
High-level Modeling and
Validation Methodologies
for Embedded Systems:

Bridging the Productivity Gap
Part 1: Languages and
Models of Computation

Stephen A. Edwards

Department of Computer Science,
Columbia University

www.cs.columbia.edu/˜sedwards

sedwards@cs.columbia.edu

Premise

Shrinking hardware costs, higher levels of integration
allow more complex designs

Designers’ coding rate staying constant

Higher-level languages the solution

Succinctly express complex systems

Diversity

Why not just one “perfect” high-level language?

Flexibility trades off analyzability

General-purpose languages (e.g., assembly) difficult to
check or synthesize efficiently.

Solution: Domain-specific languages

Domain-specific languages

Language embodies methodology

Verilog: Model system and testbench

Multi-rate signal processing languages: Blocks with fixed
I/O rates

Java’s concurrency: Threads plus per-object locks to
ensure atomic access

Types of Languages
Hardware

Structural and procedural styles
Unbuffered “wire” communication
Discrete-event semantics

Software
Procedural
Some concurrency
Memory

Dataflow
Practical for signal processing
Concurrency + buffered communication

Hybrid
Mixture of other ideas

Hardware Languages

Goal: specify connected gates concisely

Originally targeted at simulation

Discrete event semantics skip idle portions

Mixture of structural and procedural modeling

Hardware Languages

Verilog
Structural and procedural modeling
Four-valued vectors
Gate and transistor primitives
Less flexible
Succinct

VHDL
Structural and procedural modeling
Few built-in types; powerful type system
Fewer built-in features for hardware modeling
More flexible
Verbose

Hardware methodology

Partition system into functional blocks

FSMs, datapath, combinational logic

Develop, test, and assemble

Simulate to verify correctness

Synthesize to generate netlist

Verilog

Started in 1984 as input to event-driven simulator
designed to beat gate-level simulators

Netlist-like hierarchical structure

Communicating concurrent processes

Wires for structural communication,

Regs for procedural communication

Verilog: Hardware communication

Four-valued scalar or vector “wires”

wire alu_carry_out;

wire [31:0] alu_operand;

X: unknown or conflict

Z: undriven

Multiple drivers and receivers

Driven by primitive or continuous assignment

nand nand1(y2, a, b);

assign y1 = a & b;

Multiplexer Built From Primitives
module mux(f, a, b, sel); Verilog programs

built from modulesoutput f;
input a, b, sel;

Each module has
an interface

and g1(f1, a, nsel),
g2(f2, b, sel);

or g3(f, f1, f2);
not g4(nsel, sel); Module may contain

structure: instances of
primitives and other
modules

endmodule

g1
g4

g2

g3

a

b

sel

f
nsel

f1

f2

Mux with Continuous Assignment
module mux(f, a, b, sel);
output f;
input a, b, sel;

assign
LHS is always set to
the value on the RHS

Any change on the right
causes reevaluation

f = sel ? a : b;

endmodule

a

b

sel

f

Mux with User-Defined Primitive

primitive mux(f, a, b, sel);
output f;
input a, b, sel;

table
1?0 : 1;

Behavior defined using
a truth table that
includes “don’t cares”

0?0 : 0;
?11 : 1;
?01 : 0;
11? : 1;

This is a less pessimistic than
others: when a & b match, sel is
ignored; others produce X

00? : 0;
endtable
endprimitive

a

b

sel

f

Verilog: Software Communication

Four-valued scalar or vector “register”

reg alu_carry_out;

reg [31:0] alu_operand;

Does not always correspond to a latch

Actually shared memory

Semantics are convenient for simulation

Value set by procedural assignment:

always @(posedge clk)

count = count + 1;

Multiplexer Built with Always
module mux(f, a, b, sel);
output f;
input a, b, sel;
reg f;

always

Modules may
contain one or more
always blocks

@(a or b or sel) Sensitivity list
contains signals
whose change
makes the block
execute

if (sel) f = a;
else f = b;

endmodule

a

b

sel

f

Multiplexer Built with Always
module mux(f, a, b, sel);
output f;
input a, b, sel;
reg f;

A reg behaves like
memory: holds its value
until imperatively
assigned otherwise

always @(a or b or sel)
if (sel) f = a;
else f = b;

Body of an always block
contains traditional
imperative code

endmodule

a

b

sel

f

Initial and Always

Run until they encounter a delay

initial begin
#10 a = 1; b = 0;
#10 a = 0; b = 1;

end

or a wait for an event

always @(posedge clk) q = d;

always begin
wait(i);
a = 0;
wait(˜i);
a = 1;

end

Blocking vs. Nonblocking

Verilog has two types of procedural assignment

Fundamental problem:

• In a synchronous system, all flip-flops sample
simultaneously

• In Verilog, always @(posedge clk) blocks run in
some undefined sequence

A Flawed Shift Register

This does not work as you would expect:

reg d1, d2, d3, d4;

always @(posedge clk) d2 = d1;

always @(posedge clk) d3 = d2;

always @(posedge clk) d4 = d3;

These run in some order, but you don’t know which

Non-blocking Assignments

This version does work:

reg d1, d2, d3, d4;

always @(posedge clk) d2 <= d1;

Nonblocking rule:
RHS evaluated
when assignment
runs

always @(posedge clk) d3 <= d2;

always @(posedge clk) d4

LHS updated only
after all events for
the current instant
have run

<= d3;

Nonblocking Can Behave Oddly

A sequence of nonblocking assignments don’t
communicate

a = 1;

b = a;

c = b;

Blocking assignment:
a = b = c = 1

a <= 1;

b <= a;

c <= b;

Nonblocking assignment:
a = 1
b = old value of a
c = old value of b

Nonblocking Looks Like Latches

RHS of nonblocking taken from latches

RHS of blocking taken from wires

a = 1;

b = a;

c = b;
“1 c

a b ”

a <= 1;

b <= a;

c <= b;
“

1

c

a

b
”

VHDL

Designed for everything from switch to board-level
modeling and simulation

Also has event-driven semantics

Fewer digital-logic-specific constructs than Verilog

More flexible language

Powerful type system

More access to event-driven machinery

VHDL: Entities and Architectures

Entity: interface of an object

entity mux2 is

port(a,b,c: in Bit; d: out Bit);

end;

Architecture: implementation of an object

architecture DF of mux2 is

begin

d <= c ? a : b;

end DF;

VHDL: Architecture contents

Structural, dataflow, and procedural styles:

architecture ex of foo is

begin

I1: Inverter port map(a, y);

foo <= bar + baz;

process begin

count := count + 1;

wait for 10ns;

end

VHDL: Communication

Processes communicate through resolved signals:

architecture Structure of mux2 is

signal i1, i2 : Bit;

Processes may also use local variables:

process

variable count := Bit_Vector (3 downto 0);

begin

count := count + 1;

end

VHDL: The wait statement

Wait for a change

wait on A, B;

Wait for a condition

wait on Clk until Clk = ’1’;

Wait with timeout

wait for 10ns;

wait on Clk until Clk = ’1’ for 10ns;

VHDL and Verilog Compared

Verilog VHDL
Structure ● ●

Hierarchy ● ●

Concurrency ● ●

Switch-level modeling ● ❍

Gate-level modeling ● ❍

Dataflow modeling ● ●

Procedural modeling ● ●

Type system ●

Event access ●

Interface/implementation ●

Local Variables ●

Shared memory ● ●

Wires ● ●

Resolution functions ●

● Full support ❍ Partial support

Software Languages

Goal: specify machine code concisely

Sequential semantics: Perform this operation, Change
system state

Raising abstraction: symbols, expressions, control-flow,
functions, objects, templates, garbage collection

Software Languages

C

Adds types, expressions, control, functions

C++

Adds classes, inheritance, namespaces, templates,
exceptions

Java

Adds automatic garbage collection, threads

Removes bare pointers, multiple inheritance

Real-Time Operating Systems

Add concurrency, timing control

Software methodology

C

Divide into recursive functions

C++

Divide into objects (data and methods)

Java

Divide into objects, threads

Real-Time Operating Systems

Divide into processes, assign priorities

The C Language

“Structured Assembly Language”

Expressions with named variables, arrays

a = b + c[10];

Control-flow (conditionals, loops)

for (i=0; i<10; i++) { /* ... */ }

Recursive Functions

int fib(int x) {

return x = 0 ? 1 : fib(x-1) + fib(x-2);

}

Declarators

Declaration: string of specifiers followed by a declarator

static unsigned

basic type
︷︸︸︷
int

︸ ︷︷ ︸

specifiers

(*f[10])(int, char*)[10];
︸ ︷︷ ︸

declarator

Base types match the processor’s natural ones.

Declarator’s notation matches that of an expression: use it
to return the basic type.

Largely regarded as the worst syntactic aspect of C: both
pre- (pointers) and post-fix operators (arrays, functions).

C Storage Classes

Three regions:

Static Memory

The Stack

The Heap

/* fixed address: visible to other files */
int global static;

/* fixed address: only visible within file */
static int file static;

/* parameters always stacked */
int foo(int auto param)
{

/* fixed address: only visible to function */
static int func static;

/* stacked: only visible to function */
int auto i, auto a[10];

/* array explicitly allocated on heap (pointer stacked) */
double *auto d =

malloc(sizeof(double)*5);

/* return value passed in register or stack */
return auto i;

}

C++: Classes

C with added structuring features

Classes: Binding functions to data types

class Shape {

int x,y;

void move(dx, dy) { x += dx; y += dy; }

};

Shape b;

b.move(10,20);

C++: Inheritance

Inheritance: New types from existing ones

class Rectangle : public Shape {

int h, w;

void resize(hh, ww) { h = hh; w = ww; }

};

Rectangle c;

c.resize(5,20);

c.move(10,20);

C++: Namespaces

Grouping names to avoid collisions

namespace Shape {

class Rectangle { /* ... */ };

class Circle { /* ... */ };

int draw(Shape* s);

void print(Shape* s);

}

Shape::Rectangle r;

C++: Templates

Macros parameterized by types

template <class T> void sort(T* ar)

{

// ...

T tmp;

tmp = ar[i];

// ...

}

int a[10];

sort(a); // Creates sort<int>

C++: Exceptions

Handle deeply-nested error conditions:

class MyException {}; // Define exception

void bar()
{

throw MyException; // Throw exception
}

void foo() {
try {

bar();
} catch (MyException e) {

/* ... */ // Handle the exception
}

}

C++: Operator Overloading

Use expression-like syntax on new types

class Complex /* ... */ ;
Complex operator + (Complex &a, int b)
{

// ...
}

Complex x, y;

x = y + 5; // uses operator +

C++: Standard Template Library

Library of polymorphic data types with iterators, simple
searching algorithms

vector: Variable-sized array

list: Linked list

map: Associative array

queue: Variable-sized queue

string: Variable-sized character strings with memory
management

Java: Simplified C++

Simpler, higher-level C++-like language

Standard type sizes fixed (e.g., int is 32 bits)

No pointers: Object references only

Automatic garbage collection

No multiple inheritance except for interfaces: method
declarations without definitions

Java Threads

Threads have direct language support

Object::wait() causes a thread to suspend itself and
add itself to the object’s wait set

sleep() suspends a thread for a specified time period

Object::notify(), notifyAll() awakens one or
all threads waiting on the object

yield() forces a context switch

Java Locks/Semaphores

Every object has a lock; at most one thread can acquire it

Synchronized statements or methods wait to acquire the
lock before running

Only locks out other synchronized code: programmer
responsible for ensuring safety

public static void abs(int[] vals) {
synchronized (vals) {

for (int i = 0; i < vals.length; i++)
if (vals[i] < 0)

vals[i] = -vals[i];
}

}

Java Thread Example
Class OnePlace {

Element value;

public synchronized

synchronized

acquires lock
void

write(Element e) {
while (value != null) wait();

wait

suspends
the threadvalue = e;

notifyAll();
}

public synchronized Element read() {
while (value == null) wait();
Element e = value; value = null;
notifyAll();

notifyAll

awakens all waiting
threads

return e;
}

}

Java: Thread Scheduling

Scheduling algorithm vaguely defined: Made
implementers’ lives easier, programmers’ lives harder

Threads have priorities

Lower-priority threads guaranteed to run when
higher-priority threads are blocked

No guarantee of fairness among equal-priority threads

Real-Time Operating Systems

Provides concurrency to sequential languages

Idea: processes handle function, operating system
handles timing

Predictability, responsiveness main criteria

RTOS scheduling

Fixed-priority preemptive

Sacrifices fairness to reduce context-switching overhead

Meeting deadlines more important

Process preempted when higher-priority process is
activated

Process otherwise runs until it suspends

Priority-based Preemptive
Scheduling

Always run the highest-priority runnable process

A A A

B B B

C C

B A B C A B A B

Rate Monotonic Analysis

Common priority assignment scheme

System model:

Tasks invoked periodically

Each runs for some fraction of their period

Asynchronous: unrelated periods, phases

Rate Monotonic Analysis assigns highest priorities to
tasks with smallest periods

Priority Inversion

Shared resources can enable a lower-priority process to
block a higher-priority one.

1 1

2 2

Process 1 misses deadline
Process 1 blocked waiting for resource

Process 1 preempts Process 2
Process 2 acquires lock on resource

Process 2 begins running

Software languages compared

C C++ Java RTOS
Expressions ● ● ●

Control-flow ● ● ●

Recursive functions ● ● ●

Exceptions ❍ ● ●

Classes & Inheritance ● ●

Templates ●

Namespaces ● ●

Multiple inheritance ● ❍

Threads & Locks ● ●

Garbage collection ❍ ●

● Full support ❍ Partial support

Dataflow Languages

Best for signal processing

Concurrently-running processes communicating through
FIFO buffers

Process 1 Process 2

Process 3

FIFO Buffer

FIFO Buffer

FIFO Buffer

Dataflow Languages

Kahn Process Networks

Concurrently-running sequential processes

Blocking read, non-blocking write

Very flexible, hard to schedule

Synchronous Dataflow

Restriction of Kahn Networks

Fixed communication

Easy to schedule

Dataflow methodology

Kahn:

Write code for each process

Test by running

SDF:

Assemble primitives: adders, downsamplers

Schedule

Generate code

Simulate

A Process from Kahn’s 1974 paper
process f(in int u, in int v, out int w)

Interface
includes
FIFOs

{

int i; bool b = true;

for (;;) {

i = b ? wait(u) : wait(v);

wait() returns
the next token
in the FIFO,
blocking if empty

printf("%i\n", i);

send(i, w);

send() writes a token
into a FIFO
without blocking

b = !b;

}

}

A Process from Kahn’s 1974 paper
process f(in int u, in int v, out int w)

{

int i; bool b = true;

for (;;) {

i = b ? wait(u) : wait(v);

printf("%i\n", i);

send(i, w);

b = !b;

}

}

f

u

v

w

Process alternately reads from u and v, prints the data
value, and writes it to w

Kahn Networks: Determinacy

Sequences of communicated data does not depend on
relative process execution speeds

A process cannot check whether data is available before
attempting a read

A process cannot wait for data on more than one port at a
time

Therefore, order of reads, writes depend only on data, not
its arrival time

Single process reads or writes each channel

Scheduling Kahn Networks

Challenge is running without accumulating tokens

A

B

C

D

Only consumes
tokens from A

Always emit tokens

Tokens will
accumulate here

Always
consumes
tokens

One solution, due to Tom Parks: Start with bounded
buffers and increase the size of the smallest buffer when
buffer-full deadlock occurs.

Parks’ Algorithm in Action

A C

B D

A C

B D

A C

B D

Run A Run B Run C

A C

B D

A C

B D

A C

B D

Run D Run A

Parks’ Algorithm in Action

A C

B D

A C

B D

A C

B D

Run C Run A Run C

B blocked waiting for space in B→C buffer

Run A, then C, then A, then C, . . .

System will run indefinitely

Synchronous Dataflow

Each process has a firing rule: Consumes and produces a
fixed number of tokens every time

Predictable communication: easy scheduling

Well-suited for multi-rate signal processing

A subset of Kahn Networks: deterministic

Multi-rate SDF System

DAT-to-CD rate converter

Converts a 44.1 kHz sampling rate to 48 kHz

↑ ↓ ↑ ↓
1 1 2 3 2 7 8 7 5 1

↑
Upsampler

↓
Downsampler

Delays

Kahn processes often have an initialization phase

SDF doesn’t allow this because rates are not always
constant

Alternative: an SDF system may start with tokens in its
buffers

These behave like signal-processing-like delays

Delays are sometimes necessary to avoid deadlock

Example SDF System

FIR Filter (all unit rate)

dup dup dup

Duplicate

dup

×c ×c ×c ×c ×c

Constant
multiply
(filter
coefficient)

+

Adder

+ + +

One-cycle delay

SDF Scheduling: Calculating Rates

Each arc imposes a constraint

b

c d

a

1

3

4

3

1

2

2

1

3

2

6

3a− 2b = 0

4b− 3d = 0

b− 3c = 0

2c− a = 0

d− 2a = 0

Solution:
a = 2c

b = 3c

d = 4c

SDF Scheduling: Details

b

c d

a

1

3

4

3

1

2

2

1

3

2

6

a = 2 b = 3

c = 1 d = 4

Possible schedules:
BBBCDDDDAA
BDBDBCADDA
BBDDBDDCAA

...

BC. . . is not valid

Kahn and SDF

Kahn SDF

Concurrent ● ●

FIFO communication ● ●

Deterministic ● ●

Data-dependent behavior ●

Fixed rates ●

Statically Schedulable ●

Esterel’s Model of Time

Like synchronous digital logic, it uses a global clock

Provides precise control over which events appear in
which clock cycles

Time

Clock tick

Inputs presented

Outputs ready

Computation

Two Types of Esterel Statements

Combinational

Execute in one cycle

A bounded number may
execute in a single cycle

Examples:

emit

present / if

loop

Sequential

Take multiple cycles

The only statements that
consume any time

Examples:

pause

await

sustain

Simple Example

module Example1:

output A, B, C;

emit A;

present A then

emit B

end;

pause;

emit C

end module

A
B

C

Sequencing and Decisions

emit A;
emit B;
pause;
loop

present C then emit D end;
present E then emit F end;
pause;

end

C C
E E

A D D
B F F

Concurrency

[

await A; emit C

||

await B; emit D

];

emit E

A B

C D
E

• Parallel statements
start in same cycle

• Block terminates once
all have terminated

The Abort Statement

abort

pause;

pause;

emit A

when B;

emit C

A

C

Normal Termination

B

C

Aborted termination

B

C

Aborted termination;
emit A preempted

B A

C

Normal Termination
B not checked
in first cycle
(like await)

The Suspend Statement

suspend

loop

emit A; pause; pause

end

when B

A A B A B A

B delays emission
of A by one cycle

B prevents A from
being emitted here;
resumed next cycle

The Trap Statement

trap T in

[

pause;

emit A;

pause;

exit T

||

await B;

emit C

]

end trap;

emit D

A D
Normal termination
from first process

B

A D
C

Emit C also runs

B

A C
D

Second process
allowed to run
even though
first process
has exited

Nested Traps

trap T1 in

trap T2 in

[

exit T1

||

exit T2

]

end;

emit A

end;

emit B

Outer trap takes
precedence; control
transferred directly to the
outer trap statement.
emit A not allowed to run.

B

SDL

Concurrent FSMs, each with a single input buffer

Finite-state
machines
defined using
flowchart
notation

[
a b reset

]

Communication
channels define
what signals they
carry

A

B

Wait

C

Next

C D

s=s+1

s<3

Wait B

Next

SDL Symbols

A

B

Wait

C

Next

C D

s=s+1

s<3

Wait B

Next

State

Receive

Save

Output

Task

Decision

Conclusions

Many types of languages
Each with its own strengths and weaknesses
None clearly “the best”
Each problem has its own best language

Hardware languages focus on structure
Verilog, VHDL

Software languages focus on sequencing
Assembly, C, C++, Java, RTOSes

Dataflow languages focus on moving data
Kahn, SDF

Others a mixture
Esterel, SDL

Shameless Plug

All of these languages are
discussed in greater detail
in

Stephen A. Edwards.
Languages for Digital
Embedded Systems.
Kluwer 2000.

