
FIFO Sizing for High-Performance Pipelines

Cristian Soviani and Stephen A. Edwards
Columbia University, New York

{soviani, sedwards}@cs.columbia.edu

Abstract

Performance-critical pipelines—such as a packet processing
pipeline in a network device—are built from a sequence of
simple processing modules, connected by FIFOs. Due to their
complex sequential behavior, the worst case throughput, as
well as the size of the interconnecting FIFOs, are currentlyde-
signed using very rough heuristics. Such systems are usually
validated by simulation, or worse, field testing.

In this paper, we propose a methodology that address these
two issues. First, we propose a fast technique for computing
the maximum possible throughput assuming unbounded FI-
FOs. Then, we describe two algorithms, one exact, one heuris-
tic, that compute minimum FIFO sizes that can achieve this
throughput (i.e., FIFOs that do not introduce bottlenecks).

Experimental results suggest our algorithm is applicable to
pipelines of at least five modules with runtimes generally in
minutes. Since such a computation is only needed a few times
for any design, we consider our technique practical.

1 Introduction

High performance pipelines are critical in many modern digital
systems. A typical application is a packet processing pipeline
found on the line cards of modern network switches.

The performance requirements of such applications (per-
haps tens of gigabits per second) mean that the function of
individual pipeline modules tend to be very simple; their com-
plexity arises when they are chained together.

In contrast with a pipeline in which each stage does a little
bit more of a larger, regular computation (e.g., multiplication),
the computation of each module in the pipelines we consider
can vary substantially. For example, one module might per-
form a VLAN (Virtual Local Area Network) computation; the
next may handle PPPoE (Point-to-Point Protocol over Ether-
net). These very common protocols use Ethernet packets with
augmented headers to provide additional functionality.

Another particularity of the pipelines we are considering is
that the data flow through each module is not constant: some
modules may insert or remove data. Specifically, each module
has state and is free to perform different computations at dif-
ferent times depending both on its state and the data fed to it.
As such it is not always ready to produce or receive more data.
Its environment must comply with such wishes.

Such pipelines consist of modules connected by FIFOs to
mitigate the effect of variable data rates. Such FIFOs decou-
ple the behavior of the modules, making the pipeline’s overall
throughput follow the average module throughput.

Figure 1: A packet pipeline: how big should the FIFOs be?

Consider Figure 1, a pipeline from a network switch. We
want to process packets that start with an arbitrary number of
112-bit Ethernet headers followed by a payload.

The first module swaps the first two headers, the second re-
moves the first header, and the third duplicates the first header.
Each module performs its operation on certain packets (those
with a matching “type” field) and leaves the others alone.

This pipeline can modify packets in eight different ways.
Although this simple pipeline could be replaced by a single
module, stringing these operations is more representativeof a
real packet processing pipeline.

The first module leaves the packet length unchanged, but the
second and third may shrink and increase it respectively: the
flow through the pipeline is not constant. Moreover, this flow
varies according to the contents of the packets.

The combination of data- and state-dependent computation
in the modules plus FIFOs makes this a complex sequential
systems. Our goal is to address two related questions.

First, what is a pipeline’s worst-case throughput? One rule
of thumb is that typical pipelines work at 50% throughput, so
doubling the clock frequency should be enough to process any
data pattern. Our experiments show that for real pipelines,this
approximation is often wasteful and may even be incorrect.

Second, given an achievable throughput, what are the mini-
mum FIFO sizes for which we can guarantee that performance?
Here, the designer usually over-approximates these sizes using
his experience. However, we notice that individual modules
are simple, and consist mostly of combinational logic, while
FIFOs contain many sequential elements. Over-provisionedFI-
FOs waste chip area and power and are therefore obvious can-
didates for optimization. Our techniques allow us to safelyre-
duce FIFO sizes, i.e., without fear of decreasing the perfor-
mance of the pipeline.

Even for such a simple pipeline, answering questions about
throughput and FIFO size is challenging and not something
one can do by hand.

Using the methods in this paper, it takes less than thirty sec-
onds to determine the worst-case throughput of this pipeline is

0.6 and that this can be guaranteed with a minimum total FIFO
capacity of fourteen (specifically, 4, 5, and 5 for the three FI-
FOs in Figure 1). Furthermore, if we decrease the throughput
requirement to 0.50, 4,4,4 and 4,5,3 are both valid solutions.

Below, we first define some metrics to characterize the se-
quential behavior of a single pipeline element (Section 3).Then
we analyze the worst-case aggregate throughput of the pipeline
assuming ideal FIFO sizes (Section 4.1). Next we propose two
algorithms, one exact and one heuristic (Section 5), that can
determine these ideal FIFO sizes. We support these results by
experiment (Section 6).

2 Related Work

Traditional queuing theory is not able to answer these ques-
tions. First, it assumes arrival rates can be modeled stochasti-
cally, yet network traffic rarely follows standard distributions
such as the Poisson. Second, even if we had appropriate dis-
tributions, queuing theory only provides stochastic (perhaps
average-case) results. Here we are concerned with the worst
case, not a distribution.

Le Boudec and Thiran’s network calculus [8] provides a
helpful methodology for analyzing the pipeline throughputand
FIFO sizing, given modules with variable delays, but it re-
quires that each module has a fixed read and write throughput.
This is not the case here, where each module may have highly
variable, data-dependent input/output behavior.

Many have addressed analyzing and reducing buffer mem-
ory consumption for synchronous dataflow graphs (SDF [9]).
While the arbitrary topology of SDF graphs is richer than our
linear pipelines, they assume their modules produce and con-
sume data at a fixed rate. As such, SDF admits fixed schedules
and very aggressive analysis. For example, Murthy and Bhat-
tacharyya [12] show how input and output buffer space can
be shared when exact data lifetimes are known. Such precise
analysis is generally impossible for our models since they al-
low data-dependent production and consumption rates.

Like SDF, latency-insensitive design [3] allows richer topolo-
gies than our pipelines, but insists on simple module com-
munication patterns. Lu and Koh [10, 11] attack essentially
the same problem as we do, but in this semantically differ-
ent setting. They propose a mixed integer-linear programming
solution. Casu and Macchiarulo [4] is representative of more
floorplan-driven concerns: their buffer sizes are driven byex-
pected wire delays, something we do not consider.

The asynchronous community also considers buffer sizing
(e.g., Burns and Martin [2]), but again consider richer topolo-
gies, simpler communication, and fancier delay models.

The obvious question arises: is worst-case analysis justified
for real world applications, or would a statistical one suffice?
Are corner cases significant in real data patterns?

The answer is yes. Even though most corner cases will never
occur, we have observed that observed data patterns generally
do belong to a “corner case.” For example, Ethernet linecards
are often tested with sequences of all smallest length and all
longest length packets, as such traffic often occurs in practice.

3 Single module analysis

Our pipelines consist of a linear array of FSMs (Figure 1).
We assume the whole pipeline runs synchronously with a sin-
gle clock, a typical implementation technique. While we could
consider an asynchronous implementation, the analysis of the
individual modules would be much more complicated (see,
e.g., Burns and Martin [2]). Data for each module comes from
the source and goes to the sink through thedin anddout sig-
nals. For efficiency, these are wide busses, e.g., 128 bits.

The module interacts with source and sink through two con-
trol signals,rd andwr, which the module asserts when it wants
to read and write 128-bit blocks of data. None, either, or both
of these signals may be asserted each clock cycle.

Additionally, the source provides themt (“empty”) signal,
asserted when no data is available (e.g., the FIFO is empty).
Likewise, the sink asserts thebp (“back pressure”) status sig-
nal when the sink can not accept data. As shown, these two
signals areORed to form thesuspendsignal, which stalls the
module in cycles in which it asserted. Thus, in our model, the
module is stalled regardless of whether it intends to read or
write in a particular cycle. While it would be possible for the
module to ignore the suspend signal in cycles in which it nei-
ther intended to read nor write, we expect a module imple-
menting such a rule would have a longer combinational delay
that would lead to a lower clock rate and probably a net reduc-
tion in throughput. Withsuspendasserted, the module holds
its state for that cycle and de-assertsrd andwr.

To evaluate the performance of a single module, we assume
that the source and the sink are ideal, i.e., bothmt andbp are
never asserted. In this case, the FSM will never be stalled, but
the module may not always assert bothrd andwr. In general,
their status may depend on the data being fed to the module.

Let r p
i , wp

i , i = 0,1,2, . . . be the sequences of values onrd
andwr for a given input patternp.

We are primarily interested in the worst case throughput.
For the input, the worst case corresponds to sequencesr p

i
with the smallest number of 1s in a given time. Formally,

R= lim
t→∞

(

min
p

∑i<t r p
i

t

)

. (1)

Intuitively, such a limit exists because we are only consid-
ering finite systems that ultimately exhibit repeating behavior.
We present a more formal argument later.

R is interesting for pipelines such as ingress packet proces-
sors when we want to be able to guarantee we can process any
input flow at a given rate. For example, if we findR = 0.4,
it follows that to guarantee a 200 MS/s input throughput for
any data pattern, we have to clock the pipeline at 500 MHz (as
500×0.4 = 200)

We defineW, the worst case output throughput, similarly.
This is interesting for pipelines such as egress packet proces-
sors, where we wish to guarantee an output rate. In the sequel,
we will focus on input flow rates; output flow is symmetrical.

We defineRW, the minimum read/write ratio, as

RW= lim
t→∞

(

min
p

∑i<t r p
i

∑i<t wp
i

)

. (2)

11 1100

11 11 11

1101 11 11

11

1111 0111

10

11

01

(a) original

11 1100

11

11 11 01

11

011111

10

11

(b) simplified

Figure 2: STGs for the DwVLANproc module

3.1 Abstracting the data path

The FSM for a module may have an enormous number of
states if it stores an 128-bit sample, rendering a direct appli-
cation of the above method infeasible. We do the usual trick of
dividing the FSM into datapath and control and only consider
the STG for the control, which includes therd, wr, andsus-
pendsignals. Any signals from the datapath are treated as in-
dependent inputs, meaning there may be extra states and tran-
sitions in the abstracted STG. The input/output behavior ofthe
abstracted STG cannot be better than the original, so any per-
formance guarantee we obtain using the abstracted STG also
holds for the original system. In the sequel, we only consider
simplified STGs.

3.2 Computing R,W, and RW from the STG

We start with the state transition graph of the module’s FSM.
We build a graphG = (V,E), whereV is the set of states, and
E ∈V×V is the set of transitions. Any patternp corresponds
to an infinite path in the STG, starting from the reset state.
Note that this graph abstracts input and output data; the effect
of input data is modeled by multiple outgoing transitions.

We are interested when therd andwr signals are asserted,
so we assign to each edgee∈E two labels:xr

e andxw
e ∈ {0,1}.

We present a typical STG in Figure 2a. This can be thought
of as an nondeterministic finite automaton with four output
symbols that correspond to the four possibilities for reading
and writing data. It would be possible to simplify it using a
heuristic algorithm to produce the slightly simpler STG in Fig-
ure 2b, but we did not implement this optimization.

A simple cyclec is a sequence of edges that forms a non-
intersecting path whose tail connects to its head. LetC be the
set of all simple cycles in the graphG. We can computeR, W,
andRW by considering every simple cyclec∈C:

R= min
c∈C

∑e∈cxr
e

|c|
(3)

W = min
c∈C

∑e∈cxw
e

|c|
(4)

RW= min
c∈C

∑e∈cxr
e

∑e∈cxw
e

(5)

where|c| is the number of edges in cyclec.
The rationale for these is as follows.R, as defined by (1),

corresponds to the pattern with the smallest average read/cycle

Figure 3: Sample STG to illustrate section 3.3 (a)xr labels (b),
(c), (d) label weightswe for α = 0.4, 0.5, 0.6 respectively

ratio. This pattern will occur for a periodic behavior of the
STG that reads the least on average. Any periodic behavior
corresponds to a cyclec in the graph, and the average reading
rate of that cycle is(∑c∈C xr

e)/|c|, exactly (3). A self-intersecting
path always has a smaller rate on one of its cycle, so we only
consider simple paths. Similar reasoning gives (4) and (5).It
also justifies the existence of the limits in (1) and (2).

(3), (4), and (5) compute minimum cycle means [7]. Das-
dan [5] uses slightly different notation: we useω(e)= xr

e,τ(e)=
1, ω(e) = xw

e ,τ(e) = 1, orω(e) = xr
e,τ(e) = xw

e .

3.3 Using Bellman-Ford

Here, we show how to compute the metricsR andW using a
method proposed by Lawner, (see Dasdan [5]). We chose it for
its simplicity, given that our STGs are small.

Let G= (V,E) be a directed graph with edge weightswe for
e∈E. TheO(VE) Bellman-Ford algorithm checks if all cycles
in G have positive weight. If they are, it returns the minimum
path weight from a given source to each node.

In the sequel, we will ignore any computed path lengths just
use Bellman-Ford to check whether∀c∈C,∑e∈cwe≥ 0.

Using some simple arithmetic tricks, Bellman-Ford can be
used to inexpensively compute certain properties of a graph.

To computeR, note from (3) that

R= max(α) s.t.∀c∈C,α ≤ ∑e∈cxr
e

|c|

Assigningwe = xr
e−α, we have

∑e∈cxr
e

|c|
≥ α ↔∑

e∈c
xr

e−|c| ·α ≥ 0↔∑
e∈c

we≥ 0.

Thus, we have to find a maximumα such that all cycles are
positive. For a givenα, we can use Bellman-Ford to check the
condition, so we can approximateα arbitrarily well by binary
search.

Similarly, to computeRW—see equation (5)—we assign
we = xr

e−α ·xw
e , which gives

∑e∈cxr
e

∑e∈cxw
e
≥ α ↔∑

e∈c
xr

e−α ·∑
e∈c

xw
e ≥ 0↔∑

e∈c
we≥ 0.

In Figure 3 we illustrate the technique by computingR on
a small STG. In Figure 3a, we have the original STG showing
the edge labelsxr . By inspection, we find two simple cycles:
(S0, S1, S2) and (S0, S1, S3, S4). Their read/time ratios, i.e.
∑e∈cxr

e/|c|, are 2/3≈ 0.666 and 2/4 = 0.5. Thus, according
to (3),R= 0.5.

Figure 4: STG of a 3-place FIFO:I = (wr, rd), O = (bp,mt)

Since the number of cycles can be exponential in the size of
the graph, this straightforward approach is not feasible.

We will approximateRas described above. In Figures 3b, c,
and d, we assignα = 0.4,0.5, and 0.6 respectively, and com-
pute the edge weightswe = xr

e−α, as shown above.
In Figure 3b, both cycles are positive, so the Bellman-Ford

algorithm accepts the graph and we concludeR≥ 0.4. In Fig-
ure 3d, the small cycle is positive but the second is negative,
so Bellman-Ford rejects the graph and we concludeR< 0.6.

Thus, Bellman-Ford acceptsα values greater than the true
Rand rejects those less than the trueR (here, 0.5). We can use
binary search to approximateRwith arbitrary precision.

The case in Figure 3c is the limit, since hereα = R. Since
this is exactly at the threshold of the all-positive-cycle bound-
ary, it is not surprising that one cycle has exactly zero length.

4 Connecting modules

We build a linear pipeline by chaining various modules and in-
serting FIFOs between them. Figure 1 illustrates this structure.

We assume that the outputs of a FIFO are driven directly
from flip-flops, i.e., that there is no combinational path from
input to any output. While this means it always takes at least
one clock cycle for a FIFO to react (e.g., by asserting the
backpressure signal), such an assumption greatly simplifies the
logic synthesis problem by making it easy to optimize the tim-
ing of each module and FIFO in isolation. Note that the one-
cycle delay means that typically one additional FIFO stage is
necessary over what a “faster” FIFO might demand. We also
abstract its data path when constructing the STG for a FIFO.
Thus for a three-entry FIFO, we obtain the STG in Figure 4.

We wish to know the throughput of the complete pipeline.
First, we will attempt to compute the pipeline’s through-

put under the assumption that the FIFOs are “large enough.”
Specifically, we want to know the highest throughput possi-
ble when the FIFOs are large enough so that they are never a
bottleneck. If the FIFOs are infinitely large and assumed to be
filled, they never exert backpressure and are always ready to
present more data. This is ideal but unrealizable.

At the other extreme, with zero-length FIFOs, data can only
progress through the pipeline when every module is ready, a
restrictive situation in which unsynchronized module behavior
causes a dramatic drop in throughput. Instead, we want the
case where each FIFO is just big enough to avoid bottlenecks.

Once we have computed the throughput assuming “large
enough” FIFOs, our second challenge is to compute FIFO sizes
that exhibit this behavior. We describe this in Section 5.

4.1 Computing the ideal throughput

We would like to compute the overall read throughputR123 of
a pipeline such as that in Figure 1.

function Ideal-Throughput
r ← 1
for i← n. . .1 do

r ←min(Ri , r ·RWi)
return r

Figure 5: ComputingRassuming optimally-sized FIFOs

To do so, we assume that each FIFO is big enough to com-
pensate for any spurious activity between the modules it con-
nects. We do not consider the FIFOs to be infinite, but instead
assume the average data production and consumption rates of
the modules in the pipeline are balanced in the limit. I.e., we
assume that FIFOs do fill and empty, the overall throughput is
such that each FIFO maintains its average fill level.

First, we compute the individualRandRW for each module
using the method from Section 3.3. We denote themR1, R2, R3,
RW1, RW2, andRW3. Then we consider the pipeline modules
from right (output) to left (input).

For moduleM3, since it has an ideal sink,R3 is the through-
put M3 guarantees to accept from upstream; the actual flow
enteringM3 in the overall pipeline worst-case may be smaller
if the bottleneck lies upstream (i.e., in modulesM1 or M2).

Looking at M2, we have to consider two cases. For some
data patterns,M2 may write slower thanM3 can read. In this
case,M2 is the bottleneck, and the FIFO between them will
become empty in some clock cycles, causingM3 to stall. In
this case,R′23 = R2.

For other patterns,M2 may want to write faster. In this case,
M3 is the bottleneck, the FIFO will become full in some clock
cycles, causingM2 to stall. For this case,R′′23 = RW2 ·R3.

Considering both cases, we findR23 = min(R′23,R
′′
23).

We similarly move leftwards and computeR123; the com-
plete algorithm is listed in Figure 5.

ComputingRi andRWi requires building the explicit STG
for each module, but as in practice they seldom exceed twenty
states; the observed running time is negligible.

This fast algorithm is well-suited to use inside a high-level
synthesis design-space exploration loop. Usually, each mod-
ule admits several implementations that are not sequentially
equivalent and have different costs. Moreover, modules can
be split or adjacent modules merged, i.e., to vary the pipeline
granularity. This algorithm makes it possible to quickly com-
pare variants.

5 Computing FIFO Sizes

In the last section, we showed how to compute the maximum
(module-limited) throughput of a linear pipeline assumingide-
ally sized FIFOs. We now address the problem of finding the
smallest FIFOs that can achieve that throughput.

We do this using a guided search that can test whether a
particular assignment of FIFO lengths can achieve a particu-
lar throughput. The simplest way to determine this (i.e.,R for
a complete pipeline) is to build the product machine of all its
modules and FIFOs and computeR using the algorithm from
Section 3.3. Of course, the size of this product machine grows
exponentially with the length of the pipeline, quickly making

it impractical to implement explicitly. Nevertheless, we were
able to use it on small samples to validate the implicit tech-
nique we describe below.

5.1 Verifying throughput using model checking

Here we use model checking to find out if a given pipeline
with FIFOs of given sizes can sustain a certain throughput.
Later, we will use this as the core of a search algorithm for
determining the minimum-sized FIFOs that support the maxi-
mum throughput we computed using the technique presented
in the previous section.

Consider a pipeline withn modulesMi , i = 1,2, . . . ,n. At the
beginning, we add a source FSM that simply outputs data at a
constant rate: the throughput we want to check,T. We denote
this additional moduleM0.

Because we model the input behavior as a simple periodic
(finite) FSM, we can only use values forT which are a ratio of
small integers. The interesting cases are whenT = R−ε, with
ε ≥ 0 small, i.e., we try to achieve the throughput we computed
assuming sufficiently large FIFOs.

Between then+ 1 modules we placen FIFOs. We denote
the size of the FIFO betweenMi−1 andMi as fi , i = 1, . . . ,n.

We start with STGs of the pipeline elementsMi andFi , de-
scribed by KISS models [6]. We encode each of them using
the one-hot algorithm in SIS [13], then assemble the resulting
BLIF files, connecting handshaking signals and adding stalling
logic. We tie thebp input of the last moduleMi to 0, i.e., to an
ideal sink. The source moduleM0 has nosuspendinput, as it
produces data at a fixed rate. Instead, our goal is to check that
thebpoutput ofF1 will never be asserted, meaning the pipeline
can accept the given throughput.

In this point we simply use thecheckinvariant algorithm
from the VIS package [1], to verify that, regardless of the cur-
rent state of the overall system, the propertybp1 = 0 holds,
i.e., the first FIFO never becomes full and would block output
from the first module. This answers the throughput question.

5.2 FIFO size monotonicity

Since we use costly model checking to determine whether a
pipeline configuration can achieve a given throughput, we make
the following observation to reduce the search space.

For two pipelines with the same modulesMi , but with dif-
ferent FIFO sizesfi and f ′i respectively, we find

∀i, fi < f ′i impliesR< R′. (6)

This is because increasing the size of a FIFO can never de-
crease throughput: decreasing throughput requires more back-
pressure, but a larger FIFO never induces any.

This is not a total ordering, e.g., it does not discriminate
when fi < f ′i and f j > f ′j for somei 6= j. Nevertheless, it helps
to decrease the search space when trying to find overall mini-
mum FIFO sizes. When∀i, fi < f ′i , we writeF ≺ F ′.

5.3 An exact depth-first search algorithm

Here we present an exact search algorithm for determining
minimum FIFO sizes. It is often too slow, so in the next sec-
tion we accelerate it with a heuristic. Its runtime is sometimes
practical; we also use it to evaluate our heuristics.

Figure 6 shows the algorithm, which is a variant of a basic
depth-first search. To prune the search space, it uses the FIFO
size monotonicity property (Section 5.2), which is checkedby
the GeThanAny and LeThanAny auxiliary functions.

The core function is ThroughputAchieved, which calls the
VIS model checker (Section 5.1), and decides if a given as-
signment of FIFO sizes can achieve the desired throughput.

The algorithm first considers pipelines with all FIFOs of
size one, then all of size two, etc., until a feasible one is found;
this is the starting place for the search.

The algorithm maintains three lists of FIFO size assign-
ments: GOOD, BAD, and TRY, which contain the fifo sizes
which are proven to be good, bad, and not checked yet. The
Succ function returns the next points in the search space to be
checked if the current state is good. The depth-first behavior
arises by adding and removing elements from the beginning of
the TRY list in a stack-like fashion.

The MinSize function returns the best solution found; our
cost metric is simply the sum of FIFO sizes, reflecting their
area. However, a more complicated metric can be used.

5.4 A heuristic search algorithm

We find the exact algorithm in Figure 6 too slow. Instead, we
propose the heuristic search algorithm in Figure 7. This does
not guarantee an optimal solution, but in practice appears to be
able to produce solutions close to it and runs much faster.

Like the exact algorithm, this one starts by considering FIFO
sizes of all one, then all two, etc., until a solution is found.
Then, it attempts to decrease the largest FIFO. When decreas-
ing the size of this FIFO would violate the throughput con-
straint, we mark it as “held” and do not attempt to reduce its
size further (theH array holds the “held” flags). The algorithm
terminates when all FIFOs are marked as “held.”

This algorithm can miss the optimal FIFO size because it
assumes the FIFO sizes are independent, which is not true in
general. Constraints among FIFO sizes can be fairly complex,
for example, increasing the size of one may enable two or more
other FIFOs to be reduced (note that this does not violate our
monotonicity result of Section 5.2). Nevertheless, we find this
heuristic algorithm works well in practice.

To further decrease the running time, we have also explored
the case where all FIFOs have the same size, and got slightly
worse results compared to the proposed greedy algorithm. In
fact, a whole class of heuristic algorithms can be derived from
the described method, depending on the cost function to mini-
mize, as well as on the desired trade-off between running time
and accuracy.

6 Experimental Results

In our experiments we use four modules (A, B, C, D) taken
from a packet processing pipeline in a commercial ADSL-
like network linecard. We synthesized them for a 32-bit wide
pipeline. In practice, 64- or 128-bit busses are more common,
meaning the modules will have fewer states and require smaller
FIFOs. We chose complex modules to illustrate our algorithms.

A, B, and C are complex modules that swap, insert, and re-
move VLAN tags from packets at different points in a pipeline.

function GeThanAny(F , list)
for F ′ ∈ list do

if F � F ′ then
return true

return false

function LeThanAny(F , list)
for F ′ ∈ list do

if F � F ′ then
return true

return false

function MinSize(list)
s← ∞
for F ′ ∈ list do

s′← ∑i Fi

if s′ < s then
F ← F ′

s← s′

function Succ(F)
S← /0
for 0≤ i < n do

S← S ∪ (F0, ...,Fi−1,Fi−1,Fi+1, ...)
return S

function SearchMinFIFO
s← 1
F ← (1,1, ...,1)
repeat

BAD.pushfront(F)
s← s+1
F ← (s,s, ...,s)

until ThroughputAchieved(F)
GOOD.pushfront(F)
for F ′ ∈ Succ(F) do

TRY.pushfront(F ′)
while TRY.size> 0 do

F ← TRY.pop front
if GeThanAny(F , GOOD)then

ok← true
else if LeThanAny(F , BAD) then

ok← false
else

ok← ThroughputAchieved(F)
if ok then

GOOD.pushfront(F)
for F ′ ∈ Succ(F) do

TRY.pushfront(F ′)
else

BAD.pushfront(F)
return MinSize(GOOD)

Figure 6: An exact algorithm for computing minimum FIFOs

function GreedyMinFIFO
s← 1
repeat

s← s+1
F ← (s,s, ...,s)

until ThroughputAchieved(F)
H← (0,0, ...,0)
while H 6= (1,1, ...,1) do

m←−1
for i← 1, . . . ,n do

if Hi = 0 and (m=−1 orFi > Fm) then
m← i

Fm← Fm−1
if not ThroughputAchieved(F) then

Hm← 1
Fm← Fm+1

return F

Figure 7: Greedy Search for minimum size FIFOs

A is the most complex module we have found in practice.
Module D is simpler, but not trivial. However, since it does

not insert and remove data from the packet, its input/output
behavior is trivial. This is the case with many real modules,so
we believe including it in the experiments is justified.

To produce different examples, we randomly combined up
to five modules (Figure 8). These pipelines may not perform a
useful function, but their complexity is representative.

For each sample, the ideal throughput column listsR as
computed by the Ideal-Throughput algorithm (Figure 5).

The greedy (Figure 7) and exact (Figure 6) algorithms are
run on the slightly smaller throughput listed under “Through-
put used.” This a small integer ratio (see Section 5.1). The so-
lution, i.e., the configuration with the minimum total FIFO ca-
pacity, and the running times are shown in the last four columns.

All the results (throughput, total FIFO size, and running
time) vary substantially. In general, shorter pipelines and those
containing simpler modules allow for higher throughputs and
smaller FIFOs; our algorithms’ running times are also faster.

Although the observed running time increases (as one ex-
pects) with the pipeline size and the complexity of its mod-
ules, we can not ignore some difficult to predict values, such
as the long time taken by the “AABCD” module sequence. In
fact, the running time taken by the VIS model checker heavily
depends on the size of the BDD which implicitly represents
the pipeline product machine state space, which indeed is not
a trivial function of the module sizes, but, on the contrary,is
very sensible to the modules’ Boolean properties and their in-
teraction.

The results clearly show module sequence is important, i.e.,
the interaction of adjacent modules is a critical factor that can-
not be ignored for an accurate analysis.

Modules Throughput Greedy DFS

1 2 3 4 5 Ideal Used Size Time Size Time

ABC 0.329 0.250 10 6s 9 18s
CBA 0.337 0.333 11 8s 11 38s
BCD 0.511 0.500 10 2s 10 6s
DCB 0.530 0.500 8 1s 8 2s
ABCB 0.191 0.166 16 1m 13 22m
ABAB 0.123 0.111 16 5m 15 68m
ACCA 0.385 0.333 15 32s 13 8m
CBAC 0.329 0.250 11 11s 11 1m
BBCB 0.167 0.166 17 7m 15 88m
AAAA 0.159 0.142 18 19m 15 326m
ABCDA 0.217 0.200 20 3m 17 150m
DCBAD 0.337 0.333 13 7s 13 1m
AABBC 0.119 0.111 24 409m
BBCCD 0.288 0.250 17 1m
CCDDA 0.600 0.500 10 1s 10 1s
DDAAB 0.219 0.200 13 31s 13 5m

Module Name States Transitions R RW

A VLANedit 24 33 0.600 0.643
B UpVLANproc 18 40 0.530 0.563
C DwVLANproc 13 17 0.909 1.000
D VLANfilter 1 2 1.000 1.000

Figure 8: Experimental results and statistics on 32-bit modules

7 Conclusions

We addressed worst-case performance analysis and FIFO siz-
ing for pipelines of modules with data-dependent throughput,
such as those found in network processing devices. We have
shown the performance of such a pipeline depends on both its
elements and their interaction.

We presented a performance estimation technique for non-
interacting modules. It assumes infinite FIFOs and runs fast
enough to be used inside a high-level design exploration loop.

Interaction makes the analysis of a real pipeline, with finite
FIFOs, difficult. To answer the problem, we propose two algo-
rithms, one exact and one heuristic, which use a model check-
ing algorithm to evaluate the feasibility of candidate solutions.

It can be noticed that the above model checking technique
can be applied to systems with arbitrary topologies, in addition
to linear pipelines. Unfortunately, this is not possible for the
first algorithm, which considers non-interacting modules,but
we consider that extending it in this direction might be a very
interesting research topic.

The presented algorithms require substantial running time,
but we consider them practical since they can be run in parallel
with the detailed logic synthesis of the individual modules.

References

[1] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-
Vincentelli, F. Somenzi, A. Aziz, S.-T. Cheng, S. Ed-
wards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K.
Ranjan, S. Sarwary, T. R. Shiple, G. Swamy, and T. Villa.
VIS: A system for verification and synthesis. InProceed-
ings of the 8th International Conference on Computer-
Aided Verification (CAV), volume 1102 ofLecture Notes

in Computer Science, pages 428–432, New Brunswick,
New Jersey, July 1996. Springer-Verlag.

[2] S. M. Burns and A. J. Martin. Performance analysis and
optimization of asynchronous circuits. InProceedings of
the University of California/Santa Cruz Conference on
Advanced Research in VLSI, pages 71–86. MIT Press,
1991.

[3] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-
Vincentelli. Theory of latency-insensitive design.IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 20(9):1059–1076, Sept. 2001.

[4] M. R. Casu and L. Macchiarulo. Throughput-driven
floorplanning with wire pipelining. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, 24(5):663–675, May 2005.

[5] A. Dasdan. Experimental analysis of the fastest optimum
cycle ratio and mean algorithms.ACM Transactions on
Design Automation of Electronic Systems, 9(4):385–418,
Oct. 2004.

[6] G. De Micheli, R. K. Brayton, and A. Sangiovanni-
Vincentelli. Optimal state assignment for finite state ma-
chines. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, CAD-4(3):269–285,
July 1985.

[7] R. M. Karp. A characterization of the minimum cycle
mean in a digraph.Discrete Mathematics, 23(3):309–
311, 1978.

[8] J.-Y. Le Boudec and P. Thiran.Network Calculus: A
Theory of Deterministic Queuing Systems for the Inter-
net, volume 2050 ofLecture Notes in Computer Science.
Springer-Verlag, 2001.

[9] E. A. Lee and D. G. Messerschmitt. Synchronous data
flow. Proceedings of the IEEE, 75(9):1235–1245, Sept.
1987.

[10] R. Lu and C.-K. Koh. Performance optimization of
latency insensitive systems through buffer queue siz-
ing of communication channels. InProceedings of
the IEEE/ACM International Conference on Computer
Aided Design (ICCAD), pages 227–231, 2003.

[11] R. Lu and C.-K. Koh. Performance analysis of
latency-insensitive systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 25(3):469–483, 2006.

[12] P. K. Murthy and S. S. Bhattacharyya. Buffer merging—
a powerful technique for reducing memory requirements
of synchronous dataflow specifications.ACM Trans-
actions on Design Automation of Electronic Systems,
9(2):212–237, Apr. 2004.

[13] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K.
Brayton, and A. Sangiovanni-Vincentelli. Sequential cir-
cuit design using synthesis and optimization. InPro-
ceedings of the IEEE International Conference on Com-
puter Design (ICCD), pages 328–333, Cambridge, Mas-
sachusetts, Oct. 1992.

