
SLAP 2006

An Esterel Virtual Machine for Embedded
Systems

Becky Plummer 1

Department of Computer Science
Columbia University

New York, USA

Mukul Khajanchi 2

Department of Computer Science
Columbia University

New York, USA

Stephen A. Edwards 3

Department of Computer Science
Columbia University

New York, USA

Abstract

Embedded systems often suffer from severe resource constraints such as limited
memory for programs and data. In this work, we address the problem of compiling
the Esterel synchronous language for processors with such constraints.

We introduce a virtual machine that executes a compact bytecode designed specif-
ically for executing Esterel and present a compiler for it. Our technique generates
code that is roughly half the size of optimized C code compiled using existing tech-
niques.

We demonstrate the utility of our approach on the Lego RCX controller for the
Mindstorms system. While we are not the first to execute Esterel on the RCX, our
technique will allow larger programs than were previously possible.

1 Email: rp2176@columbia.edu
2 Email: mk2603@columbia.edu
3 Email: sedwards@cs.columbia.edu Edwards and his group at Columbia are supported
by an NSF CAREER award, a grant from Intel corporation, an award from the SRC, and
from New York State’s NYSTAR program. http://www.cs.columbia.edu/˜sedwards

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Plummer, Khajanchi, and Edwards

1 Introduction

Embedded systems usually have limited resources such as power, size, compu-
tation speed, and memory. A key challenge, then, in implementing embedded
systems is meeting requirements within these limits.

In this work, we address the problem of running reactive, embedded pro-
grams, specifically programs written in the Esterel synchronous language [2],
in a constrained-memory environment. We propose an Esterel virtual machine
whose instruction set has direct support for Esterel constructs—specifically
concurrency—that otherwise require a fair amount of code on a normal, se-
quential processor. We simultaneously developed a compiler for the virtual
machine that produces byte code that is roughly one-half the size of an equiv-
alent optimized native executable.

We implemented our virtual machine on the Hitachi H8-based RCX mi-
crocontroller that is part of the Lego Mindstorms system.

Code compression for embedded system is a well-studied topic that has led
to industrial solutions such as ARM’s Thumb instruction set. This replaces
the standard 32-bit ARM instruction set with a 16-bit variant that omits
many instructions and register combinations. It generally provides a 20–30%
reduction in code size. While using such a compact instruction set on compiled
Esterel code would certainly work, the virtual-machine-based approach we
propose achieves significantly higher compression ratios.

Running Esterel on the RCX microcontroller is also not novel, having been
achieved before by Christophe Mauras and Martin Richard 4 , with some help
from Xavier Fornari. Their approach, however, is more traditional: like us,
they use the BrickOS environment as their low-level interface to the hardware,
but use a standard Esterel compiler that generates C that is cross-compiled
onto the H8 microcontroller; their contribution is mostly in providing an API.

Roop et al. [7] have proposed an Esterel-specific instruction set, but their
focus was on efficiency, not code size, and their approach appears to be lim-
ited to Esterel programs with no concurrency. For these reasons, we did not
attempt to follow their work in designing our virtual machine.

Our compilation technique, built on the Columbia Esterel Compiler [4]
translates the GRC-like intermediate representation [6,5] used within CEC
into a bytecode of our own devising. We describe the intermediate represen-
tation in Section 2 and the bytecode in Section 3.

Our two contributions are the virtual machine and the compilation algo-
rithm, which, like the algorithm devised by Edwards for the Synopsys Esterel
compiler [3], translates a concurrent control-flow graph (i.e., GRC) into a se-
quential program with explicit context switches. We describe this in Section 4.

Finally, we present experimental results on our Lego RCX implementation
in Section 6.

4 http://www.emn.fr/x-info/lego/

2

http://www.emn.fr/x-info/lego/

Plummer, Khajanchi, and Edwards

2 Esterel and the GRC representation 5

Berry’s Esterel language [2] is an imperative concurrent language whose model
of time resembles that in a synchronous digital logic circuit. The execution
of the program progresses a cycle at a time and in each cycle, the program
computes its output and next state based on its input and the previous state
by doing a bounded amount of work; no intra-cycle loops are allowed.

Esterel is a concurrent language in that its programs may contain multiple
threads of control. Unlike typical multi-threaded software systems, however,
Esterel’s threads execute in lockstep: each sees the same cycle boundaries and
communicates with other threads using a disciplined broadcast mechanism.

Esterel’s threads communicate through signals, which behave like wires in
digital logic circuits. In each cycle, each signal takes a single Boolean value
(present or absent) that does not automatically persist between cycles. Inter-
thread communication is simple: within a cycle, any thread that reads the
value of a signal must wait for any other threads that set that signal’s value.

Statements in Esterel either execute within a cycle (e.g., emit makes a
given signal present in the current cycle, present tests a signal) or take one
or more cycles to complete (e.g., pause delays a cycle before continuing, await

waits for a cycle in which a particular signal is present). Strong preemption
statements check a condition in every cycle before deciding whether to allow
their bodies to execute. For example, the every statement performs a reset-like
action by restarting its body in any cycle in which its predicate is true.

Esterel’s semantics require any implementation to deal with three issues:
the concurrent execution of sequential threads of control within a cycle, the
scheduling constraints among these threads due to communication dependen-
cies, and how (control) state is updated between cycles

2.1 The GRC Representation

Consider the small Esterel program in Fig. 1(a). It models a shared re-
source using three groups of concurrently-running statements. The first group
(await I through emit O) takes a request from the environment on signal I
and passes it to the second group of statements (loop through end loop) on
signal R. The second group responds to requests on R with the signal A in
alternate cycles.

This simple example illustrates many challenging aspects of compiling Es-
terel. For example, the first thread communicates with and responds to the
second thread in the same cycle, i.e., the presence of R is instantaneously
broadcast to the second thread, which, if the present statement is running,
observes R and immediately emits A in response. In the same cycle, emitting A
causes the weak abort statement to terminate and send control to emit O.

5 Much of this section was taken from Edwards, Kapadia, and Halas [4].

3

Plummer, Khajanchi, and Edwards

module Example:

input I, S;

output O;

signal R,A in

every S do

await I;

weak abort

sustain R

when immediate A;

emit O

||

loop

pause; pause;

present R then

emit A

end present

end loop

end every

end signal

end module

(a)

s1

s3

0

1

0
1

s6

0

s16

1

*

0

1

2

0

s10

1

*

0 1

0 1

1

s3=0

s1=0

s1

1
s1=0
0

S

s3

s3=1

P

s3=0
0

s3=1
1

s6

0

s16

1

s6=0

0

s6=1

1 I

2

s16=0

1

R

0

0

s6=1
P

s6=2

1

11

1

O

3

1 01 3

1

3

113

R

0

A

1R

0

s10

1

s10=1s10=0
P

A

s16=1

A

P

s10=0

0

1

Ps10=1

s6=2

0

s16=1

1

1 1

1

(b)

Fig. 1. An Example. (a) A simple Esterel module modeling a shared resource and
parallel execution. (b) The (simplified) GRC graph, consisting of a selection tree
and a control-flow graph.

As is often the case, the inter-thread communication in this example means
that it is impossible to execute the statements in the first thread without
interruption: those in the second thread may have to execute partway through.
Ensuring the code in the two threads executes in the correct, interleaved order
at runtime is the main compilation challenge.

The Columbia Esterel compiler translates Esterel into a variant of Potop-
Butucaru’s [6] graph code (GRC). Shown in Fig. 1(b), GRC consists of a
selection tree that represents the state structure of the program and an acyclic
concurrent control-flow graph that represents the behavior of the program in
each cycle. A straightforward syntax-directed translation produces this GRC
from the program’s abstract syntax tree. The control-flow portion of GRC is
equivalent to the concurrent control-flow graph described in Edwards [3].

2.2 The Selection Tree

The selection tree (left of Fig. 1(b)) is the simpler half of the GRC representa-
tion. The tree consists of three types of nodes: leaves (circles) that represent
atomic states, e.g., pause statements; exclusive nodes (double diamonds) that

4

Plummer, Khajanchi, and Edwards

represent choice, i.e., if an exclusive node is active, exactly one of its subtrees
is active; and fork nodes (triangles) that represent concurrency, i.e., if a fork
node is active, all of its subtrees are active.

2.3 The Control-Flow Graph

The control-flow graph (right of Fig. 1(b)) is a much richer object and the main
focus of the code-generation procedure. It is a traditional flowchart consist-
ing of actions (rectangles and pointed rectangles, indicating signal emission)
and decisions (diamonds) augmented with fork (triangles), join (inverted tri-
angles), and terminate (octagons) nodes.

The control-flow graph is executed once from entry to exit for each cycle
of the Esterel program. The nodes in the graph test and set the state vari-
ables represented by the exclusive nodes in the selection tree and test and set
Boolean variables that represent the presence/absence of signals.

The fork, join, and terminate nodes are responsible for Esterel’s concur-
rency and exception constructs. When control reaches a fork node, it is passed
to all of the node’s successors. Such separate threads of control then wait at
the corresponding join node until all the incoming threads have arrived.

3 The BAL Virtual Machine

The design of our virtual machine arose from a desire to execute Esterel pro-
grams in as little memory as possible. Since Esterel programs, with their
concurrency, preemption, and signals, behave very differently than, say, C
programs, it seemed an obvious choice to implement a virtual machine whose
instruction set was customized to Esterel semantics. We devised a compact
eight-bit instruction set with just thirteen instructions, listed in Table 1.

Instructions in our virtual machine consist of one, two, or more bytes. The
five low-order bits of the first byte encode the instruction type (we only use
four currently; the other is for future expansion); higher-order bits in this byte
sometimes encode additional information. For example, TWB uses the three
higher order bits to distinguish whether it is testing state registers, signals, or
termination codes.

Our virtual machine has four types of registers: thread program counters,
signals, states, and completion codes. There may be up to 256 of each type,
since each is indexed by a single byte; the exact number is a compile-time
constant. Program counters hold the location where a thread will resume and
are only accessed indirectly through the two switch instructions SWC and
SWCU. Signal registers hold the presence/absence state of each signal, are
set and cleared by SSIG and EMT, and are tested by the TWB and MWB
instructions. State registers hold the state of threads between instants (cf.
program counters, which hold the state of threads within an instant) and
are set and tested by SSTT and TWB/MWB instructions. Completion code

5

Plummer, Khajanchi, and Edwards

Table 1
Summary of the Instruction Set

Opcode Description Encoding(Hex)

Signal, State and Thread Instructions

SSIG
Set Signal 2A RR

Clear Signal 0A RR

SSTT Set State 0B RR VV

EMT Emit a Signal 04 RR

STHR Set Thread 07 TT HH LL

Control Flow Instructions

END Program End 03

EXIT Terminate the Program 02

JMP Jump 06 HH LL

NOP No Operation 01

Branch, Switch and Terminate Instructions

MWB
Multiway Branch On State 2D NL RR HH2 LL2 HH3 LL3 ...

Multiway Branch On Completion Code 4D NL RR HH2 LL2 HH3 LL3...

TWB

Two Way Branch on State 29 RR HH LL

Two Way Branch on Signal 49 RR HH LL

Two Way Branch on Completion Code 69 RR HH LL

SWC Switch Thread 05 TT

SWCU Switch Unknown 0C

TRM Set Completion Code for a Join 08 RR VV

RR = Register Number
VV = 8-bit Value
HH = High-order address byte
LL = Low-order address byte
NL = Number of labels
TT = Thread Number

6

Plummer, Khajanchi, and Edwards

registers store the exit level (i.e., 0 for terminate, 1 for pause, and 2 and
higher for traps) for groups of concurrent threads following the usual Esterel
numbering convention [1]. They are set by the TRM instruction and tested
by TWB/MWB instructions.

The central challenge in the virtual machine was implementing Esterel’s
concurrency. So our virtual machine maintains a separate program counter
for each thread and has context-switching instructions: SWC and SWCU.

The switch thread instruction, SWC, stores the PC for the current thread,
takes an eight-bit thread number as an argument, and loads the PC from that
thread number. A specialized version of this (SWCU) is used to switch back
to the thread that called the current thread without having to pass the thread
number as an argument.

One difficulty here was to handle the first invocation of any thread. Our
compiler generates code at the beginning of the program that uses STHR
instructions to initialize the current PC for each thread to a dedicated “not
running” block that consists of a single SWCU instruction.

4 Sequential Code Generation

Our sequential code generation technique generates compact bytecode from
CEC’s GRC representation of the concurrent Esterel program. One of its
main goals is to take advantage of the context-switching machinery in our
VM, which we specifically designed to be easy. Generated C code requires a
fair amount of overhead for each context switch, typically a switch statement;
our VM allows us to encode a context switch in two bytes.

After our VM, our sequentializing algorithm is our main contribution. It
adds context switches based on the schedule of nodes in the GRC representa-
tion of the Esterel program described in Section 2. Our addition to CEC is
code that schedules the nodes, assigns a thread number to each node, sequen-
tializes the graph, defines the path of execution, and finally outputs the BAL
representation (Section 3). Fig. 3 shows the steps in generating BAL from
GRC on a small example (a subset of Fig. 1(b)).

The first step in our algorithm is to use a simple topological sort to schedule
the execution of the nodes in the program. Both control and data dependencies
are considered in this phase (data dependencies are drawn as dashed lines in
Fig. 1(b)), and we assume the graph is cycle-free.

Next, we assign a thread number to each node. This is straightforward—
the topmost thread is numbered 0 and the threads under a fork are numbered
sequentially starting with the next available thread number. Our one trick is to
give the first child thread under each fork the same number as its parent. This
is safe since the parent does not to run until all its children have terminated.

The next step is sequentialization, which we describe in detail in Section 5.
Our algorithm introduces two new nodes to the GRC: switch nodes and active

points (see the key in Fig. 2). An active point node represents the living

7

Plummer, Khajanchi, and Edwards

s1

t0

A

0

SWC t4

1

R

S

SWC t4

P

SWC t4

s3

SWC t1

0
1

SWC t1

SWC t2

SWC t1

SWC t2

1

SWC t2

SWC t1

SWC t2

SWC t1
1

SWC t0

1

t4

1

1

SWC t0

1

SWC t3

SWC t0

s16
1

SWC t0
0

R

WC t3

A

P

t1

s6

1

SWC t2

SWC t1

SWC t2

I
P

R

1

SWC t2

SWC t1

1

SWC t2

3

O

0

SWC t2

SWC t1

SWC t2

2
01

SWC t2

R

SWC t1

SWC t2

1

1 3

SWC t0

0

s10
0

SWC t0

1

A

1 3

P

SWC t1

t2

SWC t0

3

A
P

1

t3

SWC N Switch to thread N

Active Point

sN Branch on state

sN=C set state N to C

Signame Branch on signal

Signame Emit signal

C Terminate node on code C

Fork

Join

label case label

Fig. 2. The sequentialized graph of the concurrent Esterel program in Fig. 1(a).

sections of the threads where we have not yet processed the upcoming node. A
switch node represents a context switch demanded by the schedule, i.e., when
the next node in scheduled sequence belongs to a differently-numbered thread.
Pairs of switch nodes are inserted at such context-switch points. Fig. 2 shows
the effect of running our sequentializing algorithm on the Esterel example
shown in Fig. 1(a).

After sequentialization, our compiler adds case label, jump label, and done

label nodes to the graph to define the path of execution for the program
(Fig. 3(e)). The locations of these are determined by computing the reverse
immediate dominators of the nodes in the graph, which tells us where control
reconverges after each switch and fork node (see Edwards [3] for details).

Finally, the BAL is generated by performing a depth-first search on the
graph and generating a BAL instruction for each node. The depth-first search
stops when it encounters a jump label node since we are guaranteed the code
at the destination label will be generated at some other point. The BAL
representation (Fig. 3(f)) is then assembled to get the byte code for the virtual
machine, (Fig. 3(g)).

8

Plummer, Khajanchi, and Edwards

Schedule
1

2 3

4

Assign
Threads

1

2 3

4

0

0 1

0

Sequentialize

�0

1

2

× 1

�

4

�1

3

× 0

(a) (b) (c) (d)

Add
Case Labels

�0

1

2

× 1

�

4

�1

3

jmp done

case 1

done

× 0

Convert
to BAL

t0

STHR 1 t1

EMT 1

SWC 1

STHR 1 NR1

END

NR1

SWCU

t1

TWB 2 2 case_1

JMP done

case_1

done

SWC 0

Convert
to

byte code

07 01 00 0e

04 01

05 01

07 01 00 0d

03

0c

49 02 00 15

06 00 15

05 00

(e) (f) (g)

Fig. 3. Translating GRC to bytecode. Starting with a fragment of the concurrent
GRC graph (a), we schedule the nodes in the graph (b) and assign thread numbers
(c). Next, the graph is sequentialized as described in Section 5. After sequential-
ization (d), the execution path is set by adding case labels (e). It is then converted
to BAL (f) and assembled to produce bytecode (g).

9

Plummer, Khajanchi, and Edwards

�0

F

1

2 3

4

�0 �1

F

1

2 3

4

	0
1

F

1

2

3

4

(a) (b) (c)

�0

× �

1

F

1

2

3

4

�0

1

2

× 1

F

�

4

�1

3

× 0

(d) (e)

Fig. 4. The behavior of the sequentializing algorithm. The dotted line labeled F
represents the frontier. The frontier starts at the top of the graph (a) and moves
down a node at a time in scheduled order (b). When a node is in the same thread
as the most recently moved one, it is simply moved above the frontier (c). However,
when the next node is from a different thread, a switch is added to the previous
thread and a active point is added to the new thread just above the just-moved
node (d). The algorithm is complete when the frontier has swept across all nodes
in scheduled order (e).

5 The Sequentializing Algorithm

Fig. 5 shows our sequentializing algorithm. Before the GRC representation of
the Esterel program is sequentialized, node numbers and thread numbers are
assigned to each node in the graph and the nodes are scheduled. After the
nodes are scheduled, the sequentializing algorithm produces a version of the
graph containing threads and context switches featured in Fig. 2.

The algorithm maintains two sets of CFG nodes, the parent set P [t] and
the active set A[t], for each thread t. The parent set acts as the set of nodes
for a thread that have already been visited and sequentialized. The active
set is the set of nodes for each thread that have not yet been visited but are
children of the nodes in the parent set. These two sets are separated by a
frontier. Fig. 4 shows the frontier as a dashed line labeled F.

10

Plummer, Khajanchi, and Edwards

1: for each thread t in G do
2: create new active point p

3: copy first node n of t in G to n′ new node in G′

4: connect p and n′

5: add p to P [t]
6: add n′ to A[t]
7: t′ = the first thread
8: for each node n in scheduled order do
9: t is thread of n

10: if t 6= t′ then
11: for each parent p in P [t′] do
12: for each successor c of p in A[t′] do
13: create switch node s from t′ to t

14: connect s between p and c

15: replace P [t′] with the set of new switch nodes
16: move n to P [t] and remove it from A[t]
17: for each unreached successor c of n do
18: copy c to c′ new node in G′

19: if n is a fork then
20: add child to A[thread of c]
21: else
22: add child to A[t]
23: t′ = t {remember the last thread}

Fig. 5. The sequentializing algorithm

When our algorithm considers the next node in the schedule, it checks
whether the thread of this node is the same as the thread of the last node that
was processed (line 10). If the threads are the same, then the node is simply
moved from the active set into the parent set (line 16) and the successors of
the node are added to the active set (lines 17–22). This is why node 2 simply
moves above the frontier on Fig. 4(c). If the threads are not the same then
switch nodes are added between the parents and their children in the active set
for the last thread (lines 11–14). Then the current node is considered. Hence,
in Fig. 4(d), when node 3 gets processed, a switch node gets inserted into
thread 0 after node 2 but before node 4. Once the context switch and active
point are added between the parent and child, the context switch moves into
the processed section and becomes the new parent for the child node. Fig. 4(d)
shows the state after the switch node and active point have been added to the
parent set of thread 0.

The algorithm consists of several parts. The initialization (lines 1–6) of
the parent set and active set involves creating an active point and connecting
it to the first node in the thread (lines 2–4). The active point is added to
the parent set and the first node to the active set for that thread (lines 5–6).
In the next section, the algorithm processes each node in scheduled order by

11

Plummer, Khajanchi, and Edwards

moving it from the active set into the parent set and then adding each of its
children to the active set (lines 8–23).

The testing of the thread (line 10) is the key part of the algorithm. We
test if the thread number of the current node is the same as the last node that
was processed. If they are not the same, then we need to execute a context
switch. The context switch is created by considering each node in the parent
set for the last thread. For each parent and active child pair a switch node is
created and inserted between them (lines 11–14).

6 Experimental Results

We ran our virtual machine on a Pentium 4-class desktop machine and also
ported it to the Hitachi H8-based RCX microcontroller used by the Lego
Mindstorms. We used brickOS 0.2.6 on the RCX. Tables 2 and 3 show results.

For each of the examples shown, we built the byte code to be executed on
the virtual machine using the sequentializing algorithm. We also built the C
code for the Esterel program using an alternate path: the Columbia Esterel
compiler, which generates “linked-list” code [4]. Finally, we built the object
code for this C code for both x86 and H8 using gcc running with optimization
(-O2).

For each example, the size of the byte code is at least 47% smaller than
the compiled C code for both the x86 and H8 processors. The code for the
virtual machine occupies 814 bytes on the H8, independent of the program it
must run; this does not include space for the registers.

Table 3 shows execution times. We compared the speed of the code running
on the VM on an x86 with that of the compiled, optimized C code running
on the same machine (a Pentium 4 running at 2.5 GHz). The listed number
are per-tick execution times, collected by running 1000000 cycles on random
input data. The dacexample times are an outlier; it is unrealistically small.

7 Conclusions

We have presented a virtual-machine-based approach for implementing Esterel
programs in memory-constrained environments. We presented a virtual ma-
chine designed with Esterel in mind (in particular, it supports instruction-level
concurrency) and a novel compilation algorithm for it that statically schedules
the concurrency to eliminate most dynamic run-time behavior.

Our virtual machine is deliberately very simple and closely paired with
the Esterel language. It has signal status registers, completion code registers,
per-thread program counters, and inter-instant state-holding registers. Most
operations on these are classical, but two instructions explicitly implement
concurrency by passing control to another thread.

Our compilation scheme statically schedules the concurrent behavior of the
program and generates straight-line code for each thread that includes explicit

12

Plummer, Khajanchi, and Edwards

Table 2
Code sizes for various examples.

Example BAL x86 H8

dacexample 369 917 60% 842 57%

abcd 870 2988 71% 2648 68%

greycounter 1289 3571 64% 2836 55%

tcint 5667 11486 51% 10074 51%

atds-100 10481 38165 73% 26334 60%

BAL: the size of our bytecode (in bytes)
x86: the size of optimized C code for an x86
H8: the size of optimized C code for an Hitachi H8
Percentages represent the size savings of using bytecode.

Table 3
Execution speeds for compiled versus virtual machine code.

Example x86 BAL

dacexample 0.06µs 1.1µs 18×

tcint 0.28µs 1.1µs 4×

atds-100 0.20µs 1.4µs 7×

instructions for context-switching between threads. As a result, the order in
which threads are executed is known at compile time and therefore does not
introduce overhead, but the details about what instructions are executed is
determined at run-time.

Experimentally, we find that the bytecode for our virtual machine is roughly
half the size of optimized native assembly code generated from C, and runs
between 4 and 7 times slower than optimized C code. We validated this on
both an x86-based desktop machine and a small microcontroller—an Hitachi
H8 in the Lego Mindstorms RCX controller.

Our virtual machine currently only supports a pure subset of Esterel, i.e.,
it does not support arithmetic and calls to external functions. We plan to
add arithmetic by adding stack-based arithmetic instructions to the VM. For-
tunately, it is never necessary to context switch during the evaluation of an
arithmetic expression, so it will only be necessary to maintain a single stack
shared by all threads. Adding support for externally-called functions is an-
other possibility, although it raises some tricky dynamic library issues. Work
on these extensions is ongoing.

13

Plummer, Khajanchi, and Edwards

References

[1] Berry, G., Preemption in concurrent systems, in: Proceedings of the 13th
Conference on Foundations of Software Technology and Theoretical Computer
Science, Lecture Notes in Computer Science 761 (1993), pp. 72–93.

[2] Berry, G. and G. Gonthier, The Esterel synchronous programming language:
Design, semantics, implementation, Science of Computer Programming 19

(1992), pp. 87–152.

[3] Edwards, S. A., An Esterel compiler for large control-dominated systems, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 21

(2002), pp. 169–183.

[4] Edwards, S. A., V. Kapadia and M. Halas, Compiling Esterel into static
discrete-event code, in: Proceedings of Synchronous Languages, Applications, and
Programming (SLAP), Electronic Notes in Theoretical Computer Science (2004).

[5] Potop-Butucaru, D., “Optimizing for Faster Simulation of Esterel Programs,”
Ph.D. thesis, INRIA, Sophia-Antipolis, France (2002).

[6] Potop-Butucaru, D., Optimizations for faster execution of Esterel programs, in:
Proceedings of the 1st International Conference on Formal Methods and Models
for Codesign (MEMOCODE), Mont St. Michel, France, 2003, pp. 227–236.

[7] Roop, P. S., Z. Salcic and M. W. S. Dayaratne, Towards direct execution of Esterel
programs on reactive processors, in: Proceedings of the International Conference
on Embedded Software (Emsoft), Pisa, Italy, 2004.

14

	Introduction
	
	The GRC Representation
	The Selection Tree
	The Control-Flow Graph

	The BAL Virtual Machine
	Sequential Code Generation
	The Sequentializing Algorithm
	Experimental Results
	Conclusions
	References

