0.4 = 200)

The answer is yes. Even though most corner cases will neveYVe defineW, the worst case output throughput, similarly.
occur, we have observed that observed data patterns ggnefdlis is interesting for pipelines such as egress packetesroc
do belong to a “corner case.” For example, Ethernet lineca®&P''s, Where we wish to guarantee an output rate. In the sequel
are often tested with sequences of all smallest length dndvég Will focus on input flow rates; output flow is symmetrical.
longest length packets, as such traffic often occurs in jseact We defineRW, the minimum read/write ratio, as

. P
RW = lim <minz'<tr'p). @)
e P YictW

Figure 3: Sample STG to illustrate section 3.3xXagbels (b),
(b) simplified (c), (d) label weightsve for a = 0.4, 0.5, 0.6 respectively

(a) original

Figure 2: STGs for the DwVLANproc modul . . . - .
gure 2: STGs forthe proc module ratio. This pattern will occur for a periodic behavior of the

STG that reads the least on average. Any periodic behavior
3.1 Abstracting the data path corresponds to a cyclkein the graph, and the average reading

rate of that cycle i$5 ..c X¢) /|c|, exactly (3). A self-intersecting
The FSM for a module may have an enormous number ofih a\ways has a smaller rate on one of its cycle, so we only

states if it stores an 128-bit sample, rendering a directiapRonsider simple paths. Similar reasoning gives (4) andI(5).
cation of the above method infeasible. We do the usual tnickéqso justifies the existence of the limits in (1) and (2).

dividing the FSM into datapath and control and only consider(3)' (4), and (5) compute minimum cycle means [7]. Das-

the STG for the control, which includes the, wr, andsus- g [5] uses slightly different notation: we usge) = X5, T(€) =
pendsignals. Any signals from the datapath are treated as ir,"w(e) =XV, 7(e) =1, orw(e) = x., T(e) = xV.

dependent inputs, meaning there may be extra states and tran

sitions in the abstracted STG. The input/output behavithef 3-3 Using Bellman-Ford

abstracted STG cannot be better than the original, so anry R&re we show how to compute the metrRandW using a
formance guarantee we obtain using the abstracted STG al38hod proposed by Lawner, (see Dasdan [5]). We chose it for

holds for the original system. In the sequel, we only considg; simplicity, given that our STGs are small.
simplified STGs. LetG = (V,E) be a directed graph with edge weightsfor
3.2 Computing R,W, and RW from the STG ec E. TheO(V E) Bellman-Ford algorithm checks if all cycles

) . in G have positive weight. If they are, it returns the minimum
We start with the state transition graph of the module’s FSMaip, weight from a given source to each node.
We build a graptG = (V, E), whereV is the set of states, and | the sequel, we will ignore any computed path lengths just
E €V xV is the set of transitions. Any pattepcorresponds ,se Bellman-Ford to check whethée € C, S eccWe > 0.

to an infinitg path in the STG_, starting from the reset state.USing some simple arithmetic tricks, Bellman-Ford can be
Note that this graph abstracts input and output data; tee®ffseq 1o inexpensively compute certain properties of a graph

of input data is modeled by multiple outgoing transitions. To computeR, note from (3) that
We are interested when thid andwr signals are asserted,
S0 we assign to each edge E two labelsx; andxy € {0,1}. R—maxa) st.YceC,a < SeccXe
We present a typical STG in Figure 2a. This can be thought T
of as an nondeterministic finite automaton with four output Assigningwe = X. — &, we have
symbols that correspond to the four possibilities for ragdi e=Xe '
and writing data. It would be possible to simplify it using a r
heuristic algorithm to produce the slightly simpler STG igF ZTCTXE Z0 < E;CXL:_ c]-a >0 egcwe > 0.

ure 2b, but we did not implement this optimization.
A simple cyclec is a sequence of edges that forms a non-Thus, we have to find a maximumsuch that all cycles are

intersecting path whose tail connects to its head.@ be the positive. For a giverr, we can use Bellman-Ford to check the

set of all simple cycles in the grafih We can comput& W, condition, so we can approximatearbitrarily well by binary

andRW by considering every simple cyctec C: search.
, Similarly, to computeRW—see equation (5)—we assign
R— min 2e<c%e (3) We=x,—a-x¥, which gives
ceC |C| r
zE‘ECXe r W
W S0 Y Xe— 0) X% >0) we>0.
W= migze‘eT‘]Xe) S ecc e 2 2 2.
cel
r In Figure 3 we illustrate the technique by computiRgn
RW= minzeeicxe (5) asmall STG. In Figure 3a, we have the original STG showing
¢<C YeccXe the edge labels’. By inspection, we find two simple cycles:
where|c| is the number of edges in cyate (S0, S1, S2) and (SO, S1, S3, S4). Their read/time ratias, i.e

The rationale for these is as followR, as defined by (1), TeccXe/|C|, are 23~ 0.666 and 24 = 0.5. Thus, according
corresponds to the pattern with the smallest average ngad/cto (3),R=0.5.

function Ideal-Throughput
r—1
fori«n...1do
r — min(R,r-RW)
returnr

Figure 4: STG of a 3-place FIF®:= (wr,rd), O = (bp,mt . .) .)
g P () (bp.mt Figure 5: ComputindR assuming optimally-sized FIFOs

Since the number of cycles can be exponential in the size of Lo
the graph, this straightforward approach is not feasible. To do so, we assume that each FIFO is big enough to com-

We will approximateR as described above. In Figures 3b, aensate for any spurious activity between the modules i con
and d, we assiga = 0.4,0.5, and 06 respectively, and com-Nects. We do not consider the FIFOs to be infinite, but instead

pute the edge weights = X, — a, as shown above assume the average data production and consumption rates of

In Figure 3b, both cycles are positive, so the Bellman-Folidf modules in the pipeline are balanced in the limit. I.e, w
algorithm accepts the graph and we concl@&e 0.4. In Fig- assume that FIFOs do fill and empty, the overall throughput is

ure 3d, the small cycle is positive but the second is negativdCh that each FIFO maintains its average fill level.
so Bellman-Ford rejects the graph and we conclBde0.6. First, we compute the individu& andRW for each module
Thus, Bellman-Ford accepts values greater than the trud’Sing the method from Section 3.3._We denot_e “&‘TRZ’ Rs,
Rand rejects those less than the tRighere, 05). We can use RV, RV, andRW. Then we consider the pipeline modules
binary search to approximaRuwith arbitrary precision. from right (output) to left (input). o
The case in Figure 3c is the limit, since here- R. Since FOF moduleMs, since it has an ideal sinRs is the through-
this is exactly at the threshold of the all-positive-cycteihd- PUt Ms guarantees to accept from upstream; the actual flow

ary, itis not surprising that one cycle has exactly zerofeng _entenngMg in the_ overall p|peI|n_e worst-case may be smaller
if the bottleneck lies upstream (i.e., in moduMs or M,).

4 Connecting modules Looking atM,, we have to consider two cases. For some

We build a linear pipeline by chaining various modules and iat@ PatternsM, may write slower tharMs can read. In this
serting FIFOs between them. Figure 1 illustrates this ttrec €25€:Mz is the bottleneck, and the FIFO between them will

We assume that the outputs of a FIFO are driven direcﬂﬁcome empty in some clock cycles, causigto stall. In
from flip-flops, i.e., that there is no combinational pathnfro this caseRy; = Re.))
input to any output. While this means it always takes at least ©" Other patternsvl, may want to write faster. In this case,
one clock cycle for a FIFO to react (e.g., by asserting ts is the botFIeneck, the FIFO WI|| becor/ne full in some clock
backpressure signal), such an assumption greatly singiifee cycles, causing/, to stall. For th!s caseR’2'3 — RV ',R3'
logic synthesis problem by making it easy to optimize the tim Consildgrlng both cases, we fifids = min(Ryg, Ry5).
ing of each module and FIFO in isolation. Note that the one- Ve similarly move leftwards and compuR.s; the com-
cycle delay means that typically one additional FIFO stag

ghlete algorithm is listed in Figure 5.
necessary over what a “faster” FIFO might demand. We alsg®MPUtingR; and RW requires building the explicit STG

abstract its data path when constructing the STG for a FIF®). €ach module, but as in practice they seldom exceed twenty

Thus for a three-entry FIFO, we obtain the STG in Figure 4 States; the observed running time is negligible. _
We wish to know the throughput of the complete pipeline. This f_ast aIg_onthm is Well-swte_zd to use inside a high-leve
First, we will attempt to compute the pipeline’s througrsYNthesis design-space exploration loop. Usually, eacti-mo
put under the assumption that the FIFOs are “large enougt{® 2dmits several implementations that are not sequntial
Specifically, we want to know the highest throughput posggu|vglent an_d have different costs. Moreover, modulgs can
ble when the FIFOs are large enough so that they are nevBEPlit or adjacent modules merged, i.e., to vary the pigeli
bottleneck. If the FIFOs are infinitely large and assumeceto $ranularity. This algorithm makes it possible to quicklyreo

filled, they never exert backpressure and are always read)p"t"ée variants.
present more data. This is ideal but unrealizable. 5 Computing FIFO Sizes

At the other extreme, with zero-length FIFOs, data can only) .
progress through the pipeline when every module is read))nalhe last section, we showed how to compute the maximum

restrictive situation in which unsynchronized module hébia (module-limited) throughput of alinear pipeline assurithey
causes a dramatic drop in throughput. Instead, we want #lly sized FIFOs. We now ac_;ldress the problem of finding the
case where each FIFO is just big enough to avoid bottlenecR&allest FIFOs that can achieve that throughput.

Once we have computed the throughput assuming “IargéNe do this using a guided search that can test whether a

enough” FIFOs, our second challenge is to compute FIFO sipaglicular assignment of FIFO lengths can achieve a particu
that exhibit this behavior. We describe this in Section 5. 'ar throughput. The simplest way to determine this (Fefor
a complete pipeline) is to build the product machine of all it

4.1 Computing the ideal throughput modules and FIFOs and compuReusing the algorithm from
Section 3.3. Of course, the size of this product machine grow

We would like to compute the overall read throughpyss of ;) > F X X
exponentially with the length of the pipeline, quickly magi

a pipeline such as that in Figure 1.

it impractical to implement explicitly. Nevertheless, wene Figure 6 shows the algorithm, which is a variant of a basic
able to use it on small samples to validate the implicit tectiepth-first search. To prune the search space, it uses ti@ FIF
nique we describe below. size monotonicity property (Section 5.2), which is chechkgd
the GeThanAny and LeThanAny auxiliary functions.

The core function is ThroughputAchieved, which calls the
Here we use model checking to find out if a given pipelindlS model checker (Section 5.1), and decides if a given as-
with FIFOs of given sizes can sustain a certain throughpsignment of FIFO sizes can achieve the desired throughput.
Later, we will use this as the core of a search algorithm forThe algorithm first considers pipelines with all FIFOs of
determining the minimum-sized FIFOs that support the masize one, then all of size two, etc., until a feasible oneimth
mum throughput we computed using the technique preserigid is the starting place for the search.
in the previous section. The algorithm maintains three lists of FIFO size assign-

Consider a pipeline with moduleaVi;,i = 1,2,...,n. Atthe ments: GOOD, BAD, and TRY, which contain the fifo sizes
beginning, we add a source FSM that simply outputs data atlasich are proven to be good, bad, and not checked yet. The
constant rate: the throughput we want to chélckyWe denote Succ function returns the next points in the search space to b
this additional moduld/g. checked if the current state is good. The depth-first behavio

Because we model the input behavior as a simple perioditses by adding and removing elements from the beginning of
(finite) FSM, we can only use values fdérwhich are a ratio of the TRY list in a stack-like fashion.
small integers. The interesting cases are wheaR— &, with The MinSize function returns the best solution found; our
€ >0small,i.e., we try to achieve the throughput we computedst metric is simply the sum of FIFO sizes, reflecting their
assuming sufficiently large FIFOs. area. However, a more complicated metric can be used.

Between then+ 1 modules we place FIFOs. We denote
the size of the FIFO betwedwi_1 andM; asfi,i=1,....n.

We start with STGs of the pipeline elemeims andF;, de- We find the exact algorithm in Figure 6 too slow. Instead, we
scribed by KISS models [6]. We encode each of them usipgppose the heuristic search algorithm in Figure 7. Thissdoe
the one-hot algorithm in SIS [13], then assemble the rewultinot guarantee an optimal solution, but in practice appedus t
BLIF files, connecting handshaking signals and addingistall able to produce solutions close to it and runs much faster.
logic. We tie thebp input of the last modul®/; to 0, i.e., toan Like the exact algorithm, this one starts by considering®IF
ideal sink. The source moduMy has nosuspendnput, as it sizes of all one, then all two, etc., until a solution is found
produces data at a fixed rate. Instead, our goal is to chetk fHaen, it attempts to decrease the largest FIFO. When decreas-
thebpoutput ofF; will never be asserted, meaning the pipelinieg the size of this FIFO would violate the throughput con-
can accept the given throughput. straint, we mark it as “held” and do not attempt to reduce its

In this point we simply use theheckinvariant algorithm size further (thed array holds the “held” flags). The algorithm
from the VIS package [1], to verify that, regardless of the cuerminates when all FIFOs are marked as “held.”
rent state of the overall system, the propdsiyy = 0 holds, This algorithm can miss the optimal FIFO size because it
i.e., the first FIFO never becomes full and would block outpassumes the FIFO sizes are independent, which is not true in
from the first module. This answers the throughput questiorgeneral. Constraints among FIFO sizes can be fairly complex
for example, increasing the size of one may enable two or more
other FIFOs to be reduced (note that this does not violate our
Since we use costly model checking to determine whethemanotonicity result of Section 5.2). Nevertheless, we find t
pipeline configuration can achieve a given throughput, wkemheuristic algorithm works well in practice.

5.1 Verifying throughput using model checking

5.4 A heuristic search algorithm

5.2 FIFO size monotonicity

the following observation to reduce the search space. To further decrease the running time, we have also explored
For two pipelines with the same modullek, but with dif- the case where all FIFOs have the same size, and got slightly
ferent FIFO sized; and f/ respectively, we find worse results compared to the proposed greedy algorithm. In
. P fact, a whole class of heuristic algorithms can be derivedhfr
vi, fi < f/ impliesR< R.. (6)

the described method, depending on the cost function to-mini

This is because increasing the size of a FIFO can never peze, as well as on the desired trade-off between running tim
crease throughput: decreasing throughput requires maie band accuracy.
pressure, but a larger FIFO never induces any.

This is not a total ordering, e.g., it does not discriminate
whenf; < f{ andfj > f; for somei # j. Nevertheless, it helpsin our experiments we use four modules (A, B, C, D) taken
to decrease the search space when trying to find overall mindm a packet processing pipeline in a commercial ADSL-
mum FIFO sizes. Whevii, f; < f/, we writeF < F’. like network linecard. We synthesized them for a 32-bit wide
pipeline. In practice, 64- or 128-bit busses are more common
meaning the modules will have fewer states and require small
Here we present an exact search algorithm for determiniRtFOs. We chose complex modules to illustrate our algorithm
minimum FIFO sizes. It is often too slow, so in the next sec- A, B, and C are complex modules that swap, insert, and re-
tion we accelerate it with a heuristic. Its runtime is somets move VLAN tags from packets at different points in a pipeline
practical; we also use it to evaluate our heuristics.

Experimental Results

5.3 An exact depth-first search algorithm

function GeThanAnyF, list)

for F’ ¢ list do
if F > F’ then
return true
return false

function LeThanAny§, list)

for F' ¢ list do
if F <F’then
return true
return false

function MinSize(list)

S+« 00
for F’ elist do
s —73iF
if § < sthen
F—F
S—¢

function SuccF)
S—0
for 0<i<ndo

S—SuU(Fo,...F-1,F—1,F1,...)

return S
function SearchMinFIFO
s«—1
F—(11..,2
repeat

BAD.pushfront(F)
s«—s+1
F«—(ss,...,S)

until ThroughputAchieved)

GOOD.pushfront(F)

for F' € SucdqF) do
TRY.pushfront(F’)

while TRY.size> 0 do
F — TRY.popfront

if GeThanAnyF, GOOD)then

ok < true

eseif LeThanAnyf, BAD) then

ok — false
else

ok « ThroughputAchieved)

if ok then

GOOD.pusHhfront(F)
for F' € SucqF) do
TRY.pushfront(F’)

else
BAD.pushfront(F)

return MinSize(GOOD)

function GreedyMinFIFO
s—1
repeat
S—s+1
F—(ss,...,9)
until ThroughputAchieved)
H — (0,0,...,0)
whileH # (1,1,...,1) do
m— -1
fori«—1,...,ndo
if HH=0and (h=—1 orF > Fy) then
m«—i
Fmn— Fn—1
if not ThroughputAchieved) then
Hm—1
Fr— Fn+1
return F

Figure 7: Greedy Search for minimum size FIFOs

A is the most complex module we have found in practice.
Module D is simpler, but not trivial. However, since it does
not insert and remove data from the packet, its input/output
behavior is trivial. This is the case with many real moduses,

we believe including it in the experiments is justified.

To produce different examples, we randomly combined up
to five modules (Figure 8). These pipelines may not perform a
useful function, but their complexity is representative.

For each sample, the ideal throughput column IRtas
computed by the Ideal-Throughput algorithm (Figure 5).

The greedy (Figure 7) and exact (Figure 6) algorithms are
run on the slightly smaller throughput listed under “Thrbug
put used.” This a small integer ratio (see Section 5.1). The s
lution, i.e., the configuration with the minimum total FIF@-c
pacity, and the running times are shown in the last four cokim

All the results (throughput, total FIFO size, and running
time) vary substantially. In general, shorter pipelined tirose
containing simpler modules allow for higher throughputd an
smaller FIFOs; our algorithms’ running times are also faste

Although the observed running time increases (as one ex-
pects) with the pipeline size and the complexity of its mod-
ules, we can not ignore some difficult to predict values, such
as the long time taken by the “AABCD” module sequence. In
fact, the running time taken by the VIS model checker heavily
depends on the size of the BDD which implicitly represents
the pipeline product machine state space, which indeedtis no
a trivial function of the module sizes, but, on the contrasy,
very sensible to the modules’ Boolean properties and their i
teraction.

The results clearly show module sequence is important, i.e.
the interaction of adjacent modules is a critical factot ttean-
not be ignored for an accurate analysis.

Figure 6: An exact algorithm for computing minimum FIFOs

Modules Throughput Greedy DFS
12345 Ideal Used Size Time Size Time
ABC 0.329 0.250 10 6s 9 18s
CBA 0.337 0.333 11 8s 11 38s
BCD 0.511 0.500 10 2s 10 6s
DCB 0.530 0.500 8 1s 8 2s
ABCB 0.191 0.166 16 1im 13 22m
ABAB 0.123 0.111 16 5m 15 68m
ACCA 0.385 0.333 15 32s 13 8m
CBAC 0.329 0.250 11 11s 11 1m
BBCB 0.167 0.166 17 7m 15 88m
AAAA 0.159 0.142 18 19m 15 326m
ABCDA 0.217 0.200 20 3m 17 150m
DCBAD 0.337 0.333 13 7s 13 im
AABBC 0.119 0.111 24 409m
BBCCD 0.288 0.250 17 1m
CCDDA 0.600 0.500 10 1s 10 1s
DDAAB 0.219 0.200 13 31s 13 5m
Module Name States Transitions R RW
A VLANedit 24 33 0.600 0.643
B UpVLANproc 18 40 0.530 0.563
C DwVLANproc 13 17 0.909 1.000
D VLANfilter 1 2 1.000 1.000

Figure 8: Experimental results and statistics on 32-bit nhesl

7 Conclusions

8
We addressed worst-case performance analysis and FIFO s[|z]

(2]

(3]

(4]

(5]

(6]

[7]

ing for pipelines of modules with data-dependent throughpu
such as those found in network processing devices. We have
shown the performance of such a pipeline depends on both [bﬁ

elements and their interaction.

We presented a performance estimation technique for non-

interacting modules. It assumes infinite FIFOs and runs

f
enough to be used inside a high-level design exploratiop.loifé]
Interaction makes the analysis of a real pipeline, withédinit
FIFOs, difficult. To answer the problem, we propose two algo-
rithms, one exact and one heuristic, which use a model check-

ing algorithm to evaluate the feasibility of candidate $iolos.
It can be noticed that the above model checking techni
can be applied to systems with arbitrary topologies, intatdli
to linear pipelines. Unfortunately, this is not possible floe
first algorithm, which considers non-interacting modulest

g

we consider that extending it in this direction might be ayvel:]

interesting research topic.

The presented algorithms require substantial running,time
but we consider them practical since they can be run in parall

with the detailed logic synthesis of the individual modules
References

[1] R. K. Brayton, G. D. Hachtel, A. Sangiovann

[13]

Vincentelli, F. Somenzi, A. Aziz, S.-T. Cheng, S. Ed-

wards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K.
Ranjan, S. Sarwary, T. R. Shiple, G. Swamy, and T. Villa.
VIS: A system for verification and synthesis.Pnoceed-
ings of the 8th International Conference on Computer-
Aided Verification (CAV)volume 1102 of_ecture Notes

in Computer Sciencepages 428—-432, New Brunswick,
New Jersey, July 1996. Springer-Verlag.

S. M. Burns and A. J. Martin. Performance analysis and
optimization of asynchronous circuits. Rroceedings of
the University of California/Santa Cruz Conference on
Advanced Research in VL,Slages 71-86. MIT Press,
1991.

L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-
Vincentelli. Theory of latency-insensitive desigiicEE
Transactions on Computer-Aided Design of Integrated
Circuits and System20(9):1059-1076, Sept. 2001.

M. R. Casu and L. Macchiarulo. Throughput-driven
floorplanning with wire pipelining.IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems24(5):663-675, May 2005.

A. Dasdan. Experimental analysis of the fastest optimum
cycle ratio and mean algorithm#&CM Transactions on
Design Automation of Electronic Systera¢t):385—-418,
Oct. 2004.

G. De Micheli, R. K. Brayton, and A. Sangiovanni-
Vincentelli. Optimal state assignment for finite state ma-
chines. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and SystenmSAD-4(3):269-285,
July 1985.

R. M. Karp. A characterization of the minimum cycle
mean in a digraph.Discrete Mathematigs23(3):309—
311, 1978.

J.-Y. Le Boudec and P. ThiranNetwork Calculus: A
Theory of Deterministic Queuing Systems for the Inter-
net volume 2050 of_ecture Notes in Computer Science
Springer-Verlag, 2001.

E. A. Lee and D. G. Messerschmitt. Synchronous data
flow. Proceedings of the IEEE/5(9):1235-1245, Sept.
1987.

R. Lu and C.-K. Koh. Performance optimization of
latency insensitive systems through buffer queue siz-
ing of communication channels. IRroceedings of
the IEEE/ACM International Conference on Computer
Aided Design (ICCAD)pages 227-231, 2003.

R. Lu and C.-K. Koh. Performance analysis of
latency-insensitive systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems 25(3):469-483, 2006.

P. K. Murthy and S. S. Bhattacharyya. Buffer merging—
a powerful technique for reducing memory requirements
of synchronous dataflow specificationsACM Trans-
actions on Design Automation of Electronic Systems
9(2):212-237, Apr. 2004.

E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K.
Brayton, and A. Sangiovanni-Vincentelli. Sequential cir-
cuit design using synthesis and optimization. Rro-
ceedings of the IEEE International Conference on Com-
puter Design (ICCD)pages 328-333, Cambridge, Mas-
sachusetts, Oct. 1992.

