Language Specification

Copyright [J Microsoft Corporation 1999-2001. All Rights Reserved.
Please send corrections, comments, and other feedback to sharp@microsoft.com

Notice
© 1999-2001 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or trademarks of Microsoft
Corporation in the U.SA. and/or other countries/regions.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Copyright [J Microsoft Corporation 1999-2001. All Rights Reserved.

Table of Contents

Table of Contents

R oo [T o S 1
T 1 o R = o SRR 1
T I/ 0SSR 2

I 10 (=T = 0 I Y 01 SRRSO 4
A @0 1Y/ £ o 1S 6
G B £ = (Y 1Y 0= T UV TUROP 6
1.2.4Type SyStEM UNITICALION.cceeiecie ettt st s te e e e te s aeeneenteeneessesreennenreas 8
1.3 Variahl @S and PAraiMELENSc.cooiriiiiiirteitese ettt sttt s e b ss e e e s e e e e e st e seenenr e e s e nnenne e enneneas 9
1.4 AutomatiC MEMOIY MEBNAGJEMENT.......c.eeiiieeieereeeereeteeeesteeeesee st eeestesseessesteeeeseesseesesseeseensesseeneessesneessesees 12
ST d =5 Lo 0SS 14
B = 10 1SR PS 15
O O T O 18
0 0 0 = 11T 20
I T [0 ST 20
I 1Y 11 o LSRR 21
O o= 4 - 22
A Y SRR 23
SN @) o1 - o] (=TRSO 24
O 70 L=< S 25
1.7.8 INSLANCE CONSLIUCTOIS. ... eeiueeiueeeieeieesteesteesteesseeeeeeteesteesseesaeesaeesaeeenseenseesseesseesseesreeeaseenseeaseesseesaeesnsesnses 26
e B DT 1 U (o] RS 27
1.7.20 StALIC CONSITUCLOIS.c.uieiueeiteeteeiteesteesteesteeseeste e teesteesaeesaeesaeesnseenteenseeteesteessesssesenseentensseessensaessnsnsnses 28
0 T 1= = S 28
SR o PSR 29
LS N1 1= =0 - 30
IO = T -SSR 31
00 T 0P 32
1.12 Namespaces aNd SSEMDIIES.........ccveiieiieie ettt st te e e e st e s e te s reeaesteereentesreennestesneeneenrn 33
I G RY= =T'o] 11 o S 35
I N £] 001 37

A I o= IR T =SS 39
o0) OO 39
A € = 10 1= £ SRS 39

2.2.1 GramMar NOLBLIONeicueereeieeseeseeseeeteesteesteesteesaeesaeesateesseeseessesssesssesasseeseessesssessasssnsesnsesnsenssenssenss 39
2.2.2 LEXICEl GFaAIMMIEeiuieieiteeie sttt ee sttt et s e et e s e st e st e e testesae e tesaeeseetesaeessesbeeneesseateensesseeseensesrenneensens 40
2.2.3 SYNLACHIC GIAIMIMALeeveiteeieiteeteeite s e et e ste e et e s te e e e stesreetesteese e tesbeesaesesaeessesseesaesseaseensesreeseensesrenneensenns 40
ARG B CdLor= = 7= £ U S 40
G T I I 1= (0 7= () TS 41

B I Y L = o ot TSRS 41
A TG 1 0 0] 0 0= 1 42
R o= 1 SR 43
2.4.1 Unicode CharaCter €SCaPE SEOUENCEScuecueeveitereertesreeitestesseessessessessesseessessesssessesssessessessesssessessssssenns 43
DA T 1= 01U = £ S P 44
G B =Y Y0 o ST 45
B) (== SRS 46
A = T o == R L = = OSSR 46
A g1 o = g 1] = = PSSR 46
I = I 1] (S 47

Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. i

C#LANGUAGE SPECIFICATION

N @ g = o = g T = = USSP 48
2445 SHINQG HEEIAIS....ccie ettt ettt et e st e tesbe e e e sbesreentesaeeaeesteanaesesreensenrens 49
A G I T 1W< SRS 51
2.4.5 Operators @nd PUNCLUBLOISceoueiueeeeereeieeeeesteseeseesteeeesteseeeeesseeseensesseeeessesneessesseensessesseensessesneessenns 51
2.5 Pre-proCeSSING QITECHIVES......ccui ittt sttt s te e e st e s be e tesae e e e tesaeesesbeeasestesseensesneennensens 51
2.5.1 Conditiona compilation SYMDOISccciiiiieee e 52
2.5.2 Pre-proCESSING EXPIESSIONScueeeerteeueeeeaueeeeseeseeseeseeanseaseaseaseaseaseessesseesessesnsessessesnsessesseensesseeeessens 53
2.5.3 DEClaralion GIFECHIVESc.ueveeeieieeieies ettt sttt b et e se e et et e st e bt s be s b et e s e e e e eneas 53
2.5.4 Conditiona compilation AiFECHIVES........ccviiiieeieiiese sttt ere et sre e e e e 54
ANl I LT o 1= Y-S 56
2.5.6 DIagNOStIC QIFECHIVES......ccuiceiecee ettt sttt e st s ae e e e st e s aaestesteentesteereentesreennense e 57
2.5.7 REQION QITECHIVES ...ttt ettt ettt st e st e bt e e s beese e tesaeeseestesaaessesteentestesseensesaeeneense e 57
O =L ol oo 0= o =SS 59
BT AN oo 1oz (o LTRSS = (1o O 59
TN o o1 Tor= 1Yol T = 011 0= o] o 1SS 60
G I Lol = o] TSR 60
1= 1101 o1 £ TSP 62
3.4.1 NAMESPACE MEITIDEN'Seeeeeeeeeeeeee et ettt ee e et et e seeste e eeateeseeneeaseeseeseaaeeneeaseaneessesseensesseeneensesneeneesens 62
O (o 1T 0] 07 SRS 63
3. 4.3 ENUMEELION MEIMIDEISviiiiieiieiieiesie sttt sttt se b e b e st e na e b e s e e e st e bt st e s b e st e na et e e eneas 63
4.4 ClESS IMEIMIDENS ...ttt ettt sttt a et b et s b et e e e st e st e bt e bt e be s b e ne e b et e st eseebeebesae st e ns e s e e eneas 63
A5 INEEITACE MEMEIS.ttt e et e sae et e seeeneeneesneeneeneeens 63
B Sl N 1 = YA 1 01= 101 £SO 64
4.7 DElEOAIE MEMIEIS......eceiiteee ettt et et e b e e e tesae e e e st e eaeestesteentesreereentesreeneenre e 64
BRIV = 4]0 o o= S 64
3.5.1 Declared aCCESSIDIITYo.eoeeie ettt st st ne et sne e e e 64
3.5.2 ACCESSIDIILY UOMAINS........cciiiiicece et e e st e s reetesreeseentesreeneenee e 65
3.5.3 Protected access for INStaNCe MEMDENS.o 67
3.5.4 ACCESSIDIITY CONSLIAINTSeoitieieeieee ettt ettt e e e ste e e eesaeeneesaeeneensesneeneeneens 68
3.6 Signatures and OVENTOAOINGccoueiiiieie ettt a et e s e e sbesreeaaesbesaeentesneeneere e 68
S o] - SRS 69
G0 =0 7= o [oo SR 71
3.7.1.1 Hiding thrOUQN NESHING.......cieieeiiiei ettt sttt e st e st e tesbesra e tesaeensesreenaessesseensenrens 72
3.7.1.2 Hiding through INNEITANCE........cciiiceie e st r e sreeeenre s 72

3.8 NaMESPACE AN LYPE NAIMES. ... ettt ettt e et et estesteeeeseeese e eesaeeneesseeneessesseenseseeeneensesneeneesenns 74
3.8. L FUlly QUaIITIEO NAIMES........eeeiieeee et b e e s bt n e nennen e e 75
3.9 AUtOMELIC MEMOTY MANAGEMIENL. ... eceeiteiteeieiteeeesteseeee e s e stesreetesreese e sesreessessesseessesseessessesseensessenneesens 75
G (Ol (T 1] e o = ST 78
IV o1 PRSP RPR PR 79
RV = 11T 1Y == RS PRRS 79
4.1.1 DEfAUIT CONSIIUCTONS.......eiitieeeeieeeeeeeste e et eeetesteeeeetesaeeeesteeaeeseesseeneeseeeseensesseeneeasesneensesseenseseesneensessens 80
1 €0 (o 1Y/ 0T PSSR 8l
G RS T 0! 1= 1 - RSSO 81
R g o = 1Y -SSR 82
N o L T Lo 1Y 0= SRRSO 83
G I =Yool 7= 0 TR 84
A I 1= o o) N 1Y/ < RS PRR 85
.18 ENUMEI L ON TY[IES ... eeeeeeteeieeeteeeeete sttt e sttt eetesteese e tesaeeeesbesseeseesseemseseeeseensesseeneesesneensesseenseseesneensesrens 85
A L= = 0 0 =R 1] == S RSPSSPRN 85

iv Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Table of Contents

R O =] Y o1 SRS RS 86
I =X o o= w0 1Y/ o= TSRS 86
e B I S o Y/ o= PSR 86
g =0 Y 0TSRRI 86
N 1 = Y Y 0= U PSSRN 87
N G = L= 0= L= Y 0TSRRI 87
4.3 BOXIiNG AN UNDOXINGcetieieieiteeesie e ee sttt e ee e seesteeeesteese e eesaeeneessesneessesseansessesseensesneensessesneessesseensessens 87
4.3.1 BOXING CONVEISIONS......veueeueeueeueesessessessessessesesseseesessessessessessessessessasessessessessessessensessessssessessessessensensensanes 87
4.3.2 UNDOXINQG CONMVEISIONSueuiieeiietestestesiestese et ssestessesaestese s eseeseesesbessesbess e e e e e st eseeseebesbenbenteseneeneens 88
L = =1] =S 89
o AT = Tz L o= (<o o) = S 89
LI I RS = o7 = o =S 89
5.1.2 INSANCE VAINTAIIES......c.eiieiieee ettt bt a ettt a et a et e e e e e eneas 89
5.1.2.1 INStanCe VariablES iN ClESSES.......cciiiriiieieeeeses sttt st 90
5.1.2.2 INStanCe VariaDI @S IN SLIUCES.......cuoiueeeeieiiee ettt sttt re et saeeeestesneeseeseeeneennens 90
LI G B 1 = VA= = 00 o1 90
N R Y [V 1C o= = . (= £ SRS 20
5.1.5 REFEIENCE PAIAMELENS.......ee ettt sttt et et st e e e te s st e e e sbeeneeseesaeenseseeeneensesneeneeneeans 90
5.1.6 OULPUL PAIEIMELENS. ... ittt ettt st e te e sae e s e e st e e be e be e be e sae e sheeeaeeaabeaabeesaeesaeesaseeabeenbeenbeasbeaas 90
5,17 LOCE VANBDIES. ...ttt bbbttt bbbt e et 91
5.2 DEFAUIT VAIUBS. ...ttt b b bttt et b et e st e b et e e 91
5.3 DEfINITE BSSIGNMENT ...ttt b e e s e st b e b e e s e b e e e e e e e e e s e ene b e nn e r e nenenn s 92
5.3.1Initialy assigned VariahlES..........ccciiuiieiii ettt sttt st et re et s re et e 93
5.3.2 Initialy unassigned Variabl€S..........cc.vieeiiiecece et st 93
5.3.3 Precise rules for determining definite aSSIgNMENtooevirerieiieieninesese e 93
5.3.3.1 General ruleS for StatBMENTS.ottt et e e te e e seesneeneenneas 94
5.3.3.2 Block statements, checked, and unchecked Statements...........ccoovverinenerenereiecesese s 94
5.3.3.3 EXPreSSION SAIEMENTSc.eeueeieriiriiriesieste ettt r e sn e s s e eb e st nenr s e ens 94
5.3.3.4 DeClaration SLAlEMENTSooi ettt e st e st e e e e seesre e eesae e eesseeneeseesaeeneennens 94

5.3 3.5 1T SIAEIMENTS ...ttt ettt s bbb sb ettt s bbb e b e 94
5.3.3.6 SWITCIN SLALEIMENES. ..o sb ettt ettt b et st b e 95
5.3.3.7 W@ SLALEIMENTS ..ottt sttt e st et et e saeese e eesae e eesseeneeseesseensenneas 95
5.3.3.8 DO SABIMENTS. ...ttt s a et b e et e e s b e b she e he et sae et e beeae e e e sreenenre s 95
5.3.3.9 FOF SEAIEIMENES ...ttt bttt et bbb e e e sbe e st et e sae et e sbeeneesbesbeennenreas 96
5.3.3.10 Break, continue, and gotO SLAEMENTS.ciiereieeiee e ee et see e eee e 96
5.3.3. 11 THrOW STAEIMENTS ...ttt sttt e st e st e e eesaeeme e eesneeneesseeneeseesaeensenneas 96
5.3.3.12 RELUM SEBEEMIENEScveeieeite ettt ettt st seeei et ae e b st sb e b e e e sbesse e bt sae e e e s beeneesbesreensenreas 96
5.3.3. 13 Try-CatCh SLALEMENES ...ttt n e e n e 96
5.3.3. 14 Try-fiNally SEBEMENTS ...ttt 97
5.3.3.15 Try-catCh-finally StAlEMENES........c.ecieicieciece ettt s e e nre s 97
5.3.3.16 FOreath SLalEMENES........oveeeieiiiise ettt ettt b et s e b 98
5.3.3.17 USING SEALEMENTS ...ttt e e st r e s b s e e e e e e eseane b nn e s e e e e s 98
5.3.3.18 LOCK SLALEMENES......ceeiteeiesieeeeerie ettt et see st e et e st e e e te e e stesseesesaeeseeeesaeensesseeneeseesneenseneens 98
5.3.3.19 Genera rulesfor SIMpPle EXPrESSIONScvieeieiieeeie et e e e e s aesresreesesreas 99
5.3.3.20 General rules for expressions with embedded EXPresSSIONS..........c.covvererereeieeieneses e 99
5.3.3.21 Invocation expressions and 0bj ect Creation EXPreESSIONS.........covrerirererrersereeieeesese e seeeenes 99
5.3.3.22 SIMple aSSigNMENE EXPIESSIONS......ccueivieierieereesiesreeee e seestesreestesreseestesreessessessessesseesesreensessenns 100
5.3.3.23 & & EXPIESSIONS.....ceiuiiteeieiteetesteeeeste st e testesteestesteeeeateaaeestesseetesbeeseeatesaeensesteensesreeaeentesreeneenreens 100
5.3.3.24 || EXPIESSIONS......cuetireteeeseeueeie et sse st st e s e s e e seeheas e e bese e e s e e e e e e e aenR e e R e e R e ee e s e e e e e e Rt Rt Rt anenn e neneneas 101
LG 17 S = N 0 1= S 1TSS 101

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. Y,

C#LANGUAGE SPECIFICATION

L 17l =T 0 === T 0] 1SS 102

B4V aADl @ TEFEIENCES.ottt b et sttt et se et e bbb e e 102
5.5 AtomicCity Of Variabl@ FEfEIENCESottt e e e e e e te e e neeeeas 102
LS @] Y7 = o oL 103
Lo R g0 T o0 1= = o] 1SR 103
L300 I R o 1= (1 Y @0 1Y/ Lo S 103
6.1.2 IMPliCit NUMEIIC CONVEISIONS.ccviiuieeeeiteiieie e eteste s e etesteeae e aeeae s e saaesaesteensesteeseensesreeneessesneensenrn 103
6.1.3 ImplicCit enNUMEratioN CONMVEISIONS.ceitiieeierieeeerteeteeeesteeee e sseeseeseeeneeseeseeeneessesseesesneeneesseeneensenees 104
6.1.4 IMPliCit refErENCE CONVEISIONS........iiuieeeieiierie et eee sttt eeste et e te st e eesteeneeseeseeeneeseesseesesneeneesseeneenseneas 104
6.1.5 BOXING CONMVEISIONS.....c.ueitiiieiteiieetesteetestesteestesteeaestesteesessesseetesseesaesteassessesseensessesseensesneensestesneesenses 104
6.1.6 Implicit constant EXPreSSiON CONVEISIONScieieerrreeiereeeeresseeree e eeeseeseeesesseeseensesseeneessesneessesees 105
6.1.7 User-defined ImpliCit CONVEISIONS........coiiiieiieee sttt ee e te e eneesneeneeseeeneeneeeeas 105
LA o Lo A o0 V= £] 1SS 105
6.2.1 EXPliCIt NUMEIIC CONVEISIONS.ccviiuiieeeiteiieie e eeestesteetestesseestesaeesaestesseessesteensestesseensesneensestesneensenses 105
6.2.2 EXpPliCit enuUMEration CONMVEISIONS.coiuiieeiereeeeesteeteeneeseeeees e saeeseesteeneeseesseensesseeseesesneesessesneensesees 107
6.2.3 EXPlIiCIT rEf @rENCE CONVEISIONS.......eiitieeieieiieriesteeee et e et e e ee e e eesteeneeseesseeneesseeseeeesneeneesseeneensenees 107
6.2.4 UNDOXING CONVEISIONSecuveitieieetesteeeestesueestestessestesteesessesssessesseesesseassessesseensessesseensesssesessessenssessen 108
6.2.5 User-defined expliCit CONVEISIONS.ccoiiiieierieee st eeeie e ee sttt eeeseeseeeeesreeseenaesneeeesseeneeneeeees 108
LSRG RS = o oo oo 01V £= o] = TSRS 108
6.3.1 Standard imMPlICIT CONMVEISIONS.......c.ciuiiiiiiiie ettt e st s reetesbeese e tesreeaesreeneensenrs 108
6.3.2 Standard eXPliCit CONVEISIONSc.ciuiiierieiiesiesteeeeste st este e e e e st e sae s tesaestesreesesbeeseetesreensessesnsensenses 108
R WL e (o T T s oe] 01V/= £ T o) 108
6.4.1 Permitted USer-defiNed CONVEISIONS.ciiiiieieieir sttt s 109
6.4.2 Evaluation Of USer-defined CONVEISIONS..........couciiiriririsie et 109
6.4.3 User-defined ImpliCit CONVEISIONS........coiiiieieeieee sttt eseenaesne e e e saeeneeneeeeas 110
6.4.4 User-defined expliCit CONVEISIONS........ccoiiiieerieeeseeieesie st e e seesteeeeseeseeeeesseeseenaesneeeesseeneensenes 110
R (oL 1= o OSSPSR 113
7.1 EXPression ClassifiCaliONS...........coiiieieie ettt sb et e s be e reetesaeeaestesneesnenns 113
A I Y = 0Tc Sy o = o1 =< o] P 114
A @ o< = (0] £ TSRS PPUURPR 114
7.2.1 Operator precedence and aSSOCILIVITYceirieerereeiese et ree e e see e see e sae e eneesreeneeseeeees 114
PV @)= - (o] g Y = 1 [T 1 1o S 115
7.2.3 Unary operator ovVerload reSOIULTONcoceeiiieeeie ettt sne e e e eeas 116
7.2.4 Binary operator overload reSOIULIONccoii et e e e e e 117
7.2.5 Candidate User-defiNed OPEIrAtOrSccueciieece ettt et st sre e e re e esrenns 117
A 3 N\ W 0= ol o] 0] 1101010 < S 117
7.2.6.1 Unary NUMENIC PrOMIOLIONS.......ceoteiueeeereeeeesieeueesieseeeeestesseeseesseesesseeseessesseesesseenseseesseensessesnsessens 118
7.2.6.2 Binary NUMEXIC PrOMOLIONS.ccuiiieiieiteeie e steeste st ete st estesreestestesraestesneesesbeeasestesseentesreeneenseens 118

AR\ =401 o1 T 0 (U o S 119
R T == s SN 1 o= TP 119
A W o0 0= S 119
N 01U 07| 1 S 122
7.4.2 OVEI00 FESOIULION......cvieiiieeeeieceie sttt sttt b ettt b bbb et et et b et sb et e e e s 124
7.4.2.1 Applicable fUuNCLioN MEMDENcoieee et ettt nee e 125
7.4.2.2 BELter FUNCLION MEIMDEToiiiiiiiisiese ettt sb et nn e 125
7. 4. 2.3 BEITES CONVEISIONviuiiieiieiieiieiesit sttt sttt b ettt bbb s b e b e e e et enenbesbenbenee s e s eneas 126
7.4.3 FUNCLION MEMDEI INVOCELIONeoiiieeeiieee sttt et ae e e e e sne e e seeens 126
7.4.3.1 INVOCations 0N DOXEA INSLANCES........eoiiueeierieecese ettt e e sae e e e seeeaeeeesreeneeneeens 127

7.5 PriMary EXPrESSIONS.......ciueeeestieiestesteeite st eeestesseesesseaeessesseessesteeseesesseessesseaseessesseensestesseensesseensessesnsessenses 128

Vi Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Table of Contents

ST L I 1= = SRS 128
AN T o = = TS 128
7.5.2.1 Invariant meaning iNBIOCKSoii i 129
7.5.3 ParentheSiZEd EXPrESSIONS........coueeieiieeeereiiere st eee et eeste e eeste st e eeste et e seeseeeneestesseesesneeneesseeneensenees 130
754 MBIMIDEN BCCESS......ueitiitiiterteste ettt sttt st ae bt b et st e b et ae bt e bt s b e b et et et et e bt e bt e bt st e nb et e e et neens 130
7.5.4.1 Identical Simple Names and tYPE NAMES........ooee et re e 132
7.5.5 INVOCALI ON EXPIESSIONS. ... eueeteeeeetesteeeesteseeseeseeeeeseesseeseaseaseeasesseeeesseaneessesseensessesseensesneensessesneensesees 132
7.5.5.1 MENOU INVOCALTONS.c.eeuieiiiiiriisiisiesie sttt ettt st et e e bt st b et e e e e e e eneas 133
7.5.5.2 DEl@Qat@ iNVOCALIONSccveiiiieeeiiite e see et e et e s te e et e s re e tesae e e e s teeneessesreensesreennenee e 133
AN Sl =L 40T 1= oSS 134
N T N £ = = oo SRR 134
7.5.6.2 INUEXEN GCCESSeverviieeesieeeiesie st st sttt ettt b et s e et et et s e e he b e s b e et e s e et e s e e st e st ebesbesbe st e st e e eneeneas 135
R I 0= o0 S 135
T.5.8 BaSE BICCESS ... i eeeetee ettt ettt ettt e et e s bt e e he e e ae e e bt e ke e ehe e ehe e ehe e ea et eaE e e Ee e Eeeebeeehe e ehe e eaneeabeeabeeaheenaeeeaeenanan 136
7.5.9 Postfix increment and deCrement OPEIALOrS.ccvevieieeieiieeese et eete st eesre e e nneeeas 136
T.5.10 NEW OPEIBEOTveeveeiteeieeesiesteete e teesteesteesseesseeesseeseesseeaseesseesaseanseanseesseesbeesseeaseeaneeenseenseeaseesneesneesnns 137
7.5.10.1 ODjeCt Creation EXPrESSIONS........oiveieerieeeerieeeeseseeeeestesseeseeseeesesseaseeasesseesesseaneessesseensessesneessens 137
7.5.10.2 Array Creation EXPIESSIONS.ccuiiuierieiteeeesteeeestesteessestesseessesreessessesseestesseesessesssessesseesessessesssens 138
7.5.10.3 Delegate Creation EXPIrESSIONS.coviierieieeeesesteeeesteseessesteessestesseestesseesessesssessesseesessessesssens 140
R R =R 1Y 0= e o o= = (o R 141
7.5.12 The checked and UNChECKE OPEIALONScciiieeerie ettt ee e nee e 142
I aT= Y 0] o = o =SSP 144
AR R U L= Y o LU 0] = - (o R 145
7.6.2UNAY MINUS OPEIELOTeeeeeeeeeeieeteeeesteeeeseesteeeessesseesesseeseesseaaeeseesseaneessesseensesseeseensesneensessesneessesses 145
PR Moo Tor: IaT= o= (o g lo0] 0= I o] SO 146
7.6.4 Bitwise COMPIEMENE OPEIGLOTcveiveeeeiteiiesiesteetestesteetesresae s e saeesaesressestesreensestesseetesseesessesnsessesses 146
7.6.5 Prefix increment and decrement OPEIELOIScocevreeereieeiese e e et ee e e seeeees 146
7.6.6 CaSt EXPIESSIONS. ... veiueeieiteeie it eteetesteeaesteseestesteesesteaseeasesaeaseetesaeessesteeasessesteensesbeaseentesaeensestesneensenren 147
A N] L 1= (ol 0] 1= (] = S 148
A R\ LT LT o o= o g T o] o< Lo 148
A NV o] g0 o= - o RS 149
FA BT R 107 T 010 [g0 o = = (o S 150
A 22X o [F 0] g o o= = o (O 150

T BTSN o=t o gl o]0 I (o) 152
TS 1100 = (o] S 154
7.9 Relational and type tEStiNG OPEIALONS........cceeiieiieeesteseeste e eie e e e s e e e s tesre et e ste s e etesaeeaessesneesrennes 155
7.9.1 INteger COMPAIT SON OPENGEOIS.ceveiteeeertereestesteeaeeseeeseetesseeeesseaseeseesseeeeseesseensesseeseensesneensessesneessesses 156
7.9.2 Floating-point COMPariSON OPEFBLOIS........cccueieiieeciesieeeestesteeee s e seesae e eaesresreessesreeseensesseesesseeneessenses 156
7.9.3 Decimal COMPAriSON OPEFBLOISc.veiuieeeiteieestesteeeesteeteestesteeeestesaeesaesteeaessesreensesteessesesseesessenneessenses 157
7.9.4 B0O0I€aN @QUAlITY OPEIEIOISeeueeeiieeeiesieeiesie et e eeesteetee e steeseestesaeeseesseeneeseesseeneesseeneenaesneeneesseeneeneeses 157
7.9.5 Enumeration COMPAriSON OPEFEEOISoouiieerieieeeeesteeteesteseeeeesteseeseesseeeeseesseeneesseeneensesneensesseeneessesses 157
7.9.6 Reference type eqUality OPEIatOrS.......coueiuiiieieiteeee st eteeste ettt e et tesbe e e besneeeesreeneesrenns 158
7.9.7 SIiNQG €QUEIITY OPEFBLOIS.eiveceeeieiteeeeste et e s te st e e s te e et e s e eeestesaeesaesteeaaesresseensesteeseetesneensesseeneessennen 159
7.9.8 Delegate qUElITY OPEIBEOIS.c.ceriiieeeeerieeeese et e et ete et e st e e teseeseeseeeeeseeeseeeesaeeneenaesneeeesseeneeseenns 159
A R N (ST ES 0] = o] RS 160
e B (O o= S 0] o] S 160
A8 L0 oo Lo o o= = o =S 161
7.210.1 Integer 10QICaAl OPEIELOISccueeeeeeeeeeiesteeeesieetee e ste et e e ste st e eeste s e e seesseeeeseeeseeneesseeneensesneeeesseeneessenes 161
7.10.2 ENUMEration 10giCal OPEIGLOIS........cciueitiiiesiesteeiesteeteeste st ete e e e teeaesresre e testeesaesbesneeeesreeneessenns 161
A0 RS =ToTo 1= gl Fola o= ol o = = o= 162
7.11 Conditional 10giCal OPEIALONSeiueeeerieeeese ettt e et e e et et e e seesseeeeseeeseenaesneeeesaeeneeseeenen 162

Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. Vii

C#LANGUAGE SPECIFICATION

7.11.1 Boolean conditional [0giCal OPEralOrScoviviiieiieseeie ettt ae st e neens 163
7.11.2 User-defined conditional 10giCal OPEFaLOrS.coviieeiieiiieeeseieeee e ste ettt ne e 163
48 V2 @o o [o] 0= o o= = o T 163
7.13 ASSINIMENT OPEIBEOIS......c.viveeeaeeseeieeieesess s st et s e e s e st sb e s se s e s eseeseeseesees e eb e ss e e e s e e e seesenb e e s e nrenn e s e nennens 164
7.13. 1 SIMPlE BSSIGNIMENLc.eeiveceeite et s et e et e st e e e s te s aeeaesteeaeessesbeensesbeeseentesneensessesneensenrn 165
7.13.2 COMPOUNG @SSIGNIMIENE ...ttt e et sse s sr e e s e se e s e e sesb e as e s e s e e e e e seese e bt nrenn e s e e ennene e 167

7. 13.3 EVENE @SSIGNMIENT ...ttt s e e e e e st s e b s e s e e e e e e e ae e Rt e bt nr e nn e s e n e e e e 167
8 o= o o 1SS 168
7.15 CONSLANT EXPIESSIONSecueeteitieiesteeeeete st estesteeeestesseessesteessessesseeseaseessessesseesesseensastesseensesseensessesneesensen 168
7.16 BOOIEAN EXPIESSIONS.eeeeeeieieieieeteeie sttt e e ste e ee et saeeseesteeneestesseenseaaeeneesesaeeseseeeneessesseensesaeeneessesneeneesees 169
RS K= 1= 0 1=] K TS TUROU PRSP 171
8.1 End points and reaChability ..o e e 171
B2 BIOCKS...... ettt bR b £ R R R AR £ et Rt bbbt b et nes 173
N S - 1= 101 01 1 £SO 173
8.3 TE EMPLY SLELEIMENT.coeeiiie et bbb e e e e e e et er s b nn e nen e ens 173
8.4 LaDE OO SLALEMENLSeiiee ettt sttt et e et e eesae et e teeaeeeeeseeeneeseeereeeeeneeneeneeeneeneennn 174
8.5 DECIAraliON SLALEIMENTS.eiuiitertiieieieiee ettt sttt b e bbb e st et et et et et e b et et e b e e e ens 174
8.5.1 Local variable deClarations.........ccoiiieiiieieee ettt et e e sne e e e sae e e neeeean 175
8.5.2 Local CONSLANt AECIAIAiONS.eeiiieeeeesieee ettt e e e ae e st e eesne et e seeeneeneeneas 175
8.6 EXPrESS ON SLALEIMIENIESecveeieieeeee e et ste et etesteee e st e sae et e st e e e sbesseessesaeesaesesaeessesbeensestesseensesneenaestenneesenren 176
8.7 SElECHION SLALEIMENTS ...ttt b ettt a e bbbt d e e et et e bt bt st ena e b e e e e ens 176
o R I TN R = = 00T o S 177
8.7.2 TNE SWITCN STEEMENT ..ottt sttt a e bbb e b e e e 177
RIS = (L0 I = = 107 0SSOSR 181
8.8. 1 The WhIle STALEIMENT ...ttt e et e s te e st e tesne et e saeeneeneeeeas 181
oS I TSN 0 [s = =011 0| P 181
8.8.3 TNETON SLALEIMENTeviiteiteee e bbb b bt e ettt b et sb b e e e 182
8.8.4 Theforeath StALEMENLoii ettt e e sne et e sae e e neeeeas 183
8.9 JUMP SEALEIMIENES. ...ttt ettt ettt ettt h e e ae e s ae e s ae e et e et e e be e be e ebe e eheeeaeeeabeebeesbeesaeesaeesanesnnas 185
8.9.1 ThE DIreaK SLALEMENTiieiiieeeee ettt sttt st b b et e 186
8.9.2 The CONLINUE SLEEEIMENT ...ttt b et sttt sttt e e 187
8.9.3 TNE QOO SLALEMENTc.eieeee ettt et e s te et e e e te e e e seeseeeneesaeeneeneesneeneesseeneensenean 187
8.9.4 TNE TELUIM SLALEIMENTviiteeeeeeeee ettt b ettt b e bt st e e et a e bt st enb et et e e ens 188
8.9.5 TNETNIOW STELEMENT.........eitiiiieeeieee ettt bttt b e b bt 189

o O I o 1V = 0= o SRS 190
8.11 The checked and unchecked StatEMENES...........eo i eeas 192
8.12 THE IOCK SEBLEMENT.........eiteitietesieieee ettt b ettt b e bbbt e e et b e bt nb e b e e e 193
8. 13 THE USING SLALEIMENLccueitiiteieet ettt b b s b b e e e et s e st renn s e n e ens 193
O, INBIMESPDACES. ...ttt ettt ettt be e s bt e eae e sa et e abe e be e beeeb e e ehe e e ae e e abe e be e ehe e she e eaeeeabe e be e beeabeeeheeeaeeenreenre e e 197
LS I RO 00T o1 =1 o U 1 £ 197
9.2 NaMESPACE ECIArALIONSoeeieeee ettt e e ae et et e et e seesse e e e saeeneeeesaeeneesaeeneeseeenen 197
0.3 USING AIFECLIVES.... .ottt ettt st e e s be e st e beeae e st e beeaeesseebeentestesseentesaeensestesneeseennen 198
0.3. 1 USING @li@S QIFECHIVES.......eeeieiie ettt ettt et e e e be et estesreentesbeesaentesneensesreeneensennn 199
9.3.2USING NAMESPECE TITECHIVES.......cueeierieiiietesietee ettt st sb s bt e e et n s nenn e 201
9.4 NAMESPACE MEIMIDELS.......c.eeeeeetietietesteete et e e st e e e s teseestesteeaaesbeese e tesaeesseaseaaeesseaseensestesseensesaeensessesneeseennen 203
LS SR Y/ 0 =Y 0 = o == o 1SS 203
0T O TS SRS 205
10.1 ClasS UECIAIALIONS.........couetirieieieeeeeie sttt sttt a st b e b st e s e et e st e st s b e sbeebe st e s e s e seeseebenbesbenbeneenseneeneas 205
O 0 I RO === 0 o 1 = =PRSS 205

viii Copyright O Microsoft Corporation 1999-2000. All Rights Reserved.

Table of Contents

O N 01 = o o == S 205
10.1.1.2 SEAIEU ClASSES......ueeviieeeie ettt sttt s te et e s be e e et e s aeeaesteeneesteereetesaeeneestesneeneenren 206
10.1.2 Class Dase SPECITICALIONcoiuiiieieiieeere ettt e e ae e e e te e e stesteeneesneeneensesneeeeneas 206
10.1.2.1 BBSE ClASSES....ecuteeteeieesieesiesee et esteesteesteesaeesaeesteeste e teesteestesssesasesenseeteesaeesaeesaeesnsesnseansenssenssenns 207
10.1.2.2 Interface impPlemMENTALiONS......cc.eceee et s re et s re e e resneennenrs 208
00 1) o | RS S 208
T O === 0=] =SS 208
0 T2 g =) = o S 209
O T I oY g1 Y 20 o 1= S 210
10.2.3 ACCESS MOUITIENS. ..cuiieiei et cce et e st e ee ettt e et e e s te e s seesseeeseeeteesaeesaeesaeesasesnseanseeseensensrenas 210
O T N @] 1 (] (1= g1 1Y == S 210
10.2.5 Static and iNSLANCE MEIMDEYS........cci ittt ae et e e e s besre e tesaeeaestesneessesreensensens 210
O G NN =S =0 I Y 0= SRS 211
10.2.6.1 FUlly QUAlITIEA NAIME..... .ottt ee et e eesneeeeseeeneeseesreensennens 211
10.2.6.2 Declared aCCESSIDIITYcciuiiiiieie ettt st sre et b e sresreetenre s 212
02 G A o [T (1 0T PSSR 212
10.2.6.4 tNiS @CCESS. ... veveieeereeeeeeeetestestestesteeeseeseeseesessestesseseeeseeseaseeseasenteseessensenseseaneesenneneessensenseneenens 213
10.2.6.5 Access to private and protected members of the contaiNiNg type.......ccocceevvveevevecce s 213
10.2.7 RESEIVE MEMDEN NAIMESoiviiieeie ettt ste st et e st e e e s e et e sae e testeeasesbeeseetesaeensestesnsessesreensensens 214
10.2.7.1 Member names reserved fOr PrOPEITIES.coii et nne s 215
10.2.7.2 Member Nnames reSerVed fOr EVENES.........coii et e e s re e e sree 215
10.2.7.3 Member Nnames reserVed fOr INAEXENScc.ceci it 216
10.2.7.4 Member names reserved for deStrUCIOrScve e e 216
TR 0] 01 =0 216
O T Lo OSSR 217
10.4.1 Static and INSEANCE FIEIUS.......oiui e be s e saesreeaesre s 219
10.4.2 REAONIY FIEIAS ..ottt st et et e e e sensesseseensenseneeneens 219
10.4.2.1 Using static readonly fields for CONSLaNS..........cccccueviiieie e 219
10.4.2.2 Versioning of constants and static readonly fields.........cccoeeceveiieciie s 220
O AV o =] L= = o SRS 220
O = o I E o TN = = o] o S 221
10.4.5 VariaDl @ INIIAITIZEIS.....ccue ettt ettt et e s besse e tesaeesesresaeesaesreensenrens 222
10.4.5.1 Static field INItTAlIZAtTONoeveeeseeee ettt ens 223
10.4.5.2 Instance field INItIAli ZALION..........cccueiiieiieecie et e e s e sae e e re e reesreenree s 224
OV 1= oo S 224
10.5.1 MEthOA PAIraMELErSc.eeiveeee ettt st e e st e s reeaesbesae e tesaeensesresanessesreensenrens 226
10.5.2.1 VEUE PAIAMELELS. ..ottt ettt et s e ee s et e e steeseeeesseeneensesneeneesseeneeseesseensennens 227
10.5.1.2 REFErENCE PArAMELELS.....ceieeectecee ettt ettt s e st e re e tesre e e e tesaeetesreenaestesreentenrens 227
10.5.1.3 OULPUL PaIrAMELENSeeiveeteeteesteesee et eteesteesseessessssesteesseesseesseessesasseeseessesssesssessnsesnsesnsenssenssenns 228
10.5. 1.4 ParaIMELES @ITAYS. .. .ceuueeteeteertearteeaueeateaaseasteasseeaaessasesseaaseaaseaaseeaaesaaseaseaabeesaeesaeesasesasesnseenseasseeas 229
10.5.2 Static and iNStaNCe MELNOUS..........coiiiiece ettt re e sreesree s 231
10.5.3Virtual MELNOGS..........cooiiieeece ettt e ae et saeeeesbeeaaesaesreesenrenn 231
10.5.4 OVETIAE MELNOUS........oviiece ettt e e s re et e s reese e tesaeetesteeasessesreensenrens 233
10.5.5 Sal€d MELNOUSoo e e e e et e et e e te e ste e saeesaeesateenteereenseesreeas 235
10.5.6 ADSIraCt MELNOGScoviiieee et re e e te s ae e eesreeaaestesreensenrenn 235
10.5.7 EXtErNal MENOGScoviiiieeie ettt st re et saeeeesbeeasesaesreesenre s 237
10.5.8 MENOU DOAYeiviieieieieieieiee st sttt seesesseebe st e ae e e e eseenenseesesseneenseneeneenen 237
10.5.9 Method OVEITOBOINGc.eeee ettt st ae s et e aeeneeseesneeeennean 238
O 1070 = S 238
10.6.1 Static and INSLANCE PrOPEITIES.......ccuiiueeeerieee e etee et te sttt e e et estesaeeeeseeeneesaesaeensesseeneeseesseenseseenn 239
F0.6.2 ACCESSOISeeeueeeeteeesteeesteeestee e sttt e s teeessteeaasee e seeeaaseeaaseeeassesaaseeeaaseeenseeeasseeanseeeanseesnseeeneeeanseeennseennnes 239

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. iX

C#LANGUAGE SPECIFICATION

10.6.3 Virtual, sealed, override, and abStraCt GCCESSOIS........covieiciei ettt ctee st ere et s e sre e sre e e 244
O Y= 1 £ 245
O R ST = o B L CER=Y (0L E 247
O A Y= g A= o0 S-S o | £ 248
10.7.3 StAtiC ANA INSEANCE BVENTSoeieivie ettt stee ettt et e st e s e be e e sat e s st e s s sbtessabeseebeessabessaneeesnbeseanes 249
10.7.4 Virtual, scaled, override, and aDSIIaCt ACCESSOIS.vveeeeeeeeieeeeee e e e e e teeereeeeesesesaeerreeesssssasrrereeessees 250
MO R 1010 1S S £ 250
O I I o L= o 7= o o Vo P 253
O O o= > (0] £ SRR 253
F0.9. 1 UNGIY OPEIBLOIS.....ccteeteeiteeeuteeeeeateesteaateasieesaeeaseesbeabeabeaabeeaseesseesaeeeaseebeaabeeaaeesaeesasesnsesnseeseenseassenas 255
10.9.2 BINAIY OPEIAIOIS. ...c.viiteeieiteeeestesteestesteeteste st etesteeseestesaeessesseestesbeesaentesseensesteessessesseensesseensansesneensensen 256
10.9.3 CONVEISION OPEIBLOISeveeveeteiteetesteetestesseestesseesessesseessesteessessessaesesseesessesssessesseensessssssansessenssesses 256
10.10 INSEANCE CONSITUCTONS ... eveeieee e e e e eettee et e e e e e e s e e e e e e s s s e st a e e e e e ssseessssbsseeesssssassssraseeeesssaassssrsseeessssasssnns 257
OO B @0 0= (0 (o (0 T L= L= £ T 258
10.10.2 INStaNCe VAriabl € INITTAIIZENScovee ettt st et e s e be s s st e s sbeeesaeeas 259
10.10.3 CONSLIUCEON EXECULIONvecuveeiveieiiteeeetteesetesstesessbesesbesesseesssbessssbesssbesesbesesabessaseesssbessbesssnbessasesessenns 259
10.10.4 DEfAUIT CONSITUCLONS.veieeiiieieeceteie e esteee s s stee e s ssbeeesssbeeessssbesessssbeeessasbesessasbesessssbenesssnbenessssenesasns 261
10.10.5 Private CONSITUCTOTS.vveiiveeeeteieiteeeetteestesetesesatessbeessseessabesssstessabeseabesesabeseaseessrbessbesssnbessasesessenas 262
10.10.6 Optional iNStance CONSLIUCLOr PAraMELErS.........cccveieeeereieeee st see e seeaesreseestesaeessessesseesaesreesesrens 262
OIS 7 Lol o) = 0 (01 (o £ 262
O 2 I 1= 1 (o (0 = 264
S 1 T SRR 267
I S 0 o o (S0 = =)1 267
I O S 0T 0 010 o [= £ 267
S | (o T 01 = (=< 268
0 0 B o A oo | SRS 268
S (0 (o 1115010 =L £ 268
11.3 Class and SLTUCE AiffEIEINCES.......cuveiei ittt e s s e e e s s a e e s s sbb e e s ssabb e e s sasbeeessansaesssannens 268
T3 1 VAU SEMAINTICS.....cteieeeeteie e i eteee e s st ie s s st et e s s st ee e s s sab e e e s ssabeeassasbeeessaabeeessasbesassasbenessanbenesssnbenessssenessans 269
2 1 TS (1 = Vo T 269
GG B o 0] 0 01 o | TS SRP 269
L1334 DEFAUIT VAIUBS ...ttt ettt ettt e et e e et e st e e s s ab e e s be e s e beessabe e s sasessabassbeessnbessbeeessenas 270
11.3.5B0OXiNG @N0 UNDOXINQ.....c.veeieiieiieite ettt sttt s ae st e s reeaesbesse e tesaeensestesnseseesreensenrens 270
11.3.6 MEANING OF thiS....ccuiieieieiieee sttt a e s b e e se e tesaeesesresnaesaesreensenrens 271
I == o BT g TN T Tl RO 271
RG2S @0 1S 1 U (o1 () = R 271
GRSl TS 1 U oi (o £ TSR 271
11.3.10 SEALIC CONSITUCLOIS....c.c.civeieeeiieiee e steee s s sbei e s s st ee e s s s beeessssbeeesssabeeesssabaeessasbaeesssabenesssnbenesssnbenessssenessans 272
11.4 SETUCE EXAMPIES ...ttt b s Rt e s e e e et e st e n e en e e nenr e rennennas 272
11.4.1 DAabase INEEOEN TYPE....viiveeiesieeteeste st eteste et este s e et este e eeste s e essestesaeessesreensesteeseetesasensessesasessesseensessens 272
11.4.2 Database DOOIEAN TYPEcueiie ettt et re s e tesaeetesreeaaesresreeaenrenn 274
N = YL TSRO UR PPV URURRRN 277
N - (Y 1Y/ 0= SRS 277
N I R W T s 1 I N = Y1 = RS TRSSRRR 278
A N 4 = YA == (o] o 1S 278
12.3 ATaY ElEIMENE BCCESS.....cviitieieiieeeete st et e e st et e e st e st et e e testeeae e besbeeseesbesaeessesbesnseseesseensesteeseentesaeeneensenns 278
N = Y 0 01= 0 = 278
R 4 = YA o0 = - 278
A Sl N A - YA L LT = =S 279

X Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Table of Contents

RO 1 g1 (= g = To =TSSPV 281
13.1 INtErfaCe dECIAraliONS.........coi ettt st e st e et et e ae e st e tesneeeeseeeneeseeseeenennneas 281
13. 1.1 INErfaCE MOAITTENS. ... bbbttt sttt 281
13.1.2 BASE INMEEITACES ...ttt bbbttt bbb bbbt 281
G T G B 011 = o oo VR 282
O 1411 g = ol 1< 10101 £ PSS 282
13.2.1 INtErfaCe MELNOGS.........coiiiiiiiiie bbbttt b ettt e e 283
I g g = o o] 0] o< g 1= 283
13.2.3 INEEITACE BVENLS. ...ttt ettt ettt e e bt ese et e sae e e e seeemeeseesseeneesneeneenseeneeneenean 284

13 2.4 INTEITACE INUEXENS. ...ttt b et et et et be b e b e st st et e e e s 284
13.2.5 INterface MEMDE @CCESS.......ciiiieieeeiteeere et e ettt ettt ee s te e e tesaeeeesteeneeseesseensesneeneenseeneeneeneas 284
13.3 Fully qualified interface MembEr NBIMES ..o 286
13.4 Interface IMPIEMENTALIONScceee e et e e e st e e e tesreetesreennenee e 286
13.4.1 Explicit interface member implemMentationsS...........ccvceeeiiicie e 287
IO A g1 (= k= or = 7= o1 SRR 289
13.4.3 Interface implementation INNENTANCEoii e ae e 291
13.4.4 Interface re-iMplEMENEALION.cccoii it re e e et saeesaesreenaesre s 293
13.4.5 Abstract Classes and INEEITACES...........ee ettt s e e te e e saeseeeeenee s 294

Il T 1 SRR UR USROS 297
It I g TH T gl L= == o 297
I 0 1H g 000 = 298
1A.3 ENUM MEMDETS..... .ttt bbbt b b e s b e b e e e et e st e ae e bt nb e sb e st et e s e e eneas 298
14.4 ENUM VAIUES 8N OPEILIONS.eueeieiteeeeeieeieeies e seeseesteeeestesseeeesaeeneessesseeneessesneesaesseensessesneensesseeneensens 300
T T =0T L =S 301
15.1 DElegate UECIAIAiONS........ccueeeeieeeee ettt sttt et e e te et e stesae e e e sbeeneesaeeseeneeseeeneesesneeneense e 301
15.2 DEl@QALe INSLANTIBIIONc.eeveeeeee ettt te e e e et et e eesse e e e steeneeseesseeneeseeeneeneesneeneensens 303
15.3 DEl@GALE INVOCALIONcvivieenieiieiieieeie sttt sttt st be st e s e st e st st e sbesbe s b e s eneeseeseebenbesbenbenee e e e eneas 303
T o= o 1] S 307
16.1 CaUSES Of EXCEPLIONScviitieieiie ettt ettt e et e et e be s aeeaa e tesae e s e s beenseseesteensesteereentesreeneesenns 307
16.2 The SyStemM.EXCEPLION ClaSS.......co.eeiie ettt sttt s e e be s e seeseeeneeseesneeeesneeneensens 307
16.3 How exceptionS are NAaNIE............coiiiiiie e 307
16.4 COMIMON EXCEPLION ClASSES.......uiiueeieiticeesie st ettt st e te et te et te st s estesae et e s beaaeestesteentestesseentesreeneensenns 308
N 1 o =SSR 311
17. 1 ATETIDULE ClBSSES.....c.viteieie et ettt b e bbb e et e st bt b e sb et et e s e e eneas 311
A T N] o 10 C U= o SRR 311
17.1.2 Positional and Named ParamELErS...........ooeiierereeere e et eee st ee e e s ee e e saesaeeneessesneesaeseeesennean 312
17.1.3 AttriDULE ParamELEr TYPES.... oo ivecieete ettt ettt e st e st e et e s besae e tesaeesesteeaeestenreentenrean 313
A N] oW1 E o< o) o= 1 o o R 313
17.3 AETDULE INSEANCES ... ettt ettt ettt e e et e ne e besse e e e steemeeseesseemeeseeeneeeesneeneensens 317
17.3.1 Compilation of @n @triDULE...........cceiieeeecece e e nre s 317
17.3.2 Run-time retrieval of an attribute INSTANCE..........ccoiiiiiriiie s 317
17. 4 RESEIVEI GIITIULES ...ttt ettt ettt e teeae e e e s beemeeseesaeeneeseeeneeeesaeeneense e 318
17.4.1 The AttributelUsage attriDULE............c.ooie et 318
17.4.2 The Conditional @LITDULE...........couiiririieeeee et b e 319
17.4.3 The OBSOIEtE GHIITIDULE. ..ottt e e e reeneeseeeaeeeeneean 320
17.5 AttribUtES TOr INEErOPEIELHION.eeeeie ettt ettt e e e be e e saeese e eeseeeneeneesaeeneensens 321
17.5.1 Interoperation with COM and Win32 COMPONENES........ccviieruiirieeesieseesieseeee st seesee e sae e sreenee e 321
17.5.2 Interoperation with other .NET [anQUBJES..........cccieiiieeeiiiiee e se et sre e enaesre s 321

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. Xi

C#LANGUAGE SPECIFICATION

17.5.2.1 The IndexerName attribDULE...........ccce i et 321

F LU a1 = oo o [S 323
AL UNSAFE CONLEXLES.......eeiiiiiieesieiteeitesteet e s e st e e st e ee e tesae e s e s tesaeessesteeasesbeeaeensesaeeseeseaneenseseeenseasesseensenrenseensenns 323
N o T 1= 1] == TS 325
A.3 Fixed and Moveable VariabIEScoiie it et e s te e re et e nree s 328

F N o T 1 = o) 1)V =] 1S 328
A5 POINTEIS IN EXPIESSIONSeeviiuieiesteeiesteeteetesteeee e sseeseestesssessesteetesseaseesesseessesteassessesteensessesseensessennsensenns 329

F NI o T 01 (= g T 0T (=i o o 330
A.5.2 POINTEr MEMDET BCCESS......eecteeieeiteesieeieeeiteeiteesteesteesesseeste e teesteestesssesasessseassesssesssessnsssnsesnsesssenssenns 330

A .5.3 POINLEN ElEMENT BCCESS.......uiiieieiteeieste e rte st et e s e e s e e e testeseestesaeessesteeasestesseentesseessessesneessesreesessens 331

A 5.4 The address-0f OPEIALONcoi ettt ettt e e e ee e e e s tesseeeesaeeneesseeneeseeseeensenaeas 332
A.5.5 Pointer increment and deCrEMENL............oooi it e te e e e e s ee s e e reenreenreens 332

A 5.6 POINLEN @TTNMELIC.uiieeieceee e ettt e e st e s re e tesaeeseesbesneesaesreensenreas 333
A.5.7 POINLEN COMPABITSONveeueeiiieiesiecteeteste st e stesteeeesteeaestesteetesaesaeestesseeasesseessessesseensesseessassesseessesseesessens 333

A 5.8 TNE SIZEOF OPEIGLOeoeeiieeeeee ettt sttt ettt e e e s ee et e s eeeseeeesaeeneeseesneeseeseeensenneas 334

F SR 0=l D0 S = = 1.1 | 334
FN S 7ot Q- | Fo o 1 o o S 337
A.8 DynamiC MEMOTY @llOCAIONoeuiiiiierieieieee et b e n e renen e 338
B. DOCUMENLALION COMIMENTS.......uiiiiieiieeieecteete e e e seesteeseesee s te e te e teesbeesteesaeeesseeseesseesaeessessaeesnsesnsesnsenssennsenss 341
2 00 1 0o T 1 oo S 341
B.2 RECOMMENTEA 1AGS eeeeeteeeerie ettt ettt et e e e te e st e tesae e e e seeeneesaesaeenseseeeneeeesneeneensenns 342

= J0 0t R o> SSRR 342

o A o 0 (>SS 343
BL2.3 KEXAIMPIES ...t R R R Rt R Rt R n e nen s 343

R = o= o) 0] 1 >RSP 343
BL2.5 IS .t h Rt E R bt ARttt h e bbb e b e e s 344
BL2.8 SPBIES ...ttt ettt E e bt e b e e h e e ehe e ehe e eaEeebe e ehe e eheeeaeeeaneebeebeenreenreeas 345
o A 0 = 1 > USSR 345
I SR 07 - 1=, RSOSSN 346

2 B 0= 1 015\ o ST 346

| B.2.10 STEMAIKS>oovvoveieeeciee ettt s s 346347
o R 1 1 1> PSS 347

2 B S == S 347
T G IS == =0 >SS 348
o S U 0110 7= Y TP 348

| B.2.A5 SUAIUBS ...ttt 348349
B.3 Processing the documMENntation Fll@oco et 349
B.3.1ID SIING FOMMIBL........eiueeie ettt st st e b e s te e e s besreetesaeensestesneensesreensensens 349
B.3.2 1D SING EXAMPIES ... ettt e e e st e s te e e e st e s re e tesaeenaestesneenaenreenaenrens 350

o = 1 o] = 353

o T O - o U | (o= oo [TS 353

| B.4.2 RESUILING XMLoooveecieeieeeeeeeses st 355356
O =101 o T SR 359
(O3 (o= o =007 | OSSP 359
Ot I I T 0= (= 1] = o= 359
LT TV 1 Lo o TS 359
(Ot G I 0 101111 RSP 359
LT 0] (= 1= TS 360
C.1.5 Unicode CharaCter €SCape SEOUENCES...........couerereerierressessessesseeese e ssesse s sse s e e sesse s sresnessesneseneens 360

Xii Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved.

Table of Contents

(O3 I CN [0 1= o) 1= OSSOSO 360
LT A L= 1LY o LSS 362
(O30 0 SRS 362
C.1.9 Operators and PUNCIUBLOS.ceouiiueeeerieiee e sieeeeseesteeeestesseeseesseeseeseeeneesseseeensessesseesesseeneessesneensesees 364
C.1.10 Pre-proCessinNg QirECHIVES..........cecuiiuieeeieiie e steeee st st e te st s te e ae e saaestesbeentesbesreentesneeneestesneesenrn 364
O 7= o Lol 0| = 1] 0 7= P 366
(ORI 2 7= S ol o] o= o K= 366
(O Y/ o - PR 366
CL23VATADIES ...ttt bbbttt b bbbttt Rt b e bbb e et 368
O d =SS o LU 368
O RS = (= 111 01K T TSSO P PRSP 371
L7.5. 3 NAIMESPACESveeveereesieesier et eteerteesteesteesseesseesateaateanse e beateesseesseesseeeaseesseeaseesseesseesnsesnseanseenseenseessenas 374
(O3 G 1 =SS SRS 375
2.7 SIUCES.....c ettt ettt h ettt e et et e e bt e ehe e sae e o ae e e abeea b e e b e e ebe e eheeeheeeaneeabeebeerbeenaeesanesanan 381
(O B - (V£ TSP 381
(Ol [41 1= g =00 SRS 382
L2 0 1 0SS 383
(O N BT 1= = =TS 383
CL2.12 ATIIIOULES.......ee bbbttt b e bt bbb et et b bbb et et e 384
C.3 Grammar extensioNS fOr UNSAfE COOR.eeui ettt e st re e sae e e e sne e e seeeeas 385
C.3.1 UNSAFE CONLEXLS ... eueeeeieeeeesieeieeie st eee st seeestesteeeestesseeneesaeeseeaeesaeeneeaseeneessesseensesseeneesesneeneesseeneensenen 385
(O Tt 51 I = o] 1 (= 1Y/ 0= SR 386
C.3.1.2 POINLEIS TN EXPIESSIONSeeteeeeeeeeeeeeesteeeeseeseeeneesseeseeasesseessesseasesseaseensesseesesseansessesseensesseensessens 386
(ORCTIRC T = o] o1 (= g1 1o [1= ox £ (o o [387
C.3.1.4 POINLEr MEMDEN BCCESS ... ccueeiiriertisiistesie ettt sttt sttt et e b e se et sesbesbesbenee s eneeneas 387
(ORC R IR N TSR0 (0[S ST o) l0] 0= - (o S 387
(ORI IR N TSRS = 0 0= = o S 387

C.3. 1.7 TNETIXEU SLAEMENT ..ottt bbbt b et ae bbb e e e e s 387
C.3. 1.8 SEACK @IOCELION ..ottt b et sb ettt b b e s e 387

IR = g oSS 389

Copyright O Microsoft Corporation 1999-2000. All Rights Reserved. Xiii

Chapter 137 |ntroductionAttributes |

1. Introduction

C#isasmple, modern, object oriented, and type-safe programming language derived from C and C++. It will
immediately be familiar to C and C++ programmers. C# aims to combine the high productivity of Visual Basic
and the raw power of C++.

Visua C# .NET isMicrosoft’ s C# development tool. It includes an interactive devel opment environment, visual
designers for building Windows and Web applications, acompiler, and a debugger. Visual C# .NET is part of a
suite of products, called Visua Studio .NET, that also includes Visua Basic .NET, Visual C++ .NET, and the
JScript scripting language. All of these languages provide access to the Microsoft .NET Framework, which
includes a common execution engine and arich class library. The NET Framework defines a*“Common
Language Specification” (CLS), asort of lingua franca that ensures seamless interoperability between CLS-
compliant languages and class libraries. For C# devel opers, this means that even though C# is a new language, it
has complete access to the same rich class libraries that are used by seasoned tools such as Visual Basic .NET
and Visual C++ .NET. C#itself does not include aclass library.

Therest of this chapter describes the essential features of the language. While later chapters describe rules and
exceptions in a detail-oriented and sometimes mathematical manner, this chapter strives for clarity and brevity at
the expense of completeness. The intent is to provide the reader with an introduction to the language that will
facilitate the writing of early programs and the reading of later chapters.

1.1 Getting started

The canonical “hello, world” program can be written as follows:
using System;
class Hello

static void Main() {
console.writeLine("hello, world");

3

The source code for a C# program is typically stored in one or more text fileswith afile extension of . cs, asin
hello.cs. Using the command-line compiler provided with Visual Studio .NET, such a program can be
compiled with the command line directive

csc hello.cs

which produces an application named hel1o. exe. The output produced by this application whenitisrunis:
hello, world

Close examination of this programisilluminating:

*» Theusing System; directive references a namespace called System that is provided by the Microsoft
.NET Framework class library. This namespace contains the Console classreferred to in the Main method.
Namespaces provide a hierarchical means of organizing the elements of one or more programs. A “using”
directive enables unqualified use of the typesthat are members of the namespace. The “hello, world”
program uses Console.WriteLine asshorthand for System.Console.writeLine. (For the sake of
brevity, most examplesin this specification omit theusing System; directive.)

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 1

C#LANGUAGE SPECIFICATION

« TheMain method is amember of the classHel1o. It hasthe static modifier, and so it isamethod on the
classHe11o rather than on instances of this class.

* Theentry point for an application—the method that is called to begin execution—is always a static method
named Main.

* The"helo, world” output is produced using aclass library. The language does not itself provide a class
library. Instead, it uses aclass library that is also used by Visua Basic .NET and Visual C++ .NET.

For C and C++ developers, it isinteresting to note afew things that do not appear in the “hello, world” program.

» The program does not use a global method for Main. Methods and variables are not supported at the global
level; such elements are always contained within type declarations (e.g., class and struct declarations).

* Theprogram does not use either “ : :” or “->" operators. The“ : :” isnot an operator at all, and the “ ->"
operator isused in only asmall fraction of programs — those that employ unsafe code (8A). The separator
“.” isused in compound names such as Console.writeL1ine.

» The program does not contain forward declarations. Forward declarations are never needed, as declaration
order is not significant.

* The program does not use #include to import program text. Dependencies among programs are handled
symbolically rather than textually. This approach iminates barriers between applications written using
different languages. For example, the ConsoTe class need not be written in C#.

1.2 Types

C# supports two kinds of types: value types and reference types. Vaue typesinclude smple types (e.g., char,
int, and float), enum types, and struct types. Reference types include class types, interface types, delegate
types, and array types.

Value types differ from reference types in that variables of the value types directly contain their data, whereas
variables of the reference types store references to objects. With reference types, it is possible for two variables
to reference the same object, and thus possible for operations on one variabl e to affect the object referenced by
the other variable. With value types, the variables each have their own copy of the data, and it is not possible for
operations on one to affect the other.

The example
class Classl

public int value = 0;

%1ass Test
static void Main() {
int vall = 0;
int val2 = vall;
val2 = 123;

Classl refl new Classl();
Classl ref2 refl;
ref2.value = 123;

console.writeLine("values: {0}, {1}", vall, val2);
console.WriteLine("Refs: {0}, {1}", refl.value, ref2.value);

}
}

shows this difference. The output produced is

2 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 117 |ntroductionAttributes

values: 0, 123
Refs: 123, 123

The assignment to the local variable val1l does not impact the local variable val2 because both local variables
are of avalue type (the type int) and each local variable of avalue type hasits own storage. In contrast, the
assignment ref2.value = 123; affectsthe abject that both refl and ref2 reference.

Thelines

console.writeLine("values: {0}, {1}", vall, val2);
console.writeLine("Refs: {0}, {1}", refl.value, ref2.value);

deserve further comment, as they demonstrate some of the string formatting behavior of Console.writeL1ine,
which takes a variable number of arguments. The first argument is a string, which may contain numbered
placeholderslike {0} and {1}. Each placeholder refers to atrailing argument with {0} referring to the second
argument, {13} referring to the third argument, and so on. Before the output is sent to the console, each
placeholder isreplaced with the formatted value of its corresponding argument.

Devel opers can define new value types through enum and struct declarations, and can define new reference
types via class, interface, and del egate declarations. The example

public enum Color

Red, Blue, Green

}

?ub1ic struct Point

) public int x, y;

?ub1ic interface IBase
void FQ);

}

?ub11c interface IDerived: IBase
void GQ);

}

?ub1ic class A

protected virtual void HO) {
console.writeLine("A.H");

}

public class B: A, IDerived

public void FO) {) . .
Console.WriteLine("B.F, implementation of IDerived.F");

public void G() {. .) .
Console.WriteLine("B.G, implementation of IDerived.G");

override_protected void HO {
console.writeLine("B.H, override of A.H");

}
public delegate void EmptyDelegate();

shows an exampl e of each kind of type declaration. Later sections describe type declarations in detail.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 3

C#LANGUAGE SPECIFICATION

1.2.1 Predefined types
CH# provides a set of predefined types, most of which will be familiar to C and C++ developers.

The predefined reference types are object and string. Thetype object isthe ultimate base type of all other
types. Thetype string is used to represent Unicode string values. Vaues of type string are immutable.

The predefined value types include signed and unsigned integral types, floating point types, and the types booT,
char, and decimal. The signed integral types are sbyte, short, int, and Tong; the unsigned integral types
are byte, ushort, uint, and ulong; and the floating point types are f1Toat and doubTe.

Thebool typeis used to represent boolean values: values that are either true or false. Theinclusion of bool
makes it easier to write self-documenting code, and also helps eliminate the all-too-common C++ coding error
in which a developer mistakenly uses “=" when “==" should have been used. In C#, the example

int i = ...;

F(i);
if (i = 0) // Bug: the test should be (i == 0)
G -

results in a compile-time error because the expression i = 0 isof typeint, and if statementsrequire an
expression of type booT.

The char typeis used to represent Unicode characters. A variable of type char represents a single 16-bit
Unicode character.

The decimal typeis appropriate for calculations in which rounding errors caused by floating point
representations are unacceptable. Common examples include financial calculations such astax computations
and currency conversions. The decimal type provides 28 significant digits.

Thetable below lists the predefined types, and shows how to write literal values for each of them.

4 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 117 |ntroductionAttributes

Type Description Example

object | The ultimate base type of al other types object o = null;

string | String type; astring is a sequence of Unicode string s = "hello";

characters

sbyte 8-hit signed integral type sbyte val = 12;

short 16-bit signed integral type short val = 12;

int 32-bit signed integral type int val = 12;

Tong 64-bit signed integral type]Igﬂg \\;g}% - %‘2“_’

byte 8-bit unsigned integral type byte vall = 12;

ushort 16-bit unsigned integral type ushort vall = 12;

uint 32-bit unsigned integral type E:EE \\;g}% - %LZ‘U’

ulong 64-bit unsigned integral type Hgng x:}% = %LZH,J
1Tong val4 = 7801

float Single-precision floating point type float val = 1.23F;

double | Double-precision floating point type 383812 xg% = 411%(330,

bool Boolean type; abooT valueis either true or false bool vall = true;
bool val2 = false;

char Character type; a char valueisaUnicode character | char val = 'h';

decimal | Precisedecimal type with 28 significant digits decimal val = 1.23wm;

Each of the predefined typesis shorthand for a system-provided type. For example, the keyword int refersto
the struct System.Int32. Asamatter of style, use of the keyword is favored over use of the complete system

type name.

Predefined value types such as int are treated specialy in afew ways but are for the most part treated exactly
like other structs. Operator overloading enables developers to define new struct types that behave much like the
predefined value types. For instance, abigit struct can support the same mathematical operations as the
predefined integral types, and can define conversions between D1gi t and predefined types.

The predefined types employ operator overloading themselves. For example, the comparison operators == and
I= have different semantics for different predefined types:

» Two expressions of type int are considered equal if they represent the same integer value.

» Two expressions of type object are considered equd if both refer to the same object, or if both are nu11.

» Two expressions of type string are considered equd if the string instances have identical lengths and

identical charactersin each character position, or if both are nul11.

The example

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

C#LANGUAGE SPECIFICATION

class Test

static void Main() {
string s = "Test";
string t = string.Copy(s);
Console.WriteLine(s == t);
console.writeLine((object)s == (object)t);

}
produces the output

True
False

because the first comparison compares two expressions of type string, and the second comparison compares
two expressions of type object.

1.2.2 Conversions

The predefined types also have predefined conversions. For instance, conversions exist between the predefined
types int and Tong. C# differentiates between two kinds of conversions: implicit conversions and explicit
conversions. Implicit conversions are supplied for conversions that can safely be performed without careful
scrutiny. For instance, the conversion from int to Tong isan implicit conversion. This conversion always
succeeds, and never resultsin aloss of information. Implicit conversions can be performed implicitly, as shown
in the example

class Test

static void Main() {
int intvalue = 123;
long Tongvalue = intvalue;
Console.writeLine("{0}, {1}", intvalue, longvalue);

3

which implicitly convertsan int toalong.

In contrast, explicit conversions are performed with a cast expression. The example
class Test

static void Main() {
Tong Tongvalue = Int64.Maxvalue;
int intvalue = (int) longvalue;
console.writeLine("(int) {0} = {1}", Tongvalue, intvalue);

3

uses an explicit conversion to convert a Tong to an int. The output is:
(int) 9223372036854775807 = -1

because an overflow occurs. Cast expressions permit the use of both implicit and explicit conversions.

1.2.3 Array types
Arrays may be single-dimensional or multi-dimensional. Both “rectangular” and “jagged” arrays are supported.

Single-dimensional arrays are the most common type. The example
class Test

static void Main(Q) {
int[] arr = new int[5];

6 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 117 |ntroductionAttributes

for (int i = 0; i < arr.Length; i++)
arr[i] =1 * i;
for (int i = 0; i < arr.Length; i++)
y Console.writeLine("arr[{0}] = {1}", i, arr[i]);
b

creates asingle-dimensional array of int values, initidizesthe array elements, and then prints each of them out.
The output produced is:

arr[0] =0
arr[l] =1
arr[2] = 4
arr[3] =9
arr[4] = 16

Thetypeint[] used in the previous exampleis an array type. Array types are written using a non-array-type
followed by one or more rank specifiers. The example

class Test

static void Main() {

int[] al; // single-dimensional array of int

int[,] a2; // 2-dimensional array of 1int

int[,,] a3; // 3-dimensional array of 1int

int[]1[] j2; // "jagged" array: array of (array of int)
int[][][ﬂ j3; // array of (array of (array of int))

}
}

shows a variety of local variable declarations that use array types with int as the element type.

Array types are reference types, and so the declaration of an array variable merely sets aside space for the
referenceto the array. Array instances are actually created via array initializers and array creation expressions.
The example

class Test

static void Main() {
int[] al = new int[] {1, 2, 3};
int[,] a2 = new int[,] {{1, 2, 3}, {4, 5, 6}};
int[,,] a3 = new int[10, 20, 30];

int[][] j2 = new int[3][];

j2[0] = new int[] {1, 2, 3};

j2[1] = new int[] {1, 2, 3, 4, 5, 6};

j2[2] = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9};

}
}

shows a variety of array creation expressions. The variables al, a2 and a3 denote rectangular arrays, and the
variable j2 denotes ajagged array. It should be no surprise that these terms are based on the shapes of the
arrays. Rectangular arrays always have arectangular shape. Given the length of each dimension of the array, its
rectangular shapeis clear. For example, the lengths of a3’ sthree dimensions are 10, 20, and 30 respectively,
and it is easy to seethat this array contains 10*20%30 elements.

In contrast, the variable j2 denotesa“jagged” array, or an “array of arrays’. Specifically, j2 denotes an array of
an array of int, or asingle-dimensional array of type int[]. Each of these int[] variables can beinitialized
individually, and this allows the array to take on ajagged shape. The example gives each of the int[] arraysa
different length. Specificaly, thelength of j2[0] is 3, thelength of j2[1] is 6, and thelength of j2[2] is9.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 7

C#LANGUAGE SPECIFICATION

The element type and shape of an array—including whether it isjagged or rectangular, and the number of
dimensions it has—are part of itstype. On the other hand, the size of the array—as represented by the length of
each of its dimensions—is not part of an array’ stype. This split is made clear in the language syntax, asthe
length of each dimension is specified in the array creation expression rather than in the array type. For instance
the declaration

int[,,] a3 = new int[10, 20, 30];
has an array type of int[, ,] and an array creation expression of new int[10, 20, 30].

For local variable and field declarations, a shorthand form is permitted so that it is not necessary to re-state the
array type. For instance, the example

int[] al = new int[] {1, 2, 3};
can be shortened to

int[] al = {1, 2, 3%;
without any change in program semantics.

The context in which an array initializer suichas {1, 2, 3} isused determines the type of the array being
initialized. The example

class Test
static void Main() {
short[] a = {1, 2, 3};
int[] b = {1, 2, 3};
Tong[] c = {1, 2, 3};

shows that the same array initializer syntax can be used for severa different array types. Because context is
required to determine the type of an array initializer, it is not possible to use an array initializer in an expression
context without explicitly stating the type of the array.

1.2.4 Type system unification

C# provides a“unified type system”. All types—including value types—derive from the type object. Itis
possible to call object methods on any value, even values of “primitive” types such as int. The example

class Test

static void mMain() {)
Console.WriteLine(3.ToString());

}
callsthe object-defined Tostring method on an integer literal, resulting in the output “3”.

The example
class Test

static void Main() {
int i = 123;
object o = 1; // boxing
int j = (int) o; // unboxing

}

ismore interesting. An int value can be converted to object and back again to int. This example shows both
boxing and unboxing. When a variable of avalue type needs to be converted to areference type, an object box

8 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 117 |ntroductionAttributes

is alocated to hold the value, and the value is copied into the box. Unboxing is just the opposite. When an
object box is cast back toits original value type, the value is copied out of the box and into the appropriate
storage location.

This type system unification provides val ue types with the benefits of object-ness without introducing
unnecessary overhead. For programs that don’t need int valuesto act like objects, int values are simply 32-bit
values. For programs that need int values to behave like objects, this capability is available on demand. This
ability to treat value types as objects bridges the gap between value types and reference types that existsin most
languages. For example, a Stack class can provide Push and Pop methods that take and return object values.

public class Stack

public object Pop() {...}
public void Push(object o) {...}

Because C# has a unified type system, the stack class can be used with el ements of any type, including value
typeslikeint.

1.3 Variables and parameters

Variables represent storage locations. Every variable has a type that determines what values can be stored in the
variable. Local variables are variablesthat are declared in methods, properties, or indexers. A loca variableis
defined by specifying atype name and a declarator that specifies the variable name and an optional initial value,
asin:

int a;

int b = 1;
but it is also possible for alocal variable declaration to include multiple declarators. The declarations of a and b
can be rewritten as:

int a, b = 1;
A variable must be assigned before its value can be obtained. The example
class Test

static void Main() {
int a;
int b
int c

a + b; // error, a not yet assigned

}
}

resultsin a compile-time error because it attempts to use the variable a beforeit is assigned avaue. Therules
governing definite assignment are defined in 85.3.

A field (810.4) isavariable that is associated with a class or struct, or an instance of aclassor struct. A field
declared with the static modifier defines a static variable, and afield declared without this modifier defines
an instance variable. A static field is associated with a type, whereas an instance variable is associated with an
instance. The example

using Personnel.Data;
class Employee

private static DataSet ds;

public string Name;
public decimal Salary;

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 9

C#LANGUAGE SPECIFICATION

}

shows an Employee class that has a private static variable and two public instance variables.

Formal parameter declarations also define variables. There are four kinds of parameters: value parameters,
reference parameters, output parameters, and parameter arrays.

A value parameter isused for “in” parameter passing, in which the value of an argument is passed into a
method, and modifications of the parameter do not impact the original argument. A value parameter refersto its
own variable, one that is distinct from the corresponding argument. This variable isinitialized by copying the
value of the corresponding argument. The example
class Test {
static void F(Cint p) {

Console.writeLine("p = {0}", p);
pt++;

static void Main() {

int a = 1;

Console.writeLine("pre: a = {0}", a);
F(a);

Console.writeLine("post: a = {0}", a);

}
shows amethod F that has a value parameter named p. The output produced is:
pre: a =1
p=1
post: a =1

even though the value parameter p is modified.

A reference parameter isused for “by reference” parameter passing, in which the parameter acts asan aliasfor
acaller-provided argument. A reference parameter does not itself define a variable, but rather refersto the
variable of the corresponding argument. Modifications of areference impact the corresponding argument. A
reference parameter is declared with a ref modifier. The example

class Test {_]]
static void swap(ref int a, ref int b) {

int t = a;
a = b;
b =t;
}
static void Main(Q) {
int x = 1;
int y = 2;
console.writeLine("pre: x = {0}, y = {1}", X, y);
swap(ref x, ref y);
) console.writeLine("post: x = {0}, y = {1}", X, y);
}
shows a Swap method that has two reference parameters. The output of the programis:
pre: x =1,y =2
post: x =2, y=1

The ref keyword must be used in both the declaration of the formal parameter and in uses of it. The use of ref
at the call site calls special attention to the parameter so that a developer reading the code will understand that
the value of the argument could change as aresult of the call.

10 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 117 |ntroductionAttributes

An output parameter is similar to areference parameter, except that the initial value of the caller-provided
argument is unimportant. An output parameter is declared with an out modifier. The example
class Test {
static void Divide(int a, int b, out int result, out int remainder) {
result = a / b;
remainder = a % b;

static void Main() {
for (int i =1; i < 10; i++)
for (int j = 1; j < 10; j++) {
int ans, r;
Divide(i, j, out ans, out r);
Console.writeLine("{0} / {1} = {2}r{3}", i, j, ans, r);

}
}

shows a D1 vide method that includes two output parameters—one for the result of the division and another for
the remainder.

For value, reference, and output parameters, there is a one-to-one correspondence between caller-provided
arguments and the parameters used to represent them. A parameter array enables a many-to-one relationship:
many arguments can be represented by a single parameter array. In other words, parameter arrays enable
variable length argument lists.

A parameter array is declared with aparams modifier. There can be only one parameter array for agiven
method, and it must be the right-most parameter. The type of a parameter array is always a single dimensional
array type. A caller can either pass a single argument of this array type, or any number of arguments of the
element type of this array type. For instance, the example

class Test
static void F(params int[] args) {
Console.writeLine("# of arguments: {0}", args.Length);

for (int i = 0; i < args.Length; i++)
Console.writeLine("\targs[{0}] = {1}", i, args[il);

static void Main() {

FQ;

F(D;

F(1, 2);
F(1, 2, 3);

) F(new int[] {1, 2, 3, 4});
b

shows a method F that takes a variable number of int arguments, and several invocations of this method. The
output is:

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 11

C#LANGUAGE SPECIFICATION

of arguments: O
of arguments: 1

args[0] =1

of arguments: 2
args[0] =1
args[1l] = 2

of arguments: 3
args[0] =1
args[1l] = 2
args[2] = 3

of arguments: 4
args[0] =1
args[1l] = 2
args[2] = 3
args[3] = 4

Most of the examples presented in this introduction use the writeLine method of the Console class. The
argument substitution behavior of this method, as exhibited in the example

inta=1, b = 2;
console.writeLine("a = {0}, b = {1}", a, b);

is accomplished using a parameter array. Thewr1iteLine method provides severa overloaded methods for the
common cases in which asmall number of arguments are passed, and one method that uses a parameter array.

namespace System
public class Console

public static void WriteLine(string s) {...}
public static void writeLine(string s, object a) {...}
public static void WriteLine(string s, object a, object b) {...}

) pubTlic static void writeLine(string s, params object[] args) {...}
}

1.4 Automatic memory management

Manual memory management requires devel opers to manage the alocation and de-all ocation of blocks of
memory. Manua memory management is both time-consuming and difficult. In C#, automatic memory
management is provided so that developers are freed from this burdensome task. In the vast majority of cases,
automatic memory management increases code quality and enhances devel oper productivity without negatively
impacting either expressiveness or performance.

The example
pubTlic class Stack

private Node first = null;

pubTlic bool Empty {
get {
return (first == null);

12 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 117 |ntroductionAttributes

public object Pop() {
if (first == null)
] thEow new Exception("Can't Pop from an empty Stack.");
else
object temp = first.value;
first = first.Next;
return temp;

}

public void Push(object o) {
first = new Node(o, first);

class Node

pubTlic Node Next;
public object value;
public Node(object value): this(value, null) {}

public Node(object value, Node next) {
Next = next;
value = value;

}
}

shows a Stack classimplemented as alinked list of Node instances. Node instances are created in the Push
method and are garbage collected when no longer needed. A Node instance becomes eligible for garbage
collection when it is no longer possible for any code to access it. For instance, when an item is removed from
the stack, the associated Node instance becomes eligible for garbage collection.

The example
class Test

static void Main() {
stack s = new Stack();
for (int i = 0; i < 10; i++)
s.Push(i);
s = null;

}
}

shows code that uses the stack class. A stack is created and initialized with 10 elements, and then assigned
thevalue nu11. Oncethe variable s isassigned null, the stack and the associated 10 Node instances become
eligible for garbage collection. The garbage collector is permitted to clean up immediately, but is not required to
do so.

The garbage collector underlying C# may work by moving objects around in memory, but this motion is
invisible to most C# developers. For devel opers who are generally content with automatic memory management
but sometimes need fine-grained control or that extrabit of performance, C# provides the ability to write
“unsafe” code. Such code can deal directly with pointer types and object addresses. However, C# requires the
programmer to fix objects to temporarily prevent the garbage collector from moving them.

This“unsafe” code featureisin fact a*“safe” feature from the perspective of both developers and users. Unsafe
code must be clearly marked in the code with the modifier unsafe, so developers can't possibly use unsafe
language features accidentally, and the compiler and the execution engine work together to ensure that unsafe
code cannot masquerade as safe code. These restrictions limit the use of unsafe code to situations in which the
codeis trusted.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 13

C#LANGUAGE SPECIFICATION

The example
class Test

unsafe static void WriteLocations(byte[] arr) {
fixed (byte *pArray = arr) {

byte *pElem = pArray;

for (int i = 0; i < arr.Length; i++) {
byte value = *pElem;
console.writeLine("arr[{0}] at Ox{1:x} is {21}",

i, (uint)pElem, value);

pElem++;

}
}

static void Main() {
byte[] arr = new byte[] {1, 2, 3, 4, 5};
writeLocations(arr);

}

shows an unsafe method named wr1iteLocations that fixes an array instance and uses pointer manipul ation to
iterate over the elements. The index, value, and location of each array element are written to the console. One
possible example of outpuit:

arr[0] at Ox8E0360 is
arr[1l] at Ox8EO0361 is
arr[2] at Ox8E0362 is
arr[3] at Ox8E0363 is
arr[4] at Ox8E0364 is

but of course the exact memory locations may be different in different executions of the application.

VA WN =

1.5 Expressions

C# includes unary operators, binary operators, and one ternary operator. The following table summarizes the
operators, listing them in order of precedence from highest to lowest:

14 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 117 |ntroductionAttributes

Section | Category Operators

75 Primary x.y f(x) a[x] x++ x-- new
typeof checked unchecked

7.6 Unary + - !~ ++x --x (DX

7.7 Multiplicative * /%

7.7 Additive + -

7.8 Shift << >>

79 Relation_al and < > <= >= 1s as

type testing

7.9 Equality == I=

7.10 Logical AND &

7.10 Logical XOR A

7.10 Logical OR |

7.11 Conditional AND | &&

7.11 Conditional OR |]

7.12 Conditional 7t

7.13 Assignment = ¥*= [= %= 4= -= <<= >>= &= A=

When an expression contains multiple operators, the precedence of the operators controls the order in which the
individual operators are evaluated. For example, the expression x + y * z isevaluated as x + (y * z) because
the * operator has higher precedence than the + operator.

When an operand occurs between two operators with the same precedence, the associativity of the operators
controls the order in which the operations are performed:

» Except for the assignment operators, al binary operators are |eft-associative, meaning that operations are
performed from left to right. For example, x + y + z isevaluated as (x + y) + z.

* Theassignment operators and the conditional operator (?:) are right-associative, meaning that operations
are performed from right to left. For example, x =y = zisevaluated as x = (y = z).

Precedence and associativity can be controlled using parentheses. For example, x + y * z first multipliesy by z
and then adds the result to x, but (x + y) * z first adds x and y and then multiplies the result by z.

1.6 Statements

C# borrows most of its statements directly from C and C++, though there are some noteworthy additions and
modifications. The table below lists the kinds of statements that can be used, and provides an example for each.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 15

C#LANGUAGE SPECIFICATION

Statement Example
Statement lists and block statl%)\./oid Main() {
statements G();
{
HQ);
10;
}

Labeled statementsand goto | sStatic void Ma1n(str1ng[% args) {

if (args.Length ==
Statements goto done;

Conso1e.WriteL1ne(args.Length);

done:))
console.writeLine("Done");

Local constant declarations static void Main() {
const float pi = 3.14f;

const int r = 123;
Console.wWriteLine(pi * r * r);

Local variable declarations Statiﬁthid Main() {
1 ’
int b = 2, c = 3;
a=1;
) console.writeLine(a + b + ¢);
Expression statements static int F(int a, int b) {

return a + b;

static void Main() {
F(1, 2); // Expression statement

i f statements static void Main(string[] args) {
if (args.Length ==
console.WriteLine("No args");
else
console.WriteLine("Args');

ks
switch statements static void Main(string[] args) {
switch (args.Length) {
case O:
Console.WriteLine("No args");
break;
case 1:
Console.writeLine("one arg ");
break;
default:
int n = args.Length;
Console.writeLine("{0} args", n);
break;
}
3
while statements static vo1d gam(strmg[] args) {
int i =

while (1 < args.Length) {
console.wWriteLine(args[il);

16 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 117 |ntroductionAttributes

T++;
}
}
do statements static void Main() {
string s;
do { s = console.ReadLine(); }
while (s != "Exit");

for statements

static void Main(string[] args) {
for (int i = 0; i < args.length; i++)
console.writeLine(args[i]);

}

foreach statements

static void Main(string[] args) {
foreach (string s 1in args)
console.writeLine(s);

ks
break statements static void gam(stm ng[] args) {
int i =
wh11e (true) {
f (i == args.Length)
break,
console.wWriteLine(args[i++]);
3
continue statements static vo1d gam(str'l ng[] args) {
int i =
while (true) {
console.WriteLineCargs[i++]);
if (i < args.Length)
continue;
break;
3

return statements

static int F(int a, int b) {
return a + b;

static void Main() {
Console.writeLine(F(1, 2));
return;

throw statements and try
statements

static int F(int a, int b) {
if (b ==
throw new Exception("Divide by zero");
return a / b;

static void Main() {
try {
console.writeLine(F(5, 0));

catch(Exception e) {
Console.writeLine("Error");

}

checked and unchecked
statements

static void Main() {
int x = Int32.Maxvalue;

console.writeLine(x + 1); // overflow

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

17

C#LANGUAGE SPECIFICATION

checked {
console.WriteLine(x + 1); // Exception
unchecked {
console.WriteLine(x + 1); // overflow
3
Jock statements static void Main() {
Aa=...;
Jock(a) {
a.P = a.P + 1;
ks
3
using statements static void Main() {
using (Resource r = new Resource()) {
r.FQ;
s
s

1.7 Classes

Class declarations define new reference types. A class can inherit from another class, and can implement
interfaces.

Class members can include constants, fields, methods, properties, events, indexers, operators, instance
constructors, destructors, static constructors, and nested type declarations. Each member has an associated
accessibility, which controls the regions of program text that are able to access the member. There arefive
possible forms of accessibility. These are summarized in the table below.

Form I ntuitive meaning
public Access not limited
protected Access limited to the containing class or types derived from the containing class
internal Access limited to this program
P rgtectaad Access limited to this program or types derived from the containing class
interna
private Access limited to the containing type
The example

class MycClass

public MyClass() {
console.writeLine("Instance constructor");

public MyClass(int value) {
MyField = value;
console.writeLine("Instance constructor");

~MyClass() { .]
console.writeLine("Destructor");

public const int MyConst = 12;

18 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 117 |ntroductionAttributes

public int MyField = 34;

public void MyMethod(){
Console.writeLine("MyClass.MyMethod");

public int MyProperty {
get {
return MyField;

set {
MyField = value;
b

public int this[int index] {
get {
return O;

set {
console.writeLine("this[{0}] = {1}", index, value);
}
public event EventHandler MyEvent;

public static MyClass operator+(MyClass a, MyClass b) {
return new MyClass(a.MyField + b.MyField);

internal class MyNestedClass

}
shows a class that contains each kind of member. The example
class Test

static void Main() {
// Instance constructor usage
MyClass a = new MyClass();
MyClass b = new MyClass(123);

// Constant usage
Console.writeLine("MyConst = {0}", MyClass.MycConst);

// Field usage
a.MyField++;
Console.writeLine("a.MyField = {0}", a.MyField);

// Method usage
a.MyMethod();

// Property usage
a.MyProperty++;
Console.writeLine("a.MyProperty = {0}", a.MyProperty);

// Indexer usage
a[3] = a[1] = a[2];
console.writeLine("a[3] = {0}", a[3]);

// Event usage
a.MyEvent += new EventHandler(MyHandler);

// Overloaded operator usage
MyClass c = a + b;

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 19

C#LANGUAGE SPECIFICATION

static void MyHandler(object sender, EventArgs e) {
Console.writeLine("Test.MyHandler");

internal class MyNestedClass

}
shows uses of these members.

1.7.1 Constants

A constant is a class member that represents a constant value: a value that can be computed at compile-time.
Constants are permitted to depend on other constants within the same program as long asthere are no circular
dependencies. The rules governing constant expressions are defined in 87.15. The example

class Constants

public const int A
public const int B

1;
A+ 1;

shows a class named Constants that hastwo public constants.

Even though constants are considered static members, a constant declaration neither requires nor alows the
static modifier. Constants can be accessed through the class, asin

class Test

static void mMain() {
console.writeLine("{0}, {1}", Constants.A, Constants.B);

}
which prints out the values of Constants.A and Constants.B.

1.7.2 Fields
A field isamember that represents a variable associated with an object or class. The example
class color

internal ushort redpPart;
internal ushort bluePart;
internal ushort greenPart;

public Color(ushort red, ushort blue, ushort green) {
redPart = red;
bluePart = blue;
greenPart = green;

}

showsacolor classthat hasinterna instance fields named redpart, bTuePart, and greenpPart. Fields can
also be static, as shown in the example

class color

public static Color Red = new Color(OxFF, 0, 0);

public static Color Blue = new Color(0, OxFF, 0);

public static Color Green new Color(0, 0, OXFF);
public static Color white new Color(OxFF, OXFF, OXFF);

20 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 117 |ntroductionAttributes

which shows static fields for Red, BTue, Green, and whi te.

The use of gatic fieldsin this manner isnot ideal. The fields are initiadized at some point before they are used,
but after thisinitialization there is nothing to stop a client from changing them. Such a modification could cause
unpredictable errorsin other programs that use Color and assume that the values do not change. Readonly
fields can be used to prevent such problems. Assignments to areadonly field can only occur as part of the
declaration, or in an instance constructor or static constructor in the same class. A static readonly field can be
assigned in a static constructor, and a non-static readonly field can be assigned in an instance constructor. Thus,
the Color class can be enhanced by adding the readon1y modifier to the static fields:

class color

internal ushort redPart;
internal ushort bluePart;
internal ushort greenPart;

public color(ushort red, ushort blue, ushort green) {
redPart = red;
bluePart = blue;
greenPart = green;

public static readonly Color Red = new Color(OxFF, 0, 0);

public static readonly Color Blue = new Color(0, OxFF, 0);

public static readonly Color Green new Color(0, 0, OXFF);
public static readonly Color white new Color(OxFF, OXFF, OXFF);

}

1.7.3 Methods

A method is a member that implements a computation or action that can be performed by an object or class.
Methods have alist of formal parameters (which may be empty), areturn value (unless the method’ s return-type
isvoid), and are either static or non-static. Static methods are accessed through the class. Non-static methods,
which are also called instance methods, are accessed through instances of the class. The example

pubTlic class Stack

public static Stack Clone(Stack s) {...}
public static Stack Flip(Sstack s) {...}
public object pPop() {...}

public void Push(object o) {...}

public override string ToString() {...}

}

class Test

static void Main() {
Stack s = new Stack(Q);
for (Aint i =1; i < 10; i++)
s.Push(i);

Stack flipped = stack.Flip(s);
stack cloned = Sstack.Clone(s);

Console.writeLine("original stack: " + s.ToString());
console.writeLine("Flipped stack: " + flipped.ToString());
Console.writeLine("Cloned stack: " + cloned.ToString());

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 21

C#LANGUAGE SPECIFICATION

shows a Stack that has several static methods (Clone and F11p) and severa instance methods (Push, Pop,
and ToString).

M ethods can be overloaded, which means that multiple methods may have the same name so long as they have
unique signatures. The signature of a method consists of the name of the method and the number, modifiers, and
types of itsformal parameters. The signature of a method does not include the return type. The example

class Test

static void FQO {
console.writeLine("FQO");

static void F(object o) {
console.writeLine("F(object)");

static void F(int value) {
console.writeLine("F(int)");

static void F(ref int value) {
console.writeLine("F(ref int)");

static void F(int a, int b) {
console.writeLine("F(int, int)");

static void F(int[] values) {
console.writeLine("F(Gint[1)"™);

static void Main() {
FQs
F(L;
int i = 10;
F(ref i);
F((object)1);
F(1, 2);
) F(new int[] {1, 2, 3});
3

shows a class with a number of methods named F. The output produced is

FQ

F(int)
F(ref int)
F(object)
F(int, int)
FGint[]D)

1.7.4 Properties

A property is amember that provides access to a characteristic of an object or aclass. Examples of properties
include the length of astring, the size of afont, the caption of a window, the name of a customer, and so on.
Properties are a natural extension of fields. Both are named members with associated types, and the syntax for
accessing fields and propertiesis the same. However, unlike fields, properties do not denote storage locations.
Instead, properties have accessors that specify the statements to be executed when their values are read or
written.

Properties are defined with property declarations. Thefirst part of a property declaration looks quite similar to a
field declaration. The second part includes a get accessor and/or a set accessor. |n the example below, the
Button class definesaCaption property.

22 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 117 |ntroductionAttributes

public class Button

private string caption;

public string Caption {
get {]
return caption;

set {
caption = value;
Repaint();

}
}

Properties that can be both read and written, such as Caption, include both get and set accessors. The get
accessor is called when the property’ s value is read; the set accessor is called when the property’ svalueis

written. In a set accessor, the new value for the property is made available via an implicit parameter named
value.

The declaration of propertiesisreal value of propertiesis seen when they are used. For example, the Caption
property can be read and written in the same way that fields can be read and written:

Button b = new Button();

b.Caption = "ABC"; // set; causes repaint

string s = b.Caption; // get

b.Caption += "DEF"; // get & set; causes repaint
1.7.5 Events

An event isamember that enables an object or class to provide notifications. A class defines an event by
providing an event declaration, which resembles afield declaration, though with an added event keyword, and
an optional set of event accessors. The type of this declaration must be a delegate type.

An instance of a delegate type encapsul ates one or more callable entities. For instance methods, a callable entity
consists of an instance and a method on that instance. For static methods, a callable entity consists of just a
method. Given a del egate instance and an appropriate set of arguments, one can invoke al of that delegate
instance' s methods with that set of arguments.
In the example

public delegate void EventHandler(object sender, System.EventArgs e);

public class Button

public event EventHandler Click;
pubTlic void Reset() {
Click = null;

}

the Button class definesaclick event of type EventHandler. Inside the Button class, the C11ick member
isexactly like aprivate field of type EventHand1er. However, outside the Button class, the C11ick member
can only be used on the left hand side of the += and -= operators. The += operator adds a handler for the event,
and the -= operator removes a handler for the event. The example

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 23

C#LANGUAGE SPECIFICATION

public class Forml

pubTlic Forml() {
// Add Buttonl_Click as an event handler for Buttonl’s Click event
Buttonl.Click += new EventHandler(Buttonl_click);

Button Buttonl = new Button();

void Buttonl Click(object sender, EventArgs e) {
console.writeLine("Buttonl was clicked!");

public void Disconnect() {
Buttonl.Click -= new EventHandler(Buttonl_click);

3

shows a Forml class that adds Buttonl_cC11ck asan event handler for Buttonl’'s C1ick event. Inthe
Disconnect method, the event handler is removed.

For asimple event declaration such as
public event EventHandler Click;
the compiler automatically provides the implementation underlying the += and -= operators.

An implementer who wants more control can get it by explicitly providing add and remove accessors. For
example, the Button class could be rewritten asfollows:

public class Button

private EventHandler handler;

public event EventHandler Click {
add { handler += value; }
remove { handler -= value; }

}

This change has no effect on client code, but allows the Button class more implementation flexibility. For
example, the event handler for €11 ck need not be represented by afield.

1.7.6 Operators

An operator isamember that defines the meaning of an expression operator that can be applied to instances of
the class. There are three kinds of operators that can be defined: unary operators, binary operators, and
conversion operators.

The following example defines aD1i g1 t type that represents decimal digits—integral values between 0 and 9.

F[)ub1 ic struct Digit

byte value;

public Digit(byte value) {
if (value < 0 || value > 9) throw new ArgumentException();
this.value = value;

public Digit(int value): this((byte) value) {}

public static implicit operator byte(Digit d) {
return d.value;

24 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 117 |ntroductionAttributes

public static explicit operator Digit(byte b) {
return new Digit(b);

public static Digit operator+(Digit a, Digit b) {
return new Digit(a.value + b.value);

public static Digit operator-(Digit a, Digit b) {
return new Digit(a.value - b.value);

public static bool operator==(Digit a, Digit b) {
return a.value == b.value;

public static bool operator!=(Digit a, Digit b) {
return a.value != b.value;

public override bool Equals(object value) {
if (value == null) return false;
if (GetType() == value.GetType()) return this == (Digit)value;
return false;

public override int GetHashCode() {
return value.GetHashCode();

public override string ToString() {
return value.ToString(Q);

}

class Test

static void Main() {
Digit a = (Digit) 5;
Digit b = (Digit) 3;
Digit plus = a + b;
Digit minus = a - b;
bool equals = (a == b);
Console.writeLine("{0} + {1}
console.writeLine("{0} - {1}
) console.writeLine("{0} == {1} =

, a, b, plus);
", a, b, minus);
", a, b, equals);

I

~arta
AN N
N S

}
The D1igit type defines the following operators:

* Animplicit conversion operator frombigit to byte.

* Anexplicit conversion operator from byte toDigit.

* Anaddition operator that adds two Digit values and returnsabigit value.

* A subtraction operator that subtracts one D1 git value from another, and returnsabigit value.

* Theeguality (==) and inequality (!=) operators, which compare two Digit values.

1.7.7 Indexers

Anindexer isamember that enables an object to be indexed in the same way as an array. Whereas properties
enable field-like access, indexers enable array-like access.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 25

C#LANGUAGE SPECIFICATION

As an example, consider the stack class presented earlier. The designer of this class might want to expose
array-like access so that it is possible to inspect or alter the items on the stack without performing unnecessary
Push and Pop operations. That is, Stack isimplemented as alinked list, but it aso provides the convenience of
array access.

Indexer declarations are similar to property declarations, with the main differences being that indexers are
nameless (the “name” used in the declaration is this, since this isbeing indexed) and that indexers include
indexing parameters. The indexing parameters are provided between square brackets. The example

public class Stack

private Node GetNode(int index) {
Node temp = first;
while (index > 0) {
temp = temp.Next;
y index--;

return temp;

public ?bject this[int index] {
get
if (lvalidindex(index))
] throw new Exception("Index out of range.");
else
return GetNode(index).value;

set {
if (!validindex(index))
] throw new Exception("Index out of range.");
else
GetNode(index) .value = value;

3
b
3
class Test
static void Main() {
Stack s = new Stack();
s.Push(1);
s.Push(2);
s.Push(3);
s[0] = 33; // Changes the top item from 3 to 33
s[1] = 22; // Changes the middle item from 2 to 22
) s[2] = 11; // changes the bottom item from 1 to 11
3

shows an indexer for the Stack class.

1.7.8 Instance constructors
Aninstance constructor is amember that implements the actions required to initialize an instance of a class.
The example

class Point

pubTlic double x, y;

26 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 117 |ntroductionAttributes

public Po1nt() {
this.x
this.y

0;

public Point(double x, double y) {
this.x X;
this.y = vy;

public static double Distance(Point a, Point b) {
double xdiff = a X - b. x,
double ydiff = a.y - b.y
return Math. Sqrt(xd1ff * xdiff + ydiff * ydiff);

public override string ToString() {
return string.Format(" ({0}, {1P", x, y);

}
class Test
static void Main() {
Point a = new Point();
Point b = new Point(3, 4);
double d = Point.Distance(a, b);
) Console.WriteLine("Distance from {0} to {1} is {2}", a, b, d);
}

shows a Point classthat provides two public instance constructors. One instance constructor takes no
arguments, and the other takes two doub1e arguments.

If no instance congtructor is supplied for a class, then an empty instance constructor with no parametersis
automatically provided.

1.7.9 Destructors

A destructor is amember that implements the actions required to destruct an instance of a class. Destructors
cannot have parameters, cannot have accessibility modifiers, and cannot be called explicitly. The destructor for
an instance is called automatically during garbage collection.

The example
class Point

public double x, y;
public Point(double x, double y) {

this.x = X;
this.y = vy;
~Point() {

console.writeLine("Destructed {0}", this);

public override string ToString() {
return string.Format(" ({0}, {11D", x, y);

}
shows a Point class with a destructor.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 27

C#LANGUAGE SPECIFICATION

1.7.10 Static constructors

A static constructor isamember that implements the actions required to initialize a class. Static constructors
cannot have parameters, cannot have accessibility modifiers, and cannot be called explicitly. The static
constructor for aclassis called automatically.

The example
using Personnel.Data;
class Employee

private static DataSet ds;

static Employee() {
) ds = new DataSet(...);

public string Name;
public decimal Salary;

}
shows an Emp1oyee class with a static constructor that initializes a static field.

1.7.11 Inheritance
Classes support single inheritance, and the type object isthe ultimate base class for dl classes.

The classes shown in earlier examples all implicitly derive from object. The example
class A

public void F() { console.writeLine("A.F"); }

shows a class A that implicitly derives from object. The example
class B: A

public void G() { cConsole.writeLine("B.G"); }

class Test

static void Main() {

b.FO; // Inherited from A
b.GO; // Introduced in B

A a = b; // Treat a B as an A
a.FQ;

}
}

shows aclass B that derives from A. The class B inherits A’s F method, and introduces a G method of its own.

Methods, properties, and indexers can be virtual, which means that their implementation can be overridden in
derived classes. The example

class A

public virtual void F() { Console.writeLine("A.F"); 1}

28 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 117 |ntroductionAttributes

class B: A

public override void F() {
base.FQ);
console.writeLine("B.F");

}

class Test

static void Main() {
B b=newBQ;
b.FO;
A a = b;
a.FQ;

}
}

shows a class A with avirtua method F, and aclass B that overrides F. The overriding method in B contains a
cdl, base.F(), which callsthe overridden method in A.

A class can indicate that it isincomplete, and is intended only as a base class for other classes, by including the
abstract modifier. Such aclassis caled an abstract class. An abstract class can specify abstract members—
members that a non-abstract derived class must implement. The example

abstract class A

public abstract void FQ);

class B: A

public override void F() { Console.writeLine("B.F"); }

class Test

static void Main() {
B b=newBQ;
b.FO;
A a = b;
a.FQ;

}
}

introduces an abstract method F in the abstract class A. The non-abstract class B provides an implementation for
this method.

1.8 Structs

Thelist of similarities between classes and structs is long—structs can implement interfaces, and can have the
same kinds of members as classes. Structs differ from classesin severa important ways, however: structs are
value types rather than reference types, and inheritance is not supported for structs. Struct values are stored “on
the stack” or “in-line”. Careful programmers can sometimes enhance performance through judicious use of
structs.

For example, the use of a struct rather than a class for a Point can make alarge difference in the number of
memory allocations performed at runtime. The program below creates and initializes an array of 100 points.
With Point implemented as a class, 101 separate objects are instantiated—one for the array and one each for
the 100 elements.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 29

C#LANGUAGE SPECIFICATION

class Point

public int x, y;
public Point(int x, int y) {

th'iS.y =Y;

3

class Test

static void Main() {
Point[] points = new Point[100];
for (int i = 0; i < 100; i++)
points[i] = new Point(i, i*i);
3

If Point isinstead implemented asastruct, asin
struct Point

public int x, y;

pubTlic Point(int x, int y) {
this.x X;
this.y = vy;

3

then only one object isinstantiated—the one for the array. The Point instances are allocated in-line within the
array. This optimization can be misused. Using structsinstead of classes can aso make an application run
slower, or take up more memory, as passing a struct instance as a val ue parameter causes a copy of the struct to
be created. There is no substitute for careful data structure and a gorithm design.

1.9 Interfaces

An interface defines a contract. A class or struct that implements an interface must adhere to its contract.
Interfaces can contain methods, properties, events and indexers.

The example
interface IExample
string this[int index] { get; set; }
event EventHandler E;

void F(int value);

) string P { get; set; }

public delegate void EventHandler(object sender, EventArgs e);
shows an interface that contains an indexer, an event E, amethod F, and a property P.

Interfaces may employ multiple inheritance. In the example
interface IControl

void Paint();

30 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 117 |ntroductionAttributes

interface ITextBox: IControl

void SetText(string text);

interface IListBox: IControl

void SetItems(string[] items);

interface IComboBox: ITextBox, IListBox {}
the interface IComboBox inherits from both ITextBox and IListBox.

Classes and structs can implement multiple interfaces. In the example
interface IDataBound

void Bind(Binder b);

public class EditBox: Control, IControl, IDataBound

public void Paint() {...}
public void Bind(Binder b) {...}

the class Edi tBox derives from the class Control and implements both IControl and IDataBound.

In previous example, the Paint method from the IContro1 interface and the Bind method from IDataBound
interface are implemented using public members on the Edi tBox class. C# provides an alternative way of
implementing these methods that allows the implementing class to avoid having these members be public.
Interface members can be implemented using a qualified name. For example, the Ed1i tBox class could instead
be implemented by providing IControl.Paint and IDataBound.Bind methods.

public class EditBox: IControl, IDataBound

void IControl.pPaint() {...}
void IDataBound.Bind(Binder b) {...}

Interface members implemented in this way are called explicit interface members because each member
explicitly designates the interface member being implemented. Explicit interface members can only be called
viatheinterface. For example, the Edi tBox’simplementation of the Paint method can be called only by
casting to the IControl interface.

class Test

static void Main() {)
EditBox editbox = new EditBox();
editbox.Paint(); // error: no such method

IControl control = editbox;)))
control.Paint(); // calls EditBox’s Paint implementation

}

1.10 Delegates

Delegates enabl e scenarios that some other |anguages have addressed with function pointers. However, unlike
function pointers, delegates are object-oriented, type-safe, and secure.

A delegate declaration defines a class that is derived from the class System.Delegate. A delegate instance
encapsulates one or more methods, each of which isreferred to as a callable entity. For instance methods, a

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 31

C#LANGUAGE SPECIFICATION

callable entity consists of an instance and a method on that instance. For static methods, a call able entity consists
of just amethod. Given a delegate instance and an appropriate set of arguments, one can invoke all of that
delegate instance' s methods with that set of arguments.

Aninteresting and useful property of a delegate instance isthat it does not know or care about the classes of the
methods it encapsulates; all that mattersis that those methods be compatible (§15.1) with the delegate’ s type.
This makes delegates perfectly suited for “anonymous’ invocation. Thisis a powerful capability.

There are three stepsin defining and using delegates: declaration, instantiation, and invocation. Delegates are
declared using del egate declaration syntax. The example

delegate void SimpleDelegate();
declares a delegate named SimpleDelegate that takes no arguments and returns void.

The example
class Test

static void FQ {) _
System.Console.WriteLine("Test.F");

static void Main() {
31?p1eDe1egate d = new SimpleDelegate(F);

}
createsa SimpleDelegate instance and then immediately calsit.

There is not much point in instantiating a delegate for a method and then immediately calling it viathe delegate,
asit would be simpler to call the method directly. Delegates realy show their usefulness when their anonymity
isused. The example
void Multicall(Simplebelegate d, int count) {
for (int i = 0; i < count; i++)

dO;

}

shows aMulticall method that repeatedly calsasimpleDelegate. TheMulticall method doesn’t know
or care about the type of target method for the Simp1eDelegate, what access bility the method has, or whether
or not the method is static. All that mattersisthat the target method is compatible (§815.1) with
SimpleDelegate.

1.11 Enums

An enum type declaration defines a type name for arelated group of symbolic constants. Enums are used for
“multiple choice” scenarios, in which aruntime decision is made from afixed number of choicesthat are known
at compile-time.

The example
enum Color

Red,
Blue,
Green

32 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 117 |ntroductionAttributes

class Shape

pubTlic void FiTl(Color color) {
switch(color) {
case Color.Red:

Bééak;

case Color.Blue:
Bééak;

case Color.Green:
Bééak;

default:
break;

}
}
}

shows a Color enum and a method that uses this enum. The signature of the Fi11 method makesit clear that
the shape can be filled with one of the given colors.

The use of enumsiis superior to the use of integer constants—as is common in languages without enums—
because the use of enums makes the code more readabl e and self-documenting. The self-documenting nature of
the code aso makes it possible for the development tool to assist with code writing and other “ designer”
activities. For example, the use of Color rather than int for a parameter type enables smart code editors to
suggest color values.

1.12 Namespaces and assemblies

The programs presented so far have stood on their own except for dependence on afew system-provided classes
such as System.cConsole. It isfar more common, however, for rea-world applicationsto consist of several
different pieces, each compiled separately. For example, a corporate application might depend on severa
different components, including some developed internally and some purchased from independent software
vendors.

Namespaces and assemblies enabl e this component-based system. Namespaces provide alogical organizational
system. Namespaces are used both as an “internal” organization system for a program, and as an “external”
organization system—away of presenting program elements that are exposed to other programs.

Assemblies are used for physical packaging and deployment. An assembly may contain types, the executable
code used to implement these types, and references to other assemblies.

There are two main kinds of assemblies: applications and libraries. Applications have a main entry point and
usually have afile extension of . exe; libraries do not have amain entry point, and usually have afile extension
of .d11.

To demonstrate the use of namespaces and assemblies, this section revisits the “hello, world” program presented
earlier, and splitsit into two pieces. aclasslibrary that provides messages and a console application that
displays them.

The classlibrary will contain asingle class named He'l1oMessage. The example
// HelloLibrary.cs

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 33

C#LANGUAGE SPECIFICATION

namespace Microsoft.CSharp.Introduction
public class HelloMessage

public string Message {
get {
return "hello, world";

}
}
}

shows the Hel ToMessage classin a namespace named Microsoft.CSharp.Introduction. The
HelloMessage class provides aread-only property named Message. Namespaces can nest, and the declaration

namespace Microsoft.CSharp.Introduction

is shorthand for several levels of namespace nesting:
namespace Microsoft

namespace CSharp

namespace Introduction

}

The next step in the componentization of “hello, world” isto write a console application that uses the
HelloMessage class. The fully qualified name for the class—
Microsoft.CSharp.Introduction.HelloMessage—could be used, but this nameisquitelong and
unwieldy. An easier way isto use a using namespace directive, which makes it possible to use al of thetypesin
a hamespace without qualification. The example

// HelloApp.cs
using Microsoft.CSharp.Introduction;
class HelloApp

static void Main() {
HelloMessage m = new HelloMessage();
System.Console.wWriteLine(m.Message);

3

shows a using hamespace directive that refersto theMicrosoft.cSharp.Introduction namespace. The
occurrences of HelToMessage are shorthand for Microsoft.cCSharp.Introduction.HelloMessage.

C# also enables the definition and use of aliases. A using alias directive defines an alias for atype. Such aliases
can be useful in situation in which name collisions occur between two class libraries, or when a small number of
types from a much larger namespace are being used. The example

using MessageSource = Microsoft.CSharp.Introduction.HelloMessage;
shows a using dias directive that definesMessageSource asan diasfor theHelloMessage class.

The code we have written can be compiled into a class library containing the classHel ToMessage and an
application containing the class Hel ToApp. The details of this compilation step might differ based on the
compiler or tool being used. Using the command-line compiler provided in Visual Studio .NET, the correct
invocations are

csc /target:Tibrary HelloLibrary.cs

34 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 117 |ntroductionAttributes

which produces aclasslibrary HelloLibrary.d11 and
csc /reference:HelloLibrary.d11 HelloApp.cs
which produces the application He11oApp . exe.

1.13 Versioning

Versioning is the process of evolving a component over time in a compatible manner. A new version of a
component is source compatible with a previous version if code that depends on the previous version can, when
recompiled, work with the new version. In contrast, a new version of acomponent is binary compatible if an
application that depended on the old version can, without recompilation, work with the new version.

Most languages do not support binary compatibility at all, and many do little to facilitate source compatibility.
In fact, some languages contain flaws that make it impossible, in general, to evolve a class over time without
breaking at least some client code.

As an example, consider the situation of a base class author who ships a class named Base. In thefirst version,
Base contains no F method. A component named Derived derives from Base, and introduces an F. This
Derived class, along with the class Base on which it depends, is released to customers, who deploy to
numerous clients and servers.

// Author A
namespace A

public class Base // version 1
}

b

// Author B

namespace B
class Derived: A.Base

public virtual void F() {)
System.Console.WriteLine("Derived.F");

}
}

So far, so good. But now the versioning trouble begins. The author of Base produces a new version, giving it its
own F method.

// Author A
namespace A

public class Base // version 2

public virtual void FO { // added in version 2
System.Console.WriteLine("Base.F");

}
}

This new version of Base should be both source and binary compatible with theinitial version. (If it weren't
possible to simply add a method then a base class could never evolve.) Unfortunately, the new F in Base makes
the meaning of Derived’s F unclear. Did Derived mean to override Base’s F? This seems unlikely, since
when Derived was compiled, Base did not even have an F! Further, if Derived’s F does override Base’'sF,
then it must adhere to the contract specified by Base—a contract that was unspecified when Derived was
written? In some cases, thisisimpossible. For example, the contract of Base’s F might require that overrides of
it dways call the base. Derived’s F could not possibly adhere to such a contract.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 35

C#LANGUAGE SPECIFICATION

C# addresses this versioning problem by requiring developers to state their intent clearly. In the original code
example, the code was clear, since Base did not even have an F. Clearly, Derived’s F isintended as a new
method rather than an override of a base method, since no base method named F exists.

If Base adds an F and ships anew version, then the intent of abinary version of Derived is still clear—
Derived’'sF issemanticaly unrelated, and should not be treated as an override.

However, when Derived isrecompiled, the meaning is unclear—the author of berived may intend its F to
override Base'sF, or to hideit. Since theintent is unclear, the compiler produces awarning, and by default
makesDerived'sF hide Base’sF. This course of action duplicates the semantics for the casein which
Derived isnot recompiled. The warning that is generated aerts Der1ived’s author to the presence of the F
method in Base

If Derived’'sF issemanticaly unrelated to Base’s F, then Derived’s author can express this intent—and, in
effect, turn off the warning—by using the new keyword in the declaration of F.

// Author A
hamespace A

public class Base // version 2

public virtual void F() { // added in version 2
System.Console.WriteLine("Base.F");

}
}

// Author B
namespace B

class Derived: A.Base // version 2a: new

new public virtual void F() {)
System.Console.writeLine("Derived.F");

}
}

On the other hand, Der1ived’ s author might investigate further, and decide that Derived’s F should override
Base’sF. Thisintent can be specified by using the override keyword, as shown below.

// Author A
namespace A

public class Base // version 2

public virtual void F() { // added in version 2
System.Console.WriteLine("Base.F");

}
}

// Author B
hamespace B

class Derived: A.Base // version 2b: override
public override void F(Q) {

base.F(Q);) _ _
System.Console.writeLine("Derived.F");

36 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 117 |ntroductionAttributes

The author of Derived has one other option, and that is to change the name of F, thus completely avoiding the
name collision. Though this change would break source and binary compatibility for berived, the importance
of this compatibility varies depending on the scenario. If Derived isnot exposed to other programs, then
changing the name of F islikely agood idea, asit would improve the readability of the program—there would
no longer be any confusion about the meaning of F.

1.14 Attributes

C#isan imperative language, but like al imperative languages it does have some declarative elements. For
example, the accessibility of amethod in aclassis specified by declaring it pub1ic, protected, internal,
protected internal, or private. Through its support for attributes, C# generalizes this capability, so that
programmers can invent new kinds of declarative information, attach this declarative information to various
program entities, and retrieve this declarative information at run-time. Programs specify this additional
declarative information by defining and using attributes.

For instance, aframework might define aHelpAttribute attribute that can be placed on program elements
such as classes and methods, enabling devel opers to provide a mapping from program elements to
documentation for them. The example

[AttributeUsage(AttributeTargets.All)]
public class HelpAttribute: Attribute

public HelpAttribute(string url) {
this.url = url;

public string Topic = null;
private string url;

public string url {
get { return url; }

3

defines an attribute class named HelpAttribute, or Help for short, that has one positional parameter
(string url) and one named argument (string Topic). Positional parameters are defined by the formal
parameters for public instance constructors of the attribute class, and named parameters are defined by public
non-static read-write fields and properties of the attribute class.

The example

[Help("http://www.microsoft.com/.../Classl.htm")]
public class Classl

[Help("http://www.microsoft.com/.../Classl.htm", Topic = "F")]
pubTlic void FQ {3}
shows several uses of the attribute.

Attribute information for a given program element can be retrieved at run-time by using reflection support. The
example

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 37

C#LANGUAGE SPECIFICATION

class Test

static void Main() {
Type type = typeof(Classl);
object[] arr = type.GetCustomAttributes(typeof(HelpAttribute), true);
if (arr.Length == 0)
: Co?so1e.Wr1teLine("C1assl has no Help attribute.");
else
HelpAttribute ha = (HelpAttribute) arr[0];
Console.writeLine("ur1l = {0}, Topic = {1}", ha.url, ha.Topic);

}
}

checksto seeif Class1 hasaHelp attribute, and writes out the associated Topic and ur1 valuesif the
attribute is present.

38 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 217 Lexical structur eAttributes |

2. Lexical structure

This chapter defines the lexical structure of C# programs.

2.1 Programs

A C# program consists of one or more sourcefiles. A sourcefileis an ordered sequence of Unicode characters.
Source files typically have a one-to-one correspondence with filesin afile system, but this correspondence is
not required. For mamixal portability, it is recommended that filesin afile system be encoded with the UTF-8
encoding.

Conceptually speaking, a program is compiled using three steps:

1. Tranditeration, which converts afile from a particular character repertoire and encoding scheme into a
sequence of Unicode characters.

Lexical analysis, which trandates a stream of Unicode input characters into a stream of tokens.

3. Syntactic analysis, which translates the stream of tokens into executable code.

2.2 Grammars

This specification presents the syntax of the C# programming language using two grammars. The lexical
grammar (82.2.2) defines how Unicode characters are combined to form line terminators, white space,
comments, tokens, and pre-processing directives. The syntactic grammar (82.2.3) defines how the tokens
resulting from the lexical grammar are combined to form C# programs.

2.2.1 Grammar notation

Thelexical and syntactic grammars are presented using grammar productions. Each grammar production
defines a non-terminal symbol and the possible expansions of that non-terminal symbol into sequences of non-
terminal or terminal symbols. In grammar productions, non-terminal symbols are shown in italic type, and
terminal symbols are shown in afixed-width font.

Thefirst line of a grammar production is the name of the non-terminal symbol being defined, followed by a
colon. Each successive indented line contains a possible expansion of the non-terminal given as a sequence of
non-terminal or terminal symbols. For example, the production:

while-statement:
while (boolean-expresson) embedded-statement

defines a while-statement to consist of the token whi 1e, followed by the token “ (", followed by a boolean-
expression, followed by the token “)”, followed by an embedded-statement.

When there is more than one possible expansion of a non-terminal symbol, the alternatives are listed on separate
lines. For example, the production:

statement-list:
Statement
statement-list statement

defines a statement-list to either consist of a statement or consist of a statement-list followed by a statement. In
other words, the definition is recursive and specifies that a statement list consists of one or more statements.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 39

C#LANGUAGE SPECIFICATION

A subscripted suffix “ o, is used to indicate an optional symbol. The production:

block:
{ statement-listox }

is shorthand for:

block:

{13
{ statement-list }

and defines ablock to consist of an optional statement-list enclosed in“{” and “}” tokens.

Alternatives are normally listed on separate lines, though in cases where there are many aternatives, the phrase
“one of” may precede alist of expansions given on asingleline. Thisis simply shorthand for listing each of the
alternatives on a separate line. For example, the production:

real-type-suffix: one of
F f D d M m

is shorthand for:

real-type-suffix:

S 200 -+hT

2.2.2 Lexical grammar

Thelexical grammar of C#is presented in §2.3, 82.4, and §2.5. The terminal symbols of the lexical grammar are
the characters of the Unicode character set, and the lexical grammar specifies how characters are combined to
form tokens (82.4), white space (82.3.2), comments (82.3.3), and pre-processing directives (82.5).

Every source file in a C# program must conform to the input production of the lexical grammar (82.3).

2.2.3 Syntactic grammar

The syntactic grammar of C# is presented in the chapters and appendices that follow this chapter. The terminal
symbols of the syntactic grammar are the tokens defined by the lexical grammar, and the syntactic grammar
specifies how tokens are combined to form C# programs.

Every source filein a C# program must conform to the compilation-unit production of the syntactic grammar
(89.2).

2.3 Lexical analysis
The input production defines the lexical structure of a C# source file. Each source file in a C# program must
conform to this lexical grammar production.
input:
I NPUt-SECti 0Nyt
i nput-section:
i nput-section-part
input-section input-section-part

40 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 217 Lexical structur eAttributes

input-section-part:
input-elements,; new-line
pp-directive

input-el ements:
input-el ement
input-elements input-element

input-el ement:
whitespace
comment
token

Five basic elements make up the lexical structure of a C# source file: Line terminators (8§2.3.1), white space
(82.3.2), comments (82.3.3), tokens (82.4), and pre-processing directives (82.5). Of these basic e ements, only
tokens are significant in the syntactic grammar of a C# program (82.2.3).

Thelexical processing of a C# source file consists of reducing the file into a sequence of tokens which becomes
the input to the syntactic analysis. Line terminators, white space, and comments can serve to separate tokens,
and pre-processing directives can cause sections of the source file to be skipped, but otherwise these lexical
elements have no impact on the syntactic structure of a C# program.

When severa lexical grammar productions match a sequence of charactersin a source file, the lexical
processing aways forms the longest possible lexical element. For example, the character sequence // is
processed as the beginning of a single-line comment because that lexical element islonger than asingle / token.

2.3.1 Line terminators
Line terminators divide the characters of a C# sourcefile into lines.

new-line
Carriage return character (U+000D)
Line feed character (U+000A)
Carriage return character (U+000D) followed by line feed character (U+000A)
Line separator character (U+2028)
Paragraph separator character (U+2029)

For compatibility with source code editing tools that add end-of-file markers, and to enable a source file to be
viewed as a sequence of properly terminated lines, the following transformations are applied, in order, to every
source file in a C# program:

» If thelast character of the source fileisa Control-Z character (U+001A), this character is deleted.

» A carriage-return character (U+000D) is added to the end of the source fileif the source file is non-empty
and if the last character of the source fileis not a carriage return (U+000D), aline feed (U+000A), aline
separator (U+2028), or a paragraph separator (U+2029).

2.3.2 White space

White space is defined as any character with Unicode class Zs (which includes the space character) as well as
the horizontal tab character, the vertical tab character, and the form feed character.

whitespace:
Any character with Unicode class Zs
Horizontal tab character (U+0009)
Vertica tab character (U+000B)
Form feed character (U+000C)

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 41

C#LANGUAGE SPECIFICATION

2.3.3 Comments
Two forms of comments are supported: single-line comments and delimited comments. Single-line comments

start with the characters // and extend to the end of the source line. Delimited comments start with the
characters /* and end with the characters * /. Delimited comments may span multiple lines.

comment:
single-line-comment
delimited-comment

single-line-comment:
// input-charactersyy

input-characters:
input-character
input-characters input-character

input-character:
Any Unicode character except a new-line-character

new-line-character:
Carriage return character (U+000D)
Line feed character (U+000A)
Line separator character (U+2028)
Paragraph separator character (U+2029)

delimited-comment:
/* delimited-comment-characters,,: */

delimited-comment-char acters:
delimited-comment-char acter
delimited-comment-characters delimited-comment-character

delimited-comment-char acter:
not-asterisk
* not-dash

not-asterisk:
Any Unicode character except *

not-slash:
Any Unicode character except /

Comments do not nest. The character sequences /* and */ have no special meaning withina // comment, and
the character sequences // and /* have no special meaning within a delimited comment.

Comments are not processed within character and string literals.

The example

/* Hello, world program
This program writes “hello, world” to the console

class Hello

static void mMain(Q) {.]
System.Console.writeLine("hello, world");

}

includes a delimited comment.

42 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 217 Lexical structur eAttributes

The example

// Hello, world program
// This program writes “hello, world” to the console

class Hello // any name will do for this class

static void Main() { // this method must be named "Main"
System.Console.WriteLine("hello, world");

}

shows several single-line comments.

2.4 Tokens

There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space and
comments are not tokens, though they may act as separators for tokens.

token:
identifier
keyword
integer-literal
real-literal
character-literal
string-literal
operator-or-punctuator

2.4.1 Unicode character escape sequences

A Unicode character escape sequence represents a Unicode character. Unicode character escape sequences are
processed in identifiers (82.4.2), character literals (82.4.4.4), and regular string literals (82.4.4.5). A Unicode
character escape is not processed in any other location (for example, to form an operator, punctuator, or
keyword).

uni code-escape-sequence:
\u hex-digit hex-digit hex-digit hex-digit
\U hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit

A Unicode escape sequence represents the single Unicode character formed by the hexadecimal humber
following the “\u” or “\U” characters. Since C# uses a 16-bit encoding of Unicode charactersin characters and
string values, a Unicode character in the range U+10000 to U+10FFFF is not permitted in a character literal and
is represented using two Unicode surrogate charactersin astring literal. Unicode characters with code points
above 0x10FFFF are not supported.

Multiple trand ations are not performed. For instance, the string literal “\u005Cu005C” is equivalent to
“\u005c” rather than “\\". (The Unicode value \u005c is the character “\".)

The example
class Classl

static void Test(bool \u0066) {
char c = "\u0066"';
if (\u0066)
System.Console.WriteLine(c.ToString());

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 43

C#LANGUAGE SPECIFICATION

shows several uses of \u0066, which is the character escape sequence for the letter “ f”. The programis
equivalent to

class Classl

static void Te§t(boo1) {

char c = 'f';
if (P
System.Console.WriteLine(c.ToString());

}
}

2.4.2 ldentifiers

Therulesfor identifiers given in this section correspond exactly to those recommended by the Unicode 3.0
standard, Technical Report 15, Annex 7, except that underscoreis allowed as an initial character (asis
traditional in the C programming language), Unicode escape characters are permitted in identifiers, and the “ @”
character is allowed as a prefix to enable keywords to be used as identifiers.
identifier:
available-identifier
@ identifier-or-keyword

available-identifier:
An identifier-or-keyword that is not a keyword

identifier-or-keyword:
identifier-start-character identifier-part-character sy

identifier-start-character:
| etter-character
_ (the underscore character u+005F)

identifier-part-characters:
identifier-part-character
identifier-part-characters identifier-part-character

identifier-part-character:
letter-character
decimal-digit-character
connecting-character
combining-character
formatting-character

|etter-character:
A Unicode character of classes Lu, LI, Lt, Lm, Lo, or NI
A unicode-escape-sequence representing a character of classesLu, LI, Lt, Lm, Lo, or NI

combining-character:
A Unicode character of classes Mn or Mc
A unicode-escape-sequence representing a character of classes Mn or Mc

decimal-digit-character:
A Unicode character of the class Nd
A unicode-escape-sequence representing a character of the class Nd

connecting-character:
A Unicode character of the class Pc
A unicode-escape-sequence representing a character of the class Pc

44 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 217 Lexical structur eAttributes

formatting-character:
A Unicode character of the class Cf
A unicode-escape-sequence representing a character of the class Cf

Examples of valid identifiersinclude“identifierl”, “_identifier2”,and“@if".

Anidentifier in aconforming program must be in the canonical format defined by Unicode Normalization
Form C, as defined by Unicode Standard Annex 15. The behavior when encountering an identifier not in
Normalization Form C isimplementation-defined; however, adiagnostic is not required.

The prefix “@” enables the use of keywords asidentifiers, which is useful when interfacing with other
programming languages. The character @ is not actually part of theidentifier, so the identifier might be seenin
other languages as a normal identifier, without the prefix. Anidentifier with an @ prefix is called a verbatim
identifier. Use of the @ prefix for identifiers that are not keywords is permitted, but strongly discouraged as a
matter of style.

The example:

class @class
public static void @static(bool @bool) {
if (@bool)
System.Console.wWriteLine("true");

else
System.Console.WriteLine("false™);

}
}

class Classl

static void MO {
c1\u0061ss.st\u0061tic(true);

}

defines aclass named “class” with a static method named “static” that takes a parameter named “boo1”.
Note that since Unicode escapes are not permitted in keywords, the token “c1\u0061ss” isanidentifier, andis
the same identifier as“@class”.

Two identifiers are considered the same if they are identical after the following transformations are applied, in
order:

e Theprefix “@", if used, isremoved.
» Each unicode-escape-sequence is transformed into its corresponding Unicode character

Identifiers containing two consecutive underscore characters are reserved for use by the implementation. For
example, an implementation might provide extended keywords that begin with two underscores.

2.4.3 Keywords

A keyword is an identifier-like sequence of charactersthat is reserved, and cannot be used as an identifier except
when prefaced by the @ character.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 45

C#LANGUAGE SPECIFICATION

keyword: one of

abstract as base bool break
byte case catch char checked
class const continue decimal default
delegate do double else enum
event explicit extern false finally
fixed float for foreach goto

if implicit in int interface
internal is Tock Tong namespace
new null object operator out
override params private protected public
readonly ref return sbhyte sealed
short sizeof stackalloc static string
struct switch this throw true

try typeof uint ulong unchecked
unsafe ushort using virtual void
volatile while

In some placesin the grammar, specific identifiers have special meaning, but are not keywords. For example,
within a property declaration, the“get” and “set” identifiers have special meaning (810.6.2). An identifier
other than get or set isnever permitted in these locations, so this use does not conflict with a use of these
words as identifiers.

2.4.4 Literals
A literal is a source code representation of avalue.

literal:
boolean-literal
integer-literal
real-literal
character-literal
string-literal
null-literal

2.4.4.1 Boolean literals
There are two boolean literal values; true and false.

boolean-literal:
true
false

Thetype of aboolean-literal isbooT.

2.4.4.2 Integer literals

Integer literals are used to write values of typesint, uint, Tong, and uTong. Integer literals have two possible
forms: decimal and hexadecimal.
integer-literal:
decimal-integer-literal
hexadecimal -integer-literal
decimal-integer-literal:
decimal-digits integer-type-suffiXqy

46 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 217 Lexical structur eAttributes

decimal-digits:

decimal-digit

decimal-digits decimal-digit
decimal-digit: one of

01 2 3 4 5 6 7 8 9
integer-type-suffix: one of

U u L 1T u ul ur ul LU Lu Tu Tu
hexadecimal -integer-literal:

0x hex-digits integer-type-suffiXop

0Xx hex-digits integer-type-suffiXop
hex-digits:

hex-digit

hex-digits hex-digit
hex-digit: one of

0 1 2 3 45 6 7 8 9 A B CDEF abcdef

Thetype of aninteger literal is determined as follows:

» If theliteral has no suffix, it hasthefirst of these typesin which its value can be represented: int, uint,
Tlong, ulong.

» If theliteral issuffixed by U or u, it hasthe first of these typesin which its value can be represented: uint,
ulong.

» |If theliteral issuffixed by L or 1, it has the first of these typesin which its value can be represented: Tong,
ulong.

» If theliteral issuffixed by UL, UT, uL, ul, LU, Lu, Tu, or 1u, itisof typeuTong.
If the value represented by an integer literd is outside the range of the ulong type, a compile-time error occurs.

Asamatter of style, it issuggested that “L” be used instead of “1” when writing literals of type Tong, sinceitis
easy to confuse the letter “1” with the digit “1”.

To permit the smallest possible int and Tong values to be written as decimal integer literals, the following two
rules exist:

« When adecimal-integer-literal with the value 2147483648 (2*) and no integer-type-suffix appears as the
token immediately following a unary minus operator token (87.6.2), the result is a constant of type int with
the value —2147483648 (—2*). In all other situations, such a decimal-integer-literal is of type uint.

« When adecimal-integer-literal with the value 9223372036854775808 (2°) and no integer -type-suffix
appears as the token immediately following a unary minus operator token (87.6.2), the result is a constant of
type Tong with the value —9223372036854775808 (—2%). In al| other situations, such a decimal-integer-
literal is of type ulong.

2.4.4.3 Real literals
Real literals are used to write values of types f1oat, double, and decimal.

real-literal:
decimal-digits . decimal-digits exponent-partq, real-type-suffiXop
decimal-digits exponent-party, real-type-suffiXog
decimal-digits exponent-part real-type-suffiXyy
decimal-digits real-type-suffix

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 47

C#LANGUAGE SPECIFICATION

exponent-part:
e Signy: decimal-digits
E Signy decimal-digits

sign: one of
+ -_

real-type-suffix: one of
F f Dd Mm

If no real-type-suffix is specified, the type of thereal literal is doubTe. Otherwise, the real type suffix
determines the type of theredl literal, asfollows:

o Arred litera suffixed by F or f isof type float. For example, theliterals 1f, 1.5f, 1e10f, and
123.456F areal of type float.

* Arred literal suffixed by D or d is of type doubTe. For example, the literals 1d, 1. 5d, 1e10d, and
123.456D areal of type doubTe.

* Ared literal suffixed by M or mis of type decimal. For example, theliterals 1m, 1. 5m, 1e10m, and
123.456M are all of typedecimal. Thisliteral is converted to adecimal value by taking the exact value,
and, if necessary, rounding to the nearest representable value using banker's rounding. Any scale apparent in
the literal is preserved unlessthe value is rounded or the value is zero (in which latter case the sign and scale
will be 0). Hence, the literal 2.900m will be parsed to form the decimal with sign 0, coefficient 2900, and
scale 3.

If the specified literal cannot be represented in the indicated type, then a compile-time error occurs.

Thevalue of areal literal of type f1oat or double is determined by using the IEEE “round to nearest” mode.

2.4.4.4 Character literals
A character literal represents asingle character, and usually consists of a character in quotes, asin 'a'.

character-literal:
' character '

character:
single-character
simple-escape-sequence
hexadecimal -escape-sequence
unicode-escape-sequence

single-character:
Any character except ' (U+0027), \ (U+005C), and new-line-character

simple-escape-sequence: one of
AN NN N0 Na \b A \n \r A\t \v

hexadecimal -escape-sequence:
\x hex-digit hex-digity, hex-digity,: hex-digitoy

A character that follows a backslash character (\) in a character must be one of the following characters: ', ",
\,0,a,b, f,n, r t u,U, x, v. Otherwise, acompile-time error occurs.

A simple escape sequence represents a Unicode character encoding, as described in the table below.

48 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 217 Lexical structur eAttributes

Escape Character Unicode
sequence name encoding
\' Single quote 0x0027
\" Double quote 0x0022
\\ Backslash 0x005C
\O0 Null 0x0000
\a Alert 0x0007
\b Backspace 0x0008
\f Form feed 0x000C
\n New line 0x000A
\r Carriagereturn | 0x000D
\t Horizontal tab | 0x0009
\v Vertical tab 0x0008B

A hexadecimal escape sequence represents a single Unicode character, with the value formed by the
hexadecimal number following “\x”.

If the value represented by a character literal is greater than U+FFFF, a compile-time error occurs.
A Unicode character escape sequence (82.4.1) in a character literal must be in the range u+0000 to U+FFFF.
Thetype of acharacter-literal is char.

2.4.4.5 String literals
C# supportstwo forms of string literals: regular string literals and verbatim string literals.

A regular string literal consists of zero or more characters enclosed in double quotes, asin "hello", and may
include both simple escape sequences (such as \ t for the tab character), hexadecimal escape sequences, and
Unicode escape sequences.

A verbatim string literal consists of an @ character followed by a double-quote character, zero or more
characters, and a closing double-quote character. A simple exampleis@"hel10". In averbatim string literal,
the characters between the delimiters are interpreted verbatim, the only exception being a quote-escape-
sequence. In particular, simple escape sequences, hexadecimal escape sequences, and Unicode character escape
sequences are not processed in verbatim string literals. A verbatim string literal may span multiple lines.

string-literal:
regular-string-literal
verbatim-string-literal
regular-string-literal:
" regular-string-literal-charactersy,; "
regular-string-literal-characters:
regular-string-literal-character
regular-string-literal-characters regular-string-literal-character

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 49

C#LANGUAGE SPECIFICATION

regular-string-literal-character:
single-regular-string-literal-character
simple-escape-sequence
hexadecimal -escape-sequence
unicode-escape-sequence

single-regular-string-literal-character:
Any character except " (U+0022), \ (U+005C), and new-line-character

verbatim-string-literal:
@" verbatim-string-literal-characters,,;: "

verbatim-string-literal-characters:
verbatim-string-literal -character
verbatim-string-literal-characters verbatim-string-literal-character

verbatim-string-literal-character:
single-verbatim-string-literal-character
quote-escape-sequence

single-verbatim-string-literal-character:
any character except "

quote-escape-sequence:

A character that follows a backslash character (\) in aregular-string-literal-character must be one of the

following characters. ', ", \, 0, a, b, f, n, r, t, u, U, x, v. Otherwise, a compile-time error occurs.
The example
string a = "hello, world"; // hello, world
string b = @"hello, world"; // hello, world
string c = "hello \t world"; // hello world
string d = @"hello \t world"; // hello \t world
string e = "Joe said \"Hello\" to me"; // Joe said "Hello" to me
string f = @"Joe said ""Hello"" to me"; // Joe said "Hello" to me
string g = "\\\\server\\share\\file.txt"; // \\server\share\file.txt
string h = @"\\server\share\file.txt"; // \\server\share\file.txt
string i = "one\ntwo\nthree";
string j = @"one
two
three";

shows avariety of string literals. The last string literal, j, isaverbatim string literal that spans multiple lines.
The characters between the quotation marks, including white space such as newline characters, are preserved
verbatim.

Since a hexadecimal escape sequence can have a variable number of hex digits, the string literal "\x123"
contains asingle character with hex value 123. To create a string containing the two characters with hex values
0012 and 0003, respectively, one could write "\x00120003" or "\x0012" + "\x0003" instead.

Thetype of astring-literal is string.

Each string literal does not necessarily result in a new string instance. When two or more string literals that are
equivalent according to the string equality operator (87.9.7) appear in the same assembly, these string literals
refer to the same string instance. For instance, the output produced by

50 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 217 Lexical structur eAttributes

class Test

static void Main() {
object a = "hello";
object b = "hello";
System.Console.WriteLine(a == b);

}

iSTrue because the two literas refer to the same string instance.

2.4.4.6 The null literal

null-literal:
null

Thetype of anull-literal isthe null type.

2.4.5 Operators and punctuators

There are several kinds of operators and punctuators. Operators are used in expressions to describe operations
involving one or more operands. For example, the expression a + b usesthe + operator to add the two
operands a and b. Punctuators are for grouping and separating.

operator-or-punctuator: one of

{ 3 [] () . , : ;

+ - * / % & | A ! ~

= < > ? ++ - && [] << >>

== 1= <= >= += -= *= /= %= =
= A= <<= >>= ->

2.5 Pre-processing directives

The pre-processing directives provide the ability to conditionally skip sections of sourcefiles, to report error and
warning conditions, and to delineate distinct regions of source code. The term “pre-processing directives’ is
used only for consistency with the C and C++ programming languages. In C#, there is no separate pre-
processing step; pre-processing directives are processed as part of the lexical analysis phase.

pp-directive:
pp-declaration
pp-conditional
pp-line
pp-diagnostic
pp-region

pp-new-line:
whitespace,, single-line-comment,, new-line

The following pre-processing directives are available:

» #define and #undef, which are used to define and undefine conditional compilation symbols (8§2.5.3).
o #if, #elif, #else, and #endi f, which are used to conditionally skip sections of source code (82.5.4).
* #1ine, which isused to control line numbers emitted for errors and warnings (82.5.5).

* #error and #warning, which are used to issue errors and warnings (82.5.6).

* #region and #endregion, which are used to explicitly mark sections of source code (82.5.7).

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 51

C#LANGUAGE SPECIFICATION

A pre-processing directive always occupies a separate line of source code and always begins with a# character
and a pre-processing directive name. Whitespace may occur before the # character and between the # character
and the directive name.

A sourceline containing a#define, #undef, #if, #e1if, #else, #endif, or #11ne directive may end with
asingle-line comment. Delimited comments (the /* */ style of comments) are not permitted on source lines
containing pre-processing directives.

Pre-processing directives are not tokens and are not part of the syntactic grammar of C#. However, pre-
processing directives can be used to include or exclude sequences of tokens and can in that way affect the
meaning of a C# program. For example, the program:

#define A
#undef B

class C

{
#if A

void FO {}
#else

void GO {}
#endif
#if B

void HO {}

#else

void IO {}
#endif

}
produces the exact same sequence of tokens as the program:
class C

Thus, whereas the two programs are lexically quite different, they are syntactically identical.

2.5.1 Conditional compilation symbols

The conditional compilation functiondity provided by the #1 f, #e11 f, #else, and #endi f directivesis
controlled through pre-processing expressions (82.5.1) and conditional compilation symbols.

conditional-symbol:
Any identifier-or-keyword except true or false

A conditional compilation symbol has two possible states: defined or undefined. At the beginning of the lexical
processing of a source file, aconditional compilation symbol is undefined unless it has been explicitly defined
by an externa mechanism (such as a command-line compiler option). When a#def1ine directive is processed,
the conditional compilation symbol named in the directive becomes defined in that source file. The symbol
remains defined until an #undef directive for that same symbol is processed, or until the end of the sourcefile
isreached. Animplication of thisisthat #define and #undef directivesin one source file have no effect on
other source files in the same program.

When referenced in a pre-processing expression, a defined conditional compilation symbol has the boolean
value true, and an undefined conditional compilation symbol has the boolean value false. Thereisno
requirement that conditional compilation symbols be explicitly declared before they are referenced in pre-
processing expressions. Instead, undeclared symbols are simply undefined and thus have the value false.

52 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 217 Lexical structur eAttributes

The name space for conditional compilation symbolsis distinct and separate from all other named entitiesin a
C# program. Conditional compilation symbols can only be referenced in #define and #undef directives and
in pre-processing expressions.

2.5.2 Pre-processing expressions

Pre-processing expressions can occur in #1f and #el1 f directives. The !, ==, I=, & and | | operators are
permitted in pre-processing expressions, and parentheses may be used for grouping.

pp-expression:
whitespace,, pp-or-expression whitespacey

pp-Or-expression:

pp-and-expression

pp-or-expression whitespacey, || whitespacey, pp-and-expression
pp-and-expression:

pp-equality-expression

pp-and-expression whitespace,: && whitespace,; pp-equality-expression
pp-equality-expression:

pp-unary-expression

pp-equality-expression whitespace,; == whitespace,, pp-unary-expression
pp-equality-expression whitespace,,; != whitespace,,: pp-unary-expression

pp-unary-expression:
pp-primary-expression
I whitespaces: pp-unary-expression

pp-primary-expression:
true
false
conditional -symbol
(whitespace, pp-expression whitespace,,)

When referenced in a pre-processing expression, a defined conditional compilation symbol has the boolean
value true, and an undefined conditional compilation symbol has the boolean value false.

Evaluation of a pre-processing expression always yields a boolean value. The rules of evaluation for a pre-
processing expression are the same as those for a constant expression (87.15), except that the only user-defined
entities that can be referenced are conditional compilation symbols.

2.5.3 Declaration directives
The declaration directives are used to define or undefine conditional compilation symboals.

pp-declaration:
whitespace,; # whitespace,; define whitespace conditional-symbol pp-new-line
whitespace,,; # whitespace,; undef whitespace conditional-symbol pp-new-line

The processing of a#def1ine directive causes the given conditional compilation symbol to become defined,
starting with the source line that follows the directive. Likewise, the processing of an #undef directive causes
the given conditional compilation symbol to become undefined, starting with the source line that follows the
directive.

Any #define and #undef directivesin asource file must occur before the first token (82.4) in the sourcefile,
or otherwise a compile-time error occurs. In intuitive terms, #define and #undef directives must precede any
“real code” in the sourcefile.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 53

C#LANGUAGE SPECIFICATION

The example:
#define Enterprise

#if Professional || Enterprise
#define Advanced
#endif

namespace Megacorp.Data

#if Advanced
class PivotTable {...}
#endif

isvalid because the #def1ine directives precede the first token (the namespace keyword) in the sourcefile.

A #def1ine may define a conditional compilation symbol that is aready defined, without there being any
intervening #undef for that symbol. The example below defines a conditional compilation symbol A and then
definesit again.

#define A

#define A
An #undef directive may undefine a conditional compilation symbol that is not defined. The example below
defines a conditional compilation symbol and then undefines it twice; the second #undef has no effect but is
still valid.

#define A

#undef A
#undef A

2.5.4 Conditional compilation directives
The conditional compilation directives are used to conditionally include or exclude portions of a sourcefile.

pp-conditional:
pp-if-section pp-elif-sections,, pp-€else-sectiony,: pp-endif

pp-if-section:
whitespace,, # whitespace,, if whitespace pp-expresson pp-new-line conditional-
SECti ONgpt

pp-€lif-sections:
pp-€lif-section
pp-€lif-sections pp-€elif-section
pp-€lif-section:
whitespace,, # whitespace,; elif whitespace pp-expression pp-new-line conditional-
SECti 0Nyt
pp-€l se-section:
whitespace,, # whitespace,; else pp-new-line conditional-sectiongy
pp-endif-line:
whitespace,, # whitespace,; endif pp-new-line
conditional-section:
input-section
skipped-section

54 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 217 Lexical structur eAttributes

skipped-section:
skipped-section-part
skipped-section skipped-section-part

skipped-section-part:
skipped-characters,;: new-line
pp-directive

skipped-characters:
whitespace,, not-number-sign input-character Syy

not-number-sign:
Any input-character except #

As indicated by the syntax, conditional compilation directives must be written as sets consisting of, in order, an
#1f directive, zero or more #e 11 f directives, zero or one #e1se directive, and an #end1i f directive. Between
the directives are conditional sections of source code. Each section is controlled by the immediately preceding
directive. A conditional section may itself contain nested conditional compilation directives provided these
directives form compl ete sets.

A pp-conditional selects at most one of the contained conditional-sections for normal lexical processing:

» Thepp-expressions of the #1 f and #e11 f directives are evaluated in order until oneyields true. If an
expression yields true, the conditional-section of the corresponding directive is selected.

» If al pp-expressonsyield false, and if an #else directive is present, the conditional-section of the #else
directive is selected.

e Otherwise, no conditional-section is selected.

The selected conditional-section, if any, is processed as anormal input-section: the source code contained in the
section must adhere to the lexical grammar; tokens are generated from the source code in the section; and pre-
processing directives in the section have the prescribed effects.

The remaining conditional-sections, if any, are processed as ski pped-sections: except for pre-processing
directives, the source code in the section need not adhere to the lexical grammar; no tokens are generated from
the source code in the section; and pre-processing directives in the section must be lexically correct but are not
otherwise processed. Within a conditional-section that is being processed as a skipped-section, any nested
conditional-sections (contained in nested #1 f...#end1i f and #region...#endregion constructs) are also
processed as skipped-sections.

The following example illustrates how conditional compilation directives can nest:

#define Debug // Debugging on
#undef Trace // Tracing off

class PurchaseTransaction

void Commit() {

#if Debug
CheckConsistency();
#if Trace

writeToLog(this.ToString());

#endif

#endif

CommitHelper(Q);

}

Except for pre-processing directives, skipped source code is not subject to lexical analysis. For example, the
following is valid despite the unterminated comment in the #e1se section:

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 55

C#LANGUAGE SPECIFICATION

#define Debug // Debugging on
class PurchaseTransaction

void commit() {
#if Debug
CheckConsistency();
#else
/* Do something else
#endif

3

Note, however, that pre-processing directives are required to be lexically correct even in skipped sections of
source code.

Pre-processing directives are not processed when they appear inside multi-line input elements. For example, the
program:

class Hello

static void Main() {
System.Console.writeLine(@"hello,
#if Debug
world
#else
Nebraska
#endif
II);
3

}

produces the output:

hello,
#if Debug
world
#else
Nebraska
#endif
In peculiar cases, the set of pre-processing directives that are processed might depend on the evaluation of the

pp-expression. The example:
#if X

#else

/* */ class Q { }
#endif

always produces the same token stream (cTass Q { 1), regardless of whether X is defined or not. If X is defined,
the only processed directives are #1 f and #end1i f, due to the multi-line comment. If X is undefined, then three
directives (#i f, #else, #end1if) are part of the directive set.

2.5.5 Line directives

Line directives may be used to alter the line numbers and source file names that are reported by the compiler in
output such aswarnings and errors.

pp-line:
whitespace,, # whitespace,; 1ine whitespace line-indicator pp-new-line

56 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 217 Lexical structur eAttributes

line-indicator:
decimal-digits whitespace file-name
decimal-digits
default

file-name;
" file-name-characters

file-name-characters:
file-name-character
file-name-characters file-name-character

file-name-character:
Any input-character except "

When no #11 ne directives are present, the compiler reports true line numbers and source file namesin its
output. The #11 ne directive is most commonly used in meta-programming tools that generate C# source code
from some other text input. When processing a #11ne directive that includes aline-indicator that is not
default, the compiler treats the line after the directive as having the given line number (and file name, if

specified).
A #1line default directive reversesthe effect of all preceding #line directives. The compiler reports true line
information for subsequent lines, precisely asif no #11 ne directives had been processed.

Note that the file-name of a#11 ne directive differs from an ordinary string literal in that escape characters are
not processed; the '\’ character ssmply designates an ordinary backslash character within afile-name.

2.5.6 Diagnostic directives
The diagnostic directives are used to explicitly generate error and warning messages that are reported in the
same way as other compile-time errors and warnings.

pp-diagnogtic:
whitespace,, # whitespace,; error pp-message
whitespace,, # whitespace,; warning pp-message

pp-message:
new-line
whitespace input-characters, new-line
The example:
#warning Code review needed before check-in

#if Debug && Retail
#error A build can't be both debug and retail
#endif

class Test {...}

always produces awarning (“ Code review needed before check-in"), and produces a compile-time error (“A
build can’t be both debug and retail”) if the conditional symbols Debug and Retail are both defined.

2.5.7 Region directives
Theregion directives are used to explicitly mark regions of source code.

pp-region:
pp-start-region conditional-sectiony,: pp-end-region

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 57

C#LANGUAGE SPECIFICATION

pp-start-region:
whitespace,; # whitespace,; region pp-message

pp-end-region:
whitespace,, # whitespace,x endregion pp-message

No semantic meaning is attached to aregion; regions are intended for use by the programmer or automated tools
to mark a section of source code. The message specified in a#region or #endregion directive likewise has
no semantic meaning; it merely servesto identify the region. Matching #region and #endregion directives
may have different pp-messages.

Thelexical processing of aregion:
#region
#éﬁdregion

corresponds exactly to the lexical processing of a conditional compilation directive of the form:
#if true

#endif

58 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 317 Basic conceptsAttributes |

3. Basic concepts

This chapter defines basic concepts that are required for understanding subsequent chapters.

3.1 Application Startup

An assembly that has an entry point is called an application. When an application is run, a new application
domain is created. Several different instantiations of an application may exist on the same machine at the same
time, and each hasits own application domain.

An application domain enables application isolation by acting as a container for application state. An application
domain acts as a container and boundary for the types defined in the application and the class libraries it uses.
Typesloaded into one application domain are distinct from the same type loaded into another application
domain, and instances of objects are not directly shared between application domains. For instance, each
application domain has its own copy of static variables for these types, and a static constructor for atypeisrun
at most once per application domain. Implementations are free to provide implementation-specific policy or
mechanisms for the creation and destruction of application domains.

Application startup occurs when the execution environment calls a designated method, which isreferred to as
the application’s entry point. This entry point method is always named Main, and can have one of the following
signatures:

static void Main() {...}
static void Main(string[] args) {...}
static int Mmain() {...}
static int Main(string[] args) {...}

As shown, the entry point may optionally return an int value. Thisreturn value is used in application
termination (§83.2).

The entry point may optionally have one formal parameter, and this formal parameter may have any name. If
such a parameter is declared, it must obey the following constraints:

* Thevalue of this parameter must not be nu1T.

» Let args bethe name of the parameter. If the length of the array designated by args is greater than zero,
the array members args [0] through args[args.Length-1], inclusive, must refer to strings, called
application parameters, which are given implementation-defined values by the host environment prior to
application startup. The intent is to supply to the application information determined prior to application
startup from elsewhere in the hosted environment. If the host environment is not capable of supplying
strings with letters in both uppercase and lowercase, the implementation shall ensure that the strings are
received in lowercase. On systems supporting a command line, application parameters correspond to what
are generally known as command-line arguments.

Since C# supports method overloading, a class or struct may contain multiple definitions of some method,
provided each has a different signature. However, within a single program, no class or struct shall contain more
than one method called Main whose definition qualifiesit to be used as an application entry point. Other
overloaded versions of Main are permitted, provided they have more than one parameter, or their only
parameter is other than type string[].

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 59

C#LANGUAGE SPECIFICATION

An application can be made up of multiple classes or structs. It is possible for more than one of these classes or
structs to contain a method called Main whose definition qualifies it to be used as an application entry point. In
such cases, one of these Main methods must be chosen as the entry point so that application startup can occur.
This choice of an entry point is beyond the scope of this specification—no mechanism for specifying or
determining an entry point is provided.

In C#, every method must be defined as a member of a class or struct. Ordinarily, the declared accessibility
(83.5.1) of amethod is determined by the access modifiers (810.2.3) specified in its declaration, and similarly
the declared accessibility of atype is determined by the access modifiers specified in its declaration. In order for
agiven method of a given type to be callable, both the type and the member must be accessible. However, the
application entry point is a special case. Specifically, the execution environment can access the application's
entry point regardless of its declared accessibility and regardless of the declared accessibility of its enclosing
type declarations.

In all other respects, entry point methods behave like those that are not entry points.

3.2 Application termination
Application termination returns control to the execution environment.

If the return type of the application’s entry point method is int, the value returned serves as the application's
termination status code. The purpose of this code isto alow communication of success or failure to the
execution environment.

If the return type of the entry point method is vo1id, reaching the right brace (}) which terminates that method,
or executing a return statement that has no expression, results in atermination status code of 0.

Prior to an application’s termination, destructorsfor al of its objects that have not yet been garbage collected
are called, unless such cleanup has been suppressed. (The means of suppression are outside the scope of this
specification.)

3.3 Declarations

Declarations in a C# program define the constituent elements of the program. C# programs are organized using
namespaces (89), which can contain type declarations and nested namespace declarations. Type declarations
(89.5) are used to define classes (810), structs (811), interfaces (813), enums (814), and delegates (815). The
kinds of members permitted in atype declaration depend on the form of the type declaration. For instance, class
declarations can contain declarations for constants (810.3), fields (810.4), methods (810.5), properties (810.6),
events (810.7), indexers (810.8), operators (810.9), instance constructors (810.10), static constructors (§10.11),
destructors (810.12), and nested types.

A declaration defines aname in the declaration space to which the declaration belongs. Except for overloaded
members (83.6), it is acompile-time error to have two or more declarations that introduce members with the
same name in a declaration space. It is never possible for a declaration space to contain different kinds of
members with the same name. For example, a declaration space can never contain afield and a method by the
same name.

There are severa different types of declaration spaces, as described in the following.

» Within all source files of a program, namespace-member -declarations with no enclosing namespace-
declaration are members of a single combined declaration space called the global declaration space.

» Within all source files of a program, namespace-member -decl arations within namespace-decl ar ations that
have the same fully qualified namespace name are members of a single combined declaration space.

» Each class, struct, or interface declaration creates a new declaration space. Names are introduced into this
declaration space through class-member-declarations, struct-member-declarations, or interface-member-

60 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 317 Basic conceptsAtiributes

declarations. Except for overloaded instance constructor declarations and static constructor declarations, a
class or struct member declaration cannot introduce a member by the same name as the class or struct. A
class, struct, or interface permits the declaration of overloaded methods and indexers. Furthermore, aclass
or struct permits the declaration of overloaded instance constructors and overloaded operators. For example,
aclass, struct, or interface may contain multiple method declarations with the same name, provided these
method declarations differ in their signature (83.6). Note that base classes do not contribute to the
declaration space of aclass, and base interfaces do not contribute to the declaration space of an interface.
Thus, aderived class or interfaceis allowed to declare a member with the same name as an inherited
member. Such a member is said to hide the inherited member.

Each enumeration declaration creates a new declaration space. Names are introduced into this declaration
space through enum-member -declarations.

Each block or switch-block creates a different declaration space for local variables. Names are introduced
into this declaration space through local-variable-declarations. If ablock isthe body of an instance
constructor, method declaration, operator declaration, or a get or set accessor for an indexer declaration, the
parameters declared in such a declaration are members of the block’slocal variable declaration space. The
local variable declaration space of a block includes any nested blocks. Thus, within a nested block it is not
possible to declare alocal variable with the same name as alocal variablein an enclosing block.

Each block or switch-block creates a separate declaration space for labels. Names are introduced into this
declaration space through label ed-statements, and the names are referenced through goto-statements. The
label declaration space of a block includes any nested blocks. Thus, within a nested block it is not possible
to declare alabel with the same name as alabel in an enclosing block.

Thetextual order in which names are declared is generaly of no significance. In particular, textual order is not
significant for the declaration and use of namespaces, constants, methods, properties, events, indexers,

operators, instance constructors, destructors, types, static constructors, and types. Declaration order is significant
in the following ways:

Declaration order for field declarations and local variable declarations determines the order in which their
initializers (if any) are executed.

Local variables must be defined before they are used (83.7).

Declaration order for enum member declarations (814.3) is significant when constant-expression values are
omitted.

The declaration space of a namespace is “open ended”, and two hamespace declarations with the same fully
qualified name contribute to the same declaration space. For example

namespace Megacorp.Data
class Customer

}
}

namespace Megacorp.Data

class oOrder

}
}

The two namespace declarations above contribute to the same declaration space, in this case declaring two
classes with the fully qualified namesMegacorp.Data.Customer and Megacorp.Data.Order. Because the

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 61

C#LANGUAGE SPECIFICATION

two declarations contribute to the same declaration space, it would have caused a compile-time error if each
contained a declaration of a class with the same name.

The declaration space of ablock includes any nested blocks. Thus, in the following example, the F and G
methods result in a compile-time error because the name 1 is declared in the outer block and cannot be
redeclared in the inner block. However, the H and I methods are valid since the two i’ s are declared in separate
non-nested blocks.

class A
void FQO {
int i = 0;
if (true) {
int i = 1;
}
void GO {
if (true) {
int i = 0;
int i = 1;
void HO {
if (true) {
) int i = 0;
if (true) {
int i = 1;
}
void 1) {
for (int i =0; i < 10; i++)
HO S . .
for (int i =0; i < 10; i++)
HO;
}
3.4 Members

Namespaces and types have members. The members of an entity are generally available through the use of a
gualified name that starts with areference to the entity, followed by a“ .” token, followed by the name of the
member.

Members of atype are either declared in the type or inherited from the base class of the type. When atype
inherits from a base class, all members of the base class, except instance constructors, destructors and static
constructors, become members of the derived type. The declared accessibility of abase class member does not
control whether the member isinherited—inheritance extends to any member that isn’t an instance constructor,
static constructor, or destructor. However, an inherited member may not be accessible in a derived type, either
because of its declared accessibility (83.5.1) or becauseit is hidden by a declaration in the type itself (83.7.1.2).

3.4.1 Namespace members

Namespaces and types that have no enclosing namespace are members of the global namespace. This
corresponds directly to the names declared in the global declaration space.

Namespaces and types declared within a namespace are members of that namespace. This corresponds directly
to the names declared in the declaration space of the namespace.

62 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 317 Basic conceptsAtiributes

Namespaces have no access restrictions. It is not possible to declare private, protected, or internal namespaces,
and namespace names are always publicly accessible.

3.4.2 Struct members
The members of a struct are the members declared in the struct and the members inherited from class object.

The members of a simple type correspond directly to the members of the struct type aliased by the simple type:
* Themembersof sbyte arethe members of the System. SByte struct.

* Themembers of byte are the members of the System.Byte struct.

* Themembers of short arethe members of the System.Intl6 struct.

* Themembers of ushort are the members of the System.UIntl6 struct.

* Themembersof int are the members of the System.Int32 struct.

* Themembersof uint arethe members of the System.uInt32 struct.

* Themembers of Tong are the members of the System.Int64 struct.

* Themembers of ulong are the members of the System.UInt64 struct.

* Themembers of char are the members of the System. Char struct.

* Themembersof float arethe members of the System.SingTe struct.

* Themembers of double are the members of the System.Double struct.
 Themembers of decimal arethe members of the System.Decimal struct.

e Themembersof boo1 are the members of the System.Boolean struct.

3.4.3 Enumeration members

The members of an enumeration are the constants declared in the enumeration and the members inherited from
classobject.

3.4.4 Class members

The members of a class are the members declared in the class and the members inherited from the base class
(except for class object which has no base class). The members inherited from the base classinclude the
constants, fields, methods, properties, events, indexers, operators, and types of the base class, but not the
instance constructors, destructors and static constructors of the base class. Base class members are inherited
without regard to their accessibility.

A class declaration may contain declarations of constants, fields, methods, properties, events, indexers,
operators, instance constructors, destructors, static constructors and types.

The members of object and string correspond directly to the members of the class types they alias:
e Themembers of object arethe members of the System.0Object class.

e Themembersof string arethe members of the System.String class.

3.4.5 Interface members

The members of an interface are the members declared in the interface and in all base interfaces of the interface,
and the members inherited from class object.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 63

C#LANGUAGE SPECIFICATION

3.4.6 Array members
The members of an array are the members inherited from class System.Array.

3.4.7 Delegate members
The members of a delegate are the members inherited from class System.Delegate.

3.5 Member access

Declarations of members allow control over member access. The accessibility of a member is established by the
declared accessibility (83.5.1) of the member combined with the accessibility of the immediately containing
type, if any.

When access to a particular member is alowed, the member is said to be accessible. Conversely, when accessto
aparticular member is disallowed, the member is said to be inaccessible. Accessto a member is permitted when
the textual location in which the access takes place isincluded in the accessibility domain (83.5.2) of the
member.

3.5.1 Declared accessibility
The declared accessibility of amember can be one of the following:

* Public, which is selected by including a pub11ic modifier in the member declaration. The intuitive meaning
of publ1icis“accessnot limited”.

» Protected internal (meaning protected or internal), which is selected by including both aprotected and an
internal modifier in the member declaration. The intuitive meaning of protected internal is"“access
limited to this program or types derived from the containing class’.

* Protected, which is selected by including aprotected modifier in the member declaration. Theintuitive
meaning of protected is“access limited to the containing class or types derived from the containing
class’.

* Internal, whichis selected by including an internal modifier in the member declaration. The intuitive
meaning of internal is"“access limited to this program”.

» Private, which isselected by including aprivate modifier in the member declaration. The intuitive
meaning of private is“access limited to the containing type”.

Depending on the context in which a member declaration takes place, only certain types of declared accessibility
are permitted. Furthermore, when a member declaration does not include any access modifiers, the context in
which the declaration takes place determines the default declared accessibility.

* Namespaces implicitly have pub11 c declared accessibility. No access modifiers are alowed on namespace
declarations.

» Typesdeclared in compilation units or namespaces can have pub1ic or internal declared accessibility
and default to internal declared accessibility.

» Class members can have any of the five kinds of declared accessibility and default to private declared
accessibility. (Note that atype declared as a member of a class can have any of the five kinds of declared
accessibility, whereas a type declared as a member of a namespace can have only pub1ic or internal
declared accessihility.)

e Struct members can have public, internal, or private declared accessibility and default to private
declared accessibility because structs are implicitly sealed. Struct members cannot have protected or
protected internal declared accessibility. (Note that atype declared as a member of a struct can have

64 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 317 Basic conceptsAtiributes

public, internal, or private declared accessibility, whereas a type declared as a member of a
namespace can have only publ1ic or internal declared accessibility.)

* Interface membersimplicitly have pub1i c declared accessibility. No access modifiers are allowed on
interface member declarations.

» Enumeration membersimplicitly have pub11i c declared accessibility. No access modifiers are allowed on
enumeration member declarations.

3.5.2 Accessibility domains

The accessibility domain of amember consists of the (possibly digoint) sections of program text in which
access to the member is permitted. For purposes of defining the accessibility domain of a member, a member is
said to betop-level if it is not declared within atype, and amember is said to be nested if it is declared within
another type. Furthermore, the program text of a program is defined as all program text contained in all source
files of the program, and the program text of atypeis defined as all program text contained between the opening
and closing “{” and “}" tokensin the class-body, struct-body, interface-body, or enum-body of the type
(including, possibly, typesthat are nested within the type).

The accessibility domain of a predefined type (such asobject, int, or double) isunlimited.
The accessibility domain of atop-level type T declared in a program P is defined as follows:

» If the declared accessibility of T is pubTic, the accessibility domain of T is the program text of P and any
program that references p.

» |If the declared accessibility of T isinternal, the accessibility domain of T isthe program text of p.

From these definitions it follows that the accessibility domain of atop-level typeis always at |east the program
text of the program in which the typeis declared.

The accessibility domain of a nested member M declared in atype T within a program P is defined as follows
(noting that M may itself possibly be atype):

» |f the declared accessibility of M is pub1ic, the accessibility domain of M is the accessibility domain of T.

» |If the declared accessibility of Misprotected internal, let D be the union of the program text of P and
the program text of any type derived from T, which is declared outside P. The accessibility domain of M is
the intersection of the accessibility domain of T with D.

* |If the declared accessibility of Misprotected, let D be the union of the program text of T and the program
text of any type derived from T. The accessibility domain of M isthe intersection of the accessibility domain
of T with D.

» If the declared accessibility of Misinternal, the accessibility domain of M isthe intersection of the
accessibility domain of T with the program text of p.

» If the declared accessibility of Misprivate, the accessibility domain of M isthe program text of T.

From these definitions it follows that the accessibility domain of a nested member is aways at least the program
text of the type in which the member is declared. Furthermore, it follows that the accessibility domain of a
member is never more inclusive than the accessibility domain of the type in which the member is declared.

In intuitive terms, when atype or member M is accessed, the following steps are eval uated to ensure that the
accessis permitted:

* Fird, if misdeclared within atype (as opposed to a compilation unit or a namespace), a compile-time error
occursif that typeis not accessible.

e Then, if MispubTic, the accessis permitted.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 65

C#LANGUAGE SPECIFICATION

Otherwise, if Misprotected internal, the accessis permitted if it occurs within the program in whichm
isdeclared, or if it occurs within a class derived from the classin which M is declared and takes place
through the derived class type (83.5.3).

Otherwise, if Misprotected, the accessis permitted if it occurs within the classin which M is declared, or
if it occurs within a class derived from the classin which M is declared and takes place through the derived
classtype (83.5.3).

Otherwise, if Misinternal, the accessis permitted if it occurs within the program in which M is declared.
Otherwise, if Misprivate, the accessis permitted if it occurs within the type in which M is declared.

Otherwise, the type or member isinaccessible, and a compile-time error occurs.

In the example

public class A

public static int X;
internal static int Y;
private static int z;

internal class B

{
public static int X;
internal static int Y;
private static int z;

public class C
public static int X;

internal static int Y;
private static int Zz;

private class D
public static int X;

internal static int Y;
private static int Zz;

}

the classes and members have the following accessibility domains:

The accessibility domain of A and A. X is unlimited.

The accessibility domainof A.Y,B,B.X,B.Y,B.C,B.C.X,andB.C.Y isthe program text of the containing
program.

The accessibility domain of A. z isthe program text of A.

The accessibility domain of B.z and B. D isthe program text of B, including the program text of B. C and
B.D.

The accessibility domain of B. C. z isthe program text of B. C.

The accessibility domainof B.D.X, B.D.Y, and B.D.Z isthe program text of B.D.

Asthe exampleillustrates, the accessibility domain of a member is never larger than that of a containing type.
For example, even though all X members have public declared accessibility, al but A. X have accessibility
domains that are constrained by a containing type.

66

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 317 Basic conceptsAtiributes

Asdescribed in 83.4, al members of a base class, except for instance constructors, destructors and static
constructors, are inherited by derived types. This includes even private members of a base class. However, the
accessibility domain of a private member includes only the program text of the type in which the member is
declared. In the example

class A
int x;

static void F(B b) {
b.x = 1; // Ok

}
}
class B: A

static void F(B b) {

) b.x = 1; // Error, X not accessible
}

the B classinherits the private member x from the A class. Because the member is private, it isonly accessible
within the class-body of A. Thus, the accessto b . x succeedsin the A. F method, but failsin the B. F method.

3.5.3 Protected access for instance members

When aprotected instance member is accessed outside the program text of the classin which it is declared,
and whenaprotected internal instance member is accessed outside the program text of the programin
which it is declared, the access is required to take place through an instance of the derived class type in which
the access occurs. Let B be abase class that declares a protected instance member M, and let D be a class that
derives from B. Within the class-body of D, accessto M can take one of the following forms:

* Anunqudified type-name or primary-expression of the form m.
» A primary-expression of the form E .M, provided the type of E isD or aclass derived from D.
* A primary-expression of theformbase. M.

In addition to these forms of access, a derived class can access a protected instance constructor of a base classin
aconstructor-initializer (810.10.1).
In the example

public class A

protected int x;

static void F(A a, B b) {
a.x 1; // Ok
) b.x 1; // 0ok

}

pubTlic class B: A

static void F(A a, B b) {
a.x = 1; // Error, must access through instance of B
; b.x 1; // ok

}

within A, it is possible to access x through instances of both A and B, sincein either case the access takes place
through an instance of A or aclass derived from A. However, within B, it is not possible to access x through an
instance of A, since A does not derive from B.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 67

C#LANGUAGE SPECIFICATION

3.5.4 Accessibility constraints

Several congtructs in the C# language require atype to be at least as accessible as a member or another type. A
type T issaid to be at |east as accessible as a member or type M if the accessibility domain of T is a superset of
the accessibility domain of M. In other words, T is at least as accessible asM if T is accessiblein al contexts
whereM is accessible.

The following accessibility constraints exist:
» Thedirect base class of aclasstype must be at least as accessible as the classtype itself.
» Theexplicit base interfaces of an interface type must be at least as accessible as the interface type itself.

» Thereturn type and parameter types of a delegate type must be at |east as accessible as the delegate type
itself.

» Thetype of aconstant must be at least as accessible as the constant itself.

* Thetype of afield must be at least as accessible asthe field itself.

» Thereturn type and parameter types of a method must be at |east as accessible as the method itself.

* Thetype of aproperty must be at |east as accessible as the property itself.

» Thetype of an event must be at least as accessible as the event itself.

» Thetype and parameter types of an indexer must be at |east as accessible as the indexer itself.

* Thereturn type and parameter types of an operator must be at least as accessible as the operator itself.

» The parameter types of an instance constructor must be at least as accessible as the instance constructor
itself.

In the example

class A {...}

public class B: A {...}
the B class resultsin a compile-time error because A is not at least as accessible as B.
Likewise, in the example

class A {...}

public class B

AFQO {...}
internal A QO {...}
public A HO {...}

the H method in B results in a compile-time error because the return type A is not at least as accessible as the
method.

3.6 Signatures and overloading

Methods, instance constructors, indexers, and operators are characterized by their signatures:
» Thesignature of amethod consists of the name of the method and the type and kind (val ue, reference, or
output) of each of itsformal parameters, considered in the order |€eft to right. The signature of a method

specifically does not include the return type, nor does it include the params modifier that may be specified
for the right-most parameter.

68 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 317 Basic conceptsAtiributes

» Thesignature of an instance constructor consists of the type and kind (value, reference, or output) of each of
itsformal parameters, considered in the order left to right. The signature of an instance constructor
specifically does not include the params modifier that may be specified for the right-most parameter.

* Thesignature of an indexer consists of the type of each of itsformal parameters, considered in the order |eft
to right. The signature of an indexer specifically does not include the element type.

» Thesignature of an operator consists of the name of the operator and the type of each of itsformal
parameters, considered in the order left to right. The signature of an operator specifically does not include
the result type.

Signatures are the enabling mechanism for overloading of membersin classes, structs, and interfaces:

» Overloading of methods permits a class, struct, or interface to declare multiple methods with the same name,
provided their signatures are unique.

» Overloading of instance constructors permits a class or struct to declare multiple instance constructors,
provided their signatures are unique.

» Overloading of indexers permits a class, struct, or interface to declare multiple indexers, provided their
signatures are unique.

» Overloading of operators permits a class or struct to declare multiple operators with the same name,
provided their signatures are unique.

The following example shows a set of overloaded method declarations along with their signatures.
interface ITest

void FQ; // FO

void F(int x); // F(int)

void F(ref int x); // F(ref int)

void F(out int x); // F(out 1int)

void F(int x, int y); // F(int, int)

int F(string s); // F(string)

int F(int x); // F(int) error
void F(string[] a); // F(string[D)

void F(params string[] a); // F(string[]) error

}

Note that any ref and out parameter modifiers (810.5.1) are part of asignature. Thus, F(int), F(ref int),
and F(out int) areall unique signatures. Also, note that the return type and the params modifier are not part
of asignature, so it is not possible to overload solely based on return type or on the inclusion or exclusion of the
params modifier. Because of these restrictions, the declarations of the methods F(int) and F(params
string[]) inthe example above result in a compile-time error.

3.7 Scopes

The scope of aname isthe region of program text within which it is possible to refer to the entity declared by
the name without qualification of the name. Scopes can be nested, and an inner scope may redeclare the
meaning of a name from an outer scope. (This does not, however, remove the restriction imposed by 83.3 that
within a nested block it is not possible to declare alocal variable with the same name as aloca variablein an
enclosing block.) The name from the outer scope is then said to be hidden in the region of program text covered
by the inner scope, and access to the outer name is only possible by qualifying the name.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 69

C#LANGUAGE SPECIFICATION

The scope of a namespace member declared by a namespace-member-declaration (89.4) with no enclosing
namespace-declaration is the entire program text.

The scope of a namespace member declared by a namespace-member-declaration within a namespace-
declaration whose fully qualified name isN is the namespace-body of every hamespace-declaration whose
fully qualified nameisN or starts with N, followed by a period.

The scope of aname defined or imported by a using-directive (89.3) extends over the namespace-member -
declarations of the compilation-unit or namespace-body in which the using-directive occurs. A using-
directive may make zero or more hamespace or type hames available within a particular compilation-unit or
namespace-body, but does not contribute any new members to the underlying declaration space. In other
words, ausing-directive is not transitive but rather affects only the compilation-unit or namespace-body in
which it occurs.

The scope of amember declared by a class-member-declaration (810.2) is the class-body in which the
declaration occurs. In addition, the scope of a class member extends to the class-body of those derived
classesthat areincluded in the accessibility domain (83.5.2) of the member.

The scope of amember declared by a struct-member-declaration (811.2) is the struct-body in which the
declaration occurs.

The scope of amember declared by an enum-member-declaration (814.3) is the enum-body in which the
declaration occurs.

The scope of a parameter declared in a method-declaration (810.5) is the method-body of that method-
declaration.

The scope of a parameter declared in an indexer-declaration (810.8) is the accessor-declarations of that
indexer-declaration.

The scope of a parameter declared in an operator-declaration (810.9) is the block of that operator-
declaration.

The scope of aparameter declared in a constructor-declaration (810.10) is the constructor-initializer and
block of that constructor-declaration.

The scope of alabel declared in alabeled-statement (88.4) is the block in which the declaration occurs.

The scope of alocal variable declared in alocal-variable-declaration (88.5.1) isthe block in which the
declaration occurs. It is acompile-time error to refer to alocal variablein atextual position that precedes its
local-variable-declarator.

The scope of alocal variable declared in a switch-block of a switch statement (88.7.2) is the switch-block.

The scope of alocal variable declared in afor-initializer of a for statement (88.8.3) is the for-initializer, the
for-condition, the for-iterator, and the contained statement of the for statement.

The scope of alocal constant declared in alocal-constant-declaration (88.5.2) isthe block in which the
declaration occurs. It is acompile-time error to refer to alocal constant in atextual position that precedes its
constant-declarator.

Within the scope of a hamespace, class, struct, or enumeration member it is possible to refer to the member in a
textual position that precedes the declaration of the member. For example

70

class A
void FQO {
i=1;
}

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 317 Basic conceptsAtiributes

int i = 0;

Here, it isvalid for F to refer to 1 beforeit isdeclared.

Within the scope of alocal variable, it isacompile-time error to refer to the local variable in atextual position
that precedes the local-variable-declarator of the locd variable. For example

class A
int i = 0;

void FQ {
i=1; // Error, use precedes declaration
int 1i;
i=2;

b

void GO
int j

Il s

(G =1; // valid

void HO
int a

Il s

1, b = ++a; // valid

}

In the F method above, the first assignment to i specifically does not refer to the field declared in the outer
scope. Rather, it refersto thelocal variable and it resultsin a compile-time error because it textually precedes
the declaration of the variable. In the G method, the use of j in theinitializer for the declaration of j isvalid
because the use does not precede the local-variable-declarator. In the H method, a subsequent local-variable-
declarator refersto alocal variable declared in an earlier local-variable-declarator within the same local -
variable-declaration.

The scoping rules for local variables are designed to guarantee that the meaning of a name used in an expression
context is always the same within a block. If the scope of aloca variable was to extend only from its declaration
to the end of the block, then in the exampl e above, the first assignment would assign to the instance variable and
the second assignment would assign to the local variable, possibly leading to compile-time errorsif the
statements of the block were later to be rearranged.

The meaning of a name within a block may differ based on the context in which the nameis used. In the
example

class A {}

class Test

static void Main() {
string A = "hello, world";

string s = A; // expression context

Type t = typeof(A); // type context
Console.writeLine(s); // writes "hello, world"
console.writeLine(t); // writes "A"

}
}

the name A is used in an expression context to refer to the local variable A and in atype context to refer to the
classA.

3.7.1 Name hiding

The scope of an entity typically encompasses more program text than the declaration space of the entity. In
particular, the scope of an entity may include declarations that introduce new declaration spaces containing

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 71

C#LANGUAGE SPECIFICATION

entities of the same name. Such declarations cause the origina entity to become hidden. Conversely, an entity is
said to be visible when it is not hidden.

Name hiding occurs when scopes overlap through nesting and when scopes overlap through inheritance. The
characteristics of the two types of hiding are described in the following sections.

3.7.1.1 Hiding through nesting

Name hiding through nesting can occur as aresult of nesting namespaces or types within namespaces, as a result
of nesting types within classes or structs, and as aresult of parameter and local variable declarations.

In the example

class A
int i = 0;
void FQO {
int i = 1;
void GO {
i=1;
3
3

within the F method, the instance variable i ishidden by thelocal variable i, but within the G method, 1 till
refers to the instance variable.

When aname in an inner scope hides aname in an outer scope, it hides all overloaded occurrences of that name.
In the example

class oOuter
static void F(int i) {}

static void F(string s) {}
class Inner

void GO {
F(L; // Invokes outer.Inner.F
F("Hello"); // Error

static void F(long 1) {}

}
the call F(1) invokesthe F declared in Inner because all outer occurrences of F are hidden by the inner
declaration. For the same reason, the call F(""Hel10™) results in a compile-time error.

3.7.1.2 Hiding through inheritance

Name hiding through inheritance occurs when classes or structs redeclare names that were inherited from base
classes. Thistype of name hiding takes one of the following forms:

* A constant, field, property, event, or type introduced in a class or struct hides al base class members with
the same name.

* A method introduced in aclass or struct hides all non-method base class members with the same name, and
all base class methods with the same signature (method name and parameter count, modifiers, and types).

72 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 317 Basic conceptsAtiributes

* Anindexer introduced in aclass or struct hides al base class indexers with the same signature (parameter
count and types).

The rules governing operator declarations (810.9) make it impossible for a derived class to declare an operator
with the same signature as an operator in a base class. Thus, operators never hide one another.

Contrary to hiding a name from an outer scope, hiding an accessible name from an inherited scope causes a
warning to be reported. In the example

class Base

public void FO {}

class Derived: Base

public void FO {} // warning, hiding an inherited name

the declaration of F in Derived causes awarning to be reported. Hiding an inherited name is specifically not an
error, since that would preclude separate evolution of base classes. For example, the above situation might have
come about because a later version of Base introduced an F method that wasn't present in an earlier version of
the class. Had the above situation been an error, then any change made to a base classin a separately versioned
classlibrary could potentially cause derived classes to become invalid.

The warning caused by hiding an inherited name can be eliminated through use of the new modifier:
class Base

pubTlic void FQ {3}

class Derived: Base
new public void FQ {}

The new modifier indicates that the F in Derived is“new”, and that it isindeed intended to hide the inherited
member.

A declaration of a new member hides an inherited member only within the scope of the new member.
class Base

public static void FO {}

class Derived: Base

new private static void F() {} // Hides Base.F in Derived only

class MoreDerived: Derived

static void GO { FO; } // Invokes Base.F

In the example above, the declaration of F in Derived hidesthe F that wasinherited from Base, but since the
new F in Derived has private access, its scope does not extend to MoreDerived. Thus, thecall FQ) in
MoreDerived.Gisvaid and will invoke Base.F.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 73

C#LANGUAGE SPECIFICATION

3.8 Namespace and type names

Several contexts in a C# program require a namespace-name or atype-name to be specified. Either form of
name is written as one or more identifiers separated by “ .” tokens.

namespace-name;
namespace-or -type-name

type-name:
namespace-or -type-name

namespace-or -type-name:
identifier
namespace-or-type-name . identifier
A type-name is a namespace-or-type-name that refersto atype. Following resolution as described below, the
namespace-or -type-name of atype-name must refer to atype, or otherwise a compile-time error occurs.

A namespace-name is a namespace-or -type-name that refers to a namespace. Following resolution as described
below, the namespace-or-type-name of a namespace-name must refer to a namespace, or otherwise a compile-
time error occurs.

The meaning of a namespace-or-type-name is determined as follows:
» If the namespace-or-type-name consists of asingle identifier:

o If the namespace-or-type-name appears within the body of aclass or struct declaration, then starting
with that class or struct declaration and continuing with each enclosing class or struct declaration (if
any), if amember with the given name exists, is accessible, and denotes a type, then the namespace-or-
type-name refers to that member. Note that non-type members (constants, fields, methods, properties,
indexers, operators, instance constructors, destructors, and static constructors) are ignored when
determining the meaning of a namespace-or-type-name.

o0 Otherwise, starting with the namespace in which the namespace-or-type-name occurs (if any),
continuing with each enclosing namespace (if any), and ending with the global namespace, the
following steps are evaluated until an entity islocated:

» If the namespace contains a namespace member with the given name, then the namespace-or-type-
name refers to that member and, depending on the member, is classified as a namespace or atype.

» Otherwise, if the namespace has a corresponding namespace declaration enclosing the location
where the namespace-or -type-name occurs, then:

o If the namespace declaration contains a using-alias-directive that associates the given name
with an imported namespace or type, then the namespace-or-type-name refers to that namespace
or type.

0 Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain exactly one type with the given name, then the namespace-or-type-name
refersto that type.

0 Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain more than one type with the given name, then the namespace-or-type-name
is ambiguous and a compile-time error.

0 Otherwise, the namespace-or-type-name is undefined and a compile-time error occurs.

» Otherwise, the namespace-or-type-name is of the form N. I, where N is a namespace-or-type-name
consisting of all identifiers but the rightmost one, and I is the rightmost identifier. N isfirst resolved asa

74 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 317 Basic conceptsAtiributes

namespace-or -type-name. If the resolution of N is not successful, a compile-time error occurs. Otherwise,
N.I isresolved asfollows:

o If Nisanamespace and I isthe name of an accessible member of that namespace, then N. I refersto
that member and, depending on the member, is classified as a namespace or atype.

o If Nisaclassor struct type and I isthe name of an accessibletypein N, then N. I refersto that type.
0 Otherwise, N. I isaninvalid namespace-or-type-name, and a compile-time error occurs.

3.8.1 Fully qualified names

Every namespace and type has a fully qualified name which uniquely identifies the namespace or type amongst
all others. The fully qualified name of a namespace or type N is determined as follows:

* If Nisamember of the globa namespace, its fully qualified nameisN.

» Otherwisg, itsfully qualified nameiss.N, where s isthe fully qualified name of the namespace or typein
which N is declared.

In other words, the fully qualified name of N is the complete hierarchical path of identifiersthat lead to N,
starting from the global namespace. Because every member of a namespace or type must have a unique name, it
follows that the fully qualified name of a namespace or type is always unique.

The example below shows several namespace and type declarations along with their associated fully qualified
names.

class A {} // A
namespace X // X
{ class B // X.B
class C {} // X.B.C
nhamespace Y // X.Y
class D {} // X.Y.D
}
namespace X.Y // X.Y
class E {} // X.Y.E

3.9 Automatic memory management

C# employs automatic memory management, which frees devel opers from manually allocating and freeing the
memory occupied by objects. Automatic memory management policies are implemented by a garbage collector.
The memory management life cycle of an object is asfollows:

1. When the object is created, memory is allocated for it, the constructor is run, and the object is considered
live.

2. If the object, or any part of it, cannot be accessed by any possible continuation of execution, other than the
running of destructors, the object is considered no longer in use, and it becomes eligible for destruction.
Implementations may choose to analyze code to determine which references to an object may be used in the
future. For instance, if alocal variablethat isin scope isthe only existing reference to an object, but that
local variable is never referred to in any possible continuation of execution from the current execution point
in the procedure, an implementation may (but is not required to) treat the object as no longer in use.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 75

C#LANGUAGE SPECIFICATION

3. Oncetheobject isdigible for destruction, at some unspecified later time the destructor (810.12) (if any) for
the object is run. Unless overridden by explicit cals, the destructor for the object isrun once only.

4. Oncethe destructor for an object isrun, if that object, or any part of it, cannot be accessed by any possible
continuation of execution, including the running of destructors, the object is considered inaccessible and the
object becomes eligible for collection.

5. Finaly, at some time after the object becomes eligible for collection, the garbage collector frees the memory
associated with that object.

The garbage collector maintains information about object usage, and uses this information to make memory
management decisions, such as where in memory to locate a newly created object, when to rel ocate an object,
and when an object is no longer in use or inaccessible.

Like other languages that assume the existence of a garbage collector, C# is designed so that the garbage
collector may implement awide range of memory management policies. For instance, C# does not require that
destructors be run or that objects be collected as soon asthey are eligible, or that destructors be run in any
particular order, or on any particular thread.

The behavior of the garbage collector can be controlled, to some degree, via static methods on the class
System.GC. This class can be used to request a collection to occur, destructors to be run (or not run), and so
forth.

Since the garbage collector is alowed wide latitude in deciding when to collect objects and run destructors, a
conforming implementation may produce output that differs from that shown by the following code. The
program

class A
NA() { . . " . 1]
console.WriteLine("Destruct instance of A");
b
class B
object Ref;
public B(object o) {
Ref = o;
b
~BO { .) .
console.wWriteLine("Destruct instance of B");
3

class Test

static void Main() {
B b =new B(hew AQ));
b = null;
GC.ColTlect();
GC.waitForPendingFinalizers();

3

creates an instance of class A and an instance of class B. These objects become eligible for garbage collection
when the variable b is assigned the value nul11, since after thistime it isimpossible for any user-written code to
access them. The output could be either

Destruct instance of A
Destruct instance of B

76 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 317 Basic conceptsAtiributes

or

Destruct instance of B
Destruct instance of A

because the language imposes no constraints on the order in which objects are garbage collected.

In subtle cases, the distinction between “ eligible for destruction” and “eligible for collection” can be important.
For example,

class A

~AQ {

console.wWriteLine("Destruct instance of A");

pubTic void FQ {
console.writeLine("A.F");
Test.RefA = this;

}

class B

public A Ref;

~BO {
console.writeLine("Destruct instance of B");

Ref.FQ);
b

class Test

public static A RefA;
public static B RefB;

static void Main() {
RefB = new B();
RefA new AQ);
RefB.Ref = RefA;
RefB null;
RefA null;

// A and B now eligible for destruction
GC.Collect();
GC.waitForPendingFinalizers();

// B now eligible for collection, but A is not
if (RefA != null)
Console.wWriteLine("RefA is not null");

}
}
In the above program, if the garbage collector choosesto run the destructor of B before the destructor of A, then
the output of this program might be:
Destruct instance of A
Destruct instance of B

A.F
RefA is not null

Note that although the instance of A was not in use and A's destructor was run, it is still possible for methods of A
(inthis case, F) to be called from another destructor. Also, note that running of a destructor may cause an object
to become usable from the mainline program again. In this case, the running of B's destructor caused an instance
of A that was previoudy not in use to become accessible from the live reference RefA. After the call to

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 77

C#LANGUAGE SPECIFICATION

waitForPendingFinalizers, theinstance of B iseligible for collection, but the instance of A is not, because
of the reference RefA.

To avoid confusion and unexpected behavior, it is generaly a good idea for destructors to only perform cleanup
on data stored in their object's own fields, and not to perform any actions on referenced objects or static fields.

3.10 Execution order

Execution shall proceed such that the side effects of each executing thread are preserved at critical execution
points. A side effect is defined as aread or write of avolatile field, awriteto anon-volatile variable, awriteto
an external resource, and the throwing of an exception. The critical execution points at which the order of these
side effects must be preserved are references to volatile fields (810.4.3), Tock statements (88.12), and thread
creation and termination. An implementation is free to change the order of execution of a C# program, subject to
the following constraints:

» Datadependenceis preserved within athread of execution. That is, the value of each variable is computed
asif al statementsin the thread were executed in original program order.

 Initialization ordering rules are preserved (810.4.4 and §10.4.5).

» Theordering of side effectsis preserved with respect to volatile reads and writes (810.4.3). Additionally, an
implementation need not evaluate part of an expression if it can deduce that that expression’s value is not
used and that no needed side effects are produced (including any caused by calling a method or accessing a
volatile field). When program execution isinterrupted by an asynchronous event (such as an exception
thrown by another thread), it is not guaranteed that the observable side effects are visible in the original
program order.

78 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 417 TypesAttributes |

4. Types

Thetypes of the C# language are divided into two categories. value types and reference types.

type:
value-type
reference-type

A third category of types, pointers, isavailable only in unsafe code. Thisis discussed further in 8A.2.

Value types differ from reference types in that variables of the value types directly contain their data, whereas
variables of the reference types store references to their data, the latter being known as objects. With reference
types, it is possible for two variables to reference the same object, and thus possible for operations on one
variable to affect the object referenced by the other variable. With value types, the variables each have their own
copy of the data, and it is hot possible for operations on one to affect the other.

C# stype system is unified such that a value of any type can be treated as an object. Every type in C# directly
or indirectly derives from the object classtype, and object isthe ultimate base class of al types. Vaues of
reference types are treated as objects simply by viewing the values astype object. Vaues of value types are

treated as objects by performing boxing and unboxing operations (§84.3).

4.1 Value types

A value typeis either astruct type or an enumeration type. C# provides a set of predefined struct types called the
simple types. The simple types areidentified through reserved words.

value-type:
struct-type
enum-type

struct-type:
type-name
simple-type
simple-type:
numeric-type
bool
numeric-type:
integral-type
floating-point-type
decimal

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 79

C#LANGUAGE SPECIFICATION

integral-type:
sbyte
byte
short
ushort
int
uint
Tong
ulong
char

floating-point-type:
float
double

enum-type:
type-name

All value typesimplicitly inherit from class object. It is not possible for any type to derive from avalue type,
and value types are thus implicitly sealed (§10.1.1.2).

A variable of avaluetype always contains a value of that type. Unlike reference types, it is not possible for a
value of avaluetypeto benul1 or to reference an object of amore derived type.

Assignment to a variable of avalue type creates a copy of the value being assigned. This differs from
assignment to a variable of areference type, which copies the reference but not the object identified by the
reference.

4.1.1 Default constructors

All value typesimplicitly declare a public parameterless instance constructor called the default constructor. The
default constructor returns a zero-initialized instance known as the default value for the value type:

* For al simple-types, the default value is the value produced by a bit pattern of al zeros:

For sbyte, byte, short, ushort, int, uint, Tong, and ulong, the default value is 0.
For char, the default valueis '\x0000"'.

For f1oat, the default valueis 0. 0f.

For doubTe, the default valueis 0. 0d.

For decimal, the default valueis 0. Om.

For booT, the default valueis false.

o O O o o o

» For an enum-type E, the default value is 0.

» For astruct-type, the default valueis the value produced by setting all value type fields to their default value
and all reference typefieldsto nul1.

Like any other instance constructor, the default constructor of a value type isinvoked using the new operator.
(Note: for efficiency reasons, this requirement is not intended to actually have the implementation generate a
constructor cal.) In the example below, the variables i and j are both initialized to zero.

80 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 417 TypesAtiributes

class A
void FQO {
int i = 0;
int j = new int();
3

Because every value type implicitly has a public parameterless instance constructor, it is not possible for a struct
type to contain an explicit declaration of a parameterless constructor. A struct type is however permitted to
declare parameterized instance constructors (811.3.8). For example

struct Point

int x, y;

public Point(int x, int y) {
this.x = X;
this.y = vy;

b
Given the above declaration, the statements

new Point();
new Point(0, 0);

Point pl
Point p2

both create a Point with x and y initialized to zero.

4.1.2 Struct types

A struct type is avalue type that can declare constants, fields, methods, properties, indexers, operators, instance
constructors, static constructors, and nested types. Struct types are described in 811.

4.1.3 Simple types

C# provides a set of predefined struct types called the simple types. The simple types are identified through
reserved words, but these reserved words are smply aliases for predefined struct typesin the System
namespace, as described in the table below.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 81

C#LANGUAGE SPECIFICATION

Reserved word Aliased type
sbhyte System.SByte
byte System.Byte
short System.Intl6
ushort System.UIntl6
int System.Int32
uint System.UInt32
Tong System.Int64
ulong System.UInt64
char System.Char
float System.Single
double System.DoubTle
bool System.Boolean
decimal System.Decimal

Because a smple type aliases a struct type, every simple type has members. For example, int has the members
declared in System. Int32 and the membersinherited from System.0Object, and the following statements
are permitted:
int i = int.Maxvalue;
string s = i.ToStringQ);
string t = 123.ToString();

// System.Int32.Maxvalue constant
// System.Int32.ToString() instance method
// System.Int32.ToString() instance method

The simple types differ from other struct types in that they permit certain additional operations:

* Most simple types permit values to be created by writing literals (82.4.4). For example, 123 isalitera of
typeint and 'a' isaliteral of type char. C# makes no provision for literals of other struct types, and non-
default values of other struct types are ultimately always created through instance constructors of those
struct types.

* When the operands of an expression are all simple type constants, it is possible for the compiler to evaluate
the expression at compile-time. Such an expression is known as a constant-expression (87.15). Expressions
involving operators defined by other struct types are not considered constant expressions.

e Through const declarationsit is possible to declare constants of the simple types (810.3). It is not possible
to have constants of other struct types, but asimilar effect is provided by static readonly fields.

* Conversionsinvolving simple types can participate in evaluation of conversion operators defined by other
struct types, but a user-defined conversion operator can never participate in evaluation of another user-
defined operator (86.4.2).

4.1.4 Integral types

C# supports nine integral types: sbyte, byte, short, ushort, int, uint, Tong, ulong, and char. The
integral types have the following sizes and ranges of values:

* Theshyte type represents signed 8-bit integers with values between —128 and 127.
* Thebyte type represents unsigned 8-bit integers with values between 0 and 255.
» Theshort type represents signed 16-bit integers with values between —32768 and 32767.

82 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 417 TypesAtiributes

* Theushort type represents unsigned 16-bit integers with values between 0 and 65535.
» The1int type represents signed 32-bit integers with values between —2147483648 and 2147483647.
» Theuint type represents unsigned 32-bit integers with values between 0 and 4294967295.

* The Tong type represents signed 64-bit integers with val ues between —9223372036854775808 and
9223372036854775807.

* Theulong type represents unsigned 64-bit integers with values between 0 and 18446744073709551615.

» The char type represents unsigned 16-bit integers with val ues between 0 and 65535. The set of possible
values for the char type corresponds to the Unicode character set. Although char has the same
representation asushort, not all operations permitted on one type are permitted on the other.

The integral-type unary and binary operators always operate with signed 32-bit precision, unsigned 32-bit
precision, signed 64-bit precision, or unsigned 64-bit precision:

* For the unary + and ~ operators, the operand is converted to type T, where T isthefirst of int, uint, Tong,
and uTong that can fully represent all possible values of the operand. The operation is then performed using
the precision of type T, and the type of theresult isT.

» For the unary—operator, the operand is converted to type T, where T isthe first of int and Tong that can
fully represent all possible values of the operand. The operation is then performed using the precision of
type T, and the type of the result is T. The unary—operator cannot be applied to operands of type ulong.

 Forthebinary +, -, *, /,%, & A, |, ==, I=, >, <, >=, and <= operators, the operands are converted to type T,
where T isthefirst of int, uint, Tong, and ulong that can fully represent all possible values of both
operands. The operation is then performed using the precision of type T, and the type of theresult is T (or
boo1 for the relational operators). It is not permitted for one operand to be of type Tong and the other to be
of type ulong with the binary operators.

» For the binary << and >> operators, the left operand is converted to type T, where T isthe first of int,
uint, Tong, and ulong that can fully represent all possible values of the operand. The operation is then
performed using the precision of type T, and the type of the result isT.

The char typeisclassified asan integral type, but it differs from the other integral typesin two ways:

» Therearenoimplicit conversions from other typesto the char type. In particular, even though the sbyte,
byte, and ushort types have ranges of values that are fully representable using the char type, implicit
conversions from sbyte, byte, or ushort to char do not exist.

» Constants of the char type must be written as character-literals or asinteger-literalsin combination with a
cast to type char. For example, (char)10 isthe same as '\x000A".

The checked and unchecked operators and statements are used to control overflow checking for integral-type
arithmetic operations and conversions (87.5.12). In a checked context, an overflow produces a compile-time
error or causesa system.overflowException to bethrown. In an unchecked context, overflows are
ignored and any high-order bitsthat do not fit in the destination type are discarded.

4.1.5 Floating point types

C# supports two floating point types: float and double. The fToat and double types are represented using
the 32-bit single-precision and 64-bit double-precision |EEE 754 formats, which provide the following sets of
values:

» Positive zero and negative zero. In most situations, positive zero and negative zero behave identically asthe
simple value zero, but certain operations distinguish between the two (87.7.2).

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 83

C#LANGUAGE SPECIFICATION

» Positive infinity and negative infinity. Infinities are produced by such operations as dividing a non-zero
number by zero. For example, 1.0 / 0.0 yields positive infinity, and -1.0 / 0.0 yields negative infinity.

* TheNot-a-Number value, often abbreviated NaN. NaN’ s are produced by invalid floating-point operations,
such as dividing zero by zero.

» Thefinite set of non-zero values of the form s x m x 2° where sis1 or —1, and mand e are determined by
the particular floating-point type: For float, 0 < m<2* and —149 < e< 104, and for double, 0 < m< 2%
and —1075 < e<970. Denormalized floating-point numbers are considered valid non-zero values.

The float type can represent val ues ranging from approximately 1.5 x 10 * to 3.4 x 10*® with a precision of 7
digits.

The doub1e type can represent val ues ranging from approximately 5.0 x 10°** to 1.7 x 10°® with a precision of
15-16 digits.

If one of the operands of a binary operator is of afloating-point type, then the other operand must be of an
integral type or afloating-point type, and the operation is evaluated as follows:

» If oneof the operandsis of an integral type, then that operand is converted to the floating-point type of the
other operand.

* Then, if either of the operandsis of type doube, the other operand is converted to doubTe, the operation is
performed using at least doub1e range and precision, and the type of the result isdouble (or boo1 for the
relational operators).

» Otherwise, the operation is performed using at least f1oat range and precision, and the type of theresult is
float (or booT for the relational operators).

The floating-point operators, including the assignment operators, never produce exceptions. Instead, in
exceptional situations, floating-point operations produce zero, infinity, or NaN, as described below:

» If theresult of afloating-point operation istoo small for the destination format, the result of the operation
becomes positive zero or negative zero.

» If theresult of afloating-point operation istoo large for the destination format, the result of the operation
becomes positive infinity or negative infinity.

» If afloating-point operationisinvalid, the result of the operation becomes NaN.
» If oneor both operands of afloating-point operation is NaN, the result of the operation becomes NaN.

Floating-point operations may be performed with higher precision than the result type of the operation. For
example, some hardware architectures support an “extended” or “long double” floating-point type with greater
range and precision than the doubTe type, and implicitly perform all floating-point operations using this higher
precision type. Only at excessive cost in performance can such hardware architectures be made to perform
floating-point operations with less precision, and rather than require an implementation to forfeit both
performance and precision, C# alows a higher precision type to be used for all floating-point operations. Other
than delivering more precise results, this rarely has any measurable effects. However, in expressions of the form
x *y / z, where the multiplication produces a result that is outside the doube range, but the subsequent
division brings the temporary result back into the doub1e range, the fact that the expression is evaluated in a
higher range format may cause afinite result to be produced instead of an infinity.

4.1.6 The decimal type

The decimal typeisa128-bit datatype suitable for financial and monetary calculations. The decimal type
can represent values ranging from 1.0 x 10 to approximately 7.9 x 10% with 28-29 significant digits.

84 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 417 TypesAtiributes

Thefinite set of values of type decimal are of the form —1°x ¢ x 10°, wherethe sign sisO or 1, the

coefficient cisgiven by 0< ¢ < 2%, and the scale eis such that 0 < e< 28.The decimal type does not support
signed zeros, infinities, or NaN's.A decimal is represented as a 96-bit integer scaled by a power of ten. For
decimalswith an absolute value less than 1. 0m, the valueis exact to the 28" decimal place, but no further. For
decimalswith an absolute value greater than or equal to 1.0m, the value is exact to 28 or 29 digits. Contrary to
the fToat and double datatypes, decimal fractional numbers such as 0.1 can be represented exactly in the
decimal representation. In the f1oat and doube representations, such numbers are often infinite fractions,
making those representations more prone to round-off errors.

If one of the operands of a binary operator is of type decimal, then the other operand must be of an integral
type or of typedecimal. If anintegral type operand is present, it is converted to decimal before the operation
is performed.

Theresult of an operation on values of type decimal isthat which would result from calculating an exact result
and then rounding to fit the representation. Results are rounded to the nearest representable value, and, when a
result is equally close to two representabl e values, to the value that has an even number in the least significant
digit position (thisis known as “banker’s rounding”). That is, results are exact to 28 or 29 digits, but to no more
than 28 decimal places. A zero result dways has asign of 0 and ascale of 0.If adecimal arithmetic operation
produces avalue that istoo small for the decimal format after rounding, the result of the operation becomes
zero. If adecimal arithmetic operation produces aresult that istoo large for the decimal format, a
System.OverflowException isthrown.

The decimal type has greater precision but smaller range than the floating-point types. Thus, conversions from
the floating-point types to decimal might produce overflow exceptions, and conversions from decimal to the
floating-point types might cause loss of precision. For these reasons, no implicit conversions exist between the
floating-point types and decimal, and without explicit casts, it is not possible to mix floating-point and
decimal operandsin the same expression.

4.1.7 The bool type
ThebooT type represents boolean logica quantities. The possible values of type boo1 are true and false.

No standard conversions exist between booT and other types. In particular, the boo1 typeis distinct and
separate from the integral types, and aboo value cannot be used in place of an integral value, and vice versa.

In the C and C++ languages, a zero integral value or anull pointer can be converted to the boolean value false,
and anon-zero integral value or anon-null pointer can be converted to the boolean value true. In C#, such
conversions are accomplished by explicitly comparing an integral value to zero or explicitly comparing an
object referenceto nulT.

4.1.8 Enumeration types

An enumeration type is adistinct type with named constants. Every enumeration type has an underlying type,
which must be byte, sbyte, short, ushort, int, uint, Tong or uTong. Enumeration types are defined
through enumeration declarations (§14.1).

4.2 Reference types
A referencetypeisaclasstype, an interface type, an array type, or a delegate type.
reference-type:

class-type
interface-type

array-type
delegate-type

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 85

C#LANGUAGE SPECIFICATION

class-type:
type-name
object
string

interface-type:

type-name
array-type:

non-array-type rank-specifiers
non-array-type:

type
rank-specifiers:

rank-specifier

rank-specifiers rank-specifier
rank-specifier:

[dim-separatorsy,]
dim-separators:

dim-separators ,

delegate-type:
type-name

A reference type value is areference to an instance of the type, the latter known as an object. The special value
nulTl iscompatible with all reference types and indicates the absence of an instance.

4.2.1 Class types

A classtype defines a data structure that contains data members (constants and fields), function members
(methods, properties, events, indexers, operators, instance constructors, destructors and static constructors), and
nested types. Class types support inheritance, a mechanism whereby derived classes can extend and specialize
base classes. Instances of class types are created using obj ect-creation-expressions (87.5.10.1).

Class types are described in §10.

4.2.2 The object type

Theobject classtypeisthe ultimate base class of all other types. Every type in C# directly or indirectly
derivesfromthe object classtype.

Theobject keyword is simply an alias for the predefined System.0bject class.

4.2.3 The string type

The string typeisaseaed classtype that inherits directly from object. Instances of the string class
represent Unicode character strings.

Values of the string type can be written as string literals (82.4.4).
The string keyword is simply an alias for the predefined System. String class.

4.2.4 Interface types

Aninterface defines a contract. A class or struct that implements an interface must adhere to its contract. An
interface may inherit from multiple base interfaces, and a class or struct may implement multiple interfaces.

86 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 417 TypesAtiributes

Interface types are described in §13.

4.2.5 Array types

An array is adata structure that contains zero or more variables which are accessed through computed indices.
The variables contained in an array, also called the elements of the array, are all of the same type, and thistype
is called the element type of the array.

Array types are described in §12.

4.2.6 Delegate types

A delegate is adata structure that refers to one or more methods, and for instance methods, it also refersto their
corresponding object instances.

The closest equivalent of adelegatein C or C++ isafunction pointer, but whereas a function pointer can only
reference static functions, a delegate can reference both static and instance methods. In the latter case, the
delegate stores not only a reference to the method’ s entry point, but also a reference to the object on which to
invoke the method.

Delegate types are described in 815.

4.3 Boxing and unboxing

Boxing and unboxing isa central concept in C# stype system. It provides a bridge between value-types and
reference-types by permitting any value of a value-type to be converted to and from type object. Boxing and
unboxing enables a unified view of the type system wherein avalue of any type can ultimately be treated as an
object.

4.3.1 Boxing conversions

A boxing conversion permits any value-type to be implicitly converted to the type object or to any interface-
type implemented by the value-type. Boxing a value of a value-type consists of allocating an object instance and
copying the val ue-type value into that instance.

The actual process of boxing avalue of avalue-typeis best explained by imagining the existence of aboxing
classfor that type. For any value-type T, the boxing class behaves asif it were declared as follows:

sealed class T_Box

T value;
pubTlic T_Box(T t) {
value = t;

}

Boxing of avalue v of type T now consists of executing the expression new T_Box(v), and returning the
resulting instance as a value of type object. Thus, the statements

int i = 123;

object box = 1i;
conceptually correspond to

int i = 123;

object box = new int_Box(i);

Boxing classes like T_Box and int_Box above don't actually exist and the dynamic type of aboxed valueisn't
actually a classtype. Instead, a boxed value of type T has the dynamic type T, and a dynamic type check using
the is operator can simply reference type T. For example,

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 87

C#LANGUAGE SPECIFICATION

int i = 123;
object box = 1i;
if (box is int) {
console.write("Box contains an int");

will output the string “Box contains an int” on the console.

A boxing conversion implies making a copy of the value being boxed. Thisis different from a conversion of a
reference-type to type object, in which the value continues to reference the same instance and simply is
regarded as the |ess derived type object. For example, given the declaration

struct Point

public int x, y;

pubTlic Point(int x, int y) {
this.x X;
this.y = vy;

}

the following statements

Point p = new Point(10, 10);

object box = p;

p.x = 20;

console.write(((Point)box).x);
will output the value 10 on the consol e because the implicit boxing operation that occursin the assignment of p
to box causes the value of p to be copied. Had Point been declared aclass instead, the value 20 would be
output because p and box would reference the same instance.

4.3.2 Unboxing conversions

An unboxing conversion permits an explicit conversion from type object to any value-type or from any
interface-type to any value-type that implements the interface-type. An unboxing operation consists of first
checking that the object instance is a boxed value of the given value-type, and then copying the value out of the
instance.

Referring to the imaginary boxing class described in the previous section, an unboxing conversion of an object
box to avalue-type T consists of executing the expression ((T_Box)box) .value. Thus, the statements

object box = 123;
int i = (int)box;

conceptually correspond to

object box = new int_Box(123);
int i = ((int_Box)box).value;

For an unboxing conversion to a given value-type to succeed at run-time, the value of the source operand must
be areference to an object that was previoudy created by boxing avalue of that value-type. If the source
operandisnull, asystem.Nul1ReferenceException isthrown; if the source operand is areferenceto an
incompatible object, aSystem.InvalidCastException isthrown.

88 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 517 VariablesAttributes |

5. Variables

Variables represent storage locations. Every variable has atype that determines what values can be stored in the
variable. C# is atype-safe language, and the C# compiler guarantees that values stored in variables are always of
the appropriate type. The value of a variable can be changed through assignment or through use of the ++ and

-- operators.

A variable must be definitely assigned (85.3) before its value can be obtained.

As described in the following sections, variables are either initially assigned or initially unassigned. An initialy
assigned variable has awell-defined initial value and is dways considered definitely assigned. Aniinitially
unassigned variable has no initial value. For an initially unassigned variable to be considered definitely assigned
at acertain location, an assignment to the variable must occur in every possible execution path leading to that
location.

5.1 Variable categories

C# defines seven categories of variables: static variables, instance variables, array elements, value parameters,
reference parameters, output parameters, and local variables. The sections that follow describe each of these
categories.
In the example

class A

public static int x;
int y;
void F(int[] v, int a, ref int b, out int c) {
int i = 1;
C = a + b++;
b
3

x isastatic variable, y isan instance variable, v[0] isan array element, a is avalue parameter, b is areference
parameter, c isan output parameter, and i isalocal variable.

5.1.1 Static variables

A field declared with the static modifier is called a static variable. A static variable comes into existence
before execution of the static constructor (810.11) for its containing type, and ceases to exist when the
associated application domain ceases to exist.

Theinitia value of astatic variable is the default value (85.2) of the variabl€e stype.

For the purpose of definite assignment checking, a static variable is considered initially assigned.

5.1.2 Instance variables
A fidld declared without the static modifier is called an instance variable.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 89

C#LANGUAGE SPECIFICATION

5.1.2.1 Instance variables in classes

An instance variable of a class comes into existence when a new instance of that classis created, and ceases to
exist when there are no references to that instance and the instance’ s destructor (if any) has executed.

Theinitia value of an instance variable of aclassisthe default value (85.2) of the variable' stype.
For the purpose of definite assignment checking, an instance variable of aclassis considered initially assigned.

5.1.2.2 Instance variables in structs

An instance variable of astruct has exactly the same lifetime as the struct variable to which it belongs. In other
words, when avariable of a struct type comes into existence or ceasesto exist, so too do the instance variables
of the struct.

Theinitid assignment state of an instance variable of a struct is the same asthat of the containing struct
variable. In other words, when a struct variable is considered initially assigned, so too are itsinstance variables,
and when a struct variable is considered initialy unassigned, its instance variables are likewise unassigned.

5.1.3 Array elements

The elements of an array come into existence when an array instance is created, and cease to exist when there
are no references to that array instance.

Theinitia value of each of the elements of an array isthe default value (85.2) of the type of the array elements.

For the purpose of definite assignment checking, an array element is considered initially assigned.

5.1.4 Value parameters
A parameter declared without a ref or out modifier isavalue parameter.

A value parameter comes into existence upon invocation of the function member (87.4) to which the parameter
belongs, and isinitialized with the value of the argument given in the invocation. A value parameter ceasesto
exist upon return of the function member.

For the purpose of definite assignment checking, a value parameter is considered initially assigned.

5.1.5 Reference parameters
A parameter declared with a ref modifier isareference parameter.

A reference parameter does not create a new storage location. Instead, a reference parameter represents the same
storage location as the variable given as the argument in the function member invocation. Thus, the value of a
reference parameter is aways the same as the underlying variable.

The following definite assignment rules apply to reference parameters. Note the different rules for output
parameters described in 85.1.6.

* A variable must be definitely assigned (85.3) before it can be passed as a reference parameter in afunction
member invocation.

* Within afunction member, areference parameter is considered initially assigned.
Within an instance method or instance accessor of a struct type, the this keyword behaves exactly asa
reference parameter of the struct type (87.5.7).

5.1.6 Output parameters
A parameter declared with an out modifier is an output parameter.

90 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 517 VariablesAttributes

An output parameter does not create a new storage location. Instead, an output parameter represents the same
storage location as the variable given as the argument in the function member invocation. Thus, the value of an
output parameter is always the same as the underlying variable.

The following definite assignment rules apply to output parameters. Note the different rulesfor reference
parameters described in §5.1.5.

* A variable need not be definitely assigned before it can be passed as an output parameter in afunction
member invocation.

» Following the normal completion of afunction member invocation, each variable that was passed as an
output parameter is considered assigned in that execution path.

» Within afunction member, an output parameter is considered initially unassigned.

» Every output parameter of afunction member must be definitely assigned (85.3) before the function
member returns normally.

Within an instance constructor of astruct type, the th1is keyword behaves exactly as an output parameter of the
struct type (87.5.7).

5.1.7 Local variables

A local variableis declared by alocal-variable-declaration, which may occur in ablock, a for-statement, a
switch-statement, or a using-statement.

Thelifetime of alocal variable isthe portion of program execution during which storage is guaranteed to be
reserved for it. Thislifetime extends from entry into the block, for-statement, switch-statement, or using-
statement with which it is associated, until execution of that block, for-statement, switch-statement, or using-
statement ends in any way. (Entering an enclosed block or calling a method suspends, but does not end,
execution of the current block, for-statement, switch-statement, or using-statement.) If the parent block, for-
statement, switch-statement, or using-statement is entered recursively, a new instance of the local variableis
created each time, and its local-variable-initializer, if any, is evaluated each time.

The actuad lifetime of alocal variable isimplementation-dependent. For example, a compiler might statically
determine that alocal variablein ablock isonly used for asmall portion of that block. Using this analysis, the
compiler could generate code that results in the variabl€' s storage having a shorter lifetime than its containing
block.

A locd variable is not automatically initialized and thus has no default value. For the purpose of definite
assignment checking, alocal variable is considered initially unassigned. A local-variable-declaration may
include alocal-variable-initializer, in which case the variable is considered definitely assigned in its entire
scope, except within the expression provided in the local-variable-initializer.

Within the scope of alocal variable, it isacompile-time error to refer to the local variable in atextual position
that precedesitslocal-variable-declarator.

A locd variable is also declared by a foreach-statement and by a specific-catch-clause for a try-statement. For a
foreach-statement, the local variableis an iteration variable. For a specific-catch-clause, the loca variableisan
exception variable. A local variable declared by a foreach-statement or specific-catch-clauseis considered
definitely assigned in its entire scope.

5.2 Default values
The following categories of variables are automatically initiaized to their default values:

e Static variables.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 91

C#LANGUAGE SPECIFICATION

* Instance variables of classinstances.
* Array elements.
The default value of a variable depends on the type of the variable and is determined as follows:

* For avariable of avalue-type, the default value is the same as the value computed by the value-type's
default constructor (84.1.1).

* For avariable of areference-type, the default valueisnul1.

Initialization to default valuesis typically done by having the memory manager or garbage collector initialize
memory to all-bits-zero beforeit is allocated for use. For thisreason, it istypicaly convenient for an
implementation to use all-bits-zero to represent the null reference.

5.3 Definite assignment

At agiven location in the executable code of afunction member, avariable is said to be definitely assigned if
the compiler can prove, by static flow analysis, that the variable has been automatically initialized or has been
the target of at least one assignment. The rules of definite assignment are:

* Aninitially assigned variable (85.3.1) is always considered definitely assigned.

* Aninitially unassigned variable (85.3.2) is considered definitely assigned at agiven location if all possible
execution paths leading to that location contain at least one of the following:

0 A simpleassignment (§7.13.1) in which the variable is the left operand.

0 Aninvocation expression (87.5.5) or object creation expression (87.5.10.1) that passes the variable as an
output parameter.

o For alocal variable, alocal variable declaration (88.5) that includes a variable initializer.

The definite assignment states of instance variables of a struct-type variable are tracked individually as well as
collectively. In additiona to the rules above, the following rules apply to struct-type variables and their instance
variables:

* Aninstance variable is considered definitely assigned if its containing struct-type variable is considered
definitely assigned.

* A struct-type variable is considered definitely assigned if each of itsinstance variables is considered
definitely assigned.

Definite assignment is a requirement in the following contexts:

» A variable must be definitely assigned at each location where its value is obtained. This ensures that
undefined values never occur. The occurrence of avariable in an expression is considered to obtain the
value of the variable, except when

0 thevariableistheleft operand of a simple assignment,
0 thevariableis passed as an output parameter, or
o thevariableisastruct-type variable and occurs as the left operand of a member access.

* A variable must be definitely assigned at each location whereit is passed as areference parameter. This
ensures that the function member being invoked can consider the reference parameter initially assigned.

» All output parameters of afunction member must be definitely assigned at each location where the function
member returns (through a return statement or through execution reaching the end of the function member
body). This ensures that function members do no return undefined valuesin output parameters, thus

92 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 517 VariablesAttributes

enabling the compiler to consider afunction member invocation that takes a variable as an output parameter
equivalent to an assignment to the variable.

* Thethis variable of an instance constructor of a struct-type must be definitely assigned at each |ocation
where the constructor returns.

5.3.1 Initially assigned variables
The following categories of variables are classified asinitially assigned:

» Static variables.

* Instance variables of classinstances.

* Instance variables of initially assigned struct variables.
* Array elements.

* Vaue parameters.

* Reference parameters.

e Variablesdeclared in acatch clause or a foreach statement.

5.3.2 Initially unassigned variables
The following categories of variables are classified asinitially unassigned:

» Instance variables of initially unassigned struct variables.
» Qutput parameters, including the this variable of instance constructors for structs.

» Local variables, except those declared in a catch clause or a foreach statement.

5.3.3 Precise rules for determining definite assignment

In order to determine that each used variable is definitely assigned, the compiler must use a processthat is
equivalent to the one described in this section.

The compiler processes the body of each function member that has one or more initially unassigned variables.
For each initially unassigned variable v, the compiler determines a definite assignment state for v at each of the
following pointsin the function member:

» At the beginning of each statement

* Attheend point (88.1) of each statement

* On each arc which transfers control to another statement or to the end point of a statement
e At the beginning of each expression

» Attheend of each expression

The definite assignment state of v can be either:

» Definitely assigned. Thisindicates that on all possible control flows to this point, v has been assigned a
value.

* Not definitely assigned. For the state of a variable at the end of an expression of type booT, the state of a
variable theisn't definitely assigned may (but doesn’t necessarily) fall into one of the following sub-states:

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 93

C#LANGUAGE SPECIFICATION

o Definitely assigned after true expression. This state indicatesthat v is definitely assigned if the boolean
expression evaluated as true, but is not necessarily assigned if the boolean expression evaluated as fal se.

0 Definitely assigned after false expression. This state indicates that v is definitely assigned if the boolean
expression evaluated as false, but is not necessarily assigned if the boolean expression evaluated astrue.

The following rules govern how the state of avariable v is determined at each location.

5.3.3.1 General rules for stateme nts
» visnot definitely assigned at the beginning of afunction member body.

» visdefinitely assigned at the beginning of any unreachable statement.

* Thedefinite assignment state of v at the beginning of any other statement is determined by checking the
definite assignment state of v on all control flow transfers that target the beginning of that statement. If (and
only if) vis definitely assigned on al such control flow transfers, then v is definitely assigned at the
beginning of the statement. The set of possible control flow transfersis determined in the same way as for
checking statement reachability (88.1).

» Thedefinite assignment state of v at the end point of ablock, checked, unchecked, if, while, do, for,
foreach, Tock, using, or switch statement is determined by checking the definite assignment state of v
on al control flow transfers that target the end point of that statement. If v is definitely assigned on all such
control flow transfers, then v is definitely assigned at the end point of the statement. Otherwise; v is not
definitely assigned at the end point of the statement. The set of possible control flow transfersis determined
in the same way as for checking statement reachability (88.1).

5.3.3.2 Block statements, checked, and unchecked statements

The definite assignment state of v on the control transfer to the first statement of the statement list in the block
(or to the end point of the block, if the statement list is empty) is the same as the definite assignment statement
of v before the block, checked, or unchecked statement.

5.3.3.3 Expression statements

For an expression statement stmt that consists of the expression expr:

* v hasthe same definite assignment state at the beginning of expr as at the beginning of stmt.

* If vif definitely assigned at the end of expr, it is definitely assigned at the end point of stmt; otherwise; it is
not definitely assigned at the end point of stit.

5.3.3.4 Declaration statements

» If stmt isadeclaration statement without initializers, then v has the same definite assignment state at the end
point of stmt as at the beginning of stm.

» If stmt isadeclaration statement with initidizers, then the definite assignment state for v is determined as if
stmt were a statement list, with one assignment statement for each declaration with an initidizer (in the
order of declaration).

5.3.3.5 If statements
For an i f statement stmt of the form:;

if (expr) then-stmt else else-stnt
* v hasthe same definite assignment state at the beginning of expr as at the beginning of stmt.

94 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 517 VariablesAttributes

If visdefinitely assigned at the end of expr, then it is definitely assigned on the control flow transfer to
then-stmt and to either else-stmt or to the end-point of stmt if thereis no else clause.

If v has the state “ definitely assigned after true expression” at the end of expr, then it is definitely assigned
on the control flow transfer to then-stmt, and not definitely assigned on the control flow transfer to either
else-stmt or to the end-point of stmt if thereisno else clause.

If v has the state “ definitely assigned after false expression” at the end of expr, then it is definitely assigned
on the control flow transfer to else-stmt, and not definitely assigned on the control flow transfer to then-stnt.
It is definitely assigned at the end-point of stmt if and only if it is definitely assigned at the end-point of
then-stt.

Otherwise, v is considered not definitely assigned on the control flow transfer to either the then-stimt or else-
stmt, or to the end-point of stmt if there is no else clause.

5.3.3.6 Switch statements
In a switch statement stmt with a controlling expression expr:

The definite assignment state of v at the beginning of expr is the same as the state of v at the beginning of
stmt.

The definite assignment state of v on the control flow transfer to a reachable switch block statement listis
the same as the definite assignment state of v at the end of expr.

5.3.3.7 While statements
For awh1i1e statement stmt of the form:

while (expr) while-body
v has the same definite assignment state at the beginning of expr as at the beginning of stmt.

If visdefinitely assigned at the end of expr, then it is definitely assigned on the control flow transfer to
while-body and to the end point of sti.

If v has the state “ definitely assigned after true expression” at the end of expr, then it is definitely assigned
on the control flow transfer to while-body, but not definitely assigned at the end-point of sti.

If v has the state “ definitely assigned after false expression” at the end of expr, then it is definitely assigned
on the control flow transfer to the end point of stmt.

5.3.3.8 Do statements
For a do statement stmt of the form:;

do do-body while (expr);

v has the same definite assignment state on the control flow transfer from the beginning of stmt to do-body
as at the beginning of stmt.

v has the same definite assignment state at the beginning of expr as at the end point of do-body.
If visdefinitely assigned at the end of expr, then it is definitely assigned on the end point of stmt.

If v has the state “ definitely assigned after false expression” at the end of expr, then it is definitely assigned
on the control flow transfer to the end point of stmt.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 95

C#LANGUAGE SPECIFICATION

5.3.3.9 For statements
Definite assignment checking for a for statement of the form:

for (for-initializer; for-condition; for-iterator) embedded-statement

is done asif the statement were written:

{
for-initializer ;
while (for-condition) {
embedded-statement ;
for-iterator;
3
3

If the for-condition is omitted from the for statement, then evaluation of definite assignment proceeds asif for-
condition were replaced with true in the above expansion.

5.3.3.10 Break, continue, and goto statements

The definite assignment state of v on the control flow transfer caused by abreak, continue, or goto
statement is the same as the definite assignment state of v at the beginning of the statement.

5.3.3.11 Throw statements
For a statement stmt of the form
throw expr ;
The definite assignment state of v at the beginning of expr is the same as the definite assignment state of v at the
beginning of stnt.

5.3.3.12 Return statements
For a statement stmt of the form

return expr ;

» Thedefinite assignment state of v at the beginning of expr is the same as the definite assignment state of v at
the beginning of stmt.

» If visan output parameter, then it must be definitely assigned either:
o after expr
o0 or attheendof the finally block of atry-finally or try-catch-finally that enclosesthe
return statement.

5.3.3.13 Try-catch statements
For a statement stmt of the form:

try try-block
catch(..) catch-block-1

Eatch(...) catch-block-n

* Thedefinite assignment state of v at the beginning of try-block is the same as the definite assignment state
of v at the beginning of stmt.

96 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 517 VariablesAttributes

» Thedefinite assignment state of v at the beginning of catch-block-i (for any i) is the same as the definite
assignment state of v at the beginning of stmt.

* Thedefinite assignment state of v at the end-point of stmt is definitely assigned if (and only if) v is definitely
assigned at the end-point of try-block and every catch-block-i (for every i from 1 ton).

5.3.3.14 Try-finally statements
For a try statement stmt of the form:

try try-block finally finally-block

* Thedefinite assignment state of v at the beginning of try-block is the same as the definite assignment state
of v at the beginning of stmt.

» Thedefinite assignment state of v at the beginning of finally-block is the same as the definite assignment
state of v at the beginning of stt.

* Thedefinite assignment state of v at the end-point of stmt is definitely assigned if (and only if) either:
0 Vvisdefinitely assigned at the end-point of try-block
0 Vvisdefinitely assigned at the end-point of finally-block

If acontrol flow transfer (for example, a goto statement) is made that begins within try-block, and ends outside
of try-block, then visaso considered definitely assigned on that control flow transfer if v is definitely assigned
at the end-point of finally-block. (Thisis not an only if—if v is definitely assigned for another reason on this
control flow transfer, then it is still considered definitely assigned.)

5.3.3.15 Try-catch-finally statements
Definite assignment analysisfor a try-catch-finally statement of the form:

try try-block
catch(..) catch-block-1

Eatch(...) catch-block-n
finally finally-block

isdone asif the statement were a try-finally statement enclosing a try-catch statement:

try {
try try-block

catch(..) catch-block-1
Eatch(...) catch-block-n

finally finally-block

The following example demonstrates how the different blocks of a try statement (88.10) affect definite
assignment.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 97

C#LANGUAGE SPECIFICATION

class A

static void FO {
int i, j;
try {
goto LABEL:
// neither i nor j definitely assigned
1;
// i def1n1te1y assigned

catch {
// neither i nor j definitely assigned

3;
// i def1n1te1y assigned

finally {
// ne1ther i nor j definitely assigned

// j def1n1te1y assigned
// i and j definitely assigned

LABEL:
// j definitely assigned

}
}

5.3.3.16 Foreach statements
For a foreach statement stmt of the form:

foreach (type identifier in expr) embedded-statement

» Thedefinite assignment state of v at the beginning of expr isthe same as the state of v at the beginning of
stmt.

* Thedefinite assignment state of v on the control flow transfer to embedded-statement or to the end point of
stmt is the same as the state of v at the end of expr.

5.3.3.17 Using statements
For ausing statement stmt of the form:

using (resource-acquisition) embedded-statement

* Thedefinite assignment state of v at the beginning of resource-acquisition is the same as the state of v at the
beginning of stnt.

* Thedefinite assignment state of v on the control flow transfer to embedded-statement is the same as the state
of v at the end of resource-acquisition.

5.3.3.18 Lock statements
For a1ock statement stmt of the form:

Tock (expr) embedded-statement

» Thedefinite assignment state of v at the beginning of expr isthe same as the state of v at the beginning of
stmt.

98 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 517 VariablesAttributes

* Thedefinite assignment state of v on the control flow transfer to embedded-statement is the same as the state
of v at the end of expr.

5.3.3.19 General rules for simple e xpressions
Thefollowing rule applies to these kinds of expressions: literals (87.5.1), smple names (87.5.2), member access
expressions (87.5.4), non-indexed base access expressions (87.5.8), and typeof expressions (§7.5.11).

» Thedefinite assignment state of v at the end of such an expression is the same as the definite assignment
state of v at the beginning of the expression.

5.3.3.20 General rules for expressions with embedded expressions

The following rules apply to these kinds of expressions. parenthesized expressions (87.5.3), element access
expressions (87.5.6), base access expressions with indexing (87.5.8), increment and decrement

expressions(87.5.9, 87.6.5), cast expressions (87.6.6), unary +, -, ~, * expressions, binary +, -, *, /, %, <<, >>,
<, <=,>,>=,==, 1= 15, as, & |, A expressions (8§7.7, 87.8, §7.9, §7.10), compound assignment expressions

(87.13.2), checked and unchecked expressions (§7.5.12), array and delegate creation expressions (8§7.5.10).

Each of these expressions has one or more sub-expressions that are unconditionally evaluated in a fixed order.
For example, the binary % operator evaluates the left hand side of the operator, then the right hand side. An
indexing operation evaluates the indexed expression, and then evaluates each of the index expressions, in order
from left to right. For an expression expr, which has sub-expressions expr 1, expr, ..., expr,, evauated in that
order:

* Thedefinite assignment state of v at the beginning of expr; isthe same as the definite assignment state at the
beginning of expr.

* Thedefinite assignment state of v at the beginning of expr; (i greater than one) is the same as the definite
assignment state at the end of expr; ;.

* Thedefinite assignment state of v at the end of expr isthe same as the definite assignment state at the end of
expry.

5.3.3.21 Invocation expressions and object creation expressions
For an invocation expression expr of the form:

primary-expression (arg, argy, ..., argn)
or an object creation expression of the form:
new type (arg, arg, ..., arg,)

» For an invocation expression, the definite assignment state of v before primary-expression isthe same as the
state of v before expr.

» For an invocation expression, the definite assignment state of v before arg; isthe same as the state of v after
primary-expression.

» For an object creation expression, the definite assignment state of v before arg; is the same as the state of v
before expr.

» For each argument arg;, the definite assignment state of v after arg; is determined by the normal expression
rules, ignoring any ref or out modifiers.

* For each argument arg; for any i greater than one, the definite assignment state of v before arg; isthe same
asthe state of v after arg ;.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 99

C#LANGUAGE SPECIFICATION

» If thevariablevis passed as an out argument (i.e., an argument of the form “out V') in any of the
arguments, then the state of v after expr is definitely assigned. Otherwise; the state of v after expr isthe
same as the state of v after arg,.

5.3.3.22 Simple assignment expre ssions
For an expression expr of the form w = expr-rhs:

* Thedefinite assignment state of v before expr-rhsis the same as the definite assignment state of v before
expr.

* If wisthe same variable as v, then the definite assignment state of v after expr is definitely assigned.
Otherwise, the definite assignment state of v after expr is the same as the definite assignment state of v after
expr-rhs.

5.3.3.23 && expressions
For an expression expr of the form expr-first && expr-second:

* Thedefinite assignment state of v before expr-first is the same as the definite assignment state of v before
expr.

» Thedefinite assignment state of v before expr-second is definitely assigned if the state of v after expr-first is
either definitely assigned or “definitely assigned after true expression”. Otherwise, it is not definitely
assigned.

* Thedefinite assignment statement of v after expr is determined by:

o If thestate of v after expr-first is definitely assigned, then the state of v after expr is definitely assigned.

0 Otherwiseg, if the state of v after expr-second is definitely assigned, and the state of v after expr-first is
“definitely assigned after false expression”, then the state of v after expr is definitely assigned.

0 Otherwiseg, if the state of v after expr-second is definitely assigned or “ definitely assigned after true
expression”, then the state of v after expr is*“ definitely assigned after true expression”.

o0 Otherwise, if the state of v after expr-first is“ definitely assigned after fal se expression”, and the state of
v after expr-second is “ definitely assigned after false expression”, then the state of v after expr is
“definitely assigned after false expression”.

0 Otherwise, the state of v after expr is not definitely assigned.
In the example

class A

static void F(int x, int y) {
int 1i;
if (x>=08&% (G =y) >=0) {
// i definitely assigned

else {
// i not definitely assigned

// i not definitely assigned

}

the variable i is considered definitely assigned in one of the embedded statements of an 1 f statement but not in
the other. In the i f statement in method F, the variable 1 is definitely assigned in the first embedded statement
because execution of the expression (i = y) aways precedes execution of this embedded statement. In

100 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 517 VariablesAttributes

contrast, the variable 1 is not definitely assigned in the second embedded statement, since x >= 0 might have
tested false, resulting in the variable i ' s being unassigned.

5.3.3.24 || expressions

For an expression expr of the form expr-first | | expr-second:

» Thedefinite assignment state of v before expr-first is the same as the definite assignment state of v before
expr.

* Thedefinite assignment state of v before expr-second is definitely assigned if the state of v after expr-first is
either definitely assigned or “definitely assigned after false expression”. Otherwise, it is not definitely
assigned.

» Thedefinite assignment statement of v after expr is determined by:
o If the state of v after expr-first is definitely assigned, then the state of v after expr is definitely assigned.

o Otherwise, if the state of v after expr-second is definitely assigned, and the state of v after expr-firstis
“definitely assigned after true expression”, then the state of v after expr is definitely assigned.

o0 Otherwise, if the state of v after expr-second is definitely assigned or “ definitely assigned after false
expression”, then the state of v after expr is*“ definitely assigned after false expression”.

0 Otherwise, if the state of v after expr-first is “ definitely assigned after true expression”, and the state of v
after expr-second is “definitely assigned after true expression”, then the state of v after expr is
“definitely assigned after true expression”.

0 Otherwise, the state of v after expr is not definitely assigned.

In the example
class A

static void G(int x, int y) {
int i;
if (x>=0 1] (Ai=y)>=0) {
// i not definitely assigned

else {
// i definitely assigned

) // i not definitely assigned
h

the variable i is considered definitely assigned in one of the embedded statements of an 1 f statement but not in
the other. In the i f statement in method G, the variable i is definitely assigned in the second embedded
statement because execution of the expression (i = y) aways precedes execution of this embedded statement.
In contragt, the variable i is not definitely assigned in the first embedded statement, sincex >= 0 might have
tested false, resulting in the variable i ' s being unassigned.

5.3.3.25 | expressions
For an expression expr of theform ! expr-operand:

» Thedefinite assignment state of v before expr-operand is the same as the definite assignment state of v
before expr.

* Thedefinite assignment state of v after expr is determined by:

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 101

C#LANGUAGE SPECIFICATION

o If the state of v after expr-operand is definitely assigned, then the state of v after expr is definitely
assigned.

o |If the state of v after expr-operand is not definitely assigned, then the state of v after expr is not
definitely assigned.

o If the state of v after expr-operand is “definitely assigned after false expression”, then the state of v after
expr is“definitely assigned after true expression”.

o |If the state of v after expr-operand is “ definitely assigned after true expression”, then the state of v after
expr is “definitely assigned after false expression”.

5.3.3.26 ?: expressions
For an expression expr of the form expr-cond ? expr-true : expr-false:

» Thedefinite assignment state of v before expr-cond is the same as the state of v before expr.

» Thedefinite assignment state of v before expr-true is definitely assigned if and only if the state of v after
expr-cond is definitely assigned or “definitely assigned after true expression”.

» Thedefinite assignment state of v before expr-false is definitely assigned if and only if the state of v after
expr-cond is definitely assigned or “definitely assigned after false expression”.

5.4 Variable references

A variable-reference is an expression that is classified as a variable. A variable-reference denotes a storage
|ocation that can be accessed both to fetch the current value and to store a new value. In C and C++, avariable-
referenceis known as an lvalue.

variable-reference;
expression

5.5 Atomicity of variable references

Reads and writes of the following data types shall be atomic: boo1, char, byte, sbyte, short, ushort,
uint, int, float, and reference types. In addition, reads and writes of enum types with an underlying typein
the previous list shall also be atomic. Reads and writes of other types, including Tong, ulong, double, and
decimal, aswell as user-defined types, need not be atomic. Aside from the library functions designed for that
purpose, there is no guarantee of atomic read-modify-write, such asin the case of increment or decrement.

102 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 617 ConversionsAttributes |

6. Conversions

A conversion enables an expression of one type to be treated as another type. Conversions can be implicit or
explicit, and this determines whether an explicit cast is required. For instance, an the conversion from type int
to type Tong isimplicit, so expressions of type int can implicitly be treated as type Tong. The opposite
conversion, from type Tong to type int, isexplicit and so an explicit cast is required.

int a = 123;
Jong b = a; // implicit conversion from int to long
int ¢ = (int) b; // explicit conversion from long to int

Some conversions are defined by the language. Programs may also define their own conversions (86.4).

6.1 Implicit conversions
The following conversions are classified asimplicit conversions:

* Identity conversions

* Implicit numeric conversions

* Implicit enumeration conversions.

* Implicit reference conversions

* Boxing conversions

» Implicit constant expression conversions
e User-defined implicit conversions

Implicit conversions can occur in avariety of situations, including function member invocations (87.4.3), cast
expressions (87.6.6), and assignments (87.13).

The pre-defined implicit conversions always succeed and never cause exceptions to be thrown. Properly
designed user-defined implicit conversions should exhibit these characteristics as well.

6.1.1 Identity conversion

An identity conversion converts from any type to the same type. This conversion exists only such that an entity
that already has arequired type can be said to be convertible to that type.

6.1.2 Implicit numeric conversions
The implicit numeric conversions are:

 Fromsbyte to short, int, Tong, float, double, or decimal.

 Frombyte to short, ushort, int, uint, long, ulong, float, double, or decimal.
* Fromshorttoint, Tong, float, double, or decimal.

* Fromushorttoint, uint, long, ulong, float, double, or decimal.

e Fromintto long, float, double, or decimal.

e Fromuintto long, ulong, float, double, or decimal.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 103

C#LANGUAGE SPECIFICATION

e FromTlongto float, doubTle, or decimal.

e Fromulongto float, doubTle, or decimal.

e Fromchartoushort, int, uint, Tong, ulong, float, double, or decimal.
* From float todouble.

Conversionsfromint, uint, or Tong to float and from Tong to doubTe may cause aloss of precision, but
will never cause aloss of magnitude. The other implicit numeric conversions never lose any information.

There are no implicit conversions to the char type. Thisin particular means that values of the other integral
types do not automatically convert to the char type.

6.1.3 Implicit enumeration conversions
An implicit enumeration conversion permits the decimal-integer-literal 0 to be converted to any enum-type.

6.1.4 Implicit reference conversions
Theimplicit reference conversions are:

» From any reference-typeto object.

* Fromany class-type s to any class-type T, provided S isderived from T.

» Fromany class-type s to any interface-type T, provided S implements T.

* From any interface-type s to any interface-type T, provided S is derived from T.

* Froman array-type S with an element type Se to an array-type T with an e ement type Te, provided al of the
following are true:

o0 SandT differ only in element type. (In other words, s and T have the same number of dimensions.)
0 Both se and Te are reference-types.
o Animplicit reference conversion exists from Se to Te.

* Fromany array-typeto System.Array.

* From any delegate-typeto System.Delegate.

* Fromany array-type or delegate-typeto System.ICloneable.

* From the null type to any reference-type.

The implicit reference conversions are those conversions between reference-types that can be proven to aways
succeed, and therefore require no checks at run-time.

Reference conversions, implicit or explicit, never change the referential identity of the object being converted.
In other words, while areference conversion may change the type of the reference, it never changes the type or
value of the object being referred to.

6.1.5 Boxing conversions

A boxing conversion permits any value-type to be implicitly converted to the type object,
System.VvalueType or to any interface-type implemented by the value-type. Boxing a value of a value-type
consists of allocating an object instance and copying the val ue-type value into that instance.

Boxing conversions are described further in 84.3.1.

104 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 617 ConversionsAttributes

6.1.6 Implicit constant expression conversions
Animplicit constant expression conversion permits the following conversions:

* A constant-expression (87.15) of type int can be converted to type sbyte, byte, short, ushort, uint,
or ulong, provided the value of the constant-expression is within the range of the destination type.

» A constant-expression of type Tong can be converted to type ulong, provided the value of the constant-
expression is not negative.

6.1.7 User-defined implicit conversions

A user-defined implicit conversion consists of an optional standard implicit conversion, followed by execution
of a user-defined implicit conversion operator, followed by another optiona standard implicit conversion. The
exact rules for evaluating user-defined conversions are described in §6.4.3.

6.2 Explicit conversions
The following conversions are classified as explicit conversions:

» All implicit conversions.

* Explicit numeric conversions.

* Explicit enumeration conversions.

* Explicit reference conversions.

» Explicit interface conversions.

* Unboxing conversions.

* User-defined explicit conversions.

Explicit conversions can occur in cast expressions (87.6.6).

The set of explicit conversionsincludesall implicit conversions. This means that redundant cast expressions are
allowed.

The explicit conversions are conversions that cannot be proven to always succeed, conversions that are known
to possibly lose information, and conversions across domains of types sufficiently different to merit explicit
notation.

6.2.1 Explicit numeric conversions

The explicit numeric conversions are the conversions from a numeric-type to another numeric-type for which an
implicit numeric conversion (86.1.2) does not already exist:

e Fromsbytetobyte, ushort, uint, ulong, or char.

e Frombyte to shyte and char.

e Fromshort tosbyte, byte, ushort, uint, ulong, or char.

e Fromushort to sbyte, byte, short, or char.

e Frominttosbyte, byte, short, ushort, uint, ulong, or char.

e Fromuinttosbyte, byte, short, ushort, int, or char.

e FromTongto sbyte, byte, short, ushort, int, uint, ulong, or char.

e Fromulongtosbyte, byte, short, ushort, int, uint, Tong, or char.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 105

C#LANGUAGE SPECIFICATION

From char to sbyte, byte, or short.
From float to sbyte, byte, short, ushort, int, uint, Tong, ulong, char, or decimal.
From double to sbyte, byte, short, ushort, int, uint, Tong, ulong, char, float, or decimal.

Fromdecimal to shyte, byte, short, ushort, int, uint, Tong, ulong, char, float, or doubTe.

Because the explicit conversionsinclude all implicit and explicit numeric conversions, it is always possible to
convert from any numeric-type to any other numeric-type using a cast expression (87.6.6).

The explicit numeric conversions possibly lose information or possibly cause exceptions to be thrown. An
explicit numeric conversion is processed as follows:

106

For a conversion from an integral type to another integra type, the processing depends on the overflow
checking context (87.5.12) in which the conversion takes place:

0 Inachecked context, the conversion succeedsiif the value of the source operand is within the range of
the destination type, but throws an System.overflowException if the value of the source operand is
outside the range of the destination type.

0 Inanunchecked context, the conversion always succeeds, and proceeds as follows.

» |If the source typeislarger than the destination type, then the source value is truncated by discarding
its “extra’ most significant bits. Theresult isthen treated as a value of the destination type.

» If the source typeis smaller than the destination type, then the source value is either sign-extended
or zero-extended so that it is the same size as the destination type. Sign-extensionis used if the
source typeis signed; zero-extension is used if the source type is unsigned. The result is then treated
as avalue of the destination type.

» If the source typeis the same size as the destination type, then the source value is treated as a value
of the destination type.

For a conversion from decimal to an integral type, the source value is rounded towards zero to the nearest
integral value, and thisintegral value becomes the result of the conversion. If the resulting integral valueis
outside the range of the destination type, a System.overflowException isthrown.

For aconversion from float or doubTe to an integral type, the processing depends on the overflow
checking context (87.5.12) in which the conversion takes place:

0 Inachecked context, the conversion proceeds as follows:

» If thevalue of the source operand is within the range of the destination type, then it is rounded
towards zero to the nearest integral value of the destination type, and thisintegral valueisthe result
of the conversion.

e Otherwise, asystem.overflowException isthrown.
0 Inanunchecked context, the conversion always succeeds, and proceeds as follows.

» If thevalue of the source operand is within the range of the destination type, then it is rounded
towards zero to the nearest integral value of the destination type, and thisintegral valueisthe result
of the conversion.

» Otherwise, the result of the conversion is an unspecified value of the destination type.

For a conversion from double to float, the doubTe valueis rounded to the nearest f1oat value. If the
doubTe valueistoo small to represent asa float, the result becomes positive zero or negative zero. If the

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 617 ConversionsAttributes

double valueistoo large to represent as a float, the result becomes positive infinity or negative infinity.
If the doubTe valueis NaN, theresult is also NaN.

e For aconversion from float or double to decimal, the source valueis converted to decimal
representation and rounded to the nearest number after the 28" decimal placeif required (§4.1.6). If the
source value istoo small to represent asa decimal, the result becomes zero. If the source valueis NaN,
infinity, or too large to represent asadecimal, aSystem. OverflowException isthrown.

» For aconverson from decimal to float or double, thedecimal valueisrounded to the nearest double
or float value. While this conversion may lose precision, it never causes an exception to be thrown.

6.2.2 Explicit enumeration conversions
The explicit enumeration conversions are:

* Fromsbyte, byte, short, ushort, int, uint, Tong, ulong, char, float, double, or decimal to any
enum-type.

* Fromany enumtypeto sbyte, byte, short, ushort, int, uint, Tong, ulong, char, float, double,
or decimal.

« From any enum-type to any other enum-type.

An explicit enumeration conversion between two types is processed by treating any participating enum-type as
the underlying type of that enum-type, and then performing an implicit or explicit numeric conversion between
the resulting types. For example, given an enum-type E with and underlying type of int, aconversion from E to
byte is processed as an explicit numeric conversion (86.2.1) from int to byte, and a conversion from byte to
E is processed as an implicit numeric conversion (86.1.2) from byte to int.

6.2.3 Explicit reference conversions
The explicit reference conversions are:;

* Fromobject to any reference-type.
* Fromany class-type s to any class-type T, provided s isabase class of T.

* Fromany class-type s to any interface-type T, provided s is not sealed and provided s does not implement
T.

* From any interface-type s to any class-type T, provided T is not sealed or provided T implements s.
* From any interface-type S to any interface-type T, provided S is not derived from T.

* From an array-type s with an element type Se to an array-type T with an e ement type Te, provided al of the
following are true:

0 SandT differ only in element type. In other words, s and T have the same number of dimensions.
0 Both se and Te are reference-types.
0 Anexplicit reference conversion exists from Se to Te.

* Fromsystem.Array and theinterfaces it implementsto any array-type.

* Fromsystem.Delegate and the interfacesit implements to any delegate-type.

The explicit reference conversions are those conversions between reference-types that require run-time checks
to ensure they are correct.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 107

C#LANGUAGE SPECIFICATION

For an explicit reference conversion to succeed at run-time, the value of the source operand must be nu11, or
the actual type of the object referenced by the source operand must be a type that can be converted to the
destination type by an implicit reference conversion (86.1.4). If an explicit reference conversion fails, a
System.InvalidCastException isthrown.

Reference conversions, implicit or explicit, never change the referential identity of the object being converted.
In other words, while areference conversion may change the type of avalue, it never changes the value itself.

6.2.4 Unboxing conversions

An unboxing conversion permits an explicit conversion from type object or System.valueType to any
value-type or from any interface-type to any value-type that implements the interface-type. An unboxing
operation consists of first checking that the object instance is a boxed value of the given value-type, and then
copying the value out of the instance.

Unboxing conversions are described further in §4.3.2.

6.2.5 User-defined explicit conversions

A user-defined explicit conversion consists of an optional standard explicit conversion, followed by execution of
a user-defined implicit or explicit conversion operator, followed by another optional standard explicit
conversion. The exact rules for evaluating user-defined conversions are described in §6.4.4.

6.3 Standard conversions
The standard conversions are those pre-defined conversions that can occur as part of a user-defined conversion.

6.3.1 Standard implicit conversions
Thefollowing implicit conversions are classified as standard implicit conversions:

e ldentity conversions (86.1.1)

e Implicit numeric conversions (86.1.2)

* Implicit reference conversions (86.1.4)

e Boxing conversions (86.1.5)

« Implicit constant expression conversions (86.1.6)

The standard implicit conversions specifically exclude user-defined implicit conversions.

6.3.2 Standard explicit conversions

The standard explicit conversions are all standard implicit conversions plus the subset of the explicit
conversions for which an opposite standard implicit conversion exists. In other words, if a standard implicit
conversion exists from atype A to atype B, then a standard explicit conversion exists from type A to type B and
from type B to type A.

6.4 User-defined conversions

C# dlows the pre-defined implicit and explicit conversions to be augmented by user-defined conversions. User-
defined conversions are introduced by declaring conversion operators (810.9.3) in class and struct types.

108 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 617 ConversionsAttributes

6.4.1 Permitted user-defined conversions

C# permits only certain user-defined conversions to be declared. In particular, it is not possible to redefine an
already existing implicit or explicit conversion. A class or struct is permitted to declare a conversion from a
source type s to atarget type T only if all of the following are true:

* SandT aredifferent types.

» Either s or T isthe class or struct type in which the operator declaration takes place.
* Neither s nor Tisobject or an interface-type.

e Tisnotabaseclassof S, and s isnot abase class of T.

Therestrictions that apply to user-defined conversions are discussed further in §10.9.3.

6.4.2 Evaluation of user-defined conversions

A user-defined conversion converts avalue from its type, called the source type, to another type, called the
target type. Evaluation of a user-defined conversion centers on finding the most specific user-defined
conversion operator for the particular source and target types. This determination is broken into severa steps:

» Finding the set of classes and structs from which user-defined conversion operators will be considered. This
set consists of the source type and its base classes and the target type and its base classes (with the implicit
assumptions that only classes and structs can declare user-defined operators, and that non-class types have
no base classes).

» Fromthat set of types, determining which user-defined conversion operators are applicable. For a
conversion operator to be applicable, it must be possible to perform a standard conversion (86.3) from the
source type to the operand type of the operator, and it must be possible to perform a standard conversion
from the result type of the operator to the target type.

» Fromthe set of applicable user-defined operators, determining which operator is unambiguously the most
specific. In general terms, the most specific operator is the operator whose operand typeis “closest” to the
source type and whose result type is“ closest” to the target type. The exact rules for establishing the most
specific user-defined conversion operator are defined in the following sections.

Once amost specific user-defined conversion operator has been identified, the actual execution of the user-
defined conversion involves up to three steps.

» Fird, if required, performing a standard conversion from the source type to the operand type of the user-
defined conversion operator.

* Next, invoking the user-defined conversion operator to perform the conversion.

* Findly, if required, performing a standard conversion from the result type of the user-defined conversion
operator to the target type.

Evaluation of a user-defined conversion never involves more than one user-defined conversion operator. In
other words, a conversion fromtype s to type T will never first execute a user-defined conversion from s to X
and then execute a user-defined conversion from X to T.

Exact definitions of evaluation of user-defined implicit or explicit conversions are given in the following
sections. The definitions make use of the following terms:

e If astandard implicit conversion (86.3.1) exists from atype A to atype B, and if neither A nor B are
interface-types, then A is said to be encompassed by B, and B is said to encompass A.

* Themost encompassing type in a set of typesis the one type that encompasses al other typesin the set. If
no single type encompasses all other types, then the set has no most encompassing type. In more intuitive

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 109

C#LANGUAGE SPECIFICATION

terms, the most encompassing type isthe “largest” type in the set—the one type to which each of the other
types can be implicitly converted.

* Themost encompassed typein a set of typesisthe one type that is encompassed by all other typesin the set.
If no single type is encompassed by all other types, then the set has no most encompassed type. In more
intuitive terms, the most encompassed type isthe “smallest” typein the set—the one type that can be
implicitly converted to each of the other types.

6.4.3 User-defined implicit conversions
A user-defined implicit conversion from type S to type T is processed as follows:
» Find the set of types, D, from which user-defined conversion operators will be considered. This set consists

of s (if sisaclassor struct), the base classes of s (if s isaclass), T (if Tisaclass or struct), and the base
classesof T (if Tisaclass).

* Find the set of applicable user-defined conversion operators, U. This set consists of the user-defined implicit
conversion operators declared by the classes or structs in D that convert from atype encompassing S to a
type encompassed by T. If U is empty, the conversion is undefined and a compile-time error occurs.

» Find the most specific source type, Sx, of the operatorsin u:
o If any of the operatorsin u convert from s, then sx iss.

0 Otherwise, Sx isthe most encompassed type in the combined set of source types of the operatorsin u. If
no most encompassed type can be found, then the conversion is ambiguous and a compile-time error
ocCurs.

» Find the most specific target type, Tx, of the operatorsin u:
o If any of the operatorsin U convertto T, then TxiST.

0 Otherwise, Tx isthe most encompassing type in the combined set of target types of the operatorsin u. If
no most encompassing type can be found, then the conversion is ambiguous and a compile-time error
OCCUrsS.

* |If U contains exactly one user-defined conversion operator that converts from Sx to Tx, then thisis the most
specific conversion operator. If no such operator exists, or if more than one such operator exists, then the
conversion is ambiguous and a compile-time error occurs. Otherwise, the user-defined conversion is

applied:
0 If sisnot Sy, then astandard implicit conversion from s to Sx is performed.
0 Themost specific user-defined conversion operator isinvoked to convert from Sy to Tx.

o If Txisnot T, then astandard implicit conversion from Tx to T is performed.

6.4.4 User-defined explicit conversions
A user-defined explicit conversion from type S to type T is processed as follows:

» Find the set of types, D, from which user-defined conversion operators will be considered. This set consists
of s (if sisaclassor struct), the base classes of s (if s isaclass), T (if Tisaclass or struct), and the base
classesof T (if T isaclass).

* Find the set of applicable user-defined conversion operators, U. This set consists of the user-defined implicit
or explicit conversion operators declared by the classes or structsin D that convert from atype
encompassing or encompassed by s to atype encompassing or encompassed by T. If U is empty, the
conversion is undefined and a compile-time error occurs.

110 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 617 ConversionsAttributes

» Find the most specific source type, Sx, of the operatorsin u:
o If any of the operatorsin u convert from s, then sy iss.

o0 Otherwise, if any of the operatorsin U convert from types that encompass s, then Sy isthe most
encompassed type in the combined set of source types of those operators. If no most encompassed type
can be found, then the conversion is ambiguous and a compile-time error occurs.

0 Otherwise, sx isthe most encompassing type in the combined set of source types of the operatorsin u. If
no most encompassing type can be found, then the conversion is ambiguous and a compile-time error
OCCurs.

» Find the most specific target type, Tx, of the operatorsin u:
o If any of the operatorsin U convert to T, then Ty iST.

o Otherwise, if any of the operatorsin U convert to types that are encompassed by T, then Ty isthe most
encompassing type in the combined set of source types of those operators. If no most encompassing
type can be found, then the conversion is ambiguous and a compile-time error occurs.

0 Otherwise, Tx isthe most encompassed type in the combined set of target types of the operatorsin u. If
no most encompassed type can be found, then the conversion is ambiguous and a compile-time error
OCCuUrs.

» If U contains exactly one user-defined conversion operator that converts from sx to Tx, then thisis the most
specific conversion operator. If no such operator exists, or if more than one such operator exists, then the
conversion is ambiguous and a compile-time error occurs. Otherwise, the user-defined conversion is

applied:
o If sisnot sk, then astandard explicit conversion from s to Sx is performed.
0 Themost specific user-defined conversion operator isinvoked to convert from Sy to Tx.

0 If Txisnot T, then a standard explicit conversion from Tx to T is performed.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 111

Chapter 747 ExpressionsAttributes |

7. Expressions

An expression is a sequence of operators and operands that specifies computation of avalue, or that designates a
variable or constant. This chapter defines the syntax, order of evaluation of operands and operators, and
meaning of expressions.

7.1 Expression classifications
An expression is classified as one of the following:

* A value. Every value has an associated type.
* A variable. Every variable has an associated type, namely the declared type of the variable.

* A namespace. An expression with this classification can only appear as the left hand side of a member-
access (87.5.4). In any other context, an expression classified as a namespace causes a compile-time error.

* A type. An expression with this classification can only appear as the left hand side of a member-access
(87.5.4), or asan operand for the as operator (§7.9.10), the i s operator (8§7.9.9), or the typeof operator
(87.5.11). In any other context, an expression classified as atype causes a compile-time error.

* A method group, which is aset of overloaded methods resulting from a member lookup (87.3). A method
group may have an associated instance expression. When an instance method is invoked, the result of
evaluating the instance expression becomes the instance represented by this (87.5.7). A method group is
only permitted in an invocation-expression (87.5.5) or a delegate-creation-expression (87.5.10.3). In any
other context, an expression classified as a method group causes a compile-time error.

» A property access. Every property access has an associated type, namely the type of the property.
Furthermore, a property access may have an associated instance expression. When an accessor (the get or
set block) of an instance property accessisinvoked, the result of evaluating the instance expression
becomes the instance represented by this (87.5.7).

* Anevent access. Every event access has an associated type, namely the type of the event. Furthermore, an
event access may have an associated instance expression. An event access may appear as the left hand
operand of the += and -= operators (87.13.3). In any other context, an expression classified as an event
access causes a compile-time error.

* Anindexer access. Every indexer access has an associated type, namely the e ement type of the indexer.
Furthermore, an indexer access has an associated instance expression and an associated argument list. When
an accessor (the get or set block) of anindexer accessisinvoked, the result of evaluating the instance
expression becomes the instance represented by this (87.5.7), and the result of evaluating the argument list
becomes the parameter list of the invocation.

* Nothing. This occurs when the expression is an invocation of a method with areturn type of void. An
expression classified as nothing is only valid in the context of a statement-expression (88.6).

Thefina result of an expression is never a namespace, type, method group, or event access. Rather, as noted
above, these categories of expressions are intermediate constructs that are only permitted in certain contexts.

A property access or indexer accessis aways reclassified as avalue by performing an invocation of the get-
accessor or the set-accessor. The particular accessor is determined by the context of the property or indexer

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 113

C#LANGUAGE SPECIFICATION

access: If the accessisthe target of an assignment, the set-accessor is invoked to assign anew value (87.13.1).
Otherwise, the get-accessor isinvoked to obtain the current value (87.1.1).

7.1.1 Values of expressions

Most of the constructs that involve an expression ultimately require the expression to denote a value. In such
cases, if the actual expression denotes a namespace, atype, a method group, or nothing, a compile-time error
occurs. However, if the expression denotes a property access, an indexer access, or a variable, the value of the
property, indexer, or variableisimplicitly substituted:

» Thevaue of avariableis smply the value currently stored in the storage location identified by the variable.
A variable must be considered definitely assigned (85.3) before its value can be obtained, or otherwise a
compile-time error occurs.

* Thevalue of aproperty access expression is obtained by invoking the get-accessor of the property. If the
property has no get-accessor, a compile-time error occurs. Otherwise, a function member invocation
(87.4.3) is performed, and the result of the invocation becomes the value of the property access expression.

* Thevalue of an indexer access expression is obtained by invoking the get-accessor of the indexer. If the
indexer has no get-accessor, a compile-time error occurs. Otherwise, a function member invocation (87.4.3)
is performed with the argument list associated with the indexer access expression, and the result of the
invocation becomes the value of the indexer access expression.

7.2 Operators

Expressions are constructed from operands and operators. The operators of an expression indicate which
operations to apply to the operands. Examples of operatorsinclude +, -, *, /, and new. Examples of operands
include literals, fields, local variables, and expressions.

There are three types of operators:

* Unary operators. The unary operators take one operand and use either prefix notation (such as -x) or postfix
notation (such as x++).

» Binary operators. The binary operators take two operands and dl use infix notation (such as x + y).

» Ternary operator. Only oneternary operator, ? :, exists. The ternary operator takes three operands and uses
infix notation (c? x: y).

The order of evaluation of operatorsin an expression is determined by the precedence and associativity of the
operators (87.2.1).

Operands in an expression are evaluated from left to right. For example, in F(i) + G(i++) * H(i), method
F iscaled using the old value of 1, then method G is called with the old value of 1, and, finally, method H is
called with the new value of 1. Thisis separate from and unrelated to operator precedence.

Certain operators can be overloaded. Operator overloading permits user-defined operator implementations to be
specified for operations where one or both of the operands are of a user-defined class or struct type (87.2.2).

7.2.1 Operator precedence and associativity

When an expression contains multiple operators, the precedence of the operators control the order in which the
individual operators are evaluated. For example, the expression x + y * z isevaluated as x + (y * z) because
the * operator has higher precedence than the + operator. The precedence of an operator is established by the
definition of its associated grammar production. For example, an additive-expression consists of a sequence of
multi pli cative-expressions separated by + or - operators, thus giving the + and - operators lower precedence
than the *, /, and % operators.

114 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

The following table summarizes all operatorsin order of precedence from highest to lowest:

Section | Category Operators

75 Primary x.y f(x) a[x] x++ x-- new
typeof checked unchecked

7.6 Unary + - I~ +4x --x (Mx

7.7 Multiplicative * /%

7.7 Additive + -

7.8 Shift << >>

7.9 Relational and < > <= >= 1s as

typetesting

7.9 Equality == I=

7.10 Logical AND &

7.10 Logical XOR A

7.10 Logical OR |

7.11 Conditional AND | &&

7.11 Conditional OR I

7.12 Conditional 7t

7.13 Assignment = F= /= %= += -= <<= >>= &= A= |=

When an operand occurs between two operators with the same precedence, the associativity of the operators
controls the order in which the operations are performed:

» Except for the assignment operators, al binary operators are |eft-associative, meaning that operations are
performed from left to right. For example, x + y + z isevaluated as (x + y) + z.

» Theassignment operators and the conditiona operator (?:) are right-associative, meaning that operations
are performed from right to left. For example, x =y = z isevaluated as x = (y = z).

Precedence and associativity can be controlled using parentheses. For example, x +y * z first multipliesy by z
and then adds the result to x, but (x + y) * z first adds x and y and then multipliesthe result by z.

7.2.2 Operator overloading

All unary and binary operators have predefined implementations that are automatically available in any
expression. In addition to the predefined implementations, user-defined implementations can be introduced by
including operator declarationsin classes and structs (810.9). User-defined operator implementations always
take precedence over predefined operator implementations: Only when no applicable user-defined operator
implementations exist will the predefined operator implementations be considered.

The overloadable unary operators are:
+ - ! ~ ++ -- true false

Although true and false are not used explicitly in expressions, they are considered operators because they are
invoked in several expression contexts: boolean expressions (87.16) and expressions involving the conditional
(87.12), and conditional logical operators (87.11).

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 115

C#LANGUAGE SPECIFICATION

The overloadable binary operators are:
+ - * / % & | A << >> == I= > < >= <=

Only the operators listed above can be overloaded. In particular, it is not possible to overload member access,
method invocation, or the=, &&, | |, ?:, checked, unchecked, new, typeof, as, and is operators.

When a binary operator is overloaded, the corresponding assignment operator (if any) isaso implicitly
overloaded. For example, an overload of operator * isalso an overload of operator *=. Thisis described further
in 8§7.13. Note that the assignment operator itself (=) cannot be overloaded. An assignment always performs a
simple bit-wise copy of avalue into avariable.

Cast operations, such as (T) x, are overloaded by providing user-defined conversions (86.4).

Element access, such asa[x], isnot considered an overloadable operator. Instead, user-defined indexing is
supported through indexers (810.8).

In expressions, operators are referenced using operator notation, and in declarations, operators are referenced
using functional notation. The following table shows the rel ationship between operator and functional notations
for unary and binary operators. In the first entry, op denotes any overloadable unary prefix operator. In the
second entry, op denotes the unary postfix ++ and -- operators. In the third entry, op denotes any overloadable
binary operator.

Operator notation | Functional notation
op x operator op(x)
X 0op operator op(x)
X 0Py operator op(x, y)

User-defined operator declarations always require at |east one of the parametersto be of the class or struct type
that contains the operator declaration. Thus, it is not possible for a user-defined operator to have the same
signature as a predefined operator.

User-defined operator declarations cannot modify the syntax, precedence, or associativity of an operator. For
example, the / operator is always a binary operator, always has the precedence level specifiedin §7.2.1, and is
always left-associative.

Whileit is possible for a user-defined operator to perform any computation it pleases, implementations that
produce results other than those that are intuitively expected are strongly discouraged. For example, an
implementation of operator == should compare the two operands for equality and return an appropriate result.

The descriptions of individual operatorsin 87.5 through 87.13 specify the predefined implementations of the
operators and any additional rules that apply to each operator. The descriptions make use of the terms unary
operator overload resolution, binary operator overload resolution, and numeric promation, definitions of
which are found in the following sections.

7.2.3 Unary operator overload resolution

An operation of the form op x or x op, where op is an overloadable unary operator, and x isan expression of
type X, is processed as follows:

* Theset of candidate user-defined operators provided by X for the operation operator op(x) is determined
using the rules of §7.2.5.

» If the set is not empty, then this becomes the set of candidate operators for the operation. Otherwise, the
predefined unary operator op implementations become the set of candidate operators for the operation.

116 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes |

The predefined implementations of a given operator are specified in the description of the operator (87.5 and
§7.6).

» Theoverload resolution rules of §7.4.2 are applied to the set of candidate operators to select the best
operator with respect to the argument list (x), and this operator becomes the result of the overload
resolution process. If overload resolution fails to select a single best operator, a compile-time error occurs.

7.2.4 Binary operator overload resolution

An operation of the form x op y, where op is an overloadable binary operator, x is an expression of type X, and
y isan expression of type'y, is processed as follows:

* Theset of candidate user-defined operators provided by X and Y for the operation operator op(x, y) is
determined. The set consists of the union of the candidate operators provided by X and the candidate
operators provided by Y, each determined using the rules of §7.2.5. If X and Y are the same type, or if X and
Y are derived from a common base type, then shared candidate operators only occur in the combined set
once.

» If the set is not empty, then this becomes the set of candidate operators for the operation. Otherwise, the
predefined binary operator op implementations become the set of candidate operators for the operation.
The predefined implementations of a given operator are specified in the description of the operator (87.7
through §7.13).

» Theoverload resolution rules of §7.4.2 are applied to the set of candidate operators to select the best
operator with respect to the argument list (x, y), and this operator becomes the result of the overload
resolution process. If overload resolution fails to select a single best operator, a compile-time error occurs.

7.2.5 Candidate user-defined operators

Given atype T and an operation operator op(A), where op is an overloadable operator and A is an argument
list, the set of candidate user-defined operators provided by T for operator op(A) isdetermined asfollows:

» For al operator op declarationsin T, if at least one operator is applicable (87.4.2.1) with respect to the
argument list A, then the set of candidate operators consists of all applicable operator op declarationsin T.

» Otherwise, if Tisobject, the set of candidate operatorsis empty.

» Otherwise, the set of candidate operators provided by T isthe set of candidate operators provided by the
direct base classof T.

7.2.6 Numeric promotions

Numeric promotion consists of automatically performing certain implicit conversions of the operands of the
predefined unary and binary numeric operators. Numeric promotion is not a distinct mechanism, but rather an
effect of applying overload resolution to the predefined operators. Numeric promotion specifically does not
affect evaluation of user-defined operators, although user-defined operators can be implemented to exhibit
similar effects.

As an example of numeric promotion, consider the predefined implementations of the binary * operator:

int operator *(int x, int y);

uint operator *(uint x, uint y);

long operator *(long x, long y);

ulong operator *(ulong x, ulong y);

float operator *(float x, float y);
double operator *(double x, double y);
decimal operator *(decimal x, decimal y);

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 117

C#LANGUAGE SPECIFICATION

When overload resolution rules (8§7.4.2) are applied to this set of operators, the effect isto select thefirst of the
operators for which implicit conversions exist from the operand types. For example, for the operation b * s,
whereb isabyte and s isashort, overload resolution selects operator *(int, int) asthe best operator.
Thus, the effect isthat b and s are converted to int, and the type of theresult isint. Likewise, for the
operation i * d, wherei isanint and d isadoubTe, overload resolution selectsoperator *(double,
doubTe) asthe best operator.

7.2.6.1 Unary numeric promotions

Unary numeric promotion occurs for the operands of the predefined +, -, and ~ unary operators. Unary numeric
promotion simply consists of converting operands of type sbyte, byte, short, ushort, or char totypeint.
Additionally, for the unary — operator, unary numeric promotion converts operands of type uint to type Tong.

7.2.6.2 Binary numeric promotions

Binary numeric promotion occurs for the operands of the predefined +, -, *, /, %, &, |, A, ==, !=, >, <, >=, and
<= binary operators. Binary numeric promotion implicitly converts both operands to a common type which, in
case of the non-relational operators, aso becomes the result type of the operation. Binary numeric promotion
consists of applying the following rules, in the order they appear here:

» |If either operand is of type decimal, the other operand is converted to type decimal, or acompile-time
error occurs if the other operand is of type f1oat or double.

» Otherwise, if either operand is of type doubTe, the other operand is converted to type doube.
» Otherwise, if either operand is of type f1oat, the other operand is converted to type f1oat.

» Otherwise, if either operand is of type ulong, the other operand is converted to type uTong, or acompile-
time error occurs if the other operand is of type sbyte, short, int, or Tong.

» Otherwise, if either operand is of type Tong, the other operand is converted to type Tong.

» Otherwise, if either operand is of type uint and the other operand is of type sbyte, short, or int, both
operands are converted to type Tong.

» Otherwise, if either operand is of type uint, the other operand is converted to type uint.
» Otherwise, both operands are converted to type int.

Note that the first rule disallows any operations that mix the decimal type with the doubTe and float types.
The rule follows from the fact that there are no implicit conversions between the decimal type and the double
and float types.

Also notethat it is not possible for an operand to be of type ulong when the other operand is of asigned
integral type. The reason is that no integral type exists that can represent the full range of ulong as well asthe
signed integral types.

In both of the above cases, a cast expression can be used to explicitly convert one operand to atypethat is
compatible with the other operand.

In the example

decimal Addpercent(decimal x, double percent) {
return x * (1.0 + percent / 100.0);

a compile-time error occurs because adecimal cannot be multiplied by adoubTe. The error isresolved by
explicitly converting the second operand to decimal:

118 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

decimal Addpercent(decimal x, double percent) {
return x * (decimal) (1.0 + percent / 100.0);

7.3 Member lookup

A member lookup is the process whereby the meaning of a name in the context of atypeis determined. A
member lookup may occur as part of evaluating a simple-name (87.5.2) or a member-access (87.5.4) inan
expression.

A member lookup of anameN in atype T is processed as follows:

* Fird, the set of all accessible (83.5) members named N declared in T and the base types (§87.3.1) of T is
constructed. Declarations that include an override modifier are excluded from the set. If no members
named N exist and are accessible, then the lookup produces no match, and the following steps are not
evaluated.

* Next, members that are hidden by other members are removed from the set. For every member s.Min the
set, where s is the type in which the member M is declared, the following rules are applied:

o If misaconstant, field, property, event, type, or enumeration member, then all members declared in a
base type of s are removed from the set.

o If Misamethod, then al non-method members declared in a base type of s are removed from the set,
and all methods with the same signature as M declared in a base type of S are removed from the set.

» Finaly, having removed hidden members, the result of the lookup is determined:
o If the set consists of a single non-method member, then this member is the result of the lookup.
0 Otherwise, if the set contains only methods, then this group of methodsis the result of the lookup.

0 Otherwise, the lookup is ambiguous, and a compile-time error occurs (this situation can only occur for a
member lookup in an interface that has multiple direct base interfaces).

For member lookups in types other than interfaces, and member lookups in interfaces that are strictly single-
inheritance (each interface in the inheritance chain has exactly zero or one direct base interface), the effect of the
lookup rulesis simply that derived members hide base members with the same name or signature. Such single-
inheritance lookups are never ambiguous. The ambiguities that can possibly arise from member lookupsin
multiple-inheritance interfaces are described in §13.2.5.

7.3.1 Base types
For purposes of member lookup, atype T is considered to have the following base types:

* If Tisobject, then T has no base type.

* If Tisavalue-type, the base type of T isthe classtypeobject.

* |If Tisaclasstype, the base types of T are the base classes of T, including the class type object.
* |If Tisaninterface-type, the base types of T are the base interfaces of T and the classtype object.
* |If Tisan array-type, the base types of T arethe classtypes System.Array and object.

» |If Tisadelegate-type, the base types of T are the classtypes System.Delegate and object.

7.4 Function members

Function members are members that contain executable statements. Function members are always members of
types and cannot be members of namespaces. C# defines the following categories of function members:

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 119

C#LANGUAGE SPECIFICATION

* Methods
» Properties
* Events

* Indexers

e User-defined operators
* Instance constructors

» Static constructors

* Destructors

Except for static constructors and destructors (which cannot be invoked explicitly), the statements contained in
function members are executed through function member invocations. The actual syntax for writing afunction
member invocation depends on the particular function member category.

The argument list (87.4.1) of afunction member invocation provides actual values or variable references for the
parameters of the function member.

Invocations of methods, indexers, operators and instance constructors employ overload resolution to determine
which of acandidate set of function members to invoke. This processis described in §7.4.2.

Once a particular function member has been identified at compile-time, possibly through overload resolution,
the actual run-time process of invoking the function member is described in §7.4.3.

The following table summarizes the processing that takes place in constructs involving the six categories of
function members that can be explicitly invoked. In the table, e, x, y, and value indicate expressions classified
as variables or values, T indicates an expression classified as atype, F isthe simple name of amethod, and P is
the smple name of a property.

Construct Example Description
Method F(X, ¥) Overload resolution is applied to select the best method F in the
invocation containing class or struct. The method is invoked with the

argument list (x, y). If the method isnot stat1ic, theinstance
expressonisthis.

T.F(X, ¥y) Overload resolution is applied to select the best method F in the
classor struct T. A compile-time error occursif the method is
not stat1ic. The method isinvoked with the argument list (x,

y).

e.F(x, y) Overload resolution is applied to select the best method F in the
class, struct, or interface given by the type of e. A compile-time
error occursif the method is static. The method isinvoked
with the instance expression e and the argument list (x, y).

Property P The get accessor of the property P in the containing class or
access struct isinvoked. A compile-time error occursif P iswrite-

only. If Pisnot static, theinstance expressionisthis.

120 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

Construct

Example

Description

P=value

The set accessor of the property P in the containing class or
struct isinvoked with the argument list (value). A compile-
time error occursif P isread-only. If P isnot static, the
instance expression is this.

The get accessor of the property P in the class or struct T is
invoked. A compile-time error occursif Pisnot static orif P
iswrite-only.

T.P=value

The set accessor of the property P in the class or struct T is
invoked with the argument list (value). A compile-time error
occursif Pisnot static orif Pisread-only.

The get accessor of the property P in the class, struct, or
interface given by the type of e isinvoked with the instance
expression e. A compile-time error occursif Pisstatic or if
P iswrite-only.

e.P=value

The set accessor of the property P in the class, struct, or
interface given by the type of e isinvoked with the instance
expression e and the argument list (value). A compile-time
error occursif Pisstatic orif Pisread-only.

Event access

E += va

Tue

The add accessor of the event E in the containing class or struct
isinvoked. If E is not static, theinstance expressonis this.

E -= va

Tue

The remove accessor of the event E in the containing class or
struct isinvoked. If E is not static, the instance expressionis
this.

value

The add accessor of the event E inthe class or struct T is
invoked. A compile-time error occursif E isnot static.

value

The remove accessor of the event E intheclass or struct T is
invoked. A compile-time error occursif E is not static.

value

The add accessor of the event E in the class, struct, or interface
given by the type of e isinvoked with the instance expression
e. A compile-time error occursif E is static.

value

The remove accessor of the event E in the class, struct, or
interface given by the type of e isinvoked with the instance
expression e. A compile-time error occursif E is static.

Indexer
access

Overload resolution is applied to select the best indexer in the
class, struct, or interface given by the type of e. The get
accessor of the indexer isinvoked with the instance expression
e and the argument list (x, y). A compile-time error occurs if
the indexer iswrite-only.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

121

C#LANGUAGE SPECIFICATION

Construct Example Description

e[x, y]l =value | Overload resolution is applied to select the best indexer in the
class, struct, or interface given by the type of e. The set
accessor of the indexer isinvoked with the instance expression
e and the argument list (x, y, value). A compile-time error
occurs if the indexer is read-only.

Operator -X Overload resolution is applied to select the best unary operator
invocation in the class or struct given by the type of x. The selected
operator is invoked with the argument list (x).

X+Yy Overload resolution is applied to select the best binary operator
in the classes or structs given by the types of x andy. The
selected operator isinvoked with the argument list (x, y).

Constructor new T(x, y) Overload resolution is applied to select the best constructor in
invocation the class or struct T. The constructor isinvoked with the
argument list (x, y).

7.4.1 Argument lists

Every function member invocation includes an argument list which provides actual values or variable references
for the parameters of the function member. The syntax for specifying the argument list of afunction member
invocation depends on the function member category:

For methods, instance constructors, and del egates, the arguments are specified as an argument-list, as
described below.

For properties, the argument list is empty when invoking the get accessor, and consists of the expression
specified as the right operand of the assignment operator when invoking the set accessor.

For events, the argument list consists of the expression specified as the right operand of the += or -=
operator.

For indexers, the argument list consists of the expressions specified between the square bracketsin the
indexer access. When invoking the set accessor, the argument list additionally includes the expression
specified as the right operand of the assignment operator.

For user-defined operators, the argument list consists of the single operand of the unary operator or the two
operands of the binary operator.

The arguments properties (810.6), events (810.7), indexers (810.8), and user-defined operators (810.9) are
always passed as value parameters (810.5.1.1). Reference and output parameters are not supported for these
categories of function members.

The arguments of a method, instance constructor, or delegate invocation are specified as an argument-list:

122

argument-list:
argument
argument-list , argument
argument:
expression
ref variablereference
out variable-reference

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

An argument-list consists of one or more arguments, separated by commas. Each argument can take one of the
following forms:

An expression, indicating that the argument is passed as a value parameter (810.5.1.1).

The keyword ref followed by avariable-reference (85.3.3), indicating that the argument is passed as a
reference parameter (810.5.1.2). A variable must be definitely assigned (85.3) beforeit can be passed as a
reference parameter. A volatile field (810.4.3) cannot be passed as a reference parameter.

The keyword out followed by a variable-reference (85.3.3), indicating that the argument is passed as an
output parameter (810.5.1.3). A variableis considered definitely assigned (85.3) following a function
member invocation in which the variable is passed as an output parameter. A volatile field (810.4.3) cannot
be passed as an output parameter.

During the run-time processing of a function member invocation (87.4.3), the expressions or variable references
of an argument list are evaluated in order, from left to right, asfollows:

For avalue parameter, the argument expression is evaluated and an implicit conversion (86.1) to the
corresponding parameter typeis performed. The resulting value becomes the initial value of the value
parameter in the function member invocation.

For areference or output parameter, the variable reference is evaluated and the resulting storage location
becomes the storage location represented by the parameter in the function member invocation. If the
variable reference given as areference or output parameter is an array element of areference-type, arun-
time check is performed to ensure that the element type of the array isidentical to the type of the parameter.
If this check fails, aSystem.ArrayTypeMismatchException isthrown

Methods, indexers, and instance constructors may declare their right-most parameter to be a parameter array
(810.5.1.4). Such function members are invoked either in their normal form or in their expanded form depending
on which is applicable (§7.4.2.1):

When a function member with a parameter array isinvoked in its normal form, the argument given for the
parameter array must be a single expression of atype that isimplicitly convertible (86.1) to the parameter
array type. In this case, the parameter array acts precisely like a value parameter.

When a function member with a parameter array isinvoked in its expanded form, the invocation must
specify zero or more arguments for the parameter array, where each argument is an expression of a type that
isimplicitly convertible (86.1) to the element type of the parameter array. In this case, the invocation creates
an instance of the parameter array type with alength corresponding to the number of arguments, initializes
the elements of the array instance with the given argument values, and uses the newly created array instance
asthe actual argument.

The expressions of an argument list are always evaluated in the order they are written. Thus, the example

class Test

static void F(int x, int y, int z) {
System.Console.writeLine("x = {0}, y = {1}, z = {2}", x, vy, 2);

static void mMain() {

int i = 0;
FCO++, 1++, 1++);

}

produces the output

x=0,y=1, z=2

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 123

C#LANGUAGE SPECIFICATION

The array co-variance rules (812.5) permit avalue of an array type A[] to be areference to an instance of an
array type B[], provided an implicit reference conversion exists from B to A. Because of these rules, when an
array element of areference-type is passed as areference or output parameter, a run-time check is required to
ensure that the actual element type of the array isidentical to that of the parameter. In the example

class Test

static void F(ref object x) {...}

static void Main() {
object[] a = new object[10];

object[] b - new string[10];
F(Cref a[0]); // ok
FCref b[1]); // ArrayTypeMismatchException

}

the second invocation of F causesaSystem.ArrayTypeMismatchException to bethrown because the
actual element type of b isstring and not object.

When a function member with a parameter array isinvoked in its expanded form, the invocation is processed
exactly asif an array creation expression with an array initializer (87.5.10.2) wasinserted around the expanded
parameters. For example, given the declaration

void F(int x, int y, params object[] args);
the following invocations of the expanded form of the method

F(10, 20);
F(10, 20, 30, 40);
F(10, 20, 1, "hello", 3.0);

correspond exactly to

F(10, 20, new object[] {});
F(10, 20, new object[] {30, 40});
F(10, 20, new object[] {1, "hello", 3.03});

Note in particular that an empty array is created when there are zero arguments given for the parameter array.

7.4.2 Overload resolution

Overload resolution is a compile-time mechanism for selecting the best function member to invoke given an
argument list and a set of candidate function members. Overload resolution selects the function member to
invoke in the following distinct contexts within C#:

* Invocation of a method named in an invocation-expression (87.5.5).

* Invocation of an instance constructor named in an object-creation-expression (87.5.10.1).

* Invocation of an indexer accessor through an element-access (87.5.6).

* Invocation of apredefined or user-defined operator referenced in an expression (87.2.3 and §7.2.4).

Each of these contexts defines the set of candidate function members and the list of arguments in its own unique
way, as described in detail in the sections listed above. For example, the set of candidates for a method
invocation does not include methods marked override (87.3), and methods in a base class are not candidates if
any method in aderived classis applicable (§87.5.5.1).

Once the candidate function members and the argument list have been identified, the selection of the best
function member isthe samein all cases:

124 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

» Given the set of applicable candidate function members, the best function member in that set islocated. If
the set contains only one function member, then that function member isthe best function member.
Otherwise, the best function member is the one function member that is better than al other function
members with respect to the given argument list, provided that each function member is compared to all
other function members using the rulesin 87.4.2.2. If there is not exactly one function member that is better
than al other function members, then the function member invocation is ambiguous and a compile-time
error OCcurs.

The following sections define the exact meanings of the terms applicable function member and better function
member.

7.4.2.1 Applicable function member

A function member is said to be an applicable function member with respect to an argument list A when all of
the following are true;

e Thenumber of argumentsin A isidentical to the number of parametersin the function member declaration.

» For each argument in A, the parameter passing mode of the argument (i.e., value, ref, or out) isidentical to
the parameter passing mode of the corresponding parameter, and

o for avalue parameter or a parameter array, an implicit conversion (86.1) exists from the type of the
argument to the type of the corresponding parameter, or

o foraref or out parameter, the type of the argument isidentical to the type of the corresponding
parameter.

For afunction member that includes a parameter array, if the function member is applicable by the above rules,
itissaidto be applicableinits normal form. If afunction member that includes a parameter array is not
applicable in its normal form, the function member may instead be applicable in its expanded form:

* Theexpanded form is constructed by replacing the parameter array in the function member declaration with
zero or more value parameters of the el ement type of the parameter array such that the number of arguments
in the argument list A matches the total number of parameters. If A has fewer arguments than the number of
fixed parameters in the function member declaration, the expanded form of the function member cannot be
constructed and is thus not applicable.

» If theclass, struct, or interface in which the function member is declared already contains another applicable
function member with the same signature as the expanded form, the expanded form is not applicable.

» Otherwise, the expanded form is applicable if for each argument in A the parameter passing mode of the
argument isidentical to the parameter passing mode of the corresponding parameter, and

o for afixed value parameter or avalue parameter created by the expansion, an implicit conversion (86.1)
exists from the type of the argument to the type of the corresponding parameter, or

o foraref or out parameter, the type of the argument isidentical to the type of the corresponding
parameter.

7.4.2.2 Better function member

Given an argument list A with a set of argument types A1, Az, ..., Ay and two applicable function members M, and
Mq With parameter types P1, P2, ..., Py and Q1, Qz, ..., Qn, Mp iS defined to be a better function member than mq if

» for each argument, the implicit conversion from Ax to Px is not worse than the implicit conversion from Ax to
QX) and

» for at least one argument, the conversion from Ax to Px is better than the conversion from Ax to Qx.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 125

C#LANGUAGE SPECIFICATION

When performing this evaluation, if Me or Mq is applicablein its expanded form, then Px or Qx refersto a
parameter in the expanded form of the parameter list.

7.4.2.3 Better conversion

Given an implicit conversion C; that converts from atype s to atype T1, and an implicit conversion C; that
convertsfrom atype s to atype T, the better conversion of the two conversionsis determined as follows:

* |If T: and T, are the same type, neither conversion is better.
* If SisTy, C1isthe better conversion.
* If SisT,, C; isthe better conversion.

* If animplicit conversion from Ty to T exists, and no implicit conversion from T, to T: exists, C1 iSthe better
conversion.

» If animplicit conversion from T, to T1 exists, and no implicit conversion from T1 to T, exists, C; isthe better
conversion.

e If Tiissbyte and T isbyte, ushort, uint, or ulong, C; isthe better conversion.

e If T,issbyte and T1isbyte, ushort, uint, or ulong, C; isthe better conversion.

e If Tiisshort and Tz isushort, uint, or ulong, C; isthe better conversion.

e If T;isshort and T1isushort, uint, or ulong, C; isthe better conversion.

e IfTiisintand T2 isuint, or ulong, C1 isthe better conversion.

e IfT;isintand T1isuint, or ulong, C; isthe better conversion.

e If T1isTlong and T2 isulong, C; isthe better conversion.

 If T;isTlong and T1 isulong, C; isthe better conversion.

e Otherwise, neither conversion is better.

If an implicit conversion C; is defined by these rules to be a better conversion than an implicit conversion C;,

then it isalso the case that C; is aworse conversion than Cs.

7.4.3 Function member invoc ation

This section describes the process that takes place at run-time to invoke a particular function member. Itis
assumed that a compile-time process has aready determined the particular member to invoke, possibly by
applying overload resolution to a set of candidate function members.

For purposes of describing the invocation process, function members are divided into two categories:

» Static function members. These are instance constructors, static methods, static property accessors, and user-
defined operators. Static function members are always non-virtual.

» Instance function members. These are instance methods, instance property accessors, and indexer accessors.
Instance function members are either non-virtual or virtual, and are aways invoked on a particular instance.
The instance is computed by an instance expression, and it becomes accessible within the function member
asthis (87.5.7).

The run-time processing of a function member invocation consists of the following steps, where M isthe
function member and, if M is an instance member, E is the instance expression:

e |If Mmisastatic function member:

126 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

(0]

(0]

(0]

(0]

(0]

(0]

(0]

(0]

(0]

Chapter 747 ExpressionsAttributes

The argument list is evaluated as described in §7.4.1.
M isinvoked.

If M is an instance function member declared in a value-type:

E isevaluated. If this evaluation causes an exception, then no further steps are executed.

If Eisnot classified asavariable, then atemporary local variable of E’stypeis created and the value of
E isassigned to that variable. E isthen reclassified as a reference to that temporary local variable. The
temporary variable is accessible as this within M, but not in any other way. Thus, only when E isatrue
variableisit possible for the caller to observe the changes that M makesto this.

The argument list is evaluated as described in §7.4.1.
M isinvoked. The variable referenced by E becomes the variable referenced by this.

If M is an instance function member declared in areference-type:

E isevaluated. If this evaluation causes an exception, then no further steps are executed.
The argument list is evaluated as described in §7.4.1.

If the type of E isavalue-type, a boxing conversion (84.3.1) is performed to convert E to type object,
and E is considered to be of type object in the following steps.

Thevalue of E ischecked to be vdid. If thevalueof Eisnull, a
System.NulTReferenceException isthrown and no further steps are executed.

The function member implementation to invoke is determined:

» If the compile-time type of E isan interface, the function member to invoke is the implementation
of M provided by the run-time type of the instance referenced by E. This function member is
determined by applying the interface mapping rules (813.4.2) to determine the implementation of M
provided by the run-time type of the instance referenced by E.

* Otherwise, if M isavirtual function member, the function member to invoke is the implementation
of M provided by the run-time type of the instance referenced by E. This function member is
determined by applying the rules for determining the most derived implementation (810.5.3) of M
with respect to the run-time type of the instance referenced by E.

e Otherwise, M isanon-virtua function member, and the function member to invoke isM itself.

The function member implementation determined in the step above isinvoked. The object referenced by
E becomes the object referenced by thiis.

7.4.3.1 Invocations on boxed instances

A function member implemented in a val ue-type can be invoked through a boxed instance of that value-typein
the following situations:

* When the function member isan override of amethod inherited from type object and isinvoked
through an instance expression of type object.

* When the function member is an implementation of an interface function member and is invoked through an
instance expression of an interface-type.

* When the function member isinvoked through a delegate.

In these situations, the boxed instance is considered to contain a variable of the value-type, and this variable
becomes the variable referenced by thi s within the function member invocation. Thisin particular means that

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 127

C#LANGUAGE SPECIFICATION

when afunction member is invoked on a boxed instance, it is possible for the function member to modify the
value contained in the boxed instance.

7.5 Primary expressions
Primary expressions include the simplest forms of expressions.

primary-expression:
primary-no-array-creation-expression
array-creation-expression

primary-no-array-creati on-expression:
literal
simple-name
parenthesi zed-expression
member -access
invocati on-expression
element-access
this-access
base-access
post-increment-expression
post-decrement-expression
obj ect-creation-expression
del egate-creation-expression
typeof-expression
Sizeof-expression
checked-expression
unchecked-expression

Primary expressions are divided between array-creation-expressions and primary-no-array-creation-
expressions. Treating array-creation-expression in this way, rather than listing it aong with the other simple
expression forms, enables the grammar to disallow potentially confusing code such as

object o = new int[3][1];
which would otherwise be interpreted as
object o = (new int[3])[1];

7.5.1 Literals
A primary-expression that consists of aliteral (82.4.4) isclassified asavalue.

7.5.2 Simple names
A simple-name consists of asingleidentifier.
simple-name:
identifier
A simple-nameis evaluated and classified as follows:

» If the simple-name appears within a block and if the block contains alocal variable or parameter with the
given name, then the ssimple-name refersto that local variable or parameter and is classified as a variable.

» Otherwise, for each type T, starting with the immediately enclosing class, struct, or enumeration declaration
and continuing with each enclosing outer class or struct declaration (if any), if amember lookup of the
simple-name in T produces a match:

128 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

o If Tistheimmediately enclosing class or struct type and the lookup identifies one or more methods, the
result is amethod group with an associated instance expression of this.

o If Tistheimmediately enclosing class or struct type, if the lookup identifies an instance member, and if
the reference occurs within the block of an instance method, an instance accessor, or an instance
constructor, the result is the same as a member access (87.5.4) of theform this.E, where E isthe
simple-name.

0 Otherwise, theresult is the same as a member access (87.5.4) of theform T. E, where E isthe simple-
name. In this case, it isa compile-time error for the simple-name to refer to an instance member.

» Otherwise, starting with the namespace in which the simple-name occurs, continuing with each enclosing
namespace (if any), and ending with the global namespace, the following steps are evaluated until an entity
is located:

o If the namespace contains a namespace member with the given name, then the simple-name refers to
that member and, depending on the member, is classified as a namespace or atype.

o Otherwiseg, if the namespace has a corresponding namespace declaration enclosing the |ocation where
the smple-name occurs, then:

» If the namespace declaration contains a using-alias-directive that associates the given name with an
imported namespace or type, then the simple-name refers to that namespace or type.

» Otherwiseg, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain exactly one type with the given name, then the simple-name refersto that type.

» Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain more than one type with the given name, then the simple-name is ambiguous
and a compile-time error occurs.

» Otherwise, the name given by the simple-name is undefined and a compile-time error occurs.

7.5.2.1 Invariant meaning in blocks

For each occurrence of a given identifier asa simple-name in an expression, every other occurrence of the same
identifier as a simple-name in an expression within the immediately enclosing block (88.2) or switch-block
(88.7.2) must refer to the same entity. This rule ensures that the meaning of a name in the context of an
expression is aways the same within a block.

The example
class Test
doubTe x;
void F(bool b) {
x = 1.0;
if (b) {
int x = 1;

}
}

results in a compile-time error because x refersto different entities within the outer block (the extent of which
includes the nested block in the i f statement). In contrast, the example

class Test

double x;

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 129

C#LANGUAGE SPECIFICATION

void F(bool b) {
if (b) {
x = 1.0;

else {
int x = 1;

}
}

is permitted because the name x is never used in the outer block.

Note that the rule of invariant meaning applies only to simple names. It is perfectly valid for the same identifier
to have one meaning as a s mple name and another meaning as right operand of a member access (87.5.4). For
example:

struct Point

int x, y;

public Point(int x, int y) {
this.x = X;
this.y = vy;

}

The example above illustrates a common pattern of using the names of fields as parameter namesin an instance
constructor. In the example, the simple names x and y refer to the parameters, but that does not prevent the
member access expressions this.x and this.y from accessing thefields.

7.5.3 Parenthesized expressions
A parenthesized-expression consists of an expression enclosed in parentheses.
par enthesi zed-expression:
(expresson)

A parenthesized-expression is evaluated by eval uating the expression within the parentheses. If the expression
within the parentheses denotes a namespace, type, or method group, a compile-time error occurs. Otherwise, the
result of the parenthesized-expression is the result of the evaluation of the contained expression.

7.5.4 Member access
A member-access consists of a primary-expression or a predefined-type, followed by a“ .” token, followed by
an identifier.
member -access.
primary-expression . identifier
predefined-type . identifier
predefined-type: one of
bool byte char decimal double float int Tong
object shyte short string uint ulong ushort

A member-access of theform E. I, where E is a primary-expression or a predefined-type and I isan identifier,
isevaluated and classified asfollows:

» If Eisanamespace and I isthe name of an accessible member of that namespace, then the result is that
member and, depending on the member, is classified as a namespace or atype.

* If Eisapredefined-type or a primary-expression classified as atype, and a member lookup (87.3) of I inE
produces amatch, then E. I isevaluated and classified as follows:

130 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

o If 1 identifiesatype, then the result isthat type.

o If 1 identifies one or more methods, then the result is amethod group with no associated instance
expression.

o |If T identifiesastatic property, then the result isa property access with no associated instance
expression.

o If Iidentifiesastatic fidd:

» If thefiddis readonly and the reference occurs outside the static constructor of the class or struct
in which the field is declared, then the result is a value, namely the value of the static field T in E.

» Otherwise, theresult isavariable, namely the static field T in E.
o If I identifiesastatic event:

» If thereference occurs within the class or struct in which the event is declared, and the event was
declared without event-accessor-declarations (810.7), then E. I is processed exactly asif I wasa
static field.

» Otherwise, theresult is an event access with no associated instance expression.
o If 1 identifies a constant, then the result is avalue, namely the value of that constant.

o If 1 identifies an enumeration member, then the result is a value, namely the value of that enumeration
member.

0 Otherwise, E. I isaninvalid member reference, and a compile-time error occurs.

» If Eisaproperty access, indexer access, variable, or value, the type of which is T, and a member lookup
(87.3) of I in T produces a match, then E. I isevaluated and classified as follows:

o Firg, if Eisaproperty or indexer access, then the value of the property or indexer access is obtained
(87.1.1) and E isreclassified asavalue.

o If 1 identifies one or more methods, then the result is amethod group with an associated instance
expression of E.

o If I identifies an instance property, then the result is a property access with an associated instance
expression of E.

o |If Tisaclasstypeand I identifiesan instancefield of that class-type:
e Ifthevalueof Eisnull, thenasSystem.NulT1ReferenceException isthrown.

« Otherwisg, if thefieldis readonTy and the reference occurs outside an instance constructor of the
classin which the field is declared, then the result is a value, namely the value of the field I in the
object referenced by E.

» Otherwise, theresult is avariable, namely the field I in the object referenced by E.
o If Tisadruct-typeand I identifies aninstancefield of that struct-type:

 |IfEisavaue, orif thefiddis readonly and the reference occurs outside an instance constructor
of the struct in which the field is declared, then the result is a value, namely the value of thefield 1
in the struct instance given by E.

» Otherwise, theresult is avariable, namely the field I in the struct instance given by E.

o If I identifies an instance event;

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 131

C#LANGUAGE SPECIFICATION

« |f the reference occurs within the class or struct in which the event is declared, and the event was
declared without event-accessor-declarations (810.7), then E. I is processed exactly asif I wasan
instance field.

* Otherwise, theresult is an event access with an associated instance expression of E.

* Otherwise, E. I isaninvalid member reference, and a compile-time error occurs.

7.5.4.1 ldentical simple names and type names

In amember access of theform E. I, if E isasingleidentifier, and if the meaning of E as asimple-name (87.5.2)
isaconstant, field, property, local variable, or parameter with the same type as the meaning of E as atype-name
(83.8), then both possible meanings of E are permitted. The two possible meanings of E. I are never ambiguous,
since I must necessarily be amember of the type E in both cases. In other words, the rule simply permits access
to the static members and nested types of E where a compile-time error would otherwise have occurred. For
example:

struct Color

new Color(...);

public static readonly Color white)
new Color(...);

public static readonly cColor Black

public color cComplement() {...}

class A
public Color Color; // Field color of type Color
void FQO {
Ccolor = color.Black; // References cColor.Black static member
Color = color.complement(); // Invokes Complement() on Color field

static void GO {) _ _
Color c = Color.white; // References cColor.white static member

3

Within the A class, those occurrences of the Color identifier that reference the Color type are underlined, and
those that reference the Color field are not underlined.

7.5.5 Invocation expressions
An invocation-expression is used to invoke a method.

invocati on-expression:
primary-expression (argument-listoy:)

The primary-expression of an invocation-expression must be a method group or avalue of a delegate-type. If the
primary-expression is a method group, the invocation-expression isamethod invocation (87.5.5.1). If the
primary-expression is a value of a delegate-type, the invocation-expression is a delegate invocation (87.5.5.2). If
the primary-expression is neither a method group nor a value of a delegate-type, a compile-time error occurs.

The optional argument-list (87.4.1) provides values or variable references for the parameters of the method.
Theresult of evaluating an invocation-expression is classified asfollows:

» If theinvocation-expression invokes a method or delegate that returns void, the result is nothing. An
expression that is classified as nothing cannot be an operand of any operator, and is permitted only in the
context of a statement-expression (88.6).

» Otherwise, theresult is avalue of the type returned by the method or delegate.

132 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

7.5.5.1 Method invocations

For a method invocation, the primary-expression of the invocation-expression must be a method group. The
method group identifies the one method to invoke or the set of overloaded methods from which to choose a
specific method to invoke. In the latter case, determination of the specific method to invoke is based on the
context provided by the types of the argumentsin the argument-list.

The compile-time processing of a method invocation of the formmM(A), whereM isamethod group and A isan
optiona argument-list, consists of the following steps:

* Theset of candidate methods for the method invocation is constructed. Starting with the set of methods
associated with M, which were found by a previous member lookup (87.3), the set is reduced to those
methods that are applicable with respect to the argument list A. The set reduction consists of applying the
following rulesto each method T.N in the set, where T is the type in which the method N is declared:

o If Nisnot applicable with respect to A (8§7.4.2.1), then N is removed from the set.

o If Nisapplicable with respect to A (87.4.2.1), then al methods declared in a base type of T are removed
from the set.

» If theresulting set of candidate methods is empty, then no applicable methods exist, and a compile-time
error occurs. If the candidate methods are not all declared in the same type, the method invocation is
ambiguous, and a compile-time error occurs (this latter situation can only occur for an invocation of a
method in an interface that has multiple direct base interfaces, as described in §13.2.5).

* Thebest method of the set of candidate methods isidentified using the overload resolution rules of §7.4.2. If
asingle best method cannot be identified, the method invocation is ambiguous, and a compile-time error
ocCurs.

» Given abest method, the invocation of the method is validated in the context of the method group: If the
best method is a static method, the method group must have resulted from a simple-name or a member-
access through atype. If the best method is an instance method, the method group must have resulted from a
simple-name, a member-access through avariable or value, or a base-access. If neither requirement is
satisfied, a compile-time error occurs.

Once a method has been selected and validated at compile-time by the above steps, the actual run-time
invocation is processed according to the rules of function member invocation described in §7.4.3.

The intuitive effect of the resolution rules described above is as follows: To locate the particular method
invoked by a method invocation, start with the type indicated by the method invocation and proceed up the
inheritance chain until at least one applicable, accessible, non-override method declaration is found. Then
perform overload resolution on the set of applicable, accessible, non-override methods declared in that type and
invoke the method thus sel ected.

7.5.5.2 Delegate invocations

For a delegate invocation, the primary-expression of the invocation-expression must be a value of a delegate-
type. Furthermore, considering the delegate-type to be a function member with the same parameter list asthe
delegate-type, the del egate-type must be applicable (87.4.2.1) with respect to the argument-list of the
invocati on-expression.

The run-time processing of a delegate invocation of the form b (A), where D is aprimary-expression of a
delegate-type and A is an optional argument-list, consists of the following steps:

» Disevauated. If this evaluation causes an exception, no further steps are executed.

» Thevaueof D ischecked to bevalid. If thevalueof Disnul11, asystem.Nul1ReferenceExceptionis
thrown and no further steps are executed.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 133

C#LANGUAGE SPECIFICATION

» Otherwise, D isareference to adelegate instance. A function member invocation (8§7.4.3) is performed on
the method referenced by the delegate. If the method is an instance method, the instance of the invocation
becomes the instance referenced by the delegate.

7.5.6 Element access

An element-access consists of a primary-no-array-creation-expression, followed by a“ [* token, followed by an
expression-list, followed by a“]” token. The expression-list consists of one or more expressions, separated by
commeas.

element-access:
primary-no-array-creation-expression [expression-list]

expression-list:
expression
expression-list , expression

If the primary-no-array-creation-expression of an el ement-accessis avalue of an array-type, the element-access
isan array access (87.5.6.1). Otherwise, the primary-no-array-creation-expression must be a variable or value
of aclass, struct, or interface type that has one or more indexer members, in which case the element-accessisan
indexer access (87.5.6.2).

7.5.6.1 Array access

For an array access, the primary-no-array-creation-expression of the element-access must be a value of an
array-type. The number of expressionsin the expression-list must be the same as the rank of the array-type, and
each expression must be of type int, uint, Tong, ulong, or of atype that can beimplicitly converted to one or
more of these types.

Theresult of evaluating an array accessis avariable of the element type of the array, namely the array element
selected by the value(s) of the expression(s) in the expression-list.

The run-time processing of an array access of the form P[A], where P is a primary-no-array-creation-
expression of an array-type and A is an expression-list, consists of the following steps:

» Pisevauated. If this evaluation causes an exception, no further steps are executed.

» Theindex expressions of the expression-list are evaluated in order, from left to right. Following evaluation
of each index expression, an implicit conversion (86.1) to one of the following typesis performed: int,
uint, Tong, ulong. Thefirst typein thislist for which an implicit conversion exists is chosen. For
instance, if the index expression is of type short then animplicit conversion to int is performed, since
implicit conversions from short to int and from short to Tong are possible. If evaluation of an index
expression or the subsequent implicit conversion causes an exception, then no further index expressions are
evaluated and no further steps are executed.

» Thevaueof pischecked to bevalid. If thevalueof Pisnull, asystem.Nul1ReferenceExceptionis
thrown and no further steps are executed.

* Thevalue of each expression in the expression-list is checked against the actual bounds of each dimension
of the array instance referenced by P. If one or more values are out of range, a
System.IndexoutOfRangeException isthrown and no further steps are executed.

» Thelocation of the array element given by the index expression(s) is computed, and this location becomes
the result of the array access.

134 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

7.5.6.2 Indexer access

For an indexer access, the primary-no-array-creation-expression of the element-access must be a variable or
value of aclass, struct, or interface type, and this type must implement one or more indexers that are applicable
with respect to the expression-list of the element-access.

The compile-time processing of an indexer access of the form P[A], where P is a primary-no-array-creation-
expression of aclass, struct, or interface type T, and A is an expression-list, consists of the following steps:

» Theset of indexers provided by T is constructed. The set consists of all indexers declared in T or a base type
of T that are not override declarations and are accessible in the current context (83.5).

* Theset isreduced to those indexers that are applicable and not hidden by other indexers. The following
rules are applied to each indexer s. I in the set, where s isthe type in which the indexer I is declared:

0 If I isnot applicable with respect to A (87.4.2.1), then I isremoved from the set.

o If T isapplicablewith respect to A (87.4.2.1), then all indexers declared in a base type of S are removed
from the set.

» If theresulting set of candidate indexersis empty, then no applicable indexers exist, and a compile-time
error occurs. If the candidate indexers are not al declared in the same type, the indexer access is ambiguous,
and a compile-time error occurs (this latter situation can only occur for an indexer access on an instance of
an interface that has multiple direct base interfaces).

* Thebest indexer of the set of candidate indexersisidentified using the overload resolution rules of §7.4.2. If
asingle best indexer cannot be identified, the indexer access is ambiguous, and a compile-time error occurs.

» Theindex expressions of the expression-list are evaluated in order, from left to right. The result of
processing the indexer accessis an expression classified as an indexer access. The indexer access expression
references the indexer determined in the step above, and has an associated instance expression of P and an
associated argument list of A.

Depending on the context in which it is used, an indexer access causes invocation of either the get-accessor or
the set-accessor of the indexer. If the indexer accessis the target of an assignment, the set-accessor isinvoked
to assign anew value (87.13.1). In all other cases, the get-accessor isinvoked to obtain the current value
(87.1.2).

7.5.7 This access
A this-access consists of the reserved word this.

this-access;
this

A this-accessis permitted only in the block of an instance method, an instance accessor, or an instance
constructor. It has one of the following meanings:

* When this isused in aprimary-expression within an instance method or instance accessor of aclass, itis
classified as avalue. Thetype of the value is the class within which the usage occurs, and the valueisa
reference to the object for which the method or accessor was invoked.

* When this isused in aprimary-expression within an instance method or instance accessor of astruct, it is
classified as avariable. The type of the variableisthe struct within which the usage occurs, and the variable
represents the struct for which the method or accessor wasinvoked. The this variable of an instance
method of astruct behaves exactly the same as a ref parameter of the struct type.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 135

C#LANGUAGE SPECIFICATION

* When this isusedin aprimary-expression within an instance constructor of aclass, it isclassified asa
value. Thetype of the value is the class within which the usage occurs, and the value is areference to the
object being constructed.

* When this isused in aprimary-expression within an instance constructor of astruct, itis classified as a
variable. The type of the variable is the struct within which the usage occurs, and the variable represents the
struct being constructed. The this variable of an instance constructor of a struct behaves exactly the same
asan out parameter of the struct type—this in particular means that the variable must be definitely assigned
in every execution path of the instance constructor.

Useof this inaprimary-expression in acontext other than the ones listed above isacompile-time error. In
particular, it is not possibleto refer to th1is in a static method, a static property accessor, or in avariable-
initializer of afield declaration.

7.5.8 Base access

A base-access consists of the reserved word base followed by either a“.” token and an identifier or an
expression-list enclosed in square brackets:

base-access:
base . identifier
base [expresson-list]

A base-accessis used to access base class members that are hidden by similarly named membersin the current
classor struct. A base-accessis permitted only in the block of an instance method, an instance accessor, or an
instance constructor. When base. I occursin aclassor struct, I must denote a member of the base class of that
classor struct. Likewise, when base [E] occursin aclass, an applicable indexer must exist in the base class.

At compile-time, base-access expressions of theform base. I and base[E] are evaluated exactly asif they
werewritten ((B)this).I and ((B)this) [E], where B isthe base class of the class or struct in which the
construct occurs. Thus, base.I and base[E] correspond to this.I and this[E], except this isviewed as
an instance of the base class.

When a base-access references a virtual function member (a method, property, or indexer), the determination of
which function member to invoke at run-time (87.4.3) is changed. The function member that isinvoked is
determined by finding the most derived implementation (810.5.3) of the function member with respect to B
(instead of with respect to the run-time type of this, aswould be usual in a non-base access). Thus, within an
override of avirtual function member, a base-access can be used to invoke the inherited implementation of
the function member. If the function member referenced by a base-access is abstract, a compile-time error
OCCUrs.

7.5.9 Postfix increment and d ecrement operators

post-increment-expr essi on:
primary-expression ++

post-decrement-expression:
primary-expression --

The operand of apostfix increment or decrement operation must be an expression classified as avariable, a
property access, or an indexer access. The result of the operation is a value of the same type as the operand.

If the operand of a postfix increment or decrement operation is a property or indexer access, the property or
indexer must have both aget and a set accessor. If thisis not the case, a compile-time error occurs.

Unary operator overload resolution (87.2.3) is applied to select a specific operator implementation. Predefined
++ and -- operators exist for the following types. sbyte, byte, short, ushort, int, uint, Tong, ulong,

136 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

char, float, double, decimal, and any enum type. The predefined ++ operators return the val ue produced
by adding 1 to the operand, and the predefined - - operators return the value produced by subtracting 1 from the
operand.

The run-time processing of a postfix increment or decrement operation of the form x++ or x-- consists of the
following steps:

* If xisclassified asavariable:
0 x isevaluated to produce the variable.
0 Thevalueof x issaved.
0 Theselected operator isinvoked with the saved value of x asits argument.
0 Thevalue returned by the operator is stored in the location given by the evaluation of x.
0 Thesaved value of x becomes the result of the operation.
» If x isclassified as a property or indexer access:

0 Theinstance expression (if x isnot static) and the argument list (if x is anindexer access) associated
with x are evaluated, and the results are used in the subsequent get and set accessor invocations.

0 Theget accessor of x isinvoked and the returned valueis saved.

0 The selected operator isinvoked with the saved value of x asits argument.

0 Theset accessor of x isinvoked with the value returned by the operator asits value argument.
0 Thesaved value of x becomes the result of the operation.

The ++ and -- operators a so support prefix notation, as described in 87.6.5. The result of x++ or x-- isthe
value of x before the operation, whereas the result of ++x or --x isthe value of x after the operation. In either
case, x itself has the same value after the operation.

Anoperator ++ Or operator -- implementation can be invoked using either postfix or prefix notation. It is
not possible to have separate operator implementations for the two notations.

7.5.10 new operator
The new operator is used to create new instances of types.

There are three forms of new expressions:

» Object creation expressions are used to create hew instances of class types and value types.
» Array creation expressions are used to create new instances of array types.

» Delegate creation expressions are used to create new instances of delegate types.

The new operator implies creation of an instance of atype, but does not necessarily imply dynamic allocation of
memory. In particular, instances of value types require no additional memory beyond the variables in which they
reside, and no dynamic allocations occur when new is used to creste instances of value types.

7.5.10.1 Object creation expressions
An object-creation-expression is used to create a new instance of a class-type or a value-type.

object-creati on-expression:
new type (argument-listyy)

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 137

C#LANGUAGE SPECIFICATION

The type of an object-creation-expression must be a class-type or a value-type. The type cannot be an abstract
class-type.

The optional argument-list (87.4.1) is permitted only if the type is a class-type or a struct-type.

The compile-time processing of an object-creation-expression of the form new T(A), where T is a class-type or
avalue-type and A isan optional argument-list, consists of the following steps:

* If Tisavalue-typeand A isnot present:

0 The object-creation-expression is adefault constructor invocation. The result of the object-creation-
expression isavalue of type T, namely the default value for T asdefined in §4.1.1.

» Otherwise, if T isaclass-type or a struct-type:
o |If Tisanabstract classtype, acompile-time error occurs.

0 Theinstance constructor to invoke is determined using the overload resolution rules of §87.4.2. The set
of candidate instance constructors consists of all accessible instance constructors declared in T which
are applicable with respect to A (87.4.2.1). If the set isempty, or if asingle best constructor cannot be
identified, a compile-time error occurs.

0 Theresult of the object-creation-expression is avalue of type T, namely the value produced by invoking
the instance constructor determined in the step above.

» Otherwise, the object-creation-expression isinvalid, and a compile-time error occurs.

The run-time processing of an object-creation-expression of the form new T(A), where T is class-type or a
struct-type and A is an optional argument-list, consists of the following steps:

» If Tisaclasstype:

0 A new instance of class T is allocated. If there is not enough memory available to allocate the new
instance, aSystem.outofMemoryException isthrown and no further steps are executed.

o All fields of the new instance are initialized to their default values (85.2).

0 Theinstance constructor isinvoked according to the rules of function member invocation (87.4.3). A
reference to the newly allocated instance is automatically passed to the instance constructor and the
instance can be accessed from within the instance constructor as this.

* If Tisastruct-type:

0 Aninstance of type T is created by allocating atemporary local variable. Since an instance constructor
of astruct-typeisrequired to definitely assign a value to each field of the instance being created, no
initialization of the temporary variable is necessary.

0 Theinstance constructor isinvoked according to the rules of function member invocation (87.4.3). A
reference to the newly alocated instance is automatically passed to the instance constructor and the
instance can be accessed from within the instance constructor as thiis.

7.5.10.2 Array creation expressions
An array-creation-expression is used to create a new instance of an array-type.

array-creation-expression:
new non-array-type [expresson-list] rank-specifiers,, array-initializerqy
new array-type array-initializer

An array creation expression of the first form allocates an array instance of the type that results from deleting
each of the individual expressions from the expression list. For example, the array creation expression new

138 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

int[10, 20] produces an array instance of typeint[,], and the array creation expression new int[10][,]
produces an array of typeint[][,]. Each expression in the expression list must be of type int, uint, long,
or ulong, or of atype that can be implicitly converted to one or more of these types. The value of each
expression determines the length of the corresponding dimension in the newly allocated array instance. Since the
length of an array dimension must be nonnegative, it is a compile-time error to specify a constant-expression
length that evaluates to a negative val ue.

Except in an unsafe context (8A.1), the layout of arraysis unspecified.

If an array creation expression of the first form includes an array initializer, each expression in the expression
list must be a constant and the rank and dimension lengths specified by the expression list must match those of
the array initializer.

In an array creation expression of the second form, the rank of the specified array type must match that of the
array initializer. The individual dimension lengths are inferred from the number of elementsin each of the
corresponding nesting levels of the array initializer. Thus, the expression

new int[,] {{0, 1}, {2, 3}, {4, 5}}
exactly correspondsto

new int[3, 2] {{0, 1}, {2, 3}, {4, 53}
Array initializers are described further in §12.6.

Theresult of evaluating an array creation expression is classified as a value, namely areference to the newly
alocated array instance. The run-time processing of an array creation expression consists of the following steps:

* Thedimension length expressions of the expression-list are evaluated in order, from left to right. Following
evaluation of each expression, an implicit conversion (86.1) to one of the following typesis performed: int,
uint, Tong, ulong. Thefirst typein thislist for which an implicit conversion existsis chosen. If
evaluation of an expression or the subsequent implicit conversion causes an exception, then no further
expressions are evaluated and no further steps are executed.

» The computed values for the dimension lengths are validated as follows. If one or more of the values are
lessthan zero, asystem.OverflowException isthrown and no further steps are executed.

* Anarray instance with the given dimension lengthsis allocated. If there is not enough memory available to
alocate the new instance, aSystem.outofMemoryException isthrown and no further steps are
executed.

« All elements of the new array instance are initialized to their default values (85.2).

» If thearray creation expression contains an array initializer, then each expression in the array initidizer is
evaluated and assigned to its corresponding array element. The evaluations and assignments are performed
in the order the expressions are written in the array initializer—in other words, elements areinitialized in
increasing index order, with the rightmost dimension increasing first. If evaluation of a given expression or
the subsequent assignment to the corresponding array element causes an exception, then no further elements
areinitialized (and the remaining elements will thus have their default values).

An array creation expression permits instantiation of an array with elements of an array type, but the elements of
such an array must be manually initialized. For example, the statement

int[][] a = new int[100][];

creates a single-dimensional array with 100 elements of type int[]. Theinitia value of each element isnul1.
It is not possible for the same array creation expression to aso instantiate the sub-arrays, and the statement

int[][] a = new int[100][5]; // Error
resultsin a compile-time error. Instantiation of the sub-arrays must instead be performed manually, asin

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 139

C#LANGUAGE SPECIFICATION

int[J[] a = new int[100][];
for (int i = 0; i < 100; i++) a[i] = new int[5];

When an array of arrays has a“rectangular” shape, that is when the sub-arrays are all of the same length, itis
more efficient to use a multi-dimensional array. In the example above, instantiation of the array of arrays creates
101 objects—one outer array and 100 sub-arrays. In contrast,

int[,] = new int[100, 5];
creates only a single object, atwo-dimensional array, and accomplishes the allocation in a single statement.

7.5.10.3 Delegate creation expressions
A delegate-creation-expression is used to create a new instance of a delegate-type.

del egate-creati on-expression:
new delegatetype (expresson)

The argument of a del egate creation expression must be a method group (7.1) or avalue of a delegate-type. If
the argument is a method group, it identifies the method and, for an instance method, the object for which to
create adelegate. If the argument is avalue of adelegate-type, it identifies a delegate instance of which to create
acopy.

The compile-time processing of a delegate-creation-expression of the form new D(E), where D is a delegate-
type and E is an expression, consists of the following steps:

* If Eisamethod group:

0 The set of methods identified by E must include exactly one method that is compatible (815.1) with D,
and this method becomes the one to which the newly created del egate refers. If no matching method
exigts, or if more than one matching method exists, a compile-time error occurs. If the sel ected method
is an instance method, the instance expression associated with E determines the target object of the
delegate.

0 Asinamethod invocation, the selected method must be compatible with the context of the method
group: If the method is a static method, the method group must have resulted from a simple-name or a
member-access through atype. If the method is an instance method, the method group must have
resulted from a simple-name or a member-access through a variable or value. If the selected method
does not match the context of the method group, a compile-time error occurs.

0 Theresultisavaue of type D, namely a newly created del egate that refers to the selected method and
target object.

» Otherwise, if E isavalue of adelegate-type:
0 D and E must be compatible (815.1); otherwise, a compile-time error occurs.

0 Theresultisavaue of type D, namely a newly created delegate that refers to the same invocation list as
E.

» Otherwise, the delegate creation expression isinvalid, and a compile-time error occurs.

The run-time processing of a delegate-creation-expression of the form new D(E), where D is a delegate-type
and E isan expression, consists of the following steps:

* If Eisamethod group:

o If the method selected at compile-time is a static method, the target object of the delegateisnul1.
Otherwise, the selected method is an instance method, and the target object of the delegate is determined
from the instance expression associated with E:

140 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

» Theinstance expression is evauated. If this evaluation causes an exception, no further steps are
executed.

» If theinstance expression is of areference-type, the value computed by the instance expression
becomes the target object. If thetarget object isnul11, asystem.Nul1ReferenceExceptionis
thrown and no further steps are executed.

» If theinstance expression is of a value-type, a boxing operation (84.3.1) is performed to convert the
value to an object, and this object becomes the target object.

0 A new instance of the delegate type D is allocated. If there is not enough memory available to allocate
the new instance, aSystem.outOofMemoryException isthrown and no further steps are executed.

0 Thenew delegate instance isinitialized with areference to the method that was determined at compile-
time and areference to the target object computed above.

* If Eisavaue of adelegate-type:
0 Eisevauated. If thisevaluation causes an exception, no further steps are executed.

o0 Ifthevalueof Eisnull, asystem.NullReferenceException isthrown and no further stepsare
executed.

0 A new instance of the delegate type D is allocated. If there is not enough memory available to alocate
the new instance, aSystem.outofMemoryException isthrown and no further steps are executed.

0 Thenew delegate instance isinitialized with references to the same invocation list as the delegate
instance given by E.

The method and object to which a delegate refers are determined when the delegate is instantiated and then
remain constant for the entire lifetime of the delegate. In other words, it is not possible to change the target
method or object of a delegate once it has been created. (When two delegates are combined or one is removed
from another, a new delegate results; no existing del egate has its content changed.)

It is not possible to create a del egate that refers to a property, indexer, user-defined operator, instance
constructor, destructor, or static constructor.

As described above, when adelegate is created from a method group, the formal parameter list and return type
of the delegate determine which of the overloaded methods to select. In the example

delegate double DoubleFunc(double x);
class A

DoubleFunc f = new DoubleFunc(Square);
static float square(float x) {
return x * X;

static double square(double x) {
return x * X;

}

theA. f field isinitialized with a delegate that refers to the second Square method because that method exactly
matches the formal parameter list and return type of boub1eFunc. Had the second square method not been
present, a compile-time error would have occurred.

7.5.11 The typeof operator
The typeof operator is used to obtain the System. Type object for atype.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 141

C#LANGUAGE SPECIFICATION

typeof-expression:
typeof (type)
typeof (void)

Thefirst form of typeof-expression consists of a typeof keyword followed by a parenthesized type. The result
of an expression of thisform isthe System.Type object for the indicated type. Thereisonly one
System.Type object for any given type.

The second form of typeof-expression consists of a typeof keyword followed by a parenthesized void
keyword. The result of thisformisaSystem. Type object that represents the lack of atype. The type object
returned is distinct from the type object returned for any type. This special type object is useful in class libraries
that allow reflection onto methods in the language, where those methods wish to have away to represent the
return type of any method, including void methods, with an instance of System. Type.

The example
using System;
class Test
static void Main() {

Type[] t = {
typeof(int),
typeof(System.Int32),
typeof(string),
typeof(doublel[]),
typeof(void)

s
for (int i = 0; 1 < t.Length; i++) {
console.writeLine(t[i].FullName);

}
}

produces the following output:

System.Int32
System.Int32
System.String
System.Double[]
System.void

Notethat int and System.Int32 arethe sametype.

7.5.12 The checked and unchecked operators
The checked and unchecked operators are used to control the overflow checking context for integral-type
arithmetic operations and conversions.
checked-expression:
checked (expression)

unchecked-expression:
unchecked (expression)

The checked operator evaluates the contained expression in a checked context, and the unchecked operator
evaluates the contained expression in an unchecked context. A checked-expression or unchecked-expression
corresponds exactly to a parenthesi zed-expression (87.5.3), except that the contained expression is evaluated in
the given overflow checking context.

The overflow checking context can also be controlled through the checked and unchecked statements (88.11).

142 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

The following operations are affected by the overflow checking context established by the checked and
unchecked operators and statements:

* The predefined ++ and -- unary operators (87.5.9 and 87.6.5), when the operand is of an integral type.
* The predefined - unary operator (87.6.2), when the operand is of an integral type.
* Thepredefined +, -, *, and / binary operators (87.7), when both operands are of integral types.

» Explicit numeric conversions (86.2.1) from one integral type to another integral type, and from float or
doubTe to an integral type.

When one of the above operations produce aresult that istoo large to represent in the destination type, the
context in which the operation is performed controls the resulting behavior:

* Inachecked context, if the operation is aconstant expression (87.15), a compile-time error occurs.
Otherwise, when the operation is performed at run-time, aSystem.oOverflowException isthrown.

* Inanunchecked context, the result istruncated by discarding any high-order bits that do not fit in the
destination type.

For non-constant expressions (expressions that are evaluated at run-time) that are not enclosed by any checked
or unchecked operators or statements, the default overflow checking context is unchecked unless externa
factors (such as compiler switches and execution environment configuration) call for checked evaluation.

For constant expressions (expressions that can be fully evaluated at compile-time), the default overflow
checking context is always checked. Unless a constant expression is explicitly placed in an unchecked
context, overflows that occur during the compile-time evaluation of the expression always cause compile-time
errors.

In the example
class Test
static readonly int x = 1000000;
static readonly int y = 1000000;
static int FQO {
return checked(x * y); // Throws overflowException

static int GO {
return unchecked(x * y); // Returns -727379968

static int HQO {
return x * y; // Depends on default

}

no compile-time errors are reported since neither of the expressions can be evaluated at compile-time. At run-
time, the F(O method throws asystem.overflowException, and the G() method returns —727379968 (the
lower 32 bits of the out-of-range result). The behavior of the H() method depends on the default overflow
checking context for the compilation, but it is either the same as F() or thesameasG().

In the example
class Test
const int x = 1000000;
const int y = 1000000;

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 143

C#LANGUAGE SPECIFICATION

static int FO {
return checked(x * y); // Compile error, overflow

static int GO {
return unchecked(x * y); // Returns -727379968

static int HO {)
return x * y; // Compile error, overflow

3

the overflows that occur when eval uating the constant expressionsin F() and H() cause compile-time errorsto
be reported because the expressions are evaluated in a checked context. An overflow also occurs when
evaluating the constant expression in G(), but since the evaluation takes place in an unchecked context, the
overflow is not reported.

The checked and unchecked operators only affect the overflow checking context for those operations that are
textually contained within the* (" and “)” tokens. The operators have no effect on function members that are
invoked as aresult of evaluating the contained expression. In the example

class Test

static int Multiply(int x, int y) {
return x * y;

static int FO {
return checked(Multiply(1000000, 1000000));

3

the use of checked in F does not affect the evaluation of x * y inMultiply(), sox * y isevauated in the
default overflow checking context.

The unchecked operator is convenient when writing constants of the signed integral typesin hexadecimal
notation. For example:

class Test

unchecked((int)OXFFFFFFFF) ;
unchecked ((int)0x80000000) ;

public const int Al1Bits
public const int HighBit

Both of the hexadecimal constants above are of type uint. Because the constants are outside the int range,
without the unchecked operator, the casts to int would produce compile-time errors.

The checked and unchecked operators and statements allow programmers to control certain aspects of some
numeric calculations. However, the behavior of some numeric operators depends on their operands’ data types.
For example, multiplying two decimals always results in an exception on overflow even within an explicitly
unchecked construct. Similarly, multiplying two floats never results in an exception on overflow even within
an explicitly checked construct. In addition, other operators are never affected by the mode of checking,
whether default or explicit. Asa service to programmers, it is recommended that the compiler issue awarning
when there is an arithmetic expression within an explicitly checked or unchecked context (by operator or
statement), that cannot possibly be affected by the specified mode of checking. Since such awarning is not
required, the compiler has flexibility in determining the circumstances that merit the issuance of such warnings.

7.6 Unary operators
The+, -, !, ~, *, ++, --, and cast operators are called the unary operators.

144 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

unary-expression:
primary-expression
+ Unary-expression
- unary-expression
! unary-expression
~ unary-expression
* unary-expression
pre-increment-expression
pre-decrement-expression
cast-expression

7.6.1 Unary plus operator

For an operation of the form +x, unary operator overload resolution (87.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the type
of the result is the return type of the operator. The predefined unary plus operators are:

int operator +(int x);

uint operator +(uint x);

long operator +(long x);

ulong operator +(ulong x);

float operator +(float x);

double operator +(double x);

decimal operator +(decimal x);

For each of these operators, the result is simply the value of the operand.

7.6.2 Unary minus operator

For an operation of the form -x, unary operator overload resolution (87.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the type
of the result isthe return type of the operator. The predefined negation operators are:

* Integer negation:

int operator -(int x);
Tong operator -(long x);

Theresult is computed by subtracting x from zero. In a checked context, if the value of x isthe maximum
negative int or Tong, asystem.overflowException isthrown. In an unchecked context, if the value
of x isthe maximum negative int or Tong, the result isthat same value and the overflow is not reported.

If the operand of the negation operator is of type uint, itis converted to type Tong, and the type of the
result is Tong. An exception istherule that permitsthe int value —2147483648 (—2*") to be written asa
decimal integer literal (§2.4.4.2).

If the operand of the negation operator is of type ulong, acompile-time error occurs. An exception isthe
rule that permitsthe Tong value —9223372036854775808 (—2%) to be written as decimal integer literal
(82.44.2).

* Hoating-point negation:

float operator -(float x);
double operator -(double x);

Theresult isthe value of x withitssign inverted. If x isNaN, the result isalso NaN.
* Decimal negation:
decimal operator -(decimal x);

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 145

C#LANGUAGE SPECIFICATION

Theresult is computed by subtracting x from zero. Decimal negation is equivalent to using the unary minus
operator of type System.Decimal.

7.6.3 Logical negation operator

For an operation of the form ! x, unary operator overload resolution (87.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the type
of the result isthe return type of the operator. Only one predefined logical negation operator exists:

bool operator !(bool x);

This operator computes the logical negation of the operand: If the operand is true, theresult is false. If the
operandis false, theresultis true.

7.6.4 Bitwise complement operator

For an operation of the form ~x, unary operator overload resolution (87.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the type
of the result isthe return type of the operator. The predefined bitwise complement operators are:

int operator ~(int x);
uint operator ~(uint x);
long operator ~(long x);
ulong operator ~(ulong x);

For each of these operators, the result of the operation is the bitwise complement of x.

Every enumeration type E implicitly provides the following bitwise complement operator:
E operator ~(E x);

Theresult of evaluating ~x, where x is an expression of an enumeration type E with an underlying type u, is
exactly the same as evaluating (E) (~(U)x).

7.6.5 Prefix increment and decrement operators

pre-increment-expression:
++ Unary-expression

pre-decrement-expression:
-- unary-expression

The operand of a prefix increment or decrement operation must be an expression classified asavariable, a
property access, or an indexer access. The result of the operation is a value of the same type as the operand.

If the operand of a prefix increment or decrement operation is a property or indexer access, the property or
indexer must have both aget and a set accessor. If thisis not the case, a compile-time error occurs.

Unary operator overload resolution (87.2.3) is applied to select a specific operator implementation. Predefined
++ and -- operators exist for the following types. sbyte, byte, short, ushort, int, uint, Tong, ulong,
char, float, double, decimal, and any enum type. The predefined ++ operators return the value produced
by adding 1 to the operand, and the predefined - - operators return the value produced by subtracting 1 from the
operand.

The run-time processing of a prefix increment or decrement operation of the form ++x or --x consists of the
following steps:

* If xisclassified asavariable:
0 x isevauated to produce the variable.

0 Theselected operator isinvoked with the value of x asits argument.

146 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

0 Thevalue returned by the operator is stored in the location given by the evaluation of x.
0 Thevalue returned by the operator becomes the result of the operation.
» If xisclassified as a property or indexer access:

0 Theinstance expression (if x isnot static) and the argument list (if x is anindexer access) associated
with x are evaluated, and the results are used in the subsequent get and set accessor invocations.

0 Theget accessor of x isinvoked.

0 The selected operator isinvoked with the value returned by the get accessor asits argument.

0 Theset accessor of x isinvoked with the value returned by the operator asits value argument.
0 Thevalue returned by the operator becomes the result of the operation.

The ++ and - - operators also support postfix notation, as described in §7.5.9. The result of x++ or x-- isthe
value of x before the operation, whereas the result of ++x or --x isthe value of x after the operation. In either
case, x itself has the same value after the operation.

Anoperator ++ or operator -- implementation can be invoked using either postfix or prefix notation. It is
not possible to have separate operator implementations for the two notations.

7.6.6 Cast expressions
A cast-expression is used to explicitly convert an expression to a given type.

cast-expression:
(type) unary-expression

A cast-expression of theform (T)E, where T isatype and E is a unary-expression, performs an explicit
conversion (86.2) of the value of E to type T. If no explicit conversion exists from the type of E to T, a compile-
time error occurs. Otherwise, the result is the value produced by the explicit conversion. The result is aways
classified asavalue, even if E denotes avariable.

The grammar for a cast-expression leads to certain syntactic ambiguities. For example, the expression (x) -y
could either be interpreted as a cast-expression (a cast of —y to type x) or as an additive-expression combined
with a parenthesized-expression (which computesthe value x - y).

To resolve cast-expression ambiguities, the following rule exists: A sequence of one or more tokens (82.4)
enclosed in parentheses is considered the start of a cast-expression only if at least one of the following are true:

» The segquence of tokensis correct grammar for atype, but not for an expression.

» The segquence of tokensis correct grammar for atype, and the token immediately following the closing
parenthesesisthe token “~", thetoken “ !, the token “ (", an identifier (82.4.1), aliteral (§2.4.4), or any
keyword (82.4.3) except as and is.

The term “correct grammar” above means only that the sequence of tokens must conform to the particular
grammatical production. It specifically does not consider the actual meaning of any congtituent identifiers. For
example, if x and y areidentifiers, then x .y is correct grammar for atype, even if x.y doesn't actually denote a

type.

From the disambiguation rule it follows that, if x and y are identifiers, (x)y, (x) (y), and (x) (-y) are cast-
expressions, but (x) -y isnot, even if x identifies atype. However, if x is akeyword that identifies a predefined
type (such asint), then al four forms are cast-expressions (because such a keyword could not possibly be an
expression by itself).

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 147

C#LANGUAGE SPECIFICATION

7.7 Arithmetic operators
The*, /, %, +, and - operators are called the arithmetic operators.

multiplicative-expression:
unary-expression
multiplicative-expression * unary-expression
multiplicative-expression / unary-expression
multiplicative-expression % unary-expression

additive-expression:
multiplicative-expression
additive-expresson + multiplicative-expression
additive-expresson - multiplicative-expression

7.7.1 Multiplication operator

For an operation of the form x * y, binary operator overload resolution (87.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result isthe return type of the operator.

The predefined multiplication operators are listed below. The operators al compute the product of x and y.

* Integer multiplication:

int operator *(int x, int y);

uint operator *(uint x, uint y);
long operator *(long x, long y);
ulong operator *(ulong x, ulong y);

Inachecked context, if the product is outside the range of the result type, a
System.overflowException isthrown. In an unchecked context, overflows are not reported and any
significant high-order bits outside the range of the result type are discarded.

* Foating-point multiplication:
float operator *(float x, float y);
double operator *(double x, double y);

The product is computed according to the rules of IEEE 754 arithmetic. The following table lists the results
of al possible combinations of nonzero finite values, zeros, infinities, and NaN’s. In the table, x and y are
positive finite values. z istheresult of x * y. If the result istoo large for the destination type, z isinfinity. If
the result istoo small for the destination type, z is zero.

+y -y +0 -0 +00 —00 NaN
+X +z -z +0 -0 +00 —00 NaN
-X -z +z -0 +0 —00 +00 NaN
+0 +0 -0 +0 -0 NaN NaN NaN
-0 -0 +0 -0 +0 NaN NaN NaN
+00 +00 —00 NaN NaN +00 —00 NaN
—00 —00 +00 NaN NaN —00 +00 NaN
NaN NaN NaN NaN NaN NaN NaN NaN

» Decimal multiplication:
decimal operator *(decimal x, decimal y);

148 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

If the resulting value istoo large to represent in the decimal format, asystem.overflowExceptionis
thrown. If the result value istoo small to represent in the decimal format, the result is zero. Decimal
multiplication is equivalent to using the multiplication operator of type System.Dbecimal.

7.7.2 Division operator

For an operation of the form x / y, binary operator overload resolution (87.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result isthe return type of the operator.

The predefined division operators are listed below. The operators all compute the quotient of x and y.
* Integer division:

int operator /(int x, int y);

uint operator /(uint x, uint y);
Tong operator /(long x, long y);
ulong operator /(ulong x, ulong y);

If the value of the right operand is zero, a System.D1ivideByzeroException isthrown.

The division rounds the result towards zero, and the absolute value of the result is the largest possible
integer that isless than the absol ute value of the quotient of the two operands. The result is zero or positive
when the two operands have the same sign and zero or negative when the two operands have opposite signs.

If the left operand is the maximum negative int or Tong value and the right operand is -1, an overflow
occursand aSystem.OverflowException isthrown.

* Hoating-point division:
float operator /(float x, float y);
double operator /(double x, double y);

The quotient is computed according to the rules of IEEE 754 arithmetic. The following table lists the results
of al possible combinations of nonzero finite values, zeros, infinities, and NaN’s. In the table, x and y are
positive finite values. z istheresult of x / y. If theresult istoo large for the destination type, z isinfinity. If
the result istoo small for the destination type, z is zero.

+y -y +0 -0 +00 —00 NaN
+X +z -z +00 —00 +0 -0 NaN
-X -z +z —00 +00 -0 +0 NaN
+0 +0 -0 NaN NaN +0 -0 NaN
-0 -0 +0 NaN NaN -0 +0 NaN
+00 +00 —00 +00 —00 NaN NaN NaN
—00 -0 +00 -0 +00 NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN

e Decima divison:
decimal operator /(decimal x, decimal y);

If the value of theright operand is zero, aSystem.DivideByzZeroException isthrown. If the resulting
valueistoo large to represent in the decimal format, a System.overflowException isthrown. If the
result valueistoo small to represent in the decimal format, the result is zero. Decimal divisionis
equivalent to using the division operator of type System.Decimal.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 149

C#LANGUAGE SPECIFICATION

7.7
For

.3 Remainder operator

an operation of the form x % y, binary operator overload resolution (87.2.4) is applied to select a specific

operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result isthe return type of the operator.

The predefined remainder operators are listed below. The operators all compute the remainder of the division
between x and y.

7.7.

For

Integer remainder:

int operator %(int x, int y);

uint operator %(uint x, uint y);
long operator %(long x, 1on? v);
ulong operator %(ulong x, ulong y);

Theresult of x % y isthe value produced by x - (x / y) * y. If y iszero, a
System.DivideByzeroException isthrown. The remainder operator never causes an overflow.

Floating-point remainder:

float operator %(float x, float y);
double operator %(double x, double y);

The following table lists the results of al possible combinations of nonzero finite values, zeros, infinities,
and NaN'’s. In thetable, x and y are positive finite values. z isthe result of x % y and iscomputed as x — n *
y, where n isthe largest possible integer that isless than or equal to x / y. This method of computing the
remainder is analogous to that used for integer operands, but differs from the IEEE 754 definition (in which
n istheinteger closestto x / y).

+y -y +0 -0 +00 —00 NaN
+X +z +z NaN NaN X X NaN
-X A -z NaN NaN -X -X NaN
+0 +0 +0 NaN NaN +0 +0 NaN
-0 -0 -0 NaN NaN -0 -0 NaN
+00 NaN NaN NaN NaN NaN NaN NaN
—00 NaN NaN NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Decimal remainder:
decimal operator %(decimal x, decimal y);

If the value of the right operand is zero, aSystem.DivideByzZeroException isthrown. If the resulting
valueistoo large to represent in the decimal format, a System.overflowException isthrown. If the
result valueistoo small to represent in the decimal format, the result is zero. Decimal remainder is
equivalent to using the remainder operator of type Decimal.

4 Addition operator
an operation of the form x + y, binary operator overload resolution (87.2.4) is applied to select a specific

operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result isthe return type of the operator.

150

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

The predefined addition operators are listed below. For numeric and enumeration types, the predefined addition
operators compute the sum of the two operands. When one or both operands are of type string, the predefined
addition operators concatenate the string representation of the operands.

* Integer addition:

int operator +(int x, int y);

uint operator +(uint x, uint y);
long operator +(long x, long y);
ulong operator +(ulong x, ulong y);

Inachecked context, if the sumis outside the range of the result type, aSystem.overflowException
isthrown. In an unchecked context, overflows are not reported and any significant high-order bits outside
the range of the result type are discarded.

* Foating-point addition:

float operator +(float x, float y);
double operator +(double x, double y);

The sum is computed according to the rules of |EEE 754 arithmetic. The following table lists the results of
all possible combinations of nonzero finite values, zeros, infinities, and NaN’s. In the table, x and y are
nonzero finite values, and z isthe result of x + y. If x and y have the same magnitude but opposite signs, z
is positive zero. If x + y istoo large to represent in the destination type, z is an infinity with the same sign as
x +y. If x + y istoo small to represent in the destination type, z isazero with the samesign as x + y.

y +0 -0 +00 —00 NaN

X z X X +00 —00 NaN

+0 y +0 +0 +00 —00 NaN
-0 y +0 -0 +00 —00 NaN
+00 +00 +00 +00 +00 NaN NaN
—00 —00 —00 —00 NaN —00 NaN
NaN NaN NaN NaN NaN NaN NaN

e Decima addition:
decimal operator +(decimal x, decimal y);

If the resulting value istoo large to represent in the decimal format, asystem.overflowExceptionis
thrown. Decimal addition is equivalent to using the addition operator of type System.Decimal.

» Enumeration addition. Every enumeration type implicitly provides the following predefined operators,
where E is the enum type, and U is the underlying type of E:

E operator +(E x, U y);
E operator +(U x, E y);

The operators are evaluated exactly as (E) ((U)x + (V)y).

e String concatenation:

string operator +(string x, string y);
string operator +(string x, object y);
string operator +(object x, string y);

The binary + operator performs string concatenation when one or both operands are of type string. If an
operand of string concatenation isnulT1, an empty string is substituted. Otherwise, any non-string argument

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 151

C#LANGUAGE SPECIFICATION

is converted to its string representation by invoking the virtual Tostring() method inherited from type
object. If ToString returnsnull, an empty string is substituted.
The example

using System;

class Test

static void Main() {
string s = null;
console.writeLine("s = >
int i = 1;

+ s + "<"); // displays s = ><

Conso]e.WFiteLine(“i =" + 1); // displays i =1
float f = 1.2300E+15F;
console.WriteLine("f = " + f); // displays f = 1.23E+15
decimal d = 2.900m;
) Console.writeLine("d = " + d); // displays d = 2.900
}
produces the output:
S = ><
i=1
f = 1.23E15
d = 2.900

Theresult of the string concatenation operator is a string that consists of the characters of the left operand
followed by the characters of the right operand. The string concatenation operator never returnsanull
value. A System.outOfMemoryException may bethrown if there is not enough memory available to
alocate the resulting string.

Delegate combination. Every delegate type implicitly provides the following predefined operator, whereD is
the delegate type:

D operator +(D x, D y);

The binary + operator performs del egate combination when both operands are of some delegate type D. (If
the operands have different delegate types, a compile-time error occurs.) If thefirst operandisnul1, the
result of the operation is the value of the second operand (even if that operand isaso nul1). Otherwise, if
the second operand is nu11, then the result of the operation isthe value of the first operand. Otherwise, the
result of the operation is a new delegate instance that, when invoked, invokes the first operand and then
invokes the second operand.

7.7.5 Subtraction operator

For an operation of the form x -y, binary operator overload resolution (87.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result isthe return type of the operator.

The predefined subtraction operators are listed below. The operators al subtract y from x.

152

Integer subtraction:

int operator -(int x, int y);

uint operator -(uint x, uint y);

long operator -(long x, long y);

ulong operator -(ulong x, ulong y);
Inachecked context, if the difference is outside the range of the result type, a
System.overflowException isthrown. In an unchecked context, overflows are not reported and any
significant high-order bits outside the range of the result type are discarded.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

Floating-point subtraction:

float operator -(float x, float y);
double operator -(double x, double y);

The difference is computed according to the rules of IEEE 754 arithmetic. The following tablelists the
results of all possible combinations of nonzero finite values, zeros, infinities, and NaN’s. In the table, x and
y are nonzero finite values, and z istheresult of x - y. If x and y are equal, z is positive zero. If x - y istoo
large to represent in the destination type, z isan infinity with the samesignas x - y. If x - y istoo small to
represent in the destination type, z is azero with the samesignas x - y.

y +0 -0 +00 —00 NaN

X z X X —00 +00 NaN
+0 -y +0 +0 —00 +00 NaN
-0 -y -0 +0 —00 +00 NaN
+00 +00 +00 +00 NaN +00 NaN
—00 —00 —00 —00 —00 NaN NaN
NaN NaN NaN NaN NaN NaN NaN

e Decimal subtraction:
decimal operator -(decimal x, decimal y);

If the resulting value istoo large to represent in the decimal format, asystem.overflowExceptionis
thrown. Decimal subtraction is equivalent to using the subtraction operator of type System.Decimal.

» Enumeration subtraction. Every enumeration type implicitly provides the following predefined operator,
where E is the enum type, and U is the underlying type of E:

U operator -(E X, E y);

This operator is evaluated exactly as (U) ((U)x - (U)y). In other words, the operator computes the
difference between the ordinal values of x and y, and the type of the result is the underlying type of the
enumeration.

E operator -(E x, U y);

This operator is evaluated exactly as (E) ((U)x - y). In other words, the operator subtracts a value from
the underlying type of the enumeration, yielding a value of the enumeration.

» Delegate removal. Every delegate type implicitly provides the following predefined operator, where D isthe
delegate type:

D operator -(D x, D y);

The binary - operator performs del egate removal when both operands are of a delegate type D. (If the
operands have different delegate types, a compile-time error occurs.) If the first operand isnu1T, the result
of the operation isnu11. Otherwisg, if the second operand is nu11, then the result of the operation isthe
value of thefirst operand. Otherwise, both operands represent invocation lists (§15.1) having one or more
entries, and the result is a new invocation list consisting of the first operand’ s list with the second operand’ s
entries removed fromit, provided the second operand’slist isa proper contiguous subset of the first’s.(For
determining subset equality, corresponding entries are compared as for the delegate equality operator.)
Otherwise, the result is the value of the left operand. Neither of the operands’ listsis changed in the process.
If the second operand’ s list matches multiple subsets of contiguous entriesin the first operand’s list, the
right-most matching subset of contiguous entries is removed. If removal resultsin an empty list, the result is
null.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 153

C#LANGUAGE SPECIFICATION

The example
delegate void D(int x);
class C
public static void M1(Cint i) { /* .. */ }
public static void M2(Cint i) { /* .. */ }
class Test
static void Main() {
D cdl = new D(C.M1);
D cd2 = new D(C.M2);
D cd3 = cdl + cd2 + cd2 + cdl; // ML + M2 + M2 + M1
cd3 -= cdl; // => M1 + M2 + M2
cd3 = cdl + cd2 + cd2 + cdi; // ML + M2 + M2 + M1
cd3 -= cdl + cd2; // => M2 + M1
cd3 = cdl + cd2 + cd2 + cdl; // ML + M2 + M2 + M1
cd3 -= cd2 + cd2; // => M1 + M1
cd3 = cdl + cd2 + cd2 + cdl; // ML + M2 + M2 + M1
cd3 -= cd2 + cdl; // => M1 + M2
cd3 = cdl + cd2 + cd2 + cdi; // ML + M2 + M2 + M1
cd3 -= cdl + cdl; // => M1l + M2 + M2 + M1

}
}

shows a variety of delegate subtractions.

7.8 Shift operators
The << and >> operators are used to perform bit shifting operations.
shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

For an operation of the form x << count or x >> count, binary operator overload resolution (87.2.4) is applied
to select a specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

When declaring an overloaded shift operator, the type of the first operand must always be the class or struct
containing the operator declaration, and the type of the second operand must always be int.

The predefined shift operators are listed below.

» Shift left

int operator <<(int x, int count);
uint operator <<(uint x, int count);
long operator <<(long x, int count);
ulong operator <<(ulong x, int count);

The << operator shifts x left by a number of bits computed as described below.

The high-order bits outside the range of the result type of x are discarded, the remaining bits are shifted left,
and the low-order empty bit positions are set to zero.

o Shift right:

154 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

int operator >>(int x, int count);
uint operator >>(uint x, int count);
long operator >>(long x, int count);
ulong operator >>(ulong x, int count);

The >> operator shifts x right by a number of bits computed as described below.

When x is of type int or Tong, the low-order bits of x are discarded, the remaining bits are shifted right,
and the high-order empty bit positions are set to zero if x is non-negative and set to oneif x is negative.

When x is of type uint or ulong, the low-order bits of x are discarded, the remaining bits are shifted right,
and the high-order empty bit positions are set to zero.

For the predefined operators, the number of bitsto shift is computed as follows:

* Whenthetype of x isint or uint, the shift count is given by the low-order five bits of count. In other
words, the shift count is computed from count & Ox1F.

* Whenthetypeof x is Tong or ulong, the shift count is given by the low-order six bits of count. In other
words, the shift count is computed from count & 0x3F.

If the resulting shift count is zero, the shift operators simply return the value of x.
Shift operations never cause overflows and produce the same resultsin checked and unchecked contexts.

When the | eft operand of the >> operator is of asigned integrd type, the operator performs an arithmetic shift
right wherein the value of the most significant bit (the sign bit) of the operand is propagated to the high-order
empty bit positions. When the left operand of the >> operator is of an unsigned integral type, the operator
performs alogical shift right wherein high-order empty bit positions are always set to zero. To perform the
opposite operation of that inferred from the operand type, explicit casts can be used. For example, if x isa
variable of type int, the operation unchecked ((int) (Cuint)x >>y)) performsalogical shift right of x.

7.9 Relational and type testing operators
The==, I=, <, >, <=, >=, is and as operators are called the relational and type testing operators.

relational -expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
relational-expression is type
relational-expression as type

equality-expression:
relational-expression

equality-expression == relational-expression
equality-expression != relational-expression

The is operator is described in 87.9.9 and the as operator is described in §7.9.10.

The==, I=, <, >, <= and >= operators are comparison operators. For an operation of the form x op y, where op
is a comparison operator, overload resolution (87.2.4) is applied to select a specific operator implementation.
The operands are converted to the parameter types of the selected operator, and the type of the result isthe
return type of the operator.

The predefined comparison operators are described in the following sections. All predefined comparison
operators return aresult of type boo1, as described in the following table.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 155

C#LANGUAGE SPECIFICATION

Operation | Result

X==y trueif x isequal toy, false otherwise

x!=y | trueif x isnot equal toy, false otherwise

X<y trueif x islessthany, false otherwise

X>y true if x isgreater than y, false otherwise

X<=y true if x islessthan or equal to y, false otherwise
X>=y true if x isgreater than or equal to y, false otherwise

7.9.1 Integer comparison operators
The predefined integer comparison operators are:

bool
bool
bool
bool

bool
bool
bool
bool

bool
bool
bool
bool

bool
bool
bool
bool

bool
bool
bool
bool

bool
bool
bool
bool

operator ==(int x, int y);
operator ==(uint x, uint y);
operator ==(long x, long vy);
operator ==(ulong x, ulong y);

operator !=(int x, int y);
operator !=(uint x, uint y);
operator !=(long x, long y);
operator !=(ulong x, ulong y);

operator <(int x, 1int y);
operator <(uint x, uint y);
operator <(long x, long y);
operator <(ulong x, ulong y);

operator >(int x, int y);
operator >(uint x, uint y);
operator >(long x, long y);
operator >(ulong x, ulong y);

operator <=(int x, int y);
operator <=(uint x, uint y);
operator <=(long x, long y);
operator <=(ulong x, ulong y);

operator >=(int x, int y);
operator >=(uint x, uint y);
operator >=(long x, long y);
operator >=(ulong x, ulong y);

Each of these operators compares the numeric values of the two integer operands and returns aboo value that
indicates whether the particular relation is true or false.

7.9.2 Floating-point comparison operators
The predefined floating-point comparison operators are:

156

bool
bool

bool
bool

bool
bool

bool
bool

operator ==(float x, float y);
operator ==(double x, double y);

operator !=(float x, float y);
operator !=(double x, double y);

operator <(float x, float y);
operator <(double x, double y);

operator >(float x, float y);
operator >(double x, double y);

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

bool operator <=(float x, float y);
bool operator <=(double x, double y);

bool operator >=(float x, float y);
bool operator >=(double x, double y);

The operators compare the operands according to the rules of the IEEE 754 standard:

» |If either operand is NaN, theresult is false for all operators except !=, for which theresult is true. For
any two operands, x !=y always produces the same result as ! (x == y). However, when one or both
operands are NaN, the <, >, <=, and >= operators do not produce the same results as the logical negation of
the opposite operator. For example, if either of x and y isNaN, then x <y isfalse, but ! (x >=y) istrue.

* When neither operand is NaN, the operators compare the values of the two floating-point operands with
respect to the ordering

-0 < -mMax < ... < -min < -0.0 == 40.0 < 4min < ... < 4+max < 4w

wheremin and max are the smallest and largest positive finite values that can be represented in the given
floating-point format. Notable effects of this ordering are:

0 Negative and positive zeros are considered equal .
0 A negativeinfinity isconsidered less than all other values, but equal to another negative infinity.

0 A positiveinfinity is considered greater than all other values, but equal to another positive infinity.

7.9.3 Decimal comparison op erators

The predefined decimal comparison operators are:
bool operator ==(decimal x, decimal y);
bool operator !=(decimal x, decimal y);
bool operator <(decimal x, decimal y);
bool operator >(decimal x, decimal y);
bool operator <=(decimal x, decimal y);
bool operator >=(decimal x, decimal y);

Each of these operators compare the numeric values of the two decimal operands and return aboo1 value that
indicates whether the particular relation is true or false. Each decimal comparison is equivalent to using the
corresponding relational or equality operator of type System.Decimal.

7.9.4 Boolean equality operators
The predefined boolean equality operators are:
bool operator ==(bool x, bool y);
bool operator !=(bool x, bool y);
Theresult of == istrue if both x and y are true or if both x and y are false. Otherwise, theresultis false.

Theresult of !=isfalse if both x and y are true or if both x and y are false. Otherwise, theresult is true.
When the operands are of type boo1, the ! = operator produces the same result asthe A operator.

7.9.5 Enumeration comparison operators

Every enumeration type implicitly provides the following predefined comparison operators:
bool operator ==(E x, E y);
bool operator !'=(E x, E y);

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 157

C#LANGUAGE SPECIFICATION

bool operator <(E x, E y);
bool operator >(E x, E y);
bool operator <=(E x, E y);
bool operator >=(E x, E y);

Theresult of evaluating x op y, where x and y are expressions of an enumeration type E with an underlying type
U, and op is one of the comparison operators, is exactly the same as evaluating ((U) x) op ((U)y). In other
words, the enumeration type comparison operators simply compare the underlying integral values of the two
operands.

7.9.6 Reference type equality operators
The predefined reference type equaity operators are:
bool operator ==(object x, object y);
bool operator !=(object x, object y);
The operators return the result of comparing the two references for equality or non-equality.

Since the predefined reference type equality operators accept operands of type object, they apply to al types
that do not declare applicable operator == and operator != members. Conversely, any applicable user-
defined equality operators effectively hide the predefined reference type equality operators.

The predefined reference type equality operators require the operands to be reference-type values or the value
nul1. Furthermore, they require that a standard implicit conversion (86.3.1) exists from the type of either
operand to the type of the other operand. Unless both of these conditions are true, a compile-time error occurs.
Notable implications of these rules are:

» Itisacompile-time error to use the predefined reference type equality operators to compare two references
that are known to be different at compile-time. For example, if the compile-time types of the operands are
two classtypes A and B, and if neither A nor B derives from the other, then it would be impossible for the
two operands to reference the same object. Thus, the operation is considered a compile-time error.

» The predefined reference type equality operators do not permit value type operands to be compared.
Therefore, unless a struct type declares its own equality operators, it is not possible to compare values of
that struct type.

* The predefined reference type equality operators never cause boxing operations to occur for their operands.
It would be meaningless to perform such boxing operations, since references to the newly allocated boxed
instances would necessarily differ from all other references.

For an operation of theform x ==y or x !=y, if any applicable operator == or operator != exists, the
operator overload resolution (87.2.4) rules will select that operator instead of the predefined reference type
equality operator. However, it is always possible to select the predefined reference type equality operator by
explicitly casting one or both of the operands to type object. The example

using System;
class Test

static void Main() {
string s = "Test";
string t = string. Copy(s),
Cconsole.writeLine(s ==

Console. Wr1teL1ne((obJect)s = t);
Console.writeLine(s == (object)t);
console.writeLine((object)s == (object)t);

158 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

produces the output

True

False
False
False

The s and t variablesrefer to two distinct string instances containing the same characters. The first
comparison outputs True because the predefined string equality operator (87.9.7) is selected when both
operands are of type string. The remaining comparisons all output False because the predefined reference
type equality operator is selected when one or both of the operands are of type object.

Note that the above technique is not meaningful for value types. The example
class Test

static void Main() {

int i = 123;
int j = 123;
System.Console.wWriteLine((object)i == (object)j);

}
outputs False because the casts create references to two separate instances of boxed int values.

7.9.7 String equality operators
The predefined string equality operators are:
bool operator ==(string x, string y);
bool operator !=(string x, string y);
Two string values are considered equal when one of the following is true:
* Bothvaluesarenull.

» Both values are non-null referencesto string instances that have identical lengths and identical charactersin
each character position.

The string equality operators compare string values rather than string references. When two separate string
instances contain the exact same sequence of characters, the values of the strings are equal, but the references
are different. As described in 87.9.6, the reference type equality operators can be used to compare string
references instead of string values.

7.9.8 Delegate equality operators

Every delegate type implicitly provides the following predefined comparison operators:
bool operator ==(System.Delegate x, System.Delegate y);
bool operator !=(System.Delegate x, System.Delegate y);

Two delegate instances are considered equal asfollows:
» If either of the delegate instancesisnul1, they are equal if and only if both are nul11.

» If either of the delegate instances has an invocation list (815.1) containing one entry, they are equal if and
only if the other also has an invocation list containing one entry, and either:

e both refer to the same static method, or

» bothrefer to the same non-static method on the same target object.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 159

C#LANGUAGE SPECIFICATION

» If either of the delegate instances has an invocation list containing two or more entries, those instances are
equal if and only if their invocation lists are the same length, and each entry in one’ sinvocation list is equal
to the corresponding entry, in order, in the other’ sinvocation list.

Note that delegates of different types can be considered equal by the above definition, aslong as they have the
same return type and parameter types.

7.9.9 The is operator

The is operator is used to dynamically check if the run-time type of an object is compatible with a given type.
Theresult of the operation e is T, where e isan expression and T is atype, is aboolean value indicating
whether e can successfully be converted to type T by areference conversion, a boxing conversion, or an
unboxing conversion. The operation is evaluated as follows:

* |If the compile-time type of e isthesame as T, or if animplicit reference conversion (86.1.4) or boxing
conversion (86.1.5) exists from the compile-time type of e to T:

o |If eisof areferencetype, the result of the operation is equivalent to evaluating e != null.
o If eisof avauetype, the result of the operationis true.

* Otherwise, if an explicit reference conversion (86.2.3) or unboxing conversion (86.2.4) exists from the
compile-time type of e to T, adynamic type check is performed:

o Ifthevalueof eisnull, theresultisfalse.

0 Otherwise, let R be the run-time type of the instance referenced by e. If R and T are the sametype, if Ris
areference type and an implicit reference conversion fromR to T exists, or if Risavaluetypeand T is
an interface type that isimplemented by R, theresultis true.

0 Otherwise, theresultis false.

» Otherwise, no reference or boxing conversion of e to type T is possible, and the result of the operation is
false.

Note that the is operator only considers reference conversions, boxing conversions, and unboxing conversions.
Other conversions, such as user defined conversions, are not considered by the is operator.

7.9.10 The as operator

The as operator is used to explicitly convert avalue to a given reference type using areference conversion or a
boxing conversion. Unlike a cast expression (87.6.6), the as operator never throws an exception. Instead, if the
indicated conversion is not possible, the resulting valueisnul1.

In an operation of theform e as T, e must be an expression and T must be areference type. The type of the
result is T, and the result is always classified as a value. The operation is evaluated as follows:

» If the compile-time type of e isthe same as T, the result is simply the value of e.

» Otherwise, if animplicit reference conversion (86.1.4) or boxing conversion (86.1.5) exists from the
compile-time type of eto T, this conversion is performed and becomes the result of the operation.

» Otherwiseg, if an explicit reference conversion (86.2.3) exists from the compile-timetypeof eto T, a
dynamic type check is performed:

0 If thevalueof eisnull, theresultisthe value nul1 with the compile-time type T.

0 Otherwise, let R be the run-time type of the instance referenced by e. If R and T are the sametype, if R iS
areference type and an implicit reference conversion fromR to T exists, or if R isavaluetypeand T is

160 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

an interface type that isimplemented by R, the result is the reference given by e with the compile-time
typeT.

0 Otherwise, theresult isthe value nul1 with the compile-time type T.
» Otherwise, theindicated conversion is never possible, and a compile-time error occurs.

Note that the as operator only performs reference conversions and boxing conversions. Other conversions, such
as user defined conversions, are not possible with the as operator and should instead be performed using cast
expressions.

7.10 Logical operators
Theg&, A, and | operators are called the logical operators.

and-expression:
equality-expression
and-expression & equality-expression

exclusive-or-expression:
and-expression
exclusive-or-expression A and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

For an operation of the form x op y, where op isone of thelogical operators, overload resolution (87.2.4) is
applied to select a specific operator implementation. The operands are converted to the parameter types of the
selected operator, and the type of the result is the return type of the operator.

The predefined logical operators are described in the following sections.

7.10.1 Integer logical operators
The predefined integer logical operators are:

int operator &(int x, int y);

uint operator &(uint x, uint y);
long operator &(long x, long y);
ulong operator &(ulong x, ulong y);

int operator |(int x, int y);

uint operator |(uint x, uint y);
long operator |(long x, 1on? v);
ulong operator |(ulong x, ulong y);

int operator A(int x, int y);

uint operator ACuint x, uint y);
Tong operator A(long x, long y);
ulong operator A(ulong x, ulong y);

The & operator computes the bitwise logical AND of the two operands, the | operator computes the bitwise
logical OR of the two operands, and the A operator computes the bitwise logical exclusive OR of the two
operands. No overflows are possible from these operations.

7.10.2 Enumeration logical operators
Every enumeration type E implicitly provides the following predefined logical operators:

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 161

C#LANGUAGE SPECIFICATION

E operator &(E x, E y);
E operator |(E x, E y);
E operator A(E x, E y);

Theresult of evaluating x op y, where x and y are expressions of an enumeration type E with an underlying type
U, and op isone of the logica operators, is exactly the same as evaluating (E) ((U) x op (U)y). In other words,
the enumeration type logical operators simply perform the logical operation on the underlying type of the two
operands.

7.10.3 Boolean logical operators
The predefined boolean logical operators are:
bool operator &(bool x, bool y);
bool operator |(bool x, bool y);
bool operator A(bool x, bool y);
Theresult of x & y is true if both x and y are true. Otherwise, theresult is false.
Theresult of x | yistrue if either x or y is true. Otherwise, theresult is false.

Theresult of x Ayistrueif xistrueandyisfalse,or xisfalse andy is true. Otherwise, theresult is
false. When the operands are of type boo', the A operator computes the same result as the ! = operator.

7.11 Conditional logical op erators

The&& and | | operators are called the conditional logical operators. They are also called the “ short-circuiting”
logical operators.
conditional-and-expression:
inclusive-or-expression
conditional-and-expression && inclusive-or-expression
conditional -or-expression:
conditional-and-expression
conditional-or-expression || conditional-and-expression

The&& and | | operators are conditional versions of the& and | operators:
* Theoperation x && y corresponds to the operation x & y, except that y is evaluated only if x istrue.
» Theoperation x | | y corresponds to the operation x | y, except that y is evaluated only if x is false.

An operation of theform x & & y or x | | y is processed by applying overload resolution (87.2.4) asif the
operation was written x & y or x | y. Then,

» If overload resolution fails to find a single best operator, or if overload resol ution selects one of the
predefined integer logical operators, a compile-time error occurs.

» Otherwise, if the selected operator is one of the predefined boolean logical operators (87.10.2), the operation
is processed as described in §7.11.1.

» Otherwise, the selected operator is a user-defined operator, and the operation is processed as described in
§7.11.2.

It is not possible to directly overload the conditional logical operators. However, because the conditional logical
operators are evaluated in terms of the regular logical operators, overloads of the regular logical operators are,
with certain restrictions, also considered overloads of the conditional logical operators. Thisis described further
in§7.11.2.

162 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

7.11.1 Boolean conditional logical operators

When the operands of & or | | are of type boo1, or when the operands are of types that do not define an
applicable operator & or operator |, but do defineimplicit conversionsto booT, the operation is processed
asfollows:

* Theoperation x & y isevaluated as x? y: false. In other words, x isfirst evaluated and converted to type
bool. Then, if x istrue, y isevaluated and converted to type boo1, and this becomes the result of the
operation. Otherwise, the result of the operationis false.

 Theoperationx | | yisevaluated asx? true: y. In other words, x isfirst evaluated and converted to type
bool. Then, if x is true, the result of the operation is true. Otherwise, y is evaluated and converted to
type boo1, and this becomes the result of the operation.

7.11.2 User-defined conditional logical operators

When the operands of && or | | are of types that declare an applicable user-defined operator & or operator
|, both of the following must be true, where T is the type in which the selected operator is declared:

* Thereturn type and the type of each parameter of the selected operator must be T. In other words, the
operator must compute the logical AND or the logical OR of two operands of type T, and must return aresult
of typeT.

e T must contain declarations of operator true and operator false.

A compile-time error occursif either of these requirementsis not satisfied. Otherwise, the && or | | operationis
evaluated by combining the user-defined operator true or operator false with the selected user-defined
operator:

* Theoperation x && y isevaluated asT.false(x)? x: T.&(x, y), whereT.false(x) isaninvocation of
the operator false declaredin T, and T.&(x, y) isan invocation of the selected operator &. In other
words, x isfirst evaluated and operator false isinvoked on the result to determineif x is definitely
false. Then, if x is definitely false, the result of the operation is the value previously computed for x.
Otherwise, y is evaluated, and the selected operator & isinvoked on the value previously computed for x
and the value computed for y to produce the result of the operation.

» Theoperationx | | yisevaluatedasT.true(x)? x: T. | (x, y), whereT. true(x) isan invocation of
theoperator true declared in T, and T. | (x, y) isaninvocation of the selected operator |. In other
words, x isfirst evaluated and operator true isinvoked on the result to determine if x is definitely true.
Then, if x is definitely true, the result of the operation is the value previousy computed for x. Otherwise, y
is evaluated, and the selected operator | isinvoked on the value previously computed for x and the value
computed for y to produce the result of the operation.

In either of these operations, the expression given by x isonly evaluated once, and the expression given by y is
either not evaluated or evaluated exactly once.

For an example of atype that implements operator true and operator false, see §11.4.2.

7.12 Conditional operator
The ?: operator is caled the conditional operator. It isat times also called the ternary operator.

conditional-expression:
conditional-or-expression
conditional-or-expression ? expresson : expression

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 163

C#LANGUAGE SPECIFICATION

A conditional expression of theformb? x: y first evaluates the condition b. Then, if b is true, x is evaluated
and becomes the result of the operation. Otherwise, y is evaluated and becomes the result of the operation. A
conditional expression never evaluates both x and y.

The conditional operator is right-associative, meaning that operations are grouped from right to left. For
example, an expression of theforma? b: c? d: eisevauatedasa? b: (c? d: e).

Thefirst operand of the 7 : operator must be an expression of atype that can be implicitly converted to booT, or
an expression of atype that implements operator true. If neither requirement is satisfied, acompile-time
error occurs.

The second and third operands of the ?: operator control the type of the conditional expression. Let X and Y be
the types of the second and third operands. Then,

« If X and Y are the sametype, then thisis the type of the conditional expression.

» Otherwise, if animplicit conversion (86.1) exists from X to Y, but not from v to X, then Y isthe type of the
conditional expression.

* Otherwise, if animplicit conversion (86.1) exists from Y to X, but not from X to v, then X isthe type of the
conditional expression.

» Otherwise, no expression type can be determined, and a compile-time error occurs.
The run-time processing of a conditional expression of theformb? x: y consists of the following steps:
» First, b isevauated, and the booT value of b is determined:

o If animplicit conversion from the type of b to boo1 exists, then thisimplicit conversion is performed to
produce abooT value.

0 Otherwise, theoperator true defined by the type of b isinvoked to produce abool value.

» If thebool value produced by the step aboveis true, then x is evaluated and converted to the type of the
conditional expression, and this becomes the result of the conditional expression.

» Otherwise, y isevaluated and converted to the type of the conditional expression, and this becomes the
result of the conditional expression.

7.13 Assignment operators
The assignment operators assign anew value to avariable, a property, an event, or an indexer element.
assignment:
unary-expression assignment-operator expression
assignment-operator: one of

The left operand of an assignment must be an expression classified as a variable, a property access, an indexer
access, or an event access.

The = operator is called the simple assignment operator. It assigns the value of the right operand to the variable,
property, or indexer element given by the |eft operand. The |eft operand of the simple assignment operator may
not be an event access (except as described in §10.7.1). The simple assignment operator is described in §7.13.1.

The operators formed by prefixing a binary operator with an = character are called the compound assignment
operators. These operators perform the indicated operation on the two operands, and then assign the resulting
value to the variable, property, or indexer element given by the left operand. The compound assignment
operators are described in §7.13.2.

164 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

The += and -= operators with an event access expression as the |eft operand are called the event assignment
operators. No other assignment operator is valid with an event access as the |eft operand. The event assignment
operators are described in 87.13.3.

The assignment operators are right-associ ative, meaning that operations are grouped from right to left. For
example, an expression of theforma =b = cisevaluated asa = (b =).

7.13.1 Simple assignment

The = operator is called the simple assignment operator. In a simple ass gnment, the right operand must be an
expression of atype that isimplicitly convertible to the type of the left operand. The operation assigns the value
of the right operand to the variable, property, or indexer element given by the left operand.

Theresult of asmple assignment expression is the value assigned to the left operand. The result has the same
type as the left operand and is always classified asavalue.

If the left operand is a property or indexer access, the property or indexer must have a set accessor. If thisis not
the case, a compile-time error occurs.

The run-time processing of a simple assignment of the form x = y consists of the following steps:
* If xisclassfied asavariable:
0 x isevauated to produce the variable.
0 vy isevauated and, if required, converted to the type of x through an implicit conversion (86.1).

o If thevariable given by x isan array element of areference-type, arun-time check is performed to
ensure that the value computed for y is compatible with the array instance of which x is an element. The
check succeedsif y isnul11, or if animplicit reference conversion (86.1.4) exists from the actual type of
the instance referenced by y to the actual element type of the array instance containing x. Otherwise, a
System.ArrayTypeMismatchException isthrown.

0 Thevalue resulting from the evaluation and conversion of y is stored into the location given by the
evaluation of x.

» If xisclassified asaproperty or indexer access:

0 Theinstance expression (if x isnot static) and the argument list (if x is anindexer access) associated
with x are evaluated, and the results are used in the subsequent set accessor invocation.

0 vy isevauated and, if required, converted to the type of x through an implicit conversion (86.1).
0 Theset accessor of x isinvoked with the value computed for y asits value argument.

The array co-variance rules (812.5) permit avalue of an array type A[] to be areference to an instance of an
array type B[], provided an implicit reference conversion exists from B to A. Because of these rules, assignment
to an array element of areference-type requires arun-time check to ensure that the value being assigned is
compatible with the array instance. In the example

string[] sa = new string[10];

object[] oa = sa;

oal[0] = null; // ok

oa[l] = "Hello"; // Ok

oal[2] = new ArrayList(); // ArrayTypeMismatchException

the last assignment causesa System.ArrayTypeMismatchException to be thrown because an instance of
ArrayList cannot be stored in an element of astring[].

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 165

C#LANGUAGE SPECIFICATION

When a property or indexer declared in a struct-type is the target of an assignment, the instance expression
associated with the property or indexer access must be classified as avariable. If the instance expressionis
classified as a value, a compile-time error occurs. Because of §87.5.4, the same rule also appliesto fields.

Given the declarations;
struct Point

int x, y;

public Point(int x, int y) {
this.x = X;
this.y = vy;

public int X {
get { return x; }
set { x = value; }

public int Y {
get { return y; }
set { y = value; }

}

struct Rectangle

Point a, b;

public Rectang1e(Point a, Point b) {
this.a = a;
this.b = b;

pubTlic Point A {
get { return a; }
set { a = value; }

public Point B {
get { return b; }
set { b = value; }

}
in the example

Point p = new Point();

p.X = 100;

p.Y = 100;

Rectangle r = new Rectangle();

r A = new Point(10, 10);

= p;

the assignmentstop.X, p.Y, r.A, and r.B are permitted because p and r are variables. However, in the
example

ectangle r = new Rectangle();
10;
10;
100;

100;
theassignmentsareall invalid, since r.A and r. B are not variables.

nunnne

33535 %X
mw>>n

a
X
Y
X
Y

166 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes |

7.13.2 Compound assignment

An operation of the form x op=y is processed by applying binary operator overload resolution (87.2.4) asif the
operation was written x op y. Then,

» If thereturn type of the selected operator isimplicitly convertible to the type of x, the operation is evaluated
asx = x opy, except that x is evaluated only once.

* Otherwise, if the selected operator is a predefined operator, if the return type of the selected operator is
explicitly convertible to the type of x, and if y isimplicitly convertible to the type of x, then the operation is
evaluated as x = (T) (x op y), where T isthe type of x, except that x is evaluated only once.

» Otherwise, the compound assignment isinvalid, and a compile-time error occurs.

Theterm “evaluated only once” means that in the evaluation of x op y, the results of any constituent expressions
of x are temporarily saved and then reused when performing the assignment to x. For example, in the
assignment AQ [B()] +=c(), where A isamethod returning int[], and B and C are methods returning int,
the methods are invoked only once, inthe order A, B, C.

When the | eft operand of a compound assignment is a property access or indexer access, the property or indexer
must have both a get accessor and a set accessor. If thisis not the case, a compile-time error occurs.

The second rule above permits x op=y to be evaluated as x = (T) (x op y) in certain contexts. The rule exists
such that the predefined operators can be used as compound operators when the left operand is of type sbyte,
byte, short, ushort, or char. Even when both arguments are of one of those types, the predefined operators
produce aresult of type int, as described in 87.2.6.2. Thus, without a cast it would not be possible to assign the
result to the left operand.

The intuitive effect of the rule for predefined operatorsis simply that x op=y is permitted if both of x op y and
x =y are permitted. In the example

byte b = 0;

char ch = "\0';

int i = 0;

b += 1; // ok

b += 1000; // Error, b = 1000 not permitted
b += 1; // Error, b = i not permitted

b += (byte)i; // Ok

ch += // Error, ch = 1 not permitted

1;
ch += (char)1; // Ok
the intuitive reason for each error is that a corresponding simple assignment would a so have been an error.

7.13.3 Event assignment

If the left operand of a+= or -= operator is classified as an event access, then the expression is evaluated as
follows:

» Theinstance expression, if any, of the event accessis evaluated.

» Theright operand of the += or -= operator is evaluated, and, if required, converted to the type of the left
operand through an implicit conversion (86.1).

* Anevent accessor of the event isinvoked, with argument list consisting of the right operand, after
evaluation and, if necessary, conversion. If the operator was +=, the add accessor isinvoked; if the operator
was -=, the remove accessor is invoked.

An event assignment expression does not yield avalue. Thus, an event assignment expression isvalid only in
the context of a statement-expression (88.6).

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 167

C#LANGUAGE SPECIFICATION

7.14 Expression
An expression is either a conditional-expression or an assignment.

expression:
conditional -expression
assignment

7.15 Constant expressions
A constant-expression is an expression that can be fully evaluated at compile-time.

constant-expression:
expression

The type of aconstant expression can be one of the following: sbyte, byte, short, ushort, int, uint,
Tong, ulong, char, float, double, decimal, bool, string, any enumeration type, or the null type. The
following constructs are permitted in constant expressions:

» Literas(including the nul1 litera).

* Referencesto const members of class and struct types.

* Referencesto members of enumeration types.

* Parenthesized sub-expressions, which are themselves constant expressions.
» Cast expressions, provided the target type is one of the types listed above.
* Thepredefined +, -, !, and ~ unary operators.

* Thepredefined +, -, *, /, %, <<,>>, &, |, A, &&, | |, ==, !=, <, >, <=, and >= binary operators, provided
each operand is of atype listed above.

* The?: conditiona operator.

Whenever an expression is of one of the types listed above and contains only the constructs listed above, the
expression is evaluated at compile-time. Thisistrue even if the expression is a sub-expression of alarger
expression that contains non-constant constructs.

The compile-time evaluation of constant expressions uses the same rules as run-time eval uation of non-constant
expressions, except that where run-time eval uation would have thrown an exception, compile-time evaluation
causes a compile-time error to occur.

Unless a constant expression is explicitly placed in an unchecked context, overflows that occur in integral-type
arithmetic operations and conversions during the compile-time evaluation of the expression aways cause
compile-time errors (§7.5.12).

Constant expressions occur in the contexts listed below. In these contexts, a compile-time error occursif an
expression cannot be fully evaluated at compile-time.

e Constant declarations (810.3).

e Enumeration member declarations (§14.3).

e case labelsof aswitch statement (88.7.2).

e goto case statements (88.9.3).

» Dimension lengthsin an array creation expression (87.5.10.2) that includes an initializer.
e Attributes (817).

168 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 747 ExpressionsAttributes

An implicit constant expression conversion (86.1.6) permits a constant expression of type int to be converted
to sbyte, byte, short, ushort, uint, or ulong, provided the value of the constant expression iswithin the
range of the destination type.

7.16 Boolean expressions
A boolean-expression is an expression that yields a result of type boo1.

bool ean-expression:
expression

The controlling conditiona expression of an if-statement (88.7.1), while-statement (88.8.1), do-statement
(88.8.2), or for-statement (88.8.3) is a boolean-expression. The controlling conditional expression of the ?:
operator (87.12) follows the same rules as a boolean-expression, but for reasons of operator precedenceis
classified as a conditional-or-expression.

A boolean-expression is required to be of atype that can be implicitly converted to boo1 or of atype that
implements operator true. If neither requirement is satisfied, a compile-time error occurs.

When a boolean expression is of atype that cannot be implicitly converted to boo but does implement
operator true, then following evaluation of the expression, the operator true implementation provided by
that typeisinvoked to produce abool value.

TheDbBBoo1 struct typein 811.4.2 provides an example of atype that implements operator true and
operator false.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 169

Chapter 817 StatementsAttributes |

8. Statements

C# provides avariety of statements. Most of these statements will be familiar to devel opers who have
programmed in C and C++.

statement:
| abel ed-statement
declaration-statement
embedded-statement

embedded-statement:
block
empty-statement
expressi on-statement
sel ection-statement
iteration-statement
jump-statement
try-statement
checked-statement
unchecked-statement
| ock-statement
using-statement

The embedded-statement nonterminal is used for statements that appear within other statements. The use of
embedded-statement rather than statement excludes the use of declaration statements and labeled statementsin
these contexts. For example, the code
void F(bool b) {
if (b)
) int 1 = 44;

results in a compile-time error because an 1 f statement requires an embedded-statement rather than a statement
for itsif branch. If this code were permitted, then the variable i would be declared, but it could never be used.

8.1 End points and reachability

Every statement has an end point. In intuitive terms, the end point of a statement is the location that
immediately follows the statement. The execution rules for composite statements (statements that contain
embedded statements) specify the action that is taken when control reaches the end point of an embedded
statement. For example, when control reaches the end point of a statement in ablock, control is transferred to
the next statement in the block.

If a statement can possibly be reached by execution, the statement is said to be reachable. Conversaly, if thereis
no possibility that a statement will be executed, the statement is said to be unreachable.

In the example

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 171

C#LANGUAGE SPECIFICATION

void FQO {
console.writeLine("reachable");
goto Label;
console.writeLine("unreachable");
Label:
console.writeLine("reachable");

}

the second invocation of Console.writeLine isunreachable because there is no possibility that the statement
will be executed.

A warning is reported if the compiler determines that a statement is unreachable. It is specifically not an error
for a statement to be unreachable.

To determine whether a particular statement or end point is reachable, the compiler performs flow analysis
according to the reachahility rules defined for each statement. The flow analysis takes into account the values of
constant expressions (87.15) that control the behavior of statements, but the possible values of non-constant
expressions are not considered. In other words, for purposes of control flow analysis, a non-constant expression
of agiven type is considered to have any possible value of that type.

In the example
void FQ {
const int i = 1;
if (i == 2) console.writeLine("unreachable");

the boolean expression of the i f statement is a constant expression because both operands of the == operator are

constants. As the constant expression is evaluated at compile-time, producing the value false, the

Console.WriteLine invocation is considered unreachable. However, if i is changed to be alocal variable
void FQ) {

int i = 1;
if (i == 2) Console.writeLine("reachable");

the Console.writeL1ine invocation is considered reachable, even though it will in reality never be executed.

The block of afunction member is aways considered reachable. By successively evaluating the reachability
rules of each statement in a block, the reachability of any given statement can be determined.

In the example
void F(int x) {
console.wWriteLine("start");
if (x < 0) Console.WriteLine("negative");
the reachability of the second Console.writeLine isdetermined asfollows:

* Thefirst Console.WriteLine expresson statement is reachable because the block of the F method is
reachable.

» Theend point of the first Console.wr1iteLine expression statement is reachable because that statement is
reachable.

* Theif statement is reachable because the end point of the first Console.wr1iteLine expression statement
isreachable.

* Thesecond Console.writeLine expression statement is reachable because the boolean expression of the
if statement does not have the constant value false.

There are two situations in which it is a compile-time error for the end point of a statement to be reachable:

172 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 817 StatementsAtiributes

» Becausethe switch statement does not permit a switch section to “fal through” to the next switch section,
itisacompile-time error for the end point of the statement list of a switch section to be reachable. If this
error occurs, it istypically an indication that abreak statement is missing.

* Itisacompile-time error for the end point of the block of afunction member that computes avalue to be
reachable. If this error occurs, it istypically an indication that a return statement is missing.

8.2 Blocks
A block permits multiple statements to be written in contexts where a single statement is allowed.

block:
{ statement-listo }

A block consists of an optional statement-list (88.2.1), enclosed in braces. If the statement list is omitted, the
block is said to be empty.

A block may contain declaration statements (88.5). The scope of alocal variable or constant declared in a block
is the block.

Within a block, the meaning of a name used in an expression context must always be the same (87.5.2.1).
A block is executed as follows:
» If theblock isempty, control is transferred to the end point of the block.

» If theblock is not empty, control istransferred to the statement list. When and if control reaches the end
point of the statement list, contral is transferred to the end point of the block.

The statement list of ablock is reachable if the block itself is reachable.
The end point of ablock isreachableif the block is empty or if the end point of the statement list is reachable.

8.2.1 Statement lists

A statement list consists of one or more statements written in sequence. Statement lists occur in blocks (88.2)
and in switch-blocks (88.7.2).

statement-list:
Sstatement
statement-list statement

A statement list is executed by transferring control to the first statement. When and if control reaches the end
point of a statement, control istransferred to the next statement. When and if control reaches the end point of the
last statement, control istransferred to the end point of the statement list.

A statement in a statement list isreachableif at least one of the following is true:

* Thestatement isthe first statement and the statement list itself is reachable.

» Theend point of the preceding statement is reachable.

» Thestatement is alabeled statement and the label is referenced by areachable goto statement.

The end point of astatement list is reachable if the end point of the last statement inthelist is reachable.

8.3 The empty statement
An empty-statement does nothing.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 173

C#LANGUAGE SPECIFICATION

empty-statement:

An empty statement is used when there are no operations to perform in a context where a statement is required.

Execution of an empty statement simply transfers control to the end point of the statement. Thus, the end point
of an empty statement is reachable if the empty statement is reachable.

An empty statement can be used when writing awh1i Te statement with a null body:
bool ProcessMessage() {...}

void ProcessMessages() {
whiTle (ProcessMessage())

}

Also, an empty statement can be used to declare alabel just before the closing “3}” of a block:
void FQO {

if (done) goto exit;

exit: ;

8.4 Labeled statements

A labeled-statement permits a statement to be prefixed by alabel. Labeled statements are permitted in blocks,
but are not permitted as embedded statements.

| abel ed-statement:
identifier : statement

A labeled statement declares alabel with the name given by the identifier. The scope of alabel isthe block in
which the label is declared, including any nested blocks. It is acompile-time error for two labels with the same
name to have overlapping scopes.

A label can be referenced from goto statements (88.9.3) within the scope of the [abel. This meansthat goto
statements can transfer control within blocks and out of blocks, but never into blocks.

Labels have their own declaration space and do not interfere with other identifiers. The example

int F(int x) {
if (x >= 0) goto x;
X = -X;
X: return x;

isvalid and uses the name x as both a parameter and alabel.

Execution of alabeled statement corresponds exactly to execution of the statement following the label.

In addition to the reachability provided by normal flow of control, alabeled statement is reachable if thelabel is
referenced by areachable goto statement. (Exception: If agoto statement isinside a try that includes a
finally block, and the labeled statement is outside the try, and the end point of the finally block is
unreachable, then the label ed statement is not reachable from that goto statement.)

8.5 Declaration statements

A declaration-statement declares alocal variable or constant. Declaration statements are permitted in blocks, but
are not permitted as embedded statements.

174 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 817 StatementsAtiributes

declaration-statement:
|ocal-variable-declaration ;
|ocal-constant-declaration ;

8.5.1 Local variable declarations
A local-variable-declaration declares one or more local variables.

local-variable-declaration:
type local- variable-declarators

|ocal-variable-declarators:
|ocal-variable-declarator
|local-variable-declarators , local-variable-declarator

local-variable-declarator:
identifier
identifier = local-variable-initializer
local-variable-initializer:
expression
array-initializer
Thetype of alocal-variable-declaration specifies the type of the variablesintroduced by the declaration. The
typeisfollowed by alist of local-variable-declarators, each of which introduces a new variable. A local-

variable-declarator consists of an identifier that names the variable, optionally followed by an “=" token and a
local-variable-initializer that givestheinitial value of the variable.

Thevalue of alocal variable is obtained in an expression using a simple-name (87.5.2), and the value of alocal
variable is modified using an assignment (87.13). A local variable must be definitely assigned (85.3) at each
location where its value is obtained.

The scope of alocal variable declared in alocal-variable-declaration is the block in which the declaration
occurs. It isacompile-time error to refer to alocal variable in atextual position that precedes the local-variable-
declarator of the local variable. Within the scope of alocal variable, it isa compile-time error to declare another
local variable or constant with the same name.

A loca variable declaration that declares multiple variables is equivalent to multiple declarations of single
variables with the same type. Furthermore, a variable initializer in alocal variable declaration corresponds
exactly to an assignment statement that is inserted immediately after the declaration.

The example

void FQO {
intx=1, y, z = x * 2;

corresponds exactly to

void FQO {
int x; x = 1;
int y;
int z; z X * 2;

}

8.5.2 Local constant declarations
A local-constant-declaration declares one or more local constants.

local -constant-declaration:
const type constant-declarators

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 175

C#LANGUAGE SPECIFICATION

constant-declarators:
constant-declarator
constant-declarators , constant-declarator

constant-declarator:
identifier = constant-expression

The type of alocal-constant-declaration specifies the type of the constants introduced by the declaration. The
typeisfollowed by alist of constant-declarators, each of which introduces a new constant. A constant-
declarator consists of an identifier that names the constant, followed by an “=" token, followed by a constant-
expression (87.15) that gives the value of the constant.

The type and constant-expression of alocal constant declaration must follow the same rules as those of a
constant member declaration (8§10.3).

The value of alocal constant is obtained in an expression using a simple-name (87.5.2).

The scope of alocal constant isthe block in which the declaration occurs. It is a compile-time error to refer to a
local constant in atextual position that precedes its constant-declarator. Within the scope of alocal constant, it
isacompile-time error to declare another local variable or constant with the same name.

A loca constant declaration that declares multiple constants is equivalent to multiple declarations of single
constants with the same type.

8.6 Expression statements

An expression-statement evaluates a given expression. The value computed by the expression, if any, is
discarded.

expression-statement:
statement-expression ;

statement-expression:
invocati on-expression
obj ect-creation-expression
assignment
post-increment-expression
post-decr ement-expression
pre-increment-expression
pre-decrement-expression

Not all expressions are permitted as statement-expressions. In particular, expressionssuch asx + y and x ==
that merely compute a value (which will be discarded), are not permitted as statement-expressions.

Execution of an expression-statement eval uates the contai ned statement-expression and then transfers control to
the end point of the expression-statement. The end point of an expression-statement is reachable if that
expression-statement is reachable.

8.7 Selection statements

Selection statements select one of a number of possible statements for execution based on the value of an
expression.

sel ection-statement:
if-statement
switch-statement

176 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 817 StatementsAtiributes

8.7.1 The if statement
The i f statement selects a statement for execution based on the value of a boolean expression.

if-statement:
if (boolean-expression) embedded-statement
if (boolean-expression) embedded-statement else embedded-statement

bool ean-expression:
expression

An else part isassociated with the lexically nearest preceding 1 f statement that is allowed by the syntax. Thus,
an i f statement of the form

if (X)) if (y) FQ; else GQ;
isequivalent to

if (X)) {
it (y) {
FO;
else {
GQ;
h

An if statement is executed as follows:
* Theboolean-expression (87.16) is evaluated.

» |f the boolean expression yields true, control is transferred to the first embedded statement. When and if
control reaches the end point of that statement, control istransferred to the end point of the i f statement.

» If the boolean expression yields false and if an else part is present, control is transferred to the second
embedded statement. When and if control reaches the end point of that statement, control is transferred to
the end point of the i f statement.

» |If the boolean expression yields false and if an eTse part is not present, control is transferred to the end
point of the i f statement.

Thefirst embedded statement of an i f statement is reachable if the i f statement is reachable and the boolean
expression does not have the constant value false.

The second embedded statement of an i f statement, if present, is reachable if the i f statement is reachable and
the boolean expression does not have the constant value true.

The end point of an i f statement is reachable if the end point of at least one of its embedded statementsis
reachable. In addition, the end point of an i f statement with no e1se part is reachable if the i f statement is
reachable and the boolean expression does not have the constant value true.

8.7.2 The switch statement

The switch statement selects for execution a statement list having an associated switch label that correspondsto
the value of the switch expression.

switch-statement:
switch (expresson) switch-block

switch-block:
{ switch-sectionsy, }

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 177

C#LANGUAGE SPECIFICATION

switch-sections:
switch-section
switch-sections switch-section

switch-section:
switch-labels statement-list

switch-labels;
switch-label
switch-labels switch-label
switch-label:
case constant-expression
default

A switch-statement consists of the keyword sw1i tch, followed by a parenthesi zed expression (called the switch
expression), followed by a switch-block. The switch-block consists of zero or more switch-sections, enclosed in
braces. Each switch-section consists of one or more switch-labels followed by a statement-list (88.2.1).

The governing type of a switch statement is established by the switch expression. If the type of the switch
expressionis sbyte, byte, short, ushort, int, uint, Tong, ulong, char, string, or an enum-type, then
that isthe governing type of the swi tch statement. Otherwise, exactly one user-defined implicit conversion
(86.4) must exist from the type of the switch expression to one of the following possible governing types:
sbyte, byte, short, ushort, int, uint, Tong, ulong, char, string. If no such implicit conversion exists,
or if more than one such implicit conversion exists, a compile-time error occurs.

The constant expression of each case label must denote a value of atype that isimplicitly convertible (86.1) to
the governing type of the switch statement. A compile-time error occursif two or more case labelsin the
same swi tch statement specify the same constant value.

There can be a most one default label in aswitch statement.
A switch statement is executed as follows:
» The switch expression is evaluated and converted to the governing type.

» If one of the constants specified in a case label in the same swi tch statement is equal to the value of the
switch expression, control istransferred to the statement list following the matched case label.

* If none of the constants specified in case labelsin the same swi tch statement, is equal to the value of the
switch expression, and if adefault label is present, control istransferred to the statement list following the
default label.

» If none of the constants specified in case labelsin the same swi tch statement, is equal to the value of the
switch expression, and if no default label is present, control is transferred to the end point of the switch
statement.

If the end point of the statement list of a switch section is reachable, a compile-time error occurs. Thisis known
asthe “no fal through” rule. The example

178 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 817 StatementsAtiributes

switch (i) {

case O:
Casezero(Q);
break;

case 1:
CaseoOne();
break;

default:
CaseOthers();
break;

isvalid because no switch section has areachable end point. Unlike C and C++, execution of a switch sectionis
not permitted to “fall through” to the next switch section, and the example

switch (i) {
case 0:
Casezero(Q);
case 1:
Ccasezeroorone();
default:
CaseAny();

results in a compile-time error. When execution of aswitch sectionisto be followed by execution of another
switch section, an explicit goto case or goto default statement must be used:

switch (i) {
case O:
Casezero(Q);
goto case 1;
case 1:
Casezeroorone();
goto default;
default:
CaseAny();
break;

Multiple labels are permitted in a switch-section. The example

switch (i) {
case 0:
Casezero(Q);
break;
case 1:
Caseone();
break;
case 2:
default:
CaseTwo();
break;

isvalid. The example does not violate the “no fall through” rule because the labels case 2: and default: are
part of the same switch-section.

The“no fal through” rule prevents a common class of bugs that occur in C and C++ when break statements
are accidentally omitted. Also, because of thisrule, the switch sections of a switch statement can be arbitrarily
rearranged without affecting the behavior of the statement. For example, the sections of the switch statement
above can be reversed without affecting the behavior of the statement:

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 179

C#LANGUAGE SPECIFICATION

switch (i) {
default:
CaseAny();
break;
case 1:
Casezeroorone();
goto default;
case O:
Casezero(Q);
goto case 1;

The statement list of aswitch section typically endsin abreak, goto case, or goto default statement, but
any construct that renders the end point of the statement list unreachable is permitted. For example, awhiTe
statement controlled by the boolean expression true is known to never reach its end point. Likewise, a throw
or return statement always transfers control el sewhere and never reaches its end point. Thus, the following
exampleisvalid:

switch (i) {
case 0:
while (true) FQ;
case 1:
throw new ArgumentException();
case 2:
return;

The governing type of a switch statement may be the type string. For example:

void DoCommand(string command) {
switch (command.ToLower()) {
case "run":
DoRun();
break;
case "save'":
DoSave();
break;
case "quit":
poQuit(Q);
break;
default:
Invalidcommand(command) ;
break;
b
3

Like the string equality operators (87.9.7), the swi tch statement is case sensitive and will execute a given
switch section only if the switch expression string exactly matches a case label constant.

When the governing type of a switch statement is string, thevalue nu11 is permitted as a case |abel
constant.

The statement-lists of a switch-block may contain declaration statements (88.5). The scope of alocal variable or
constant declared in a switch block is the switch block.

Within a switch block, the meaning of a name used in an expression context must always be the same (§7.5.2.1).

The statement list of a given switch section is reachable if the switch statement is reachable and at |east one of
thefollowing istrue:

» The switch expression is a non-constant val ue.

* Theswitch expression isa constant value that matches a case label in the switch section.

180 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 817 StatementsAtiributes

» Theswitch expression is a constant value that doesn’t match any case label, and the switch section contains
the default labdl.

* A switch label of the switch section isreferenced by areachable goto case or goto default statement.
The end point of aswitch statement isreachable if at |east one of the following istrue;
* The switch statement contains areachable break statement that exitsthe switch statement.

* Theswitch statement isreachable, the switch expression is a non-constant value, and no default label is
present.

» The switch statement is reachable, the switch expression is a constant value that doesn’t match any case
label, and no default labdl is present.

8.8 Iteration statements
Iteration statements repeatedly execute an embedded statement.

iteration-statement:
while-statement
do-statement
for-statement
foreach-statement

8.8.1 The while statement
Thewh1iTe statement conditionally executes an embedded statement zero or more times.

while-statement:
while (boolean-expresson) embedded-statement

A while statement is executed as follows:
* Theboolean-expression (87.16) is evaluated.

» |If the boolean expression yields true, control is transferred to the embedded statement. When and if control
reaches the end point of the embedded statement (possibly from execution of a continue statement),
control istransferred to the beginning of thewhi Te statement.

» If the boolean expression yields false, control istransferred to the end point of thewh1i1e statement.

Within the embedded statement of awhi 1e statement, abreak statement (88.9.1) may be used to transfer
control to the end point of thewh1i Te statement (thus ending iteration of the embedded statement), and a
continue statement (88.9.2) may be used to transfer control to the end point of the embedded statement (thus
performing another iteration of thewh1i Te statement).

The embedded statement of awh1i1e statement isreachableif thewhi1e statement is reachable and the boolean
expression does not have the congtant value false.

The end point of awh1iTe statement is reachable if at |east one of the following is true:
* ThewhiTe statement contains areachable break statement that exits the whi1e statement.

* Thewhile statement isreachable and the boolean expression does not have the constant value true.

8.8.2 The do statement
The do statement conditionally executes an embedded statement one or more times.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 181

C#LANGUAGE SPECIFICATION

do-statement:
do embedded-statement while (boolean-expression) ;

A do statement is executed as follows:
e Control istransferred to the embedded statement.

» When and if control reaches the end point of the embedded statement (possibly from execution of a
continue statement), the boolean-expression (87.16) is evaluated. If the boolean expression yields true,
control istransferred to the beginning of the do statement. Otherwise, control is transferred to the end point
of the do statement.

Within the embedded statement of a do statement, abreak statement (88.9.1) may be used to transfer control to
the end point of the do statement (thus ending iteration of the embedded statement), and a continue statement
(88.9.2) may be used to transfer control to the end point of the embedded statement (thus performing another
iteration of the do statement).

The embedded statement of a do statement is reachable if the do statement is reachable.
The end point of ado statement isreachableif at least one of the following istrue:
* Thedo statement contains areachable break statement that exitsthe do statement.

* Theend point of the embedded statement is reachabl e and the boolean expression does not have the constant
value true.

8.8.3 The for statement

The for statement eval uates a sequence of initialization expressions and then, while a condition is true,
repeatedly executes an embedded statement and evaluates a sequence of iteration expressions.

for-statement:
for (for-initializeroy ; for-conditionyy ; for-iteratoryy) embedded-statement
for-initializer:
local-variable-declaration
statement-expression-list
for-condition:
boolean-expression
for-iterator:
statement-expression-list
statement-expression-list:
statement-expression
statement-expression-list , statement-expression
Thefor-initializer, if present, consists of either alocal-variable-declaration (88.5.1) or alist of statement-
expressions (88.6) separated by commas. The scope of alocal variable declared by afor-initializer starts at the

local-variable-declarator for the variable and extends to the end of the embedded statement. The scope includes
the for-condition and the for-iterator.

The for-condition, if present, must be a boolean-expression (87.16).
Thefor-iterator, if present, consists of alist of statement-expressions (88.6) separated by commas.
A for statement is executed as follows:

» If afor-initializer is present, the variable initializers or statement expressions are executed in the order they
are written. This step is only performed once.

182 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 817 StatementsAtiributes

» If afor-conditionis present, it is evaluated.

» If thefor-condition is not present or if the evaluation yields true, control istransferred to the embedded
statement. When and if control reaches the end point of the embedded statement (possibly from execution of
acontinue statement), the expressions of the for-iterator, if any, are evaluated in sequence, and then
another iteration is performed, starting with evaluation of the for-condition in the step above.

» If thefor-condition is present and the evaluation yields false, control istransferred to the end point of the
for statement.

Within the embedded statement of a for statement, abreak statement (88.9.1) may be used to transfer control
to the end point of the for statement (thus ending iteration of the embedded statement), and a continue
statement (88.9.2) may be used to transfer control to the end point of the embedded statement (thus executing
another iteration of the for statement).

The embedded statement of a for statement is reachable if one of the following istrue:

* The for statement is reachable and no for-condition is present.

» The for statement is reachable and afor-condition is present and does not have the constant value false.
The end point of a for statement isreachableif at least one of the following istrue:

* The for statement contains areachable break statement that exits the for statement.

* The for statement is reachable and a for-condition is present and does not have the constant value true.

8.8.4 The foreach statement

The foreach statement enumerates the el ements of a collection, executing an embedded statement for each
element of the collection.

foreach-statement:
foreach (type identifier in expresson) embedded-statement

The type and identifier of a foreach statement declare the iteration variable of the statement. The iteration
variable corresponds to aread-only local variable with a scope that extends over the embedded statement.
During execution of a foreach statement, the iteration variabl e represents the coll ection element for which an
iteration is currently being performed. A compile-time error occurs if the embedded statement attempts to
modifythe iteration variable (viaassignment or the ++ and -- operators) or pass theiteration variable asa ref
or out parameter.

The type of the expression of a foreach statement must be a collection type (as defined below), and an explicit
conversion (86.2) must exist from the element type of the collection to the type of the iteration variable.

A type C issaid to be a callection type if it implements the System. IEnumerable interface or implements the
collection pattern by meeting al of the following criteria:

e Ccontainsapublic instance method with the signature GetEnumerator () that returns a struct-type,
class-type, or interface-type, whichis called E in the following text.

e E containsapublic instance method with the signature MoveNext () and the return type boo1.

e E containsapublic instance property named Current that permits reading the current value. The type of
this property is said to be the el ement type of the collection type.

The system.Array type (812.1.1) isacollection type, and since all array types derive from System.Array,
any array type expression is permitted in a foreach statement. The order in which foreach traversesthe
elements of an array is defined as follows. The elements of single-dimensional arrays are traversed in increasing
index order, starting with index 0 and ending with index Length - 1. The elements of multi-dimensional

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 183

C#LANGUAGE SPECIFICATION

arrays elements are traversed such that the indices of the rightmost dimension are increased first, then the next
left dimension, and so on to the left.

A foreach statement is executed as follows;

» Thecollection expression is evaluated to produce an instance of the collection type. Thisinstanceis referred
to as c inthefollowing. If c isof areference-type and hasthevalue nul1, a
System.Nul1ReferenceException isthrown.

» |f the collection type C implements the collection pattern defined above and E implements the
System.IDisposable interface then:

0 Anenumerator instanceis obtained by evaluating the method invocation c .GetEnumerator (). The
returned enumerator is stored in atemporary local variable, in the following referred to as enumerator.
It is not possible for the embedded statement to access this temporary variable. If enumerator isof a
reference-type and hasthe value nu11, aSystem.NulT1ReferenceException isthrown.

0 A try-statement (88.10) consisting of atry block followed by a finalTy block is executed:
* Thetry block consists of the execution of the core iteration steps, as described below.

* Thefinally block disposes the enumerator by converting enumerator to
System.IDisposable and calling the Dispose method. Because E implements
Sytsem.ID1isposable, the conversion is guaranteed to succeed.

» Otherwise, if the collection type C implements the collection pattern defined above and E does not
implement the System. IDisposable interface then:

0 Anenumerator instanceis obtained by evaluating the method invocation c.GetEnumerator (). The
returned enumerator is stored in atemporary local variable, in the following referred to as enumerator.
It is not possible for the embedded statement to access this temporary variable. If enumerator isof a
reference-type and hasthevalue nu11, asystem.Nul1ReferenceException isthrown.

0 The core execution steps are executed, as described bel ow.
* Otherwise, Cimplements System.IEnumerabTle, and statement execution proceeds as follows:

0 Anenumerableinstance is obtained by casting c to the System.IEnumerable interface. The returned
instance is stored in atemporary local variable, in the following referred to as enumerable. It isnot
possible for the embedded statement to access thistemporary variable.

0 Anenumerator instance is obtained by evaluating the method invocation
enumerable.GetEnumerator (). Thereturned enumerator is stored in atemporary local variable, in
the following referred to as enumerator. It isnot possible for the embedded statement to access this
temporary variable. If enumerator hasthevaluenull, asystem.NulTReferenceExceptionis
thrown.

0 A try-statement (88.10) consisting of atry block followed by a finalTy block is executed:
* Thetry block consists of the execution of the core iteration steps, as described below.
* Thefinally block consists of the following steps:

0 Evauatethe expression (enumerator as System.IDisposable) and storetheresultina
temporary local variable, in the following referred to asdisposabTe.

0 If disposable isnon-null then call its Dispose method.

The embedded statement of a foreach statement is reachableif the foreach statement isreachable. Likewise,
the end point of a foreach statement is reachable if the foreach statement isreachable.

184 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 817 StatementsAtiributes

The core iteration steps, which are referred to above, are asfollows:

» Theenumerator is advanced to the next element by evaluating the method invocation
enumerator.mMoveNext().

* |If thevalue returned by enumerator.MoveNext () is true, the following steps are performed:

0 Thecurrent enumerator value is obtained by eval uating the property access enumerator.Current,
and the value is converted to the type of the iteration variable by an explicit conversion (86.2). The
resulting value is stored in the iteration variable such that it can be accessed in the embedded statement.

0 Control istransferred to the embedded statement. When and if control reaches the end point of the
embedded statement (possibly from execution of a continue statement), another foreach iteration is
performed, starting with the step above that advances the enumerator.

» If thevaluereturned by e.MoveNext () is false, control istransferred to the end point of the foreach
statement.
The following example prints out each value in atwo-dimensiona array, in element order:
class Test

static void Main() {
double[,] values = { {1.2, 2.3, 3.4, 4.5}
{5.6, 6.7, 7.8, 8.9}

foreach (double elementvalue in values)
console.write("{0} ", elementvalue);

console.writeLine();

1

3

Theoutput is:
1.2 2.3 3.44.55.66.77.838.9

8.9 Jump statements
Jump statements unconditionally transfer control.

jump-statement:
break-statement
continue-statement
goto-statement
retur n-statement
throw-statement

The location to which ajump statement transfers control is called the target of the jump statement.

When ajump statement occurs within a block, and when the target of the jump statement is outside that block,
the jump statement is said to exit the block. While ajump statement may transfer control out of ablock, it can
never transfer control into a block.

Execution of jump statements is complicated by the presence of intervening try statements. In the absence of
such try statements, ajump statement unconditionally transfers control from the jump statement to itstarget. In
the presence of such intervening try statements, execution is more complex. If the jump statement exits one or
more try blocks with associated finally blocks, control isinitially transferred to the finalTy block of the
innermost try statement. When and if control reaches the end point of a finalTy block, control istransferred
to the finally block of the next enclosing try statement. This processis repeated until the final1y blocks of
al intervening try statements have been executed.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 185

C#LANGUAGE SPECIFICATION

In the example
class Test

static void Main() {
while (true) {

try {
console.writeLine("Before break");
break;

3
finally {
console.WriteLine("Innermost finally block™);

3
finally {
console.writeLine("outermost finally block");

console.writeLine("After break");

}
}

the finally blocks associated with two try statements are executed before control is transferred to the target of the
jump statement.

The exampl e produces the outpuit:

Before break

Innermost finally block
outermost finally block
After break

8.9.1 The break statement
The break statement exits the nearest enclosing switch, while, do, for, or foreach statement.

break-statement;
break ;

Thetarget of abreak statement isthe end point of the nearest enclosing switch, while, do, for, or foreach
statement. If abreak statement is not enclosed by a switch, while, do, for, or foreach statement, a
compile-time error occurs.

When multiple switch, while, do, for, or foreach statements are nested within each other, abreak
statement applies only to the innermost statement. To transfer control across multiple nesting levels, agoto
statement (88.9.3) must be used.

A break statement cannot exit a finally block (88.10). When abreak statement occurswithinafinally
block, the target of the break statement must be within the same final1y block. Otherwise, a compile-time
€rror occurs.

A break statement is executed as follows;

* If thebreak statement exits one or more try blocks with associated finally blocks, control isinitially
transferred to the final1y block of theinnermost try statement. When and if control reaches the end point
of afinally block, control istransferred to the finally block of the next enclosing try statement. This
processis repeated until the finalTy blocks of all intervening try statements have been executed.

» Control istransferred to the target of the break statement.

Because abreak statement unconditionally transfers control elsewhere, the end point of abreak statement is
never reachable.

186 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 817 StatementsAtiributes

8.9.2 The continue statement
The continue statement starts a new iteration of the nearest enclosing while, do, for, or foreach statement.

continue-statement:
continue ;

Thetarget of a continue statement isthe end point of the embedded statement of the nearest enclosing while,
do, for, or foreach statement. If a continue statement is not enclosed by awhile, do, for, or foreach
statement, a compile-time error occurs.

When multiplewhile, do, for, or foreach statements are nested within each other, a continue statement
applies only to the innermost statement. To transfer control across multiple nesting levels, agoto statement
(88.9.3) must be used.

A continue statement cannot exit a finally block (88.10). When a continue statement occurs within a
finally block, the target of the continue statement must be within the same finally block. Otherwise a
compile-time error occurs.

A continue statement is executed as follows;

» If the continue statement exits one or more try blocks with associated finally blocks, control is
initially transferred to the final1y block of the innermost try statement. When and if control reaches the
end point of a finally block, control is transferred to the finalTy block of the next enclosing try
statement. This processis repeated until the finally blocks of all intervening try statements have been
executed.

e Control istransferred to the target of the continue statement.

Because a continue statement unconditionally transfers control el sewhere, the end point of a continue
statement is never reachable.

8.9.3 The goto statement
The goto statement transfers control to a statement that is marked by alabel.

goto-statement:
goto identifier ;
goto case constant-expression ;
goto default ;

Thetarget of agoto identifier statement is the labeled statement with the given label. If alabel with the given
name does not exist in the current function member, or if the goto statement is not within the scope of the label,
acompile-time error occurs. Thisrule permitsthe use of agoto statement to transfer control out of a nested
scope, but not into a nested scope. In the example

class Test

static void Main(string[] args) {
string[,] table = { {"red", "blue", "green"},
{"Monday", "wednesday", "Friday"} };

foreach (string str in args) {
int row, colm;
for (row = 0; row <= 1; ++row) {
for (colm = 0; colm <= 2; ++colm) {
if (str == table[row,colm]) {
goto done;

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 187

C#LANGUAGE SPECIFICATION

console.writeLine("{0} not found", str);
continue;
done:
console.writeLine("Found {0} at [{1}][{2}]", str, row, colm);

}
}agoto statement is used to transfer control out of a nested scope.

Thetarget of agoto case statement isthe statement list in the immediately enclosing switch statement
(88.7.2) which contains a case label with the given constant value. If the goto case statement is not enclosed
by a switch statement, if the constant-expression is not implicitly convertible (86.1) to the governing type of
the nearest enclosing switch statement, or if the nearest enclosing switch statement does not contain a case
label with the given constant value, a compile-time error occurs.

Thetarget of agoto default statement isthe statement list in the immediately enclosing switch statement
(88.7.2) which contains adefault label. If the goto default statement is not enclosed by a swi tch statement,
or if the nearest enclosing sw1itch statement does not contain adefault label, acompile-time error occurs.

A goto statement cannot exit a finalTy block (88.10). When a goto statement occurs withina finally
block, the target of the goto statement must be within the same final 1y block, or otherwise a compile-time
error occurs.

A goto statement is executed as follows:

» If the goto statement exits one or more try blocks with associated finally blocks, control isinitialy
transferred to the final1y block of theinnermost try statement. When and if control reaches the end point
of afinally block, control istransferred to the finalTy block of the next enclosing try statement. This
processis repeated until the finalTy blocks of all intervening try statements have been executed.

e Control istransferred to the target of the goto statement.

Because agoto statement unconditionally transfers control elsewhere, the end point of agoto statement is
never reachable.

8.9.4 The return statement
The return statement returns control to the caller of the function member in which the return statement
appears.
return-statement:
return expressiony ;

A return statement with no expression can be used only in afunction member that does not compute a value,
that is, amethod with the return type void, the set accessor of a property or indexer, the add and remove
accessors of an event, an instance constructor, a destructor or a static constructor.

A return statement with an expression can be used only in afunction member that computes avalue, that is, a
method with a non-void return type, the get accessor of a property or indexer, or a user-defined operator. An
implicit conversion (86.1) must exist from the type of the expression to the return type of the containing
function member.

It is acompile-time error for a return statement to appear ina finally block (88.10).
A return statement is executed as follows:

* |If the return statement specifies an expression, the expression is evaluated and the resulting value is
converted to the return type of the containing function member by an implicit conversion. The result of the
conversion becomes the value returned to the caller.

188 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 817 StatementsAtiributes

» If the return statement is enclosed by one or more try blocks with associated final1y blocks, control is
initially transferred to the final1y block of the innermost try statement. When and if control reaches the
end point of a finally block, control istransferred to the finalTy block of the next enclosing try
statement. This processis repeated until the finally blocks of al enclosing try statements have been
executed.

e Control isreturned to the caller of the containing function member.

Because a return statement unconditionally transfers control elsewhere, the end point of a return statement
is never reachable.

8.9.5 The throw statement
The throw statement throws an exception.

throw-statement:
throw expressiony ;

A throw statement with an expression throws the val ue produced by eval uating the expression. The expression
must denote a value of the classtype System.Exception or of aclass type that derives from
System.Exception. If evaluation of the expression producesnul1, aSystem.NulT1ReferenceException
is thrown instead.

A throw statement with no expression can be used only in a catch block, in which case it re-throws the
exception that is currently being handled by the catch block.

Because a throw statement unconditionally transfers control elsewhere, the end point of a throw statement is
never reachable.

When an exception is thrown, control istransferred to the first catch clause in an enclosing try statement that
can handle the exception. The process that takes place from the point of the exception being thrown to the point
of transferring control to a suitable exception handler is known as exception propagation. Propagation of an
exception consists of repeatedly evaluating the following steps until a catch clause that matches the exception
isfound. In this description, the throw point isinitialy the location at which the exception is thrown.

* Inthe current function member, each try statement that encloses the throw point is examined. For each
statement s, starting with the innermost try statement and ending with the outermost try statement, the
following steps are evaluated:

o Ifthetry block of s enclosesthe throw point and if S has one or more catch clauses, the catch
clauses are examined in order of appearance to locate a suitable handler for the exception. The first
catch clause that specifies the exception type or a base type of the exception typeis considered a
match. A general catch clause (88.10) is considered amatch for any exception type. If a matching
catch clauseislocated, the exception propagation is completed by transferring control to the block of
that catch clause.

0 Otherwise, if the try block or acatch block of s encloses the throw point and if s hasa finally
block, control istransferred to the final1y block. If the final1y block throws another exception,
processing of the current exception is terminated. Otherwise, when control reaches the end point of the
finally block, processing of the current exception is continued.

» If an exception handler was not located in the current function member invocation, the function member
invocation isterminated. The steps above are then repeated for the caller of the function member with a
throw point corresponding to the statement from which the function member was invoked.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 189

C#LANGUAGE SPECIFICATION

» If the exception processing terminates al function member invocations in the current thread, indicating that
the thread has no handler for the exception, then the thread isitself terminated. The impact of such
termination is implementati on-defined.

8.10 The try statement

The try statement provides a mechanism for catching exceptions that occur during execution of ablock. The
try statement furthermore provides the ability to specify ablock of code that is always executed when control
leavesthe try statement.

try-statement:
try block catch-clauses
try block finally-clause
try block catch-clauses finally-clause

catch-clauses:
specific-catch-clauses general-catch-clauseqy
specific-catch-clauses,: general-catch-clause

specific-catch-clauses:
specific-catch-clause
specific-catch-clauses specific-catch-clause

specific-catch-clause:
catch (classtype identifiero:) block

general-catch-clause:
catch block

finally-clause:
finally block

There are three possible forms of try statements:

» A try block followed by one or more catch blocks.

* A try block followed by a finalTy block.

* A try block followed by one or more catch blocks followed by a finally block.

When a catch clause specifies a class-type, the type must be System. Exception or atype that derives from
System.Exception.

When a catch clause specifies both a class-type and an identifier, an exception variable of the given name and
typeis declared. The exception variable correspondsto alocal variable with a scope that extends over the
catch block. During execution of the catch block, the exception variable represents the exception currently
being handled. For the purpose of definite assignment checking, the exception variable is considered definitely
assigned in its entire scope.

Unlessa catch clause includes an exception variable hame, it isimpossible to access the exception object in the
catch block.

A catch clause that specifies neither an exception type nor an exception variable name is called a general
catch clause. A try statement can only have one general catch clause, and if oneis present it must be the last
catch clause.

Though the throw statement is restricted to throwing exceptions of type System.Exception or atype that
derivesfrom System. Exception, other languages are not bound by thisrule, and so may throw exceptions of

190 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 817 StatementsAtiributes

other types. A genera catch clause can be used to catch such exceptions, and a throw statement with no
expression can be used to re-throw them.

In order to locate a handler for an exception, catch clauses are examined in lexical order. A compile-time error
occursif acatch clause specifies atype that is the same as or derived from atype that was specified in an
earlier catch clause for the same try. Without this restriction it would be possible to write unreachable catch
clauses.

Within acatch block, a throw statement (88.9.5) with no expression can be used to re-throw the exception that
was caught by the catch block. Assignments to an exception variable do not alter the exception that isre-
thrown.

In the example
class Test

static void FO {
try {
GQ;

catch (Exception e) {
Console.writeLine("Exception in F:
e = new Exception("F");
throw; // re-throw

+ e.Message);

}

static void () {
throw new Exception("G");

static void Main() {
try {
FO;

catch (Exception e) {]]]
Cconsole.WriteLine("Exception in Main:

+ e.Message);

}
}

the method F catches an exception, writes some diagnostic information to the console, alters the exception
variable, and re-throws the exception. The exception that is re-thrown is the original exception, so the output
producedis:

Exception in F: G
Exception in Main: G

If the first catch block had thrown e instead of rethrowing the current exception, the output produced is would
be asfollows:

Exception in F: G
Exception in Main: F

It isacompile-time error for abreak, continue, or goto statement to transfer control out of afinally
block. When abreak, continue, or goto statement occursin a finalTy block, the target of the statement
must be within the same final1y block, or otherwise a compile-time error occurs.

Itisacompile-time error for a return statement to occur inafinally block.
A try statement is executed as follows:

» Control istransferred to the try block.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 191

C#LANGUAGE SPECIFICATION

* When and if control reaches the end point of the try block:
o If the try statement hasa finally block, the finally block is executed.
0 Control istransferred to the end point of the try statement.
» |If an exception is propagated to the try statement during execution of the try block:

0 Thecatch clauses, if any, are examined in order of appearance to locate a suitable handler for the
exception. Thefirst catch clause that specifies the exception type or a base type of the exception type
is considered a match. A general catch clauseis considered a match for any exception type. If a
matching catch clauseislocated:

» If the matching catch clause declares an exception variable, the exception object is assigned to the
exception variable.

e Control istransferred to the matching catch block.

* When and if control reaches the end point of the catch block:
o If the try statement hasafinally block, the finally block is executed.
0 Control istransferred to the end point of the try statement.

» |If an exception is propagated to the try statement during execution of the catch block:
o If the try statement hasafinally block, the finally block is executed.
0 Theexception is propagated to the next enclosing try statement.

o If the try statement has no catch clauses or if no catch clause matches the exception:
« If the try statement hasa finally block, the finally block is executed.
* Theexception is propagated to the next enclosing try statement.

The statements of a final1ly block are always executed when control leaves a try statement. Thisistrue
whether the control transfer occurs as aresult of normal execution, as aresult of executing abreak, continue,
goto, or return statement, or as aresult of propagating an exception out of the try statement.

If an exception is thrown during execution of a finalTy block, the exception is propagated to the next
enclosing try statement. If another exception was in the process of being propagated, that exception islost. The
process of propagating an exception is discussed further in the description of the throw statement (88.9.5).

The try block of atry statement isreachableif the try statement is reachable.

A catch block of atry statement isreachableif the try statement is reachable.

The finally block of atry statement isreachableif the try statement is reachable.

Theend point of atry statement isreachableif both of the following are true:

» Theend point of the try block isreachable or the end point of at least one catch block is reachable.
» Ifafinally block is present, the end point of the finally block is reachable.

8.11 The checked and unchecked statements

The checked and unchecked statements are used to control the overflow checking context for integral-type
arithmetic operations and conversions.

checked-statement:
checked block

192 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 817 StatementsAtiributes

unchecked-statement:
unchecked block

The checked statement causes al expressionsin the block to be evaluated in a checked context, and the
unchecked statement causes all expressions in the block to be evaluated in an unchecked context.

The checked and unchecked statements are precisely equivalent to the checked and unchecked operators
(87.5.12), except that they operate on blocks instead of expressions.

8.12 The lock statement

The Tock statement obtains the mutual-exclusion lock for a given object, executes a statement, and then
releases the lock.

|ock-statement:
Tock (expresson) embedded-statement

The expression of a Tock statement must denote a value of areference-type. Animplicit boxing conversion
(86.1.5) is never performed for the expression of a Tock statement, and thusit is a compile-time error for the
expression to denote a value of avalue-type.

A Tock statement of the form
Tock (x)

where x is an expression of areference-type, is precisely equivalent to
System.Threading.Monitor.Enter(x);
try {

3
finally {
System.Threading.Monitor.Exit(x);

except that x is only evaluated once.

The system. Type object of aclass can conveniently be used as the mutual-exclusion lock for static methods of
the class. For example:

class cCache

public static void Add(object x) {
lock (typeof(cache)) {

}
}

public static void Remove(object x) {
lock (typeof(cache)) {

3
b
3
8.13 The using statement
The using statement obtains one or more resources, executes a statement, and then disposes of the resource.

using-statement:
using (resource-acquisition) embedded-statement

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 193

C#LANGUAGE SPECIFICATION

resour ce-acquisition:
local-variable-declaration
expression

A resourceisaclass or struct that implements System. IDisposable, which includes a single parameterless
method named D1 spose. Code that is using aresource can call Dispose to indicate that the resourceis no
longer needed. If Dispose isnot called, then automatic disposal eventually occurs as a consegquence of garbage
collection.

If the form of resource-acquisition islocal-variable-declaration then the type of the local-variable-declaration
must be System. IDisposable or atype that can beimplicitly converted to System.IDisposable. If the
form of resource-acquisition is expression then this expression must be System.IDisposable or atype that
can be implicitly converted to System.IDisposabTe.

Local variables declared in aresource-acquisition are read-only, and must include an initializer. A compile-time
error occurs if the embedded statement attempts to modify these local variables (via assignment or the ++ and
-- operators) or passthem as ref or out parameters.

A using statement is translated into three parts: acquisition, usage, and disposal. Usage of the resourceis
implicitly enclosed in a try statement that includesa finally clause. This finalTly clause disposes of the
resource. If anul1 resource is acquired, then no call to Dispose is made, and no exception is thrown.

For example, ausing statement of the form

using (R rl = new RQ) {
ril.rFQ;

is precisely equivalent to

R rl = new RQ);
try {
rl.FQ;

}
finally {
if (rl !'= null) ((IDisposable)rl).Dispose();

A resource-acquisition may acquire multiple resources of agiven type. Thisis equivalent to nested using
statements. For example, a using statement of the form

using (R rl = new R(), r2 = new RQ) {
rl.FQ);
r2.FQ;

is precisaly equivalent to:

using (R rl = new RQ))
using (R r2 = new RQ) {
rl.FQ;
r2.FQ;

which is, by expansion, precisely equivalent to:

194 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 817 StatementsAtiributes

R rl = new RQ;
try {
R r2 = new RQ);
try {
rl.FQ;
r2.rQ;

}
finally {
if (r2 !'= null) ((IDisposable)r2).Dpispose();

finally {
y if (rl !'= null) ((IDisposable)rl).Dispose();

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 195

Chapter 917 NamespacesAttributes |

9. Namespaces

C# programs are organized using namespaces. Namespaces are used both as an “internal” organization system
for aprogram, and as an “external” organization system—a way of presenting program elementsthat are
exposed to other programs.

Using directives (89.3) are provided to facilitate the use of namespaces.

9.1 Compilation units

A compilation-unit defines the overall structure of asource file. A compilation unit consists of zero or more
using-directives followed by zero or more global -attributes followed by zero or more namespace-member -
declarations.

compilation-unit:
using-directives,, global-attributes,;; namespace-member-declarationSyy

A C# program consists of one or more compilation units, each contained in a separate source file. When a C#
program is compiled, all of the compilation units are processed together. Thus, compilation units can depend on
each other, possibly in acircular fashion.

The using-directives of acompilation unit affect the global-attributes and namespace-member-declarations of
that compilation unit, but have no effect on other compilation units.

The global-attributes (817) of a compilation unit permit the specification of attributes for the target assembly
and module. Assemblies and modules act as physica containersfor types. An assembly may consist of several
physically separate modules.

The namespace-member-declarations of each compilation unit of a program contribute membersto asingle
declaration space called the global namespace. For example:

FileA.cs:
class A {}

FileB.cs:
class B {}

The two compilation units contribute to the single global namespace, in this case declaring two classes with the
fully qualified names A and B. Because the two compilation units contribute to the same declaration space, it
would have been an error if each contained a declaration of a member with the same name.

9.2 Namespace declarations

A namespace-declaration consists of the keyword namespace, followed by a namespace name and body,
optionally followed by a semicolon.

namespace-declaration:

namespace qualified-identifier namespace-body ;g
qualified-identifier:

identifier

qualified-identifier . identifier

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 197

C#LANGUAGE SPECIFICATION

namespace-body:
{ using-directives,; namespace-member-declarations,,: }

A namespace-declaration may occur as atop-level declaration in a compilation-unit or as a member declaration
within another namespace-declaration. When a namespace-declaration occurs as atop-level declarationin a
compilation-unit, the namespace becomes a member of the global namespace. When a namespace-declaration
occurs within another namespace-declaration, the inner namespace becomes a member of the outer namespace.
In either case, the name of a namespace must be unique within the containing namespace.

Namespaces are implicitly pub1i c and the declaration of a namespace cannot include any access modifiers.

Within a namespace-body, the optional using-directives import the names of other namespaces and types,
allowing them to be referenced directly instead of through qualified names. The optional namespace-member-
declarations contribute members to the declaration space of the namespace. Note that all using-directives must
appear before any member declarations.

The qualified-identifier of a namespace-declaration may be asingle identifier or a sequence of identifiers
separated by “.” tokens. The latter form permits a program to define a nested namespace without lexically
nesting several namespace declarations. For example,

namespace N1.N2

class A {}
class B {}

is semantically equivalent to
namespace N1

namespace N2

class A {}
class B {}

}

Namespaces are open-ended, and two namespace declarations with the same fully qualified name contribute to
the same declaration space (83.3). In the example

namespace N1.N2

class A {}

namespace N1.N2

class B {}

the two namespace declarations above contribute to the same declaration space, in this case declaring two
classes with the fully qualified namesN1.N2 .A and N1.N2 . B. Because the two declarations contribute to the
same declaration space, it would have been an error if each contained a declaration of a member with the same
name.

9.3 Using directives

Using directives facilitate the use of namespaces and types defined in other namespaces. Using directives impact
the name resol ution process of namespace-or-type-names (83.8) and simple-names (87.5.2), but unlike

198 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 917 NamespacesAttributes

declarations, using directives do not contribute new members to the underlying declaration spaces of the
compilation units or namespaces within which they are used.

using-directives:
using-directive
using-directives using-directive
using-directive:
using-alias-directive
using-namespace-directive

A using-alias-directive (89.3.1) introduces an alias for a namespace or type.
A using-namespace-directive (89.3.2) imports the type members of a namespace.

The scope of a using-directive extends over the namespace-member-declarations of itsimmediately containing
compilation unit or namespace body. The scope of a using-directive specifically does not include its peer using-
directives. Thus, peer using-directives do not affect each other, and the order in which they are writtenis
insignificant.

9.3.1 Using alias directives

A using-alias-directive introduces an identifier that serves as an dias for a namespace or type within the
immediately enclosing compilation unit or namespace body.

using-alias-directive:
using identifier = namespace-or-type-name ;

Within member declarations in a compilation unit or namespace body that contains a using-alias-directive, the
identifier introduced by the using-alias-directive can be used to reference the given namespace or type. For
example:

namespace N1.N2

class A {}

namespace N3

using A = N1.N2.A;
class B: A {}

Above, within member declarationsin the N3 namespace, A isan aliasfor N1.N2.A, and thusclassN3.B
derivesfrom classN1.N2.A. The same effect can be obtained by creating an aliasR for N1.N2 and then
referencingR. A:

namespace N3

using R = N1.N2;
class B: R.A {}

Theidentifier of ausing-alias-directive must be unique within the declaration space of the compilation unit or
namespace that immediately contains the using-alias-directive. For example:

namespace N3

class A {}

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 199

C#LANGUAGE SPECIFICATION

namespace N3

using A = N1.N2.A; // Error, A already exists

Above, N3 aready contains amember A, so it isacompile-time error for a using-alias-directive to use that
identifier. Likewise, it is acompile-time error for two or more using-alias-directives in the same compilation
unit or namespace body to declare aliases by the same name.

A using-alias-directive makes an aias available within a particular compilation unit or namespace body, but it
does not contribute any new members to the underlying declaration space. In other words, a using-alias-
directiveis not transitive but rather affects only the compilation unit or namespace body in which it occurs. In
the example

namespace N3

using R = N1.N2;

namespace N3

class B: R.A {} // Error, R unknown

the scope of the using-alias-directive that introduces R only extends to member declarationsin the namespace
body in which it is contained, so R is unknown in the second namespace declaration. However, placing the
using-alias-directive in the containing compilation unit causes the alias to become available within both
namespace declarations:

using R = N1.N2;
namespace N3

class B: R.A {}

namespace N3

class C: R.A {}

Just like regular members, names introduced by using-alias-directives are hidden by similarly named members
in nested scopes. In the example

using R = N1.N2;
namespace N3

class R {}
class B: R.A {} // Error, R has no member A

the reference to R. A in the declaration of B causes a compile-time error because R refersto N3.R, not N1.N2.

The order in which using-alias-directives are written has no significance, and resol ution of the namespace-or-
type-name referenced by a using-alias-directive is neither affected by the using-alias-directive itself nor by other
using-directivesin the immediately containing compilation unit or namespace body. In other words, the
namespace-or -type-name of a using-alias-directive is resolved as if the immediately containing compilation unit
or namespace body had no using-directives. In the example

namespace N1.N2 {}
namespace N3

using Rl = N1; // OK

200 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 917 NamespacesAttributes

using R2 N1.N2; // OK

using R3 R1.N2; // Error, R1 unknown

the last using-alias-directive resultsin a compile-time error because it is not affected by the first using-alias-
directive.

A using-alias-directive can create an alias for any namespace or type, including the namespace within which it
appears and any namespace or type nested within that namespace.

Accessing a namespace or type through an dias yields exactly the same result as accessing the namespace or
type through its declared name. For example, given

namespace N1.N2

class A {}

namespace N3

using Rl = N1;
using R2 = N1.N2;
class B
N1.N2.A a; // refers to N1.N2.A
R1.N2.A b; // refers to N1.N2.A
) R2.A C; // refers to N1.N2.A

}

thenamesN1.N2.A, R1.N2.A, and R2.A are equivalent and all refer to the class whose fully qualified nameis
N1.N2.A.

9.3.2 Using namespace directives

A using-namespace-directive imports the types contained in a namespace into the immediately enclosing
compilation unit or namespace body, enabling the identifier of each type to be used without qualification.

using-namespace-dir ective:
using namespace-name ;

Within member declarations in a compilation unit or namespace body that contains a using-namespace-
directive, the types contained in the given namespace can be referenced directly. For example:

namespace N1.N2

class A {}

namespace N3

using N1.N2;
class B: A {}

Above, within member declarationsin the N3 namespace, the type members of N1.N2 are directly available, and
thus classN3.B derivesfrom classN1.N2.A.

A using-namespace-directive imports the types contained in the given namespace, but specifically does not
import nested namespaces. In the example

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 201

C#LANGUAGE SPECIFICATION

namespace N1.N2

class A {}

namespace N3

using NI1;
class B: N2.A {} // Error, N2 unknown

the using-namespace-dir ective imports the types contained in N1, but not the namespaces nested in N1. Thus, the
referenceto N2 . A in the declaration of B resultsin a compile-time error because no members named N2 arein
scope.

Unlike a using-alias-directive, a using-namespace-dir ective may import types whose identifiers are already
defined within the enclosing compilation unit or namespace body. In effect, names imported by a using-
namespace-directive are hidden by similarly named members in the enclosing compilation unit or namespace
body. For example:

namespace N1.N2

class A {}
class B {}

namespace N3

using N1.N2;
class A {}

Here, within member declarations in the N3 namespace, A refersto N3 . A rather than N1.N2 . A.

When more than one namespace imported by using-namespace-directivesin the same compilation unit or
namespace body contain types by the same name, references to that name are considered ambiguous. In the
example

namespace N1

class A {}

namespace N2

class A {}

namespace N3
using NI1;
using N2;
class B: A {} // Error, A is ambiguous

both N1 and N2 contain amember A, and because N3 imports both, referencing A in N3 isa compile-time error.
In this situation, the conflict can be resolved either through qualification of referencesto A, or by introducing a
using-alias-directive that picks a particular A. For example:

namespace N3

using N1;

202 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 917 NamespacesAttributes

using N2;
using A = N1.A;
class B: A {} // A means N1.A

Like a using-alias-directive, a using-namespace-directive does not contribute any new members to the
underlying declaration space of the compilation unit or namespace, but rather affects only the compilation unit
or namespace body in which it appears.

The namespace-name referenced by a using-namespace-directive is resolved in the same way as the namespace-
or-type-name referenced by a using-alias-directive. Thus, using-namespace-directives in the same compilation
unit or namespace body do not affect each other and can be written in any order.

9.4 Namespace members
A namespace-member-declaration is either a namespace-declaration (89.2) or atype-declaration (89.5).

namespace-member-declarations:
namespace-member-declaration
namespace-member-declarations namespace-member-declaration

namespace-member -decl ar ation:
namespace-declaration
type-declaration

A compilation unit or a namespace body can contain namespace-member-declarations, and such declarations
contribute new members to the underlying declaration space of the containing compilation unit or namespace

body.

9.5 Type declarations

A type-declaration is a class-declaration (810.1), a struct-declaration (811.1), an interface-declaration (813.1),
an enum-declaration (814.1), or a del egate-declaration (815.1).

type-declaration:
class-declaration
struct-declaration
interface-declaration
enum-declaration
delegate-declaration

A type-declaration can occur as atop-level declaration in a compilation unit or as a member declaration within a
namespace, class, or struct.

When atype declaration for atype T occurs as atop-level declaration in a compilation unit, the fully qualified
name of the newly declared typeis simply T. When atype declaration for atype T occurs within a namespace,
class, or struct, the fully qualified name of the newly declared typeisN. T, where N isthe fully qualified name of
the contai ning namespace, class, or struct.

A type declared within aclass or struct is called a nested type (810.2.6).

The permitted access modifiers and the default access for atype declaration depend on the context in which the
declaration takes place (83.5.1):

» Typesdeclared in compilation units or namespaces can have pub1ic or internal access. The default is
internal access.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 203

C#LANGUAGE SPECIFICATION

e Typesdeclared in classes can have public, protected internal, protected, internal, or private
access. The default is private access.

» Typesdeclared in structs can have pub1ic, internal, or private access. The default isprivate access.

204 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1047 ClassesAttributes |

10. Classes

A classis adatastructure that may contain data members (constants and fields), function members (methods,
properties, events, indexers, operators, instance constructors, destructors and static constructors), and nested
types. Class types support inheritance, a mechanism whereby a derived class can extend and specialize a base
class.

10.1 Class declarations
A class-declaration is atype-declaration (89.5) that declares anew class.

class-declaration:
attributes,,y class-modifiers,x class identifier class-base,: class-body ;g

A class-declaration consists of an optiona set of attributes (817), followed by an optiona set of class-modifiers
(810.1.1), followed by the keyword class and an identifier that names the class, followed by an optional class-
base specification (810.1.2), followed by a class-body (810.1.3), optionally followed by a semicolon.

10.1.1 Class modifiers
A class-declaration may optionally include a sequence of class modifiers:

class-modifiers;
class-modifier
classs-modifiers class-modifier

class-modifier:
new
public
protected
internal
private
abstract
sealed

It isacompile-time error for the same modifier to appear multiple times in a class declaration.

The new modifier is permitted on nested classes. It specifiesthat the class hides an inherited member by the
same name, as described in 810.2.2. It is acompile-time error for the new modifier to appear on aclass
declaration that is not a nested class declaration.

Thepublic, protected, internal, and private modifiers control the accessibility of the class. Depending
on the context in which the class declaration occurs, some of these modifiers may not be permitted (83.5.1).

Theabstract and sealed modifiers are discussed in the following sections.

10.1.1.1 Abstract classes

The abstract modifier isused to indicate that a class isincomplete and that it is intended to be used only asa
base class. An abstract class differs from a non-abstract classis the following ways:

» Anabstract class cannot be instantiated directly, and it is a compile-time error to use the new operator on an
abstract class. Whileit is possible to have variables and values whose compile-time types are abstract, such

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 205

C#LANGUAGE SPECIFICATION

variables and values will necessarily either be nu11 or contain references to instances of non-abstract
classes derived from the abstract types.

* Anabstract classis permitted (but not required) to contain abstract members.
* An abstract class cannot be sealed.

When anon-abstract classis derived from an abstract class, the non-abstract class must include actual
implementations of all inherited abstract members. Such implementations are provided by overriding the
abstract members. In the example

abstract class A

public abstract void FQ);

abstract class B: A

public void GO {}

class C: B

public override void F(Q) {
// actual implementation of F

}

the abstract class A introduces an abstract method F. Class B introduces an additional method G, but since it
doesn’t provide an implementation of F, B must a so be declared abstract. Class C overrides F and provides an
actual implementation. Since there are no abstract membersin C, C is permitted (but not required) to be non-
abstract.

10.1.1.2 Sealed classes

The seaTed modifier is used to prevent derivation from aclass. A compile-time error occursif aseadled classis
specified as the base class of another class.

A sedled class cannot also be an abstract class.

The sealed modifier is primarily used to prevent unintended derivation, but it also enables certain run-time
optimizations. In particular, because a sealed class is known to never have any derived classes, it is possible to
transform virtual function member invocations on sealed class instances into non-virtual invocations.

10.1.2 Class base specification

A class declaration may include a class-base specification, which defines the direct base class of the class and
the interfaces (13) implemented by the class.

class-base:
class-type
interface-type-list
classtype , interface-type-list

interface-type-list:
interface-type
interface-type-list , interface-type

206 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

10.1.2.1 Base classes

When a class-typeisincluded in the class-base, it specifies the direct base class of the class being declared. If a
class declaration has no class-base, or if the class-base lists only interface types, the direct base classis assumed
tobe object. A classinherits members from its direct base class, as described in §10.2.1.

In the example
class A {}
class B: A {}

class A is said to be the direct base class of B, and B is said to be derived from A. Since A does not explicitly
specify adirect base class, its direct base classisimplicitly object.

The direct base class of aclass type must be at least as accessible as the class type itself (§83.5.4). For example, it
isacompile-time error for apubTic classto derivefromaprivate or internal class.

The direct base class of a class type must not be any of the following types: System.Array,
System.Delegate, System.Enum, Or System.ValueType.

The base classes of aclass are the direct base class and its base classes. In other words, the set of base classesis
the transitive closure of the direct base class relationship. Referring to the example above, the base classes of B
are A and object.

Except for class object, every class has exactly one direct base class. The object class has no direct base
class and is the ultimate base class of all other classes.

When aclass B derivesfrom aclass A, it isacompile-time error for A to depend on B. A class directly depends
onitsdirect base class (if any) and directly depends on the class within which it isimmediately nested (if any).
Given this definition, the complete set of classes upon which a class depends is the transitive closure of the
directly depends on relationship.

The example
class A: B {}
class B: C {}
class C: A {}
results in a compile-time error because the classes circularly depend on themselves. Likewise, the example
class A: B.C {}
class B: A

pubTlic class C {}

resultsin a compile-time error because A depends on B. C (its direct base class), which depends on B (its
immediately enclosing class), which circularly depends on A.

Note that a class does not depend on the classes that are nested within it. In the example

class A

class B: A {}

B depends on A (because A is both its direct base class and its immediately enclosing class), but A does not
depend on B (since B is neither a base class nor an enclosing class of A). Thus, the exampleisvalid.

It is not possible to derive from asealed class. The example
sealed class A {}

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 207

C#LANGUAGE SPECIFICATION

class B: A {} // Error, cannot derive from a sealed class

produces a compile-time error because class B attempts to derive from the sealed classA.

10.1.2.2 Interface implementations

A class-base specification may include alist of interface types, in which case the classis said to implement the
given interface types. Interface implementations are discussed further in §13.4.

10.1.3 Class body
The class-body of a class defines the members of the class.

class-body:
{ class-member-declarations,; }

10.2 Class members

The members of aclass consist of the members introduced by its class-member-declarations and the members
inherited from the direct base class.

class-member -declarations;
class-member-declaration
class-member-declarations class-member-declaration

class-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
destructor-declaration
stati c-constructor-declaration
type-declaration

The members of aclass are divided into the following categories:

» Constants, which represent constant values associated with the class (810.3).

» Fidds, which are the variables of the class (810.4).

» Methods, which implement the computations and actions that can be performed by the class (§10.5).

» Properties, which define named characteristics associated with reading and writing those characteristics
(810.6).

» Bvents, which define notifications that can be generated by the class (§10.7).

* Indexers, which permit instances of the classto be indexed in the same way as arrays (810.8).

* Operators, which define the expression operators that can be applied to instances of the class (§10.9).

» Instance constructors, which implement the actions required to initialize instances of the class (§10.10)

» Destructors, which implement the actions to be performed before instances of the class are permanently
discarded (810.12).

208 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

« Static constructors, which implement the actions required to initialize the class itself (§810.11).
» Types, which represent the types that are local to the class (89.5).

Members that can contain executable code are collectively known as the function members of the class (7.4).
The function members of a class are the methods, properties, events, indexers, operators, instance constructors,
destructors, and static constructors of that class.

A class-declaration creates a new declaration space (83.3), and the class-member-declarations immediately
contained by the class-declaration introduce new members into this declaration space. The following rules
apply to class-member-declarations:

» Instance constructors, destructors and static constructors must have the same name as the immediately
enclosing class. All other members must have names that differ from the name of the immediately enclosing
class.

* Thename of aconstant, field, property, event, or type must differ from the names of all other members
declared in the same class.

* The name of a method must differ from the names of all other non-methods declared in the same class. In
addition, the signature (83.6) of amethod must differ from the signatures of all other methods declared in
the same class.

* Thesignature of an instance constructor must differ from the signatures of all other instance constructors
declared in the same class.

» Thesignature of an indexer must differ from the signatures of all other indexers declared in the same class.
» Thesignature of an operator must differ from the signatures of all other operators declared in the same class.

The inherited members of aclass (810.2.1) are not part of the declaration space of a class. Thus, a derived class
is alowed to declare a member with the same name or signature as an inherited member (which in effect hides
the inherited member).

10.2.1 Inheritance

A classinherits the members of its direct base class. Inheritance means that a class implicitly contains al
members of its direct base class, except for the instance constructors, destructors and static constructors of the
base class. Some important aspects of inheritance are:

e Inheritanceistrangitive. If C is derived from B, and B is derived from A, then C inherits the members
declared in B as well asthe members declared in A.

* A derived class extends its direct base class. A derived class can add new members to those it inherits, but it
cannot remove the definition of an inherited member.

e |nstance constructors, destructors, and static constructors are not inherited, but all other members are,
regardless of their declared accessibility (83.5). However, depending on their declared accessibility,
inherited members might not be accessiblein a derived class.

* A derived class can hide (83.7.1.2) inherited members by declaring new members with the same name or
signature. Note however that hiding an inherited member does not remove the member—it merely makes
the member inaccessible in the derived class.

 Aninstance of aclass contains a set of all instance fields declared in the class and its base classes, and an
implicit conversion (86.1.4) exists from a derived class type to any of its base class types. Thus, areference
to an instance of some derived class can be treated as a reference to an instance of any of its base classes.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 209

C#LANGUAGE SPECIFICATION

» A classcan declare virtual methods, properties, and indexers, and derived classes can override the
implementation of these function members. This enables classes to exhibit polymorphic behavior wherein
the actions performed by a function member invocation varies depending on the run-time type of the
instance through which the function member isinvoked.

10.2.2 The new modifier

A class-member-declaration is permitted to declare a member with the same name or signature as an inherited
member. When this occurs, the derived class member is said to hide the base class member. Hiding an inherited
member is not considered an error, but it does cause the compiler to issue awarning. To suppress the warning,
the declaration of the derived class member can include a new modifier to indicate that the derived member is
intended to hide the base member. Thistopic is discussed further in §3.7.1.2.

If anew modifier isincluded in a declaration that doesn’t hide an inherited member, awarning isissued. This
warning is suppressed by removing the new modifier.

10.2.3 Access modifiers

A class-member-declaration can have any one of the five possible kinds of declared accessibility (83.5.1):
public, protected internal, protected, internal, or private. Except for theprotected internal
combination, it is a compile-time error to specify more than one access modifier. When a class-member-
declaration does not include any access modifiers, private isassumed.

10.2.4 Constituent types

Typesthat are used in the declaration of a member are called the constituent types of the member. Possible
constituent types are the type of a constant, field, property, event, or indexer, the return type of a method or
operator, and the parameter types of a method, indexer, operator, or instance constructor. The constituent types
of amember must be at least as accessible as the member itself (83.5.4).

10.2.5 Static and instance members

Members of aclass are either static members or instance members. Generally speaking, it is useful to think of
static members as belonging to classes and instance members as belonging to objects (instances of classes).

When afield, method, property, event, operator, or constructor declaration includes a static modifier, it
declares a static member. In addition, a constant or type declaration implicitly declares a static member. Static
members have the following characteristics:

* When astatic member is referenced in a member-access (87.5.4) of the form E.M, E must denote a type that
has a member M. It is a compile-time error for E to denote an instance.

» A daticfield identifies exactly one storage location. No matter how many instances of a class are created,
thereis only ever one copy of astatic field.

» A dtatic function member does not operate on a specific instance, and it is a compile-time error to refer to
this in such afunction member.

When afield, method, property, event, indexer, constructor, or destructor declaration does not includea static
modifier, it declares an instance member. (An instance member is sometimes called a non-static member.)
Instance members have the following characteristics:

* When an instance member is referenced in a member-access (87.5.4) of the form E .M, E must denote an
instance of atype that has a member M. It is acompile-time error for E to denote atype.

* Every instance of a class contains a separate set of al instance fields of the class.

210 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

» Aninstance function member operates on a given instance of the class, and this instance can be accessed as
this (8§7.5.7).

The following example illustrates the rules for accessing static and instance members:

class Test

int x;

static int y;

void FQO {)
X = 1; // Ok, same as this.x =1

) y = 1; // Ok, same as Test.y =1

static void GO { !
X = 1; // Error, cannot access this.x
y = 1; // Ok, same as Test.y =1

3

static void Main() {
Test t = new Test();
t.x = 1; // Ok]]
t.y = 1; // Error, cannot access static member through instance
Test.x = 1; // Error, cannot access instance member through type
Test.y = 1; // Ok

}
}

The F method shows that in an instance function member, a simple-name (87.5.2) can be used to access both
instance members and static members. The G method shows that in a static function member, it isacompile-
time error to access an instance member through a simple-name. The Main method shows that in a member-

access (87.5.4), instance members must be accessed through instances, and static members must be accessed
through types.

10.2.6 Nested types

A type declared within a class or struct is called a nested type. A type that is declared within a compilation unit
or namespace is called a non-nested type.

In the example
class A

class B

static void FQ {_
console.writeLine("A.B.F");

}
}

class B is a nested type because it is declared within class A, and class A is a non-nested type because it is
declared within a compilation unit.

10.2.6.1 Fully qualified name

Thefully qualified name (83.8.1) for anested typeis S.N where s isthe fully qualified name of the typein
which N is declared.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 211

C#LANGUAGE SPECIFICATION

10.2.6.2 Declared accessibility

Non-nested types can have pubTic or internal declared accessibility and default to internal declared
accessibility. Nested types can have these forms of declared accessibility plus one or more additional forms of
declared accessibility, depending on whether the containing type is a class or struct:

* A nested type that is declared in aclass can have any of the five forms of declared accessibility (pub1ic,
protected internal, protected, internal, or private) and, like other class members, defaults to
private declared accessibility.

» A nested typethat is declared in a struct can have any of three forms of declared accessibility (public,
internal, or private) and, like other struct members, defaultsto private declared accessibility.

The example
public class List

// Private data structure
private class Node

public object Data;
pubTlic Node Next;

public Node(object data, Node next) {
this.Data = data;
this.Next = next;

}

private Node first = null;
private Node Tlast = null;

// Public interface
public void AddToFront(object o) {...}
public void AddToBack(object o) {...}
public object RemoveFromFront() {...}
public object AddToFront() {...}
public int Count { get {...} }

}

declares a private nested classNode.

10.2.6.3 Hiding

A nested type may hide (83.7.1) a base member. The new modifier is permitted on nested type declarations so
that hiding can be expressed explicitly. The example

class Base

public static void M() {
console.writeLine("C.M");

212 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

class Derived: Base
new public class M

public static void F() {
console.wWriteLine("Derived.M.F");

}
}

class Test

static void Main() {
Derived.M.F(Q);

}
shows a nested class M that hides the method M defined in Base.

10.2.6.4 this access

A nested type and its containing type do not have a special relationship with regard to this-access (87.5.7).
Specificaly, this within a nested type cannot be used to refer to instance members of the containing type. In
cases where a nested type needs access to the instance members of its containing type, access can be provided
by providing the th1is for the instance of the containing type as a constructor argument for the nested type. In
the example

class C

int i = 123;

public void FQ {
Nested n = new Nested(this);
n.cQ;

public class Nested {
C this_c;

public Nested(C c) {
this_c = c;

public void GO {
console.WriteLine(this_c.i);

}
}

class Test {
static void Main() {
Cc=new CQO;
c.FQ;

}

shows this technique. A C instance creates an instance of Nested and passesits own thisto Nested’s
constructor in order to provide subsequent access to C’s instance members.

10.2.6.5 Access to private and protected members of the containing type

A nested type has access to all of the members that are accessible to its containing type, including members of
the containing type that have private and protected declared accessibility. The example

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 213

C#LANGUAGE SPECIFICATION

class C

private static void F() {
console.writeLine("C.F");

public class Nested

public static void GO {
FO;

}
}

class Test

static void Main() {
C.Nested.G(Q);

}

shows aclass C that contains anested class Nested. Within Nested, the method G calls the static method F
defined in ¢, and F has private declared accessibility.

A nested type also may access protected members defined in a base type of its containing type. In the example
class Base

protected void F() {
console.writeLine("Base.F");

}

class Derived: Base
public class Nested

public void GO {
Derived d = new Derived();
d.FO; // ok

}
}

class Test
static void Main() {)
Derived.Nested n = new Derived.Nested();

n.cQ;
}
}

the nested class Derived.Nested accesses the protected method F defined in Derived’ s base class, Base, by
calling through an instance of Derived.

10.2.7 Reserved member names

To facilitate the underlying C# runtime implementation, for each source member declaration that is a property,
event, or indexer, the implementation must reserve two method signatures based on the kind of the member
declaration, its name, and itstype. It is a compile-time error for a program to declare a member whose signature
matches one of these reserved signatures, even if the underlying runtime implementation does not make use of
these reservations.

214 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

The reserved names do not introduce declarations, thus they do not participate in member lookup. However, a
declaration’ s associated reserved method signatures do participate in inheritance (§810.2.1), and can be hidden
with the new modifier (810.2.2).

The reservation of these names serves three purposes:

e Toalow the underlying implementation to use an ordinary identifier as a method name for get or set access
to the C# language feature.

* Toallow other languagesto interoperate using an ordinary identifier as a method name for get or set access
to the C# language feature.

» Tohelp ensure that the source accepted by one conforming compiler is accepted by another, by making the
specifics of reserved member names consistent across al C# implementations.

The declaration of adestructor (810.12) also causes a signature to be reserved (810.2.7.4).

10.2.7.1 Member names reserved for properties
For a property P (810.6) of type T, the following signatures are reserved:

T get_PQ);
void set_P(T value);

Both signatures are reserved, even if the property is read-only or write-only.

In the example

class A {
public int P {
get { return 123; }

}

class B: A {
new public int get_P(Q) {
return 456;

new public void set_P(int value) {

}

class Test

static void Main() {
B b new BQ);
A a b;

Console.writeLine(a.P);
Console.writeLine(b.P);
console.writeLine(b.get_P(Q));

}
}

aclass A defines aread-only property P, thus reserving signatures for get_P and set_P methods. A class B
derives from A and hides both of these reserved signatures. The example produces the outpuit:

123
123
456

10.2.7.2 Member names reserved for events
For an event E (810.7) of delegate type T, the following signatures are reserved:

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 215

C#LANGUAGE SPECIFICATION

void add_E(T handler);
void remove_E(T handler);

10.2.7.3 Member names reserved for indexers
For anindexer (810.8) of type T with parameter-list L, the following signatures are reserved:

T get_Item(L);
void set_Item(L, T value);

Both signatures are reserved, even if the indexer isread-only or write-only.

10.2.7.4 Member names reserved for destructors
For aclass containing a destructor (810.12), the following signature is reserved:
void Finalize(Q);

10.3 Constants

A constant is a class member that represents a constant value: a value that can be computed at compile-time. A
constant-declaration introduces one or more constants of a given type.

constant-declaration:
attributes,,; constant-modifiers,; const type constant-declarators ;

constant-modifiers:
constant-modifier
constant-modifiers constant-modifier

constant-modifier:
new
public
protected
internal
private

constant-declarators:
constant-declarator
constant-declarators , constant-declarator

constant-declarator:
identifier = constant-expression

A constant-declaration may include a set of attributes (817), anew modifier (810.2.2), and a valid combination
of the four access modifiers (810.2.3). The attributes and modifiers apply to al of the members declared by the
constant-declaration. Even though constants are considered static members, a constant-declaration neither
requires nor allowsastatic modifier. It isacompile-time error for the same modifier to appear multiple times
in a constant declaration.

Thetype of a constant-declaration specifies the type of the members introduced by the declaration. The typeis
followed by alist of constant-declarators, each of which introduces a new member. A constant-declarator
consists of anidentifier that names the member, followed by an “=" token, followed by a constant-expression
(87.15) that gives the value of the member.

The type specified in a constant declaration must be sbyte, byte, short, ushort, int, uint, Tong, ulong,
char, float, double, decimal, booT, string, an enum-type, or areference-type. Each constant-expression
must yield avalue of the target type or of atype that can be converted to the target type by an implicit
conversion (86.1).

216 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1047 ClassesAttributes |

The type of a constant must be at least as accessible as the constant itself (83.5.4).
The value of acongtant is obtained in an expression using a simple-name (87.5.2) or a member-access (87.5.4).

A constant can itself participate in a constant-expression. Thus, a constant may be used in any construct that
requires a constant-expression. Examples of such constructs include case labels, goto case statements, enum
member declarations, attributes, and other constant declarations.

Asdescribed in 87.15, a constant-expression is an expression that can be fully evaluated at compile-time. Since
the only way to create a non-null value of areference-type other than string isto apply the new operator, and
since the new operator is not permitted in a constant-expression, the only possible value for constants of
reference-types other than string isnull.

When a symbolic name for a constant value is desired, but when the type of the valueis not permitted in a
constant declaration, or when the value cannot be computed at compile-time by a constant-expression, a
readonly field (§10.4.2) may be used instead.

A constant declaration that declares multiple constants is equivalent to multiple declarations of single constants
with the same attributes, modifiers, and type. For example

class A

public const double X = 1.0, Y = 2.0, Zz = 3.0;

isequivalent to
class A
pubTlic const double X

pubTlic const double Y
public const double Zz

LI T |
WN =
(el

Constants are permitted to depend on other constants within the same program as long as the dependencies are
not of a circular nature. The compiler automatically arranges to eval uate the constant declarationsin the
appropriate order. In the example

class A
public const int X = B.Z + 1;
public const int Y = 10;
class B
public const int z = A.Y + 1;

the compiler first evaluates A.Y, then evaluates B.. z, and finaly evaluates A .. X, producing the values 10, 11,
and 12. Constant declarations may depend on constants from other programs, but such dependencies are only
possible in one direction. Referring to the example above, if A and B were declared in separate programs, it
would be possible for A. X to depend on B. z, but B. Z could then not smultaneously depend on A.Y.

10.4 Fields

A field isamember that represents a variable associated with an object or class. A field-declaration introduces
one or more fields of a given type.

field-declaration:
attributes,,, field-modifiersy,: type variable-declarators ;

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 217

C#LANGUAGE SPECIFICATION

field-modifiers:
field-modifier
field-modifiers field-modifier

field-modifier:
new
public
protected
internal
private
static
readonly
volatile

variable-declarators:
variable-declarator
variable-declarators , variable-declarator

variable-declarator:
identifier
identifier = variable-initializer
variable-initializer:
expression
array-initializer
A field-declaration may include a set of attributes (817), anew modifier (810.2.2), avalid combination of the
four access modifiers (810.2.3), astatic modifier (810.4.1). In addition, afield-declaration may include a
readonTy modifier (810.4.2) or avolatile modifier (810.4.3) but not both. The attributes and modifiers

apply to all of the members declared by the field-declaration. It is a compile-time error for the same modifier to
appear multipletimesin afield declaration.

Thetype of afield-declaration specifies the type of the members introduced by the declaration. The typeis
followed by alist of variable-declarators, each of which introduces a new member. A variable-declarator
consists of an identifier that names the member, optionally followed by an “=" token and a variable-initializer
(810.4.5) that givestheinitia value of the member.

Thetype of afield must be at least as accessible asthefield itself (83.5.4).

Thevalue of afieldis obtained in an expression using a simple-name (87.5.2) or a member-access (87.5.4). The
value of anon-readonly field is modified using an assignment (87.13). The value of a non-readonly field can be
both obtained and modified using postfix increment and decrement operators (87.5.9) and prefix increment and
decrement operators (87.6.5).

A field declaration that declares multiple fields is equivalent to multiple declarations of single fields with the
same attributes, modifiers, and type. For example

class A

public static int X = 1, Y, Zz = 100;

isequivalent to

218 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

class A

public static int X = 1;
public static int v;
public static int z = 100;

10.4.1 Static and instance field s

When afield declaration includes a static modifier, the fields introduced by the declaration are static fields.
When no static modifier is present, the fields introduced by the declaration are instance fields. Static fields
and instance fields are two of the several kinds of variables (85) supported by C#, and at times they are referred
to as static variables and instance variables, respectively.

A static field is not part of a specific instance; instead, it identifies exactly one storage location. No matter how
many instances of a class are created, there is only ever one copy of a static field for the associated application
domain.

Aninstance field belongs to an instance. Every instance of a class contains a separate set of all instance fields of
the class.

When afield isreferenced in a member-access (87.5.4) of theform E. M, if Misastatic field, E must denote a
type that has afield M, and if M is an instance field, E must denote an instance of atype that has afield M.

The differences between static and instance members are discussed further in 810.2.5.

10.4.2 Readonly fields

When afield-declaration includes a readon1y modifier, the fields introduced by the declaration are readonly
fields. Direct assignmentsto readonly fields can only occur as part of the declaration or in an instance
constructor (for readonly non-static fields) or static constructor (for readonly static fields) in the same class. (A
readonly field can be assigned multiple times in these contexts.) Specifically, direct assignmentsto a readonly
field are permitted only in the following contexts:

* Inthevariable-declarator that introduces the field (by including avariable-initializer in the declaration).

e For aninstance fidld, in the instance constructors of the class that contains the field declaration, or for a
static field, in the static constructor of the class the that contains the field declaration. These are also the
only contextsin which it isvalid to passa readonly field asan out or ref parameter.

Attempting to assign to areadonly field or passit asan out or ref parameter in any other context resultsin a
compile-time error.

10.4.2.1 Using static readonly fields for constants

A static readonly field is useful when a symbolic name for a constant value is desired, but when the type of
the value is not permitted in a const declaration, or when the value cannot be computed at compile-time. In the
example

public class Color

public static readonly color Black = new color(0, 0, 0);
public static readonly Color white = new Color(255, 255, 255);
public static readonly Ccolor Red = new Color(255, 0, 0);
public static readonly Color Green = new Color(0, 255, 0);
public static readonly Color Blue = new Color(0, 0, 255);

private byte red, green, blue;

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 219

C#LANGUAGE SPECIFICATION

public color(byte r, byte g, byte b) {
red = r;
green = ¢;

y blue = b;

}

the Black, white, Red, Green, and B1ue members cannot be declared as const members because their
values cannot be computed at compile-time. However, declaring them as static readonly fieldsinstead has
much the same effect.

10.4.2.2 Versioning of constants and static readonly fields

Constants and readonly fields have different binary versioning semantics. When an expression references a
constant, the value of the constant is obtained at compile-time, but when an expression references a readonly
field, the value of the field is not obtained until run-time. Consider an application that consists of two separate
programs:

using System;

namespace Programl

public class Utils
public static readonly int X = 1;
}

namespace Program?2
class Test

static void mMain() {]
console.writeLine(Programl.uUtils.X);

}
}

The Programl and Program2 namespaces denote two programs that are compiled separately. Because
Programl.Utils.X isdeclared as astatic readonly field, the value output by the Console.writeLine
statement is not known at compile-time, but rather is obtained at run-time. Thus, if the value of X is changed and
Programl isrecompiled, the Console.writeLine statement will output the new value even if Program?2
isn’t recompiled. However, had X been a constant, the value of X would have been obtained at the time
Program2 was compiled, and would remain unaffected by changesin Programl until Program2 is
recompiled.

10.4.3 Volatile fields

When afield-declaration includes avolatile modifier, the fields introduced by the declaration are volatile
fields.

For non-volatile fields, optimization techniques that reorder instructions can lead to unexpected and
unpredictable results in multi-threaded programs that access fields without synchronization such as that
provided by the lock-statement (88.12). These optimizations can be performed by the compiler, by the runtime
system, or by hardware. For volatile fields, such reordering optimizations are restricted:

» Aread of avolatilefieldiscalled avolatileread. A volatile read has “acquire semantics’: avolatileread is
guaranteed to occur prior to any references to memory that occur after it in the instruction sequence.

220 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

» A writeof avolatilefield is called avolatile write. A volatile write has “ release semantics’: avolatile write
is guaranteed to happen after any memory references prior to the write instruction in the instruction
sequence.

These restrictions ensure that all threads will observe volatile writes performed by any other thread in the order
they were performed. A conforming implementation is not required to provide asingle total ordering of volatile
writes as seen from all threads of execution. The type of avolatile field must be one of the following:

* A reference-type.
* Thetypebyte, sbyte, short, ushort, int, uint, char, float, or bool.
* Anenumtype with an enum base type of byte, sbyte, short, ushort, int, or uint.

The example
using System.Threading;
class Test

public static int result;
public static volatile bool finished;

static void Thread2() {
result = 143;
finished = true;

static void Main() {
finished = false;

// Run Thread2() in a new thread
new Thread(new Threadstart(Thread2)).Sstart();

// wait for Thread2 to signal that it has a result by setting
// finished to true.
for (5;) 1
if (finished) {
console.writeLine("result = {0}", result);
return;

}
}
}

yields the result:
result = 143

In this example, the method Main starts a new thread running the method Thread2. The method stores avalue
into anon-volatilefield result, then stores true in the volatile field fin1ished. The main thread waits for the
field finished to be set to true, thenreads thefield result. Since result has been declared voTlatile, the
main thread must read the value 143 from the field result. If thefield finished had not been declared
volatiTe, then it would be permissible for the store to result be visible to the main thread after the storeto
finished, and hence for the main thread to read the value 0 from thefield result. Declaring finished asa
volatile field prevents such inconsistencies.

10.4.4 Field initialization

Theinitid value of afield, whether it be astatic field or an instance field, is the default value (85.2) of the
field’ stype. It is not possible to observe the value of afield before this default initialization has occurred, and a
field isthus never “uninitialized”. The example

using System;

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 221

C#LANGUAGE SPECIFICATION

class Test

static bool b;
int i;

static void Main() {
Test t = new Test();
console.writeLine("b = {0}, i = {1}", b, t.1);

}

produces the output
b = False, i =0
because b and i are both automatically initialized to default values.

10.4.5 Variable initializers
Field declarations may include variable-initializers. For static fields, variable initializers correspond to
assignment statements that are executed during class initialization. For instance fields, variable initializers
correspond to assignment statements that are executed when an instance of the classis created.
The example

using System;

class Test

static double x = Math.sqrt(2.0);

int i = 100;
string s = "Hello";

static void Main() {
Test a = new Test();
console.writeLine("x = {0}, i = {1}, s = {2}", x, a.i, a.s);

}
produces the output
x = 1.4142135623731, i = 100, s = Hello

because an assignment to x occurs when static field initializers execute and assignmentsto i and s occur when
theinstance field initializers execute.

The default value initialization described in 810.4.4 occurs for al fields, including fields that have variable
initializers. Thus, when aclassisinitiaized, all of its static fields are first initialized to their default values, and
then the static field initializers are executed in textua order. Likewise, when an instance of aclassis created, al
of itsinstance fields are first initialized to their default values, and then the instance field initidizers are
executed in textual order.

It ispossible for static fields with variable initializers to be observed in their default value state. However, thisis
strongly discouraged as a matter of style. The example

using System;

class Test

static int a
static int b

static void Mgin(_
console.wWriteLin

b ;
a ;

+
+
)

D R

("a = {0}, b = {1}", a, b);

222 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

exhibits this behavior. Despite the circular definitions of aand b, the programisvalid. It resultsin the output
a=1, b =2

because the static fields a and b are initialized to 0 (the default value for int) before their initializers are
executed. When the initializer for a runs, the value of b is zero, and so a isinitialized to 1. When the initializer
for b runs, thevalue of aisaready 1, and so b isinitialized to 2.

10.4.5.1 Static field initialization

The static field variable initializers of a class correspond to a sequence of assignments that are executed in the
textual order in which they appear in the class declaration. If a static constructor (810.11) existsin the class,
execution of the static field initializers occurs immediately prior to executing that static constructor. Otherwise,
the static field initializers are executed at an implementati on-dependent time prior to the first use of astatic field
of that class. The example

using System;

class Test

{
static void Main() {
console.writeLine("{0} {1}", B.Y, A.X);

}
public static int f(string s) {

console.writeLine(s);
return 1;

}

class A

Test.f("Init A");

public static int X

class B

public static int Y = Test.f("Init B");

might produce either the output:

Init A
Init B
11

or the outpuit:

Init B
Init A
11

because the execution of X'sinitializer and Y'sinitializer could occur in either order; they are only constrained to
occur before the references to those fields. However, in the example:

using System;
class Test {
static void Main() {
Console.writeLine("{0} {1}", B.Y, A.X);

pubTlic static int f(string s) {

console.writeLine(s);
return 1;

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 223

C#LANGUAGE SPECIFICATION

class A

static AQ {}
public static int X

Test.f("Init A");

class B

static BQO {}

public static int Y = Test.f("Init B");

the output must be:

Init B
Init A
11

because the rules for when static constructors execute provide that B's static constructor (and hence B's static
field initializers) must run before A's static constructor and field initializers.]

10.4.5.2 Instance field initialization

Theinstance field variable initializers of a class correspond to a sequence of assignments that are executed
immediately upon entry to any one of the instance constructors (§10.10.1) of the class. The variableinitializers
are executed in the textual order in which they appear in the class declaration. The class instance creation and
initialization process is described further in §10.10.

A variableinitializer for an instance field cannot reference the instance being created. Thus, it is a compile-time
error to reference this inavariableinitializer, asit is a compile-time error for avariableinitializer to reference
any instance member through a simple-name. In the example

class A
int x = 1;]]
inty = x + 1; // Error, reference to instance member of this

the variableinitializer for y resultsin a compile-time error because it references a member of the instance being
created.

10.5 Methods

A method is a member that implements a computation or action that can be performed by an object or class.
Methods are declared using method-declarations:

method-declaration:
method-header method-body

method-header:
attributes,y method-modifiersy, return-type member-name (formal-parameter-listoy:)

method-modifiers;
method-modifier
method-modifiers method-modifier

224 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

method-modifier:
new
public
protected
internal
private
static
virtual
sealed
override
abstract
extern

return-type:

type
void
member-name;
identifier
interface-type . identifier

method-body:
block

A method-declaration may include a set of attributes (817) and a valid combination of the four access modifiers
(810.2.3), the new (810.2.2), static (810.5.2), virtual (810.5.3), override (810.5.4), sealed (810.5.5),
abstract (810.5.6), and extern (810.5.7) modifiers.

A declaration has avalid combination of modifiersif al of the following aretrue:

* Thedeclaration includes a valid combination of access modifiers (810.2.3).

* Thedeclaration does not include the same modifier multiple times.

* Thedeclaration includes at most one of the following modifiers: static, virtual, and override.
» Thedeclaration includes at most one of the following modifiers: new and override.

» If thedeclaration includesthe abstract modifier, then the declaration does not include any of the
following modifiers: static, virtual, or extern.

» If the declaration includes the private modifier, then the declaration does not include any of the following
modifiers: virtual, override, or abstract.

+ |f the declaration includes the sealed modifier, then the declaration also includes the override modifier.

The return-type of a method declaration specifies the type of the value computed and returned by the method.
Thereturn-typeisvoid if the method does not return a value.

The member-name specifies the name of the method. Unless the method is an explicit interface member
implementation (813.4.1), the member-nameis simply an identifier. For an explicit interface member

implementation, the member-name consists of an interface-type followed by a“ .” and an identifier.
The optional formal-parameter-list specifies the parameters of the method (810.5.1).

The return-type and each of the types referenced in the formal-parameter-list of a method must be at least as
accessible as the method itself (83.5.4).

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 225

C#LANGUAGE SPECIFICATION

For abstract and extern methods, the method-body consists simply of a semicolon. For all other methods,
the method-body consists of a block which specifies the statements to execute when the method isinvoked.

The name and the formal parameter list of a method define the signature (83.6) of the method. Specificaly, the
signature of a method consists of its name and the number, modifiers, and types of its formal parameters. The
return typeis not part of a method's signature, nor are the names of the formal parameters.

The name of a method must differ from the names of all other non-methods declared in the same class. In
addition, the signature of a method must differ from the signatures of all other methods declared in the same
class.

10.5.1 Method parameters
The parameters of amethod, if any, are declared by the method’ s formal-parameter-list.

formal-parameter-list:
fixed-parameters
fixed-parameters , parameter-array
parameter-array

fixed-parameters:
fixed-parameter
fixed-parameters , fixed-parameter

fixed-parameter:
attributes,,, parameter-modifierqy type identifier

parameter-modifier:
ref
out

parameter-array:
attributes,y params array-type identifier

The formal parameter list consists of one or more comma-separated parameters of which only the last may be a
parameter-array.

A fixed-parameter consists of an optiona set of attributes (817), an optional ref or out modifier, atype, and an
identifier. Each fixed-parameter declares a parameter of the given type with the given name.

A parameter-array consists of an optional set of attributes (817), aparams modifier, an array-type, and an
identifier. A parameter array declares a single parameter of the given array type with the given name. The array-
type of a parameter array must be a single-dimensional array type (812.1). In amethod invocation, a parameter
array permits either a single argument of the given array type to be specified, or it permits zero or more
arguments of the array element type to be specified. Parameter arrays are further described in §10.5.1.4.

A method declaration creates a separate declaration space for parameters and local variables. Names are
introduced into this declaration space by the formal parameter list of the method and by local variable
declarations in the block of the method. All names in the declaration space of a method must be unique. Thus, it
isacompile-time error for a parameter or local variable to have the same name as another parameter or loca
variable.

A method invocation (87.5.5.1) creates a copy, specific to that invocation, of the formal parameters and local
variables of the method, and the argument list of the invocation assigns values or variable references to the
newly created formal parameters. Within the block of a method, formal parameters can be referenced by their
identifiersin simple-name expressions (87.5.2).

There are four kinds of formal parameters:

226 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

» Vaue parameters, which are declared without any modifiers.

» Reference parameters, which are declared with the ref modifier.
e Output parameters, which are declared with the out modifier.

e Parameter arrays, which are declared with the params modifier.

Asdescribed in 83.6, the ref and out modifiers are part of a method’ s signature, but the params modifier is
not.

10.5.1.1 Value parameters

A parameter declared with no modifiersis avalue parameter. A value parameter correspondsto alocal variable
that getsitsinitia value from the corresponding argument supplied in the method invocation.

When aformal parameter is a value parameter, the corresponding argument in a method invocation must be an
expression of atype that isimplicitly convertible (86.1) to the formal parameter type.

A method is permitted to assign new values to a value parameter. Such assignments only affect the local storage
location represented by the value parameter—they have no effect on the actual argument given in the method
invocation.

10.5.1.2 Reference parameters

A parameter declared with a ref modifier is areference parameter. Unlike a value parameter, areference
parameter does not create a new storage location. Instead, a reference parameter represents the same storage
location as the variable given as the argument in the method invocation.

When aformal parameter is areference parameter, the corresponding argument in a method invocation must
consist of the keyword ref followed by a variable-reference (85.3.3) of the same type as the formal parameter.
A variable must be definitely assigned before it can be passed as areference parameter.

Within a method, areference parameter is always considered definitely assigned.

The example
using System;
class Test

static void swap(ref int x, ref int y) {

int temp =
X = y;
y = temp;

}

static void mMain(Q) {
int i = 1, j = 2;

swap(ref 1, ref j);
console. Wr1teL1ne(= {0}, j = {1}", i, 1);
3
produces the output
i=2,3=1

For the invocation of Sswap inMain, x represents i and y represents j. Thus, the invocation has the effect of
swapping the values of i and j.

In a method that takes reference parametersit is possible for multiple names to represent the same storage
location. In the example

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 227

C#LANGUAGE SPECIFICATION

class A

string s;

void F(ref string a, ref string b) {
s "One";
a :
b

}

void GO {
F(ref s, ref s);

}

the invocation of F in G passesareferenceto s for both a and b. Thus, for that invocation, the names s, a, and b
all refer to the same storage location, and the three assignments all modify the instance field s.

10.5.1.3 Output parameters

A parameter declared with an out modifier is an output parameter. Similar to areference parameter, an output
parameter does not create a new storage location. Instead, an output parameter represents the same storage
location as the variable given as the argument in the method invocation.

When aformal parameter is an output parameter, the corresponding argument in a method invocation must
consist of the keyword out followed by a variable-reference (85.3.3) of the same type as the formal parameter.
A variable need not be definitely assigned before it can be passed as an output parameter, but following an
invocation where a variable was passed as an output parameter, the variable is considered definitely assigned.

Within amethod, just like aloca variable, an output parameter isinitially considered unassigned and must be
definitely assigned before its value is used.

Every output parameter of amethod must be definitely assigned before the method returns.

Output parameters are typically used in methods that produce multiple return values. For example:
using System;
class Test

static void splitPath(string path, out string dir, out string name) {
int i = path.Length;
while (i > 0) {
char ch = path[i - 1];
if (ch == "\\" || ch =="/" || ch == ":") break;
i--;

ks
dir = path.Substring(0, i);
name = path.Substring(i);

static void Main() {
string dir, name;
SplitPath("c:\\Windows\\System\\hello.txt", out dir, out name);
console.writeLine(dir);
console.writeLine(name);

}

The exampl e produces the outpuit:

c:\Windows\System\
heTlo.txt

228 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

Note that the dir and name variables can be unassigned before they are passed to sp11 tPath, and that they are
considered definitely assigned following the call.

10.5.1.4 Parameter arrays

A parameter declared with aparams modifier is a parameter array. If aformal parameter list includes a
parameter array, it must be the right-most parameter in the list and it must be of a single-dimensional array type.
For example, thetypes string[] and string[][] can be used asthe type of a parameter array, but the type
string[,] cannot. It isnot possible to combine the params modifier with the ref and out modifiers.

A parameter array permits arguments to be specified in one of two ways in a method invocation:

* Theargument given for aparameter array can be asingle expression of atypethat isimplicitly convertible
(86.1) to the parameter array type. In this case, the parameter array acts precisely like a value parameter.

» Alternatively, the invocation can specify zero or more arguments for the parameter array, where each
argument is an expression of atype that isimplicitly convertible (86.1) to the element type of the parameter
array. In this case, the invocation creates an instance of the parameter array type with alength corresponding
to the number of arguments, initializes the elements of the array instance with the given argument values,
and uses the newly created array instance as the actual argument.

Except for alowing a variable number of arguments in an invocation, a parameter array is precisely equivalent
to avalue parameter (810.5.1.1) of the same type.

The example
using System;
class Test

static void F(params int[] args) {
Console.write("Array contains {0} elements:", args.Length);
foreach (int i in args)
Console.write(" {0}", 1i);
console.wWriteLine();

static void Main() {
int[] arr = {1, 2, 3};

F(arr);
F(10, 20, 30, 40);
FO;
}
produces the output

Array contains 3 elements: 1 2 3
Array contains 4 elements: 10 20 30 40
Array contains 0 elements:

Thefirst invocation of F simply passes the array a as avalue parameter. The second invocation of F
automatically creates afour-element int[] with the given element values and passes that array instance as a
value parameter. Likewise, the third invocation of F creates azero-element int [] and passesthat instance asa
value parameter. The second and third invocations are precisely equivalent to writing:

F(new int[] {10, 20, 30, 40});

F(new int[] {});
When performing overload resolution, a method with a parameter array may be applicable either in its normal
form or in its expanded form (87.4.2.1). The expanded form of a method is available only if the normal form of

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 229

C#LANGUAGE SPECIFICATION

the method is not applicable and only if a method with the same signature as the expanded form is not already
declared in the same type.

The example
using System;
class Test

static void F(params object[] a)
console.writeLine("F(object[])");

static void FQ {
console.writeLine("FQO");

static void F(object a0, object al) {
Console.writeLine("F(object,object)");

static void Main() {

F(1, 2, 3);
F(1, 2, 3, 4);
}
}

produces the output

FO;

F(object[]1);

F(object,object);

F(object[1);

F(object[]);
In the example, two of the possible expanded forms of the method with a parameter array are already included in
the class as regular methods. These expanded forms are therefore not considered when performing overload
resolution, and the first and third method invocations thus select the regular methods. When a class declares a
method with a parameter array, it is not uncommon to also include some of the expanded forms as regular
methods. By doing so it is possible to avoid the all ocation of an array instance that occurs when an expanded
form of a method with a parameter array isinvoked.

When the type of a parameter array isobject[], apotential ambiguity arises between the normal form of the
method and the expended form for asingle object parameter. The reason for the ambiguity is that an
object[] isitsaf implicitly convertible to type object. The ambiguity presents no problem, however, since it
can be resolved by inserting a cast if needed.
The example

using System;

class Test
static void F(params object[] args) {
foreach (object o in a) {
Console.Write(o.GetType() .FullName);
Console.write(" ");

console.writeLine();

230 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

static void Main() {
object[] a = {1, "Hello"™, 123.456};
object o = a;

F(a);
F((object)a);
FC0);
. F((object[])o);
}
produces the output

System.Int32 System.String System.Double
System.Object[]
System.Object[]
System.Int32 System.String System.Double

In thefirst and last invocations of F, the normal form of F is applicable because an implicit conversion exists
from the argument type to the parameter type (both are of type object[]). Thus, overload resolution selects the
normal form of F, and the argument is passed as aregular value parameter. In the second and third invocations,
the normal form of F is not applicable because no implicit conversion exists from the argument type to the
parameter type (type object cannot be implicitly converted to type object[]). However, the expanded form
of Fisapplicable, soit is selected by overload resolution. As aresult, aone-element object[] iscreated by the
invocation, and the single element of the array isinitialized with the given argument value (which itself isa
referenceto an object[]).

10.5.2 Static and instance methods

When a method declaration includes a static modifier, the method is said to be a static method. When no
static modifier is present, the method is said to be an instance method.

A static method does not operate on a specific instance, and it is a compile-time error to refer to this inastatic
method.

An instance method operates on a given instance of aclass, and this instance can be accessed as this (87.5.7).

When amethod is referenced in a member-access (87.5.4) of theform E. M, if M isastatic method, E must
denote atype that has amethod M, and if M is an instance method, E must denote an instance of atype that hasa
method M.

The differences between static and instance members are further discussed in 810.2.5.

10.5.3 Virtual methods

When an instance method declaration includes a vi rtual modifier, the method is said to be avirtual method.
When no virtual modifier is present, the method is said to be a non-virtual method.

The implementation of anon-virtual method is invariant: The implementation is the same whether the method is
invoked on an instance of the classin which it is declared or an instance of a derived class. In contrast, the
implementation of avirtual method can be superseded by derived classes. The process of superseding the
implementation of an inherited virtua method is known as overriding the method (810.5.4).

In avirtua method invocation, the run-time type of the instance for which the invocation takes place determines
the actual method implementation to invoke. In a non-virtual method invocation, the compile-time type of the
instance is the determining factor. In precise terms, when a method named N isinvoked with an argument list A
on an instance with a compile-time type € and a run-time type R (whereR is either C or a class derived from C),
the invocation is processed as follows:

» Fird, overload resolution is applied to ¢, N, and A, to select a specific method M from the set of methods
declared in and inherited by C. Thisisdescribed in §7.5.5.1.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 231

C#LANGUAGE SPECIFICATION

* Then, if Misanon-virtua method, M isinvoked.
» Otherwise, M isavirtual method, and the most derived implementation of M with respect to R isinvoked.

For every virtual method declared in or inherited by a class, there exists amost derived implementation of the
method with respect to that class. The most derived implementation of avirtual method M with respect to a class
R is determined as follows:

» If R containstheintroducing virtual declaration of M, then thisis the most derived implementation of M.
e Otherwise, if R contains an override of M, then thisisthe most derived implementation of M.
» Otherwise, the most derived implementation of M is the same as that of the direct base class of R.
The following example illustrates the differences between virtual and non-virtual methods:
using System;
class A

public void F() { console.writeLine("A.F"); }
public virtual void G() { Console.writeLine("A.G"); }

class B: A

new public void F() { Console.writeLine("B.F"); }
public override void G() { Console.writeLine("B.G"); }

class Test

static void Main() {
new B();

b
3
In the example, A introduces a non-virtual method F and a virtual method G. The class B introduces a new non-
virtual method F, thus hiding the inherited F, and also overrides the inherited method G. The example produces
the output:

Notice that the statement a.G() invokesB .G, not A. G. Thisis because the run-time type of the instance (which
is B), not the compile-time type of the instance (which is A), determines the actual method implementation to
invoke.

Because methods are allowed to hide inherited methods, it is possible for aclassto contain several virtual
methods with the same signature. This does not present an ambiguity problem, since all but the most derived
method are hidden. In the example

using System;

232 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

class A

public virtual void FQ { Console.writeLine("A.F"); }

class B: A

public override void F() { Console.writeLine("B.F"); }

class C: B

new public virtual void F() { Console.writeLine("C.F"); }

class D: C

pubTic override void F() { Console.writeLine("D.F"); }

class Test

static void Main() {
Dd=new DO);
A a=d;
B b =d;
Cc=d;
a.FQ;
b.FO;
c.FO;
d.FQO;
}

3

the € and D classes contain two virtual methods with the same signature: The one introduced by A and the one
introduced by c. The method introduced by ¢ hides the method inherited from A. Thus, the override declaration
in D overrides the method introduced by ¢, and it is not possible for D to override the method introduced by A.
The exampl e produces the outpuit:

B.F

B.F

D.F
D.F

Note that it is possible to invoke the hidden virtual method by accessing an instance of D through aless derived
type in which the method is not hidden.

10.5.4 Override methods

When an instance method declaration includes an override modifier, the method is said to be an override
method. An override method overrides an inherited virtual method with the same signature. Whereas a virtual
method declaration introduces a new method, an override method declaration specializes an existing inherited
virtual method by providing a new implementation of the method.

The method overridden by an override declaration is known as the overridden base method. For an override
method M declared in a class C, the overridden base method is determined by examining each base class of ¢,
starting with the direct base class of € and continuing with each successive direct base class, until an accessible
method with the same signature as M islocated. For the purposes of locating the overridden base method, a
method is considered accessibleif itispublic,if itisprotected, if itisprotected internal,orifitis
internal and declared in the same program as C.

A compile-time error occurs unless all of the following are true for an override declaration:

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 233

C#LANGUAGE SPECIFICATION

* Anoverridden base method can be located as described above.

« Theoverridden base method is a virtual, abstract, or override method. In other words, the overridden base
method cannot be static or non-virtual .

* The overridden base method is not a seal ed method.

* Theoverride declaration and the overridden base method have the same declared accessihility. In other
words, an override declaration cannot change the accessibility of the virtual method.

An override declaration can access the overridden base method using a base-access (87.5.8). In the example
class A
int x;

pubTlic virtual void PrintFields() {
console.writeLine("x = {0}", x);

}
class B: A
int y;

public override void PrintFields() {
base.PrintFields();
Console.writeLine("y = {0}", y);

}

thebase.PrintFields () invocationin B invokesthe PrintFields method declared in A. A base-access
disables the virtual invocation mechanism and simply treats the base method as a non-virtual method. Had the
invocation in B been written ((A)this) .PrintFields (), it would recursively invokethe PrintFields
method declared in B, not the one declared in A, since PrintFields isvirtua and the run-time type of
((A)this) isB.

Only by including an override modifier can amethod override another method. In all other cases, a method
with the same signature as an inherited method simply hides the inherited method. In the example

class A

pubTlic virtual void FQ {}

class B: A
public virtual void FO {} // warning, hiding inherited FQ)
the F method in B does not include an override modifier and therefore does not override the F method in A.

Rather, the F method in B hides the method in A, and awarning is reported because the declaration does not
include a new modifier.

In the example
class A

pubTlic virtual void FQ {}

class B: A

new private void FQ {} // Hides A.F within B

234 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

class C: B

public override void FQ) {} // ok, overrides A.F

the F method in B hides the virtual F method inherited from A. Since the new F in B has private access, its scope
only includes the class body of B and does not extend to C. Therefore, the declaration of F in C is permitted to
override the F inherited from A.

10.5.5 Sealed methods

When an instance method declaration includes a sealed modifier, the method is said to be a sealed method. A
sealed method overrides an inherited virtual method with the same signature.

An override method can aso be marked with the sealed modifier. Use of this modifier prevents aderived class
from further overriding the method.

The example
using System;
class A

public virtual void FQ {
console.writeLine("A.F");

public virtual void G(O) {
console.writeLine("A.G

");
}

class B: A

sealed override public void F(Q) {
Console.writeLine("B.F");

override public void GO {
console.writeLine("B.G");

}

class C: B

override public void GO {
console.writeLine("C.G");

}

the class B provides two override methods: an F method that has the sealed modifier and aG method that does
not. B’s use of the sealed mod1i fi er prevents C from further overriding F.

10.5.6 Abstract methods

When an instance method declaration includes an abstract modifier, the method is said to be an abstract
method. Although an abstract method isimplicitly also avirtual method, it cannot have the vi rtual modifier.

An abstract method declaration introduces a new virtual method but does not provide an implementation of the
method. Instead, non-abstract derived classes are required to provide their own implementation by overriding
the method. Because an abstract method provides no actual implementation, the method-body of an abstract
method simply consists of a semicolon.

Abstract method declarations are only permitted in abstract classes (§10.1.1.1).

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 235

C#LANGUAGE SPECIFICATION

In the example
public abstract class Shape

public abstract void Paint(Graphics g, Rectangle r);

public class Ellipse: Shape

public override void Paint(Graphics g, Rectangle r) {
g.Drawellipse(r);

}

pubTlic class Box: Shape

public override void Paint(Graphics g, Rectangle r) {
g.DrawRect(r);

3

the shape class defines the abstract notion of a geometrical shape object that can paint itself. The Paint
method is abstract because there is no meaningful default implementation. The E111pse and Box classes are
concrete Shape implementations. Because these classes are non-abstract, they are required to override the
Paint method and provide an actual implementation.

It isacompile-time error for a base-access (§7.5.8) to reference an abstract method. In the example

abstract class A

public abstract void FQ);

class B: A

public override void F(Q) {
base.FQ); // Error, base.F is abstract

}
acompile-time error is reported for the base. F() invocation because it references an abstract method.

An abstract method declaration is permitted to override avirtual method. This allows an abstract classto force
re-implementation of the method in derived classes, and makes the origina implementation of the method
unavailable. In the example

using System;
class A

public virtual void F() {
console.writeLine("A.F");

}

abstract class B: A

public abstract override void F(Q);

class C: B

public override void FQ {
Console.writeLine("C.F");

236 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

class A declares a virtual method, class B overrides this method with an abstract method, and class C overrides
the abstract method to provide its own implementation.

10.5.7 External methods

When a method declaration includes an extern modifier, the method is said to be an external method. Externa
methods are implemented externally, using alanguage other than C#. Because an externa method declaration
provides no actua implementation, the method-body of an external method simply consists of a semicolon.

The extern modifier istypically used in conjunction with ab11Import attribute (817.5.1), allowing external
methods to be implemented by DLLs (Dynamic Link Libraries). The execution environment may support other
mechani sms whereby implementations of external methods can be provided.

When an external method includesab11Import attribute, the method declaration must also includeastatic
modifier. This example demonstrates the use of the extern modifier and the D11Import attribute:

using System.Text; o
using System.Security.Permissions;
using System.Runtime.InteropServices;

class Path
[DT1Import("kernel32", setLastError=true)]) _
static extern bool CreateDirectory(string name, SecurityAttribute sa);

[D11Import("kernel32", setLastError=true)]
static extern bool RemoveDirectory(string name);

[D11Import("kernel32", setLastError=true)]]])
static extern int GetCurrentDirectory(int bufSize, StringBuilder buf);

[DT1Import("kernel32", setLastError=true)]
static extern bool SetCurrentDirectory(string name);

}

10.5.8 Method body
The method-body of a method declaration consists of either ablock or a semicolon.
Abstract and external method declarations do not provide a method implementation, so their method bodies

simply consist of a semicolon. For any other method, the method body is a block (88.2) that contains the
statements to execute when the method is invoked.

When the return type of amethod isvoid, return statements (88.9.4) in the method body are not permitted to
specify an expression. If execution of the method body of avoid method completes normally (that is, control
flows off the end of the method body), the method simply returns to its caller.

When the return type of amethod isnot void, each return statement in the method body must specify an
expression of atype that isimplicitly convertible to the return type. The endpoint of the method body of a value-
returning method must not be reachable. In other words, in a value-returning method, control is not permitted to
flow off the end of the method body.

In the example
class A

pubTlic int FQ {} // Error, return value required

pubTlic int GO {
return 1;

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 237

C#LANGUAGE SPECIFICATION

public int H(bool b) {
if (b) {
return 1;

else {
return O;

}
}

the value-returning F method results in a compile-time error because control can flow off the end of the method
body. The G and H methods are correct because all possible execution paths end in areturn statement that
specifiesareturn value.

10.5.9 Method overloading
The method overload resolution rules are described in §7.4.2.

10.6 Properties

A property isamember that provides access to a characteristic of an object or a class. Examples of properties
include the length of astring, the size of afont, the caption of a window, the name of a customer, and so on.
Properties are a natural extension of fields—both are named members with associated types, and the syntax for
accessing fields and propertiesis the same. However, unlike fields, properties do not denote storage locations.
Instead, properties have accessors that specify the statements to be executed when their values are read or
written. Properties thus provide a mechanism for associating actions with the reading and writing of an object’s
attributes; furthermore, they permit such attributes to be computed.

Properties are declared using property-declarations:

property-declaration:
attributes,,, property-modifiers,, type member-name { accessor-declarations }

property-modifiers:
property-modifier
property-modifiers property-modifier

property-modifier:
new
public
protected
internal
private
static
virtual
sealed
override
abstract
extern

member-name:
identifier
interface-type . identifier
A property-declaration may include a set of attributes (817) and avalid combination of the four access

modifiers (810.2.3), the new (810.2.2), static (810.5.2), virtual (810.5.3), override (810.5.4), sealed
(810.5.5), abstract (810.5.6), and extern (810.5.7) modifiers.

238 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

Property declarations are subject to the same rules as method declarations (810.5) with regard to valid
combinations of modifiers.

Thetype of a property declaration specifies the type of the property introduced by the declaration, and the
member-name specifies the name of the property. Unless the property is an explicit interface member
implementation, the member-name is simply an identifier. For an explicit interface member implementation
(813.4.1), the member-name consists of an interface-type followed by a“.” and an identifier.

Thetype of a property must be at least as accessible as the property itself (83.5.4).

The accessor-declarations, which must be enclosed in “ {" and “}” tokens, declare the accessors (810.6.2) of the
property. The accessors specify the executable statements associated with reading and writing the property.

Even though the syntax for accessing a property is the same as that for afield, a property isnot classified asa
variable. Thus, it is not possible to pass a property asaref or out argument.

When a property declaration includes an extern modifier, the property is said to be an external property.
Because an external property declaration provides no actual implementation, each of its accessor-declarations
consists of a semicolon.

10.6.1 Static and instance prop erties
When a property declaration includes a static modifier, the property is said to be a static property. When no
static modifier is present, the property is said to be an instance property.

A static property is not associated with a specific instance, and it is a compile-time error to refer to this in the
accessors of a static property.

An instance property is associated with a given instance of aclass, and this instance can be accessed as this
(87.5.7) in the accessors of the property.

When a property isreferenced in a member-access (87.5.4) of theform E. M, if M isa static property, E must
denote atype that has a property M, and if M is an instance property, E must denote an instance that has a
property M.

The differences between static and instance members are further discussed in 810.2.5.

10.6.2 Accessors

The accessor-declarations of a property specify the executabl e statements associated with reading and writing
the property.
accessor-declarations:

get-accessor-declaration set-accessor-declarati 0Ny
set-accessor-declaration get-accessor-declarationg

get-accessor-declaration:
attributes,y get accessor-body

set-accessor -declaration:
attributes,y set accessor-body

accessor-body:
block

The accessor declarations consist of a get-accessor-declaration, a set-accessor-declaration, or both. Each
accessor declaration consists of the token get or set followed by an accessor-body. For abstract and
extern properties, the accessor-body for each accessor specified is simply a semicolon. For other properties,

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 239

C#LANGUAGE SPECIFICATION

the accessor-body for each accessor specified is a block which contains the statements to be executed when the
corresponding accessor isinvoked.

A get accessor corresponds to a parameterless method with a return value of the property type. Except as the
target of an assignment, when a property is referenced in an expression, the get accessor of the property is
invoked to compute the value of the property (87.1.1). The body of aget accessor must conform to the rules for
value-returning methods described in §10.5.8. In particular, all return statements in the body of a get accessor
must specify an expression that isimplicitly convertible to the property type. Furthermore, the endpoint of aget
accessor must not be reachable.

A set accessor corresponds to a method with a single value parameter of the property type and a void return
type. Theimplicit parameter of a set accessor is aways named value. When a property is referenced as the
target of an assignment (87.13), or as the operand of ++ or -- (87.5.9,87.6.5), the set accessor isinvoked with
an argument (whose value is that of the right-hand side of the assignment or the operand of the ++ or --
operator) that provides the new value (87.13.1). The body of a set accessor must conform to the rules for void
methods described in 810.5.8. In particular, return statementsin the set accessor body are not permitted to
specify an expression. Since a set accessor implicitly has a parameter named value, it isacompile-time error
for alocal variable declaration in a set accessor to have that name.

Based on the presence or absence of the get and set accessors, a property is classified asfollows:
» A property that includes both a get accessor and a set accessor is said to be aread-write property.

» A property that has only aget accessor is said to be aread-only property. It is a compile-time error for a
read-only property to be the target of an assignment.

* A property that has only a set accessor is said to be awrite-only property. Except as the target of an
assignment, it is a compile-time error to reference awrite-only property in an expression.

In the example
public class Button: Control

private string caption;

public string Caption {
get {)
return caption;

set {
if (caption != value) {
caption = value;
Repaint();
3

}

public override void Paint(Graphics g, Rectangle r) {
// Painting code goes here

}

the Button control declares apublic Caption property. The get accessor of the Caption property returns the
string stored in the private caption field. The set accessor checksif the new valueis different from the
current value, and if so, it stores the new value and repaints the control. Properties often follow the pattern
shown above: The get accessor simply returns a value stored in a private field, and the set accessor modifies
the private field and then performs any additional actions required to fully update the state of the object.

Given the Button class above, the following is an example of use of the Caption property:

240 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

Button okButtqn = new Button();
okButton.Caption = "OK"; // Invokes set accessor
string s = okButton.Caption; // Invokes get accessor

Here, the set accessor isinvoked by assigning avalue to the property, and the get accessor isinvoked by
referencing the property in an expression.

The get and set accessors of a property are not distinct members, and it is not possible to declare the accessors
of aproperty separately. As such, it is not possible for the two accessors of aread-write property to have
different accessibility. The example

class A

private string name;

public string Name { // Error, duplicate member name
get { return name; }

public string Name { // Error, duplicate member name
set { name = value; }

}

does not declare a single read-write property. Rather, it declares two properties with the same name, one read-
only and one write-only. Since two members declared in the same class cannot have the same name, the
example causes a compile-time error to occur.

When a derived class declares a property by the same name as an inherited property, the derived property hides
the inherited property with respect to both reading and writing. In the example

class A

public int P {
set {...}

}

class B: A

new pubTlic int P {

get {...}
}
the P property in B hides the P property in A with respect to both reading and writing. Thus, in the statements
B b =new BQ;

b.Pp =1; // Error, B.P is read-only
((Ab).p =1; // ok, reference to A.P

the assignment to b . P causes a compile-time error because the read-only P property in B hides the write-only P
property in A. Note, however, that a cast can be used to access the hidden p property.

Unlike public fields, properties provide a separation between an object’ sinternal state and its public interface.
Consider the example:

class Label

private int x, y;
private string caption;

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 241

C#LANGUAGE SPECIFICATION

public Label(int x, int y, string caption) {
this.x = Xx;
this.y = vy;
this.caption = caption;

public int X {
get { return x; }

public int Y {
get { return y; }

public Point Location {
get { return new Point(x, y); }

public string Caption {
get { return caption; }

}

Here, the Label class usestwo int fields, x and y, to storeitslocation. The location is publicly exposed both
asan X and aY property and asa Location property of type point. If, in afuture version of Label, it
becomes more convenient to store the location asa Point internaly, the change can be made without affecting
the public interface of the class:

class Label
private Point Tlocation;
private string caption;

public Label(int x, int y, string caption) {
this.location = new Point(x, y);
this.caption = caption;

public int X {
get { return location.x; }

public int Y {
get { return location.y; }

public Point Location {
get { return location; }

public string Caption {
get { return caption; }

}

Had x and y instead been pub1ic readonly fields, it would have been impossible to make such a changeto
the LabeT class.

Exposing state through propertiesis not necessarily any less efficient than exposing fields directly. In particular,
when a property is non-virtual and contains only a small amount of code, the execution environment may
replace calls to accessors with the actual code of the accessors. This processis known asinlining, and it makes
property access as efficient as field access, yet preserves the increased flexibility of properties.

Sinceinvoking aget accessor is conceptually equivalent to reading the value of afield, it is considered bad
programming style for get accessors to have observable side-effects. In the example

242 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

class Counter

private int next;

public int Next {
get { return next++; }

}

the value of the Next property depends on the number of times the property has previously been accessed. Thus,
accessing the property produces an observable side-effect, and the property should be implemented as a method
instead.

The“no side-effects” convention for get accessors doesn’'t mean that get accessors should aways be written to
simply return values stored in fields. Indeed, get accessors often compute the value of a property by accessing
multiple fields or invoking methods. However, a properly designed get accessor performs no actions that cause
observable changes in the state of the object.

Properties can be used to delay initialization of aresource until the moment it isfirst referenced. For example:
using System.IO;
public class Console

private static TextReader reader;
private static Textwriter writer;
private static Textwriter error;

public static TextReader In {
get {
if (reader == null) {
reader = new StreamReader(Console.OpenStandardInput());

return reader;

3
public static Textwriter out {
get {)
if (writer == null) { _
writer = new Streamwriter(Console.OpenStandardoutput());
return writer;
b
public static TextWriter Error {
get {
if (error == null) {)
error = new Streamwriter(Console.OpenStandarderror());
return error;
3

}

The Console class contains three properties, In, out, and Error, that represent the standard input, output, and
error devices, respectively. By exposing these members as properties, the ConsoTle class can delay their
initialization until they are actually used. For example, upon first referencing the out property, asin

console.out.wWriteLine("hello, world");

the underlying Textwr1iter for the output deviceis created. But if the application makes no referenceto the In
and Error properties, then no objects are created for those devices.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 243

C#LANGUAGE SPECIFICATION

10.6.3 Virtual, sealed, override, and abstract accessors

A virtual property declaration specifiesthat the accessors of the property are virtual. The virtual modifier
appliesto both accessors of aread-write property—it is not possible for only one accessor of aread-write
property to be virtual.

An abstract property declaration specifiesthat the accessors of the property are virtual, but does not provide
an actua implementation of the accessors. Instead, non-abstract derived classes are required to provide their
own implementation for the accessors by overriding the property. Because an accessor for an abstract property
declaration provides no actual implementation, its accessor-body ssmply consists of a semicolon.

A property declaration that includes both the abstract and override modifiers specifies that the property is
abstract and overrides a base property. The accessors of such a property are also abstract.

Abstract property declarations are only permitted in abstract classes (810.1.1.1).The accessors of an inherited
virtual property can be overridden in aderived class by including a property declaration that specifies an
override directive. Thisisknown as an overriding property declaration. An overriding property declaration
does not declare a new property. Instead, it simply specializes the implementations of the accessors of an
existing virtual property.

An overriding property declaration must specify the exact same accessibility modifiers, type, and name as the
inherited property. If the inherited property has only a single accessor (i.e., if the inherited property is read-only
or write-only), the overriding property must include only that accessor. If the inherited property includes both
accessors (i.e., if the inherited property is read-write), the overriding property can include either asingle
accessor or both accessors.

An overriding property declaration may include the sealed modifier. Use of this modifier prevents a derived
class from further overriding the property. The accessors of a sealed property are also seded.

Except for differences in declaration and invocation syntax, virtual, sealed, override, and abstract accessors
behave exactly like virtual, sealed, override and abstract methods. Specifically, the rules described in §10.5.3,
810.5.4, 810.5.5, and §10.5.6 apply asif accessors were methods of a corresponding form:

* A get accessor corresponds to a parameterless method with a return value of the property type and the same
modifiers as the containing property.

» A set accessor corresponds to a method with a single value parameter of the property type, avoid return
type, and the same modifiers as the containing property.

In the example
abstract class A
int y;

public virtual int X {
get { return 0; }

public virtual int Y {
get { return y; }
set { y = value; }

}

y public abstract int z { get; set; }

X isavirtua read-only property, Y isavirtual read-write property, and z is an abstract read-write property.
Because z is abstract, the containing class A must aso be declared abstract.

A class that derives from A is show below:

244 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

class B: A

int z;

public
get

public
set

public
get
set

}

override
{ return

override
{ base.Y

override
{ return

Chapter 1017 ClassesAttributes

int X {
base.Xx + 1; }

int Y {
= value < 0?7 0: value; }

int z {
Z,

{ z = value; }

Here, the declarations of X, Y, and z are overriding property declarations. Each property declaration exactly
matches the accessibility modifiers, type, and name of the corresponding inherited property. The get accessor
of X and the set accessor of Y use the base keyword to access the inherited accessors. The declaration of z
overrides both abstract accessors—thus, there are no outstanding abstract function membersin B, and B is
permitted to be a non-abstract class.

10.7 Events

An event isamember that enables an object or class to provide notifications. Clients can attach executable code
for events by supplying event handlers.

Events are declared using event-declarations:

event-declar ation:
attributes,y event-modifiers,c event type variable-declarators ;
attributes,y event-modifiers,x event type member-name { event-accessor-declarations }

event-modifiers:

event-modifier
event-modifiers event-modifier

event-modifier:

new
public
protected
internal
private
static
virtual
sealed
override
abstract
extern

event-accessor-declarations:
add-accessor-declaration remove-accessor-declaration
remove-accessor-declaration add-accessor-declaration

add-accessor-declaration:
attributes,y add block

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 245

C#LANGUAGE SPECIFICATION

r emove-accessor -declar ation:
attributes,,y remove block

An event-declaration may include a set of attributes (817) and a valid combination of the four access modifiers
(810.2.3), the new (810.2.2), static (810.5.2), virtual (810.5.3), override (810.5.4), sealed (810.5.5),
abstract (810.5.6), and extern (810.5.7) modifiers.

Event declarations are subject to the same rules as method declarations (810.5) with regard to valid
combinations of modifiers.

An event declaration may include event-accessor-declarations. However, if it does not, for non-extern, non-
abstract events, the compiler shall supply them automatically (810.7.1); for extern events, the accessors are
provided externally.

An event declaration that omits event-accessor -decl ar ations defines one or more events—one for each of the
variable-declarators. The attributes and modifiers apply to al of the members declared by such an event-
declaration.

It isa compile-time error for an event-declaration to include both the abstract modifier and event-accessor-
declarations.

When an event declaration includes an extern modifier, the event is said to be an external event. Because an
external event declaration provides no actual implementation, it is acompile-time error for it to include both the
extern modifier and event-accessor-declarations.

The type of an event declaration must be a delegate-type (84.2), and that delegate-type must be at least as
accessible asthe event itself (83.5.4).

An event can be used as the left hand operand of the += and -= operators (87.13.3). These operators are used to
attach or remove event handlers to or from an event, and the access modifiers of the event control the contextsin
which such operations are permitted.

Since += and -= are the only operations that are permitted on an event outside the type that declares the event,
external code can add and remove handlers for an event, but cannot in any other way obtain or modify the
underlying list of event handlers.

In an operation of theform x +=y or x -=y, when x is an event and the reference takes place outside the type
that contains the declaration of x, the result of the operation has type void (as opposed to the type of x). This
rule prohibits external code from indirectly examining the underlying delegate of an event.

The following example shows how event handlers are attached to instances of the Button class:
public delegate void EventHandler(object sender, EventArgs e);
public class Button: Control

public event EventHandler Click;

public class LoginDialog: Form

Button OkButton;
Button CancelButton;

public Loginbialog() {
okButton = new Button(...);
okButton.Click += new EventHandler (OkButtonClick);
CancelButton = new Button(...);
CancelButton.Click += new EventHandler(CancelButtonClick);

246 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

void oOkButtonClick(object sender, EventArgs e) {
// Handle oOkButton.Click event

void CancelButtonClick(object sender, EventArgs e) {
// Handle CancelButton.Click event

}

Here, the instance constructor for LoginDialog creates two Button instances and attaches event handlersto
the CT1 ck events.

10.7.1 Field-like events

Within the program text of the class or struct that contains the declaration of an event, certain events can be used
likefields. To be used in this way, an event must not be abstract or extern, and must not explicitly include
event-accessor-declarations. Such an event can be used in any context that permits afield. The field contains a
delegate (815) which refersto the list of event handlers that have been added to the event. If no event handlers
have been added, the field contains nu11.

In the example
public delegate void EventHandler(object sender, EventArgs e);
public class Button: Control

public event EventHandler Click;

protected void onClick(EventArgs e) {
if (Click != null) Click(this, e);

public void Reset() {
Click = null;

}

Click isused asafield within the Button class. Asthe example demonstrates, the field can be examined,
modified, and used in delegate invocation expressions. The onC11i ck method in the Button class“raises’ the
C11ick event. The notion of raising an event is precisely equivalent to invoking the delegate represented by the
event—thus, there are no special language constructs for raising events. Note that the delegate invocation is
preceded by a check that ensures the delegate is non-null.

Outside the declaration of the Button class, the 11 ck member can only be used on the left-hand side of the +=
and —= operators, asin

b.Cclick += new EventHandler(..);

which appends a del egate to the invocation list of the C11 ck event, and
b.Cclick -= new EventHandler(..);

which removes a delegate from the invocation list of the C11 ck event.

When compiling afield-like event, the compiler automatically creates storage to hold the delegate, and creates
accessors for the event that add or remove event handlers to the delegate field. In order to be thread-safe, the
addition or removal operations are done while holding the lock (88.12) on the containing object for an instance
event, or the type object (87.5.11) for a static event.

Thus, an instance event declaration of the form:

class X {
public event D Ev;

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 247

C#LANGUAGE SPECIFICATION

could be compiled to something equivalent to:

class X {
private D __Ev; // field to hold the delegate

public event D Ev {

add {

lock(this) { __Ev = __Ev + value; }
remove {

lock(this) { _Ev = __Ev - value; }

}
}

Within the class X, references to Ev are compiled to reference the hidden field __Ev instead. The name “_Ev”
isarbitrary; the hidden field could have any name or no name at all.

Similarly, a static event declaration of the form:

class X {)
public static event D Ev;

could be compiled to something equivalent to:

class X {

private static D __Ev; // field to hold the delegate

public static event D Ev {
add {

lock(typeof(X)) { _Ev = __Ev + value; }

remove {

lock(typeof (X)) { _Ev = __Ev - value; }

}
}

10.7.2 Event accessors

Event declarations typically omit event-accessor-declarations, asin the Button example above. whereOne
situation for doing so involves the case in which the storage cost of one field per event is not acceptable. In such
cases, a class can include event-accessor-declarations and use a private mechanism for storing the list of event
handlers.

The event-accessor-declarations of an event specify the executable statements associated with adding and
removing event handlers.

The accessor declarations consist of an add-accessor-declaration and a remove-accessor-declaration. Each

accessor declaration consists of the token add or remove followed by ablock. The block associated with an
add-accessor-declaration specifies the statements to execute when an event handler is added, and the block

associated with aremove-accessor-declaration specifies the statements to execute when an event handler is
removed.

Each add-accessor-declaration and remove-accessor-declaration corresponds to a method with a single value
parameter of the event type and a void return type. Theimplicit parameter of an event accessor is named
value. When an event is used in an event assignment, the appropriate event accessor is used. If the assignment
operator is += then the add accessor is used, and if the assignment operator is -= then the remove accessor is
used. In either case, the right hand operand of the assignment operator is used as the argument to the event
accessor. The block of an add-accessor-declaration or aremove-accessor-declaration must conform to the rules

248 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

for void methods described in 810.5.8. In particular, return statementsin such ablock are not permitted to
specify an expression.

Since an event accessor implicitly has a parameter named value, it isacompile-time error for alocal variable
declared in an event accessor to have that name.

In the example
class Control: Component

// Unique keys for events]
static readonly object mouseDowntEventKey = new object();
static readonly object mouseUpEventKey = new object();

// Return event handler associated with key
protected delegate GetEventHandler(object key) {...}

// Add event handler associated with key
protected void AddEventHandler(object key, Delegate handler) {...}

// Remove event handler associated with key
protected void RemoveEventHandler(object key, Delegate handler) {...}

// MouseDown event

public event MouseEventHandler MouseDown {
add { AddeventHandler(mousebDownEventKey, value); }
remove { RemoveEventHandler(mouseDownEventkKey, value); }

// MouseUp event

public event MouseEventHandler MouseUp {
add { AddeventHandler(mouseUpEventkey, value); }
remove { RemoveEventHandler(mouseUpEventKey, value); }

// Invoke the MouseUp event
protected void OnMouseUp(MouseEventArgs args) {
MouseEventHandler handler;
handler = (MouseEventHandler)GetEventHandler(mouseUpEventKey) ;
if (handler != null)
) handler(this, args);
b

the Control classimplements an internal storage mechanism for events. The AddeventHandTer method
associates a del egate value with a key, the GetEventHand1er method returns the delegate currently associated
with akey, and the RemoveEventHand1er method removes a delegate as an event handler for the specified
event. Presumably, the underlying storage mechanism is designed such that there is no cost for associating a
nul1 delegate value with a key, and thus unhandled events consume no storage.

10.7.3 Static and instance events

When an event declaration includes a static modifier, the event is said to be a static event. When no static
modifier is present, the event is said to be an instance event.

A static event is not associated with a specific instance, and it isa compile-time error to refer to this in the
accessors of a static event.

Aninstance event is associated with a given instance of aclass, and this instance can be accessed as this
(87.5.7) in the accessors of the event.

When an event isreferenced in a member-access (87.5.4) of theform E. ™, if Misastatic event, E must denote a
type, and if M is an instance event, E must denote an instance.

The differences between static and instance members are discussed further in 810.2.5.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 249

C#LANGUAGE SPECIFICATION

10.7.4 Virtual, sealed, override, and abstract accessors

A virtual event declaration specifies that the accessors of the event are virtual. The vi rtual modifier applies
to both accessors of an event.

An abstract event declaration specifiesthat the accessors of the event are virtual, but does not provide an
actual implementation of the accessors. Instead, non-abstract derived classes are required to provide their own
implementation for the accessors by overriding the event. Because an accessor for an abstract event declaration
provides no actua implementation, its accessor-body simply consists of a semicolon.

An event declaration that includes both the abstract and override modifiers specifies that the event is
abstract and overrides a base event. The accessors of such an event are also abstract.

Abstract event declarations are only permitted in abstract classes (810.1.1.1).

The accessors of an inherited virtua event can be overridden in a derived class by including an event declaration
that specifies an override modifier. Thisis known as an overriding event declaration. An overriding event
declaration does not declare a new event. Instead, it ssmply specializes the implementations of the accessors of
an existing virtual event.

An overriding event declaration must specify the exact same accessibility modifiers, type, and name as the
overridden event.

An overriding event declaration may include the sealed modifier. Use of this modifier prevents a derived class
from further overriding the event. The accessors of a seded event are aso sealed.

It is acompile-time error for an overriding event declaration to include anew modifier.

Except for differences in declaration and invocation syntax, virtual, sealed, override, and abstract accessors
behave exactly like virtual, sealed, override and abstract methods. Specifically, the rules described in §10.5.3,
§810.5.4, §10.5.5, and §10.5.6 apply asif accessors were methods of a corresponding form. Each accessor
corresponds to a method with a single value parameter of the event type, avoid return type, and the same
modifiers as the containing event.

10.8 Indexers

Anindexer isamember that enables an abject to be indexed in the same way as an array. Indexers are declared
using indexer-declarations:

indexer-declaration:
attributesy, indexer-modifiers,; indexer-declarator { accessor-declarations }

indexer-modifiers:
indexer-modifier
indexer-modifiers indexer-modifier

indexer-modifier:
new
public
protected
internal
private
virtual
sealed
override
abstract
extern

250 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

indexer-declarator:
type this [formal-parameter-list]
type interface-type . this [formal-parameter-list]

An indexer-declaration may include a set of attributes (817) and a valid combination of the four access
modifiers (810.2.3), the new (810.2.2), virtual (810.5.3), override (810.5.4), sealed (810.5.5), abstract
(810.5.6), and extern (810.5.7) modifiers.

Indexer declarations are subject to the same rules as method declarations (810.5) with regard to valid
combinations of modifiers, with the one exception being that the static modifier is not permitted on an indexer
declaration.

The type of an indexer declaration specifies the element type of the indexer introduced by the declaration.
Unless the indexer is an explicit interface member implementation, the type is followed by the keyword this.
For an explicit interface member implementation, the type is followed by an interface-type, a“.”, and the
keyword th1is. Unlike other members, indexers do not have user-defined names.

The formal-parameter-list specifies the parameters of the indexer. The formal parameter list of an indexer
corresponds to that of a method (810.5.1), except that at |east one parameter must be specified, and that the ref
and out parameter modifiers are not permitted.

The type of an indexer and each of the types referenced in the formal-parameter-list must be at least as
accessible as the indexer itself (83.5.4).

The accessor-declarations (810.6.2) which must be enclosed in“ {” and “}” tokens, declare the accessors of the
indexer. The accessors specify the executable statements associated with reading and writing indexer elements.

Even though the syntax for accessing an indexer element is the same as that for an array element, an indexer
element is not classified as avariable. Thus, it is hot possible to pass an indexer element asa ref or out
argument.

Theformal parameter list of an indexer defines the signature (83.6) of the indexer. Specifically, the signature of
an indexer consists of the number and types of its formal parameters. The element type and names of the formal
parameters are not part of an indexer’s signature.

The signature of an indexer must differ from the signatures of all other indexers declared in the same class.
Indexers and properties are very similar in concept, but differ in the following ways:
» A property isidentified by its name, whereas an indexer isidentified by its signature.

» A property is accessed through a simple-name (87.5.2) or a member-access (87.5.4), whereas an indexer
element is accessed through an element-access (87.5.6.2).

* A property can be a static member, whereas an indexer is aways an instance member.

* A get accessor of aproperty corresponds to a method with no parameters, whereas a get accessor of an
indexer corresponds to a method with the same formal parameter list asthe indexer.

» A set accessor of aproperty corresponds to a method with a single parameter named value, whereas a
set accessor of an indexer corresponds to a method with the same formal parameter list as the indexer, plus
an additional parameter named value.

* Itisacompile-time error for an indexer accessor to declare alocal variable with the same name as an
indexer parameter.

* Inanoverriding property declaration, the inherited property is accessed using the syntax base. P, where p
is the property name. In an overriding indexer declaration, the inherited indexer is accessed using the syntax
base[E], where E isacomma separated list of expressions.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 251

C#LANGUAGE SPECIFICATION

Aside from these differences, al rules defined in 810.6.2 and 810.6.3 apply to indexer accessors aswell asto
property accessors.

When an indexer declaration includes an extern modifier, the indexer is said to be an external indexer.
Because an external indexer declaration provides no actual implementation, each of its accessor-declarations
consists of a semicolon.

The example below declaresaB1i tArray class that implements an indexer for accessing the individua bitsin
the bit array.

using System;
class BitArray

int[] bits;

int length;

public BitArray(int length) {
if (length < 0) throw new ArgumentException();
bits = new int[((length - 1) >> 5) + 1];
this.length = length;

public int Length {
get { return length; }

public ?oo1 this[int index] {
get
if (index < 0 || index >= Tength) {
throw new IndexoutOfRangeException();

return (bits[index >> 5] & 1 << index) != 0;

set {
if (index < 0 || index >= length) {
throw new IndexoutOfRangeException();

3
if (value) {
bits[index >> 5] |= 1 << index;

else {
bits[index >> 5] &= ~(1 << index);

}
}
}

An instance of the Bi tArray class consumes substantially less memory than a corresponding boo1[] (since
each value of the former occupies only one bit instead of the latter’ s one byte), but it permits the same
operationsas abooT[].

Thefollowing CountPrimes classusesaBitArray and the classical “sieve” agorithm to compute the number
of primes between 1 and a given maximum:

252 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

class CountPrimes

static int Count(int max) {
BitArray flags = new BitArray(max + 1);
int count = 1;
for (int i = 2; i <= max; i++) {
if ('flags[i]) {
for (int j =1 * 2; j <= max; j += i) flags[j] = true;
count++;

3

return count;

static void Main(string[] args) {
int max = int.Parse(args[0]);
int count = Count(max);
console.writeLine("Found {0} primes between 1 and {1}", count, max);

}
Note that the syntax for accessing elements of the BitArray isprecisely the same asfor abool[].

The following example shows a 26 by 10 grid class that has an indexer with two parameters. The first parameter

isrequired to be an upper- or lowercase letter in the range A—Z, and the second is required to be an integer in the
range 0-9

class Grid
const int NumRows = 26;
const int NumCols = 10;

int[,] cells = new int[NumRows, NumCols];

public int this[char c, int colm] {
get {
c = Char.ToUpper(c);
if (c < 'A" || ¢> '2")
throw new ArgumentException();
if (colm < 0 || colm >= NumCols)
throw new IndexoutOfRangeException();
return cells[c - 'A', colm];

set {
c = Char.ToUpper(c);
if (c < 'A" || ¢ > '2")
throw new ArgumentException();
if (colm < 0 || colm >= NumCols)
throw new IndexoutOfRangeException();
cells[c - '"A', colm] = value;

}
}

10.8.1 Indexer overloading
Theindexer overload resolution rules are described in 87.4.2.

10.9 Operators

An operator isamember that defines the meaning of an expression operator that can be applied to instances of
the class. Operators are declared using operator-declarations:

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 253

C#LANGUAGE SPECIFICATION

oper ator-declaration:
attributes,,; operator-modifiers operator-declarator operator-body

operator-modifiers:
operator-modifier
operator-modifiers operator-modifier

operator-modifier:
public
static
extern

operator-declarator:
unary-oper ator-declarator
binary-operator-declarator
conver sion-oper ator-decl ar ator

unary-oper ator-declarator:
type operator overloadable-unary-operator (type identifier)

overloadable-unary-operator: one of
+ - ! ~ 4+ -- true false

binary-operator-declarator:
type operator overloadable-binary-operator (type identifier , type identifier)

overloadable-binary-operator: one of
+ - * / % & | A << >> == I= > < >= <=

conver sion-oper ator-declarator
implicit operator type (type identifier)
explicit operator type (type identifier)

oper ator-body:
block

There are three categories of overloadable operators. Unary operators (810.9.1), binary operators (§10.9.2), and
conversion operators (810.9.3).

When an operator declaration includes an extern modifier, the operator is said to be an external operator.
Because an external operator provides no actual implementation, its operator-body consists of a semi-colon. For
all other operators, the operator-body consists of a block, which specifies the statements to execute when the
operator isinvoked. The block of an operator must conform to the rules for value-returning methods described in

810.5.8.
Thefollowing rules apply to all operator declarations:
* Anoperator declaration must include both apub1ic and astatic modifier.

» The parameter(s) of an operator must be value parameters. It is a compile-time error for an operator
declaration to specify ref or out parameters.

* Thesignature of an operator (810.9.1, 810.9.2, §10.9.3) must differ from the signatures of all other operators

declared in the same class.

» All typesreferenced in an operator declaration must be at |east as accessible as the operator itself (83.5.4).

» Itisacompile-time error for the same modifier to appear multiple timesin an operator declaration.

254 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

Each operator category imposes additional restrictions, as described in the following sections.

Like other members, operators declared in a base class are inherited by derived classes. Because operator
declarations always require the class or struct in which the operator is declared to participate in the signature of
the operator, it is not possible for an operator declared in a derived class to hide an operator declared in a base
class. Thus, the new modifier is never required, and therefore never permitted, in an operator declaration.

Additional information on unary and binary operators can be found in 87.2.

Additional information on conversion operators can be found in §6.4.

10.9.1 Unary operators

The following rules apply to unary operator declarations, where T denotes the class or struct type that contains
the operator declaration:

* Aunary +, -, !, or ~ operator must take a single parameter of type T and can return any type.
e A unary ++ or -- operator must take a single parameter of type T and must return type T.
 Aunary true or false operator must take a single parameter of type T and must return type boo.

The signature of a unary operator consists of the operator token (+, -, !, ~, ++, --, true, or false) and the
type of the single formal parameter. The return type is not part of aunary operator’ s signature, nor is the name
of the formal parameter.

The true and false unary operators require pair-wise declaration. A compile-time error occursif a class
declares one of these operators without also declaring the other. The true and false operators are described
further in 87.16.

The following exampl e shows an implementation and subsequent usage of operator++ for an integer vector
class:

class Intvector

public int Length { ... } // read-only property
public int this[int index] { ... } // read-write indexer
public Intvector(int vectorLength) { ... }

public static Intvector operator++(Intvector iv) {
IntVector temp = new IntVector(iv.Length);
for (int i = 0; i < iv.Length; ++i)
temp[i] = iv[i] + 1;
return temp;

}
class Test
public static void Main() {

Intvector ivl = new Intvector(4); // vector of 4x0
IntvVector iv2;

ivls+; // iv2 contains 4x0, ivl contains 4x1
++ivl; // iv2 contains 4x2, ivl contains 4x2

jv2
iv2

}

Note that the operator returns the value produced by adding 1 to the operand, just like the postfix increment and
decrement operators (87.5.9), and the prefix increment and decrement operators (87.6.5). Unlike in C++, this
method need not, and, in fact, must not, modify the value of its operand directly.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 255

C#LANGUAGE SPECIFICATION

10.9.2 Binary operators
A binary operator must take two parameters, at least one of which must have the class or struct type in which the
operator isdeclared. A binary operator can return any type.

The signature of a binary operator consists of the operator token (+, -, *, /, %, &, |, A, <<, >>, ==, I=,>, <, >=,
or <=) and the types of the two formal parameters. The return type and names of the formal parameters are not
part of a binary operator’s signature.

Certain binary operators require pair-wise declaration. For every declaration of either operator of apair, there
must be a matching declaration of the other operator of the pair. Two operator declarations match when they
have the same return type and the same type for each parameter. The following operators require pair-wise
declaration:

e operator ==andoperator !=
e operator > andoperator <

e operator >=and operator <=

10.9.3 Conversion operators

A conversion operator declaration introduces a user-defined conversion (86.4) which augments the pre-defined
implicit and explicit conversions.

A conversion operator declaration that includes the imp1i cit keyword introduces a user-defined implicit
conversion. Implicit conversions can occur in avariety of situations, including function member invocations,
cast expressions, and assignments. Thisis described further in §86.1.

A conversion operator declaration that includes the exp1i cit keyword introduces a user-defined explicit
conversion. Explicit conversions can occur in cast expressions, and are described further in §86.2.

A conversion operator converts from a source type, indicated by the parameter type of the conversion operator,
to atarget type, indicated by the return type of the conversion operator. A class or struct is permitted to declare a
conversion from asource type s to atarget type T provided al of the following are true:

* SandT aredifferent types.

» Either s or T isthe class or struct type in which the operator declaration takes place.
* Neither s nor Tisobject or aninterface-type.

e Tisnotabaseclassof S, and s isnot abase class of T.

From the second rule it follows that a conversion operator must convert either to or from the class or struct type
in which the operator is declared. For example, it is possible for a class or struct type C to define a conversion
from C to int and from int to C, but not from int to booT.

It is not possible to redefine a pre-defined conversion. Thus, conversion operators are not allowed to convert
from or to object because implicit and explicit conversions already exist between object and all other types.
Likewise, neither the source nor the target types of a conversion can be a base type of the other, since a
conversion would then already exist.

User-defined conversions are not allowed to convert from or to interface-types. This restriction in particular
ensures that no user-defined transformations occur when converting to an interface-type, and that a conversion
to an interface-type succeeds only if the object being converted actually implements the specified interface-type.

The signature of a conversion operator consists of the source type and the target type. (Note that thisis the only
form of member for which the return type participates in the signature.) The impTicit or explicit

256 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

classification of aconversion operator is not part of the operator’s signature. Thus, a class or struct cannot
declare both an imp1icit and an exp1icit conversion operator with the same source and target types.

In general, user-defined implicit conversions should be designed to never throw exceptions and never lose
information. If a user-defined conversion can give rise to exceptions (for example, because the source argument
isout of range) or loss of information (such as discarding high-order bits), then that conversion should be
defined as an explicit conversion.

In the example
using System;
public struct Digit

byte value;

public Digit(byte value) {
if (value < 0 || value > 9) throw new ArgumentException();
this.value = value;

public static implicit operator byte(Digit d) {
return d.value;

public static explicit operator Digit(byte b) {
return new Digit(b);

}

the conversion from Digit to byte isimplicit because it never throws exceptions or loses information, but the
conversion from byte to Dig1it isexplicit sihce Dig1it can only represent a subset of the possible values of a
byte.

10.10 Instance constructors

Aninstance constructor is amember that implements the actions required to initialize an instance of a class.
Instance constructors are declared using constructor-declarations:

constructor-declaration:
attributesy,: constructor-modifiers,, constructor-declarator constructor-body

constructor-modifiers:
constructor-modifier
constructor-modifiers constructor-modifier

constructor-modifier:
public
protected
internal
private
extern

constructor-declarator:
identifier (formal-parameter-listy,) constructor-initializer oy

constructor-initializer:
base (argument-listyy)
this (argument-listey)

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 257

C#LANGUAGE SPECIFICATION

constructor-body:
block

A constructor-declaration may include a set of attributes (817), avalid combination of the four access modifiers
(810.2.3), and an extern (810.5.7) modifier. A constructor declaration is not permitted to include the same
modifier multiple times.

Theidentifier of a constructor-declarator must name the class in which the constructor is declared. If any other
name is specified, a compile-time error occurs.

The optional formal-parameter-list of an instance constructor is subject to the same rules as the formal-
parameter-list of amethod (810.5). The formal parameter list defines the signature (83.6) of an instance
constructor and governs the process whereby overload resolution (87.4.2) selects a particular instance
constructor in an invocation.

Each of the types referenced in the formal-parameter-list of an instance constructor must be at least as
accessible as the constructor itself (83.5.4).

The optional constructor-initializer specifies another instance constructor to invoke before executing the
statements given in the constructor-body of thisinstance constructor. Thisis described further in §10.10.1.

When a constructor declaration includes an extern modifier, the constructor is said to be an external
constructor. Because an external constructor declaration provides no actua implementation, its constructor-
body consists of a semicolon. For all other constructors, the constructor-body consists of a block which specifies
the statementsto initialize a new instance of the class. This corresponds exactly to the block of an instance
method with avoid return type (810.5.8).

Instance constructors are not inherited. Thus, a class has no instance constructors other than those actually
declared in the class. If a class contains no instance constructor declarations, a default instance constructor is
automatically provided (810.10.4).

Instance constructors are invoked by object-creation-expressions (87.5.10.1) and through constructor-
initializers.

10.10.1 Constructor initializers

All instance constructors (except those for class object) implicitly include an invocation of another instance
constructor immediately before the constructor-body. The constructor to implicitly invoke is determined by the
constructor-initializer:

» Ainstance constructor initializer of the form base (argument-list,,) causes an instance constructor from
the direct base class to be invoked. The constructor is selected using the argument-list and overload
resolution rules of §7.4.2. The set of candidate instance constructors consists of all accessible instance
constructors declared in the direct base class. If the set is empty, or if asingle best instance constructor
cannot be identified, a compile-time error occurs.

* Aninstance constructor initializer of the form th1is (argument-listy,) causes an instance constructor from
the classitsalf to be invoked. The constructor is selected using the argument-list and overload resolution
rules of 87.4.2. The set of candidate instance constructors consists of al accessible instance constructors
declared in the classitsdlf. If the set is empty, or if asingle best instance constructor cannot be identified, a
compile-time error occurs. If an instance constructor declaration includes a constructor initializer that
invokes the constructor itself, a compile-time error occurs.

If an instance constructor has no instance constructor initializer, an instance constructor initiaizer of the form
base () isimplicitly provided. Thus, an instance constructor declaration of the form

cC...) {...}

258 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

isequivalent to
c(...): base({...}

The scope of the parameters given by the formal-parameter-list of an instance constructor declaration includes
the instance constructor initiaizer of that declaration. Thus, an instance constructor initiaizer is permitted to
access the parameters of the instance constructor. For example:

class A

public ACint x, int y) {}

class B: A

public B(int x, int y): base(x + vy, x - y) {}

An instance constructor initializer cannot access the instance being created. Thereforeit is a compile-time error
to reference thi s in an argument expression of the instance constructor initializer, asit is a compile-time error
for an argument expression to reference any instance member through a simple-name.

10.10.2 Instance variable initiali zers

When an instance constructor has no instance constructor initializer, or when it has an instance constructor
initializer of theform base(. . .), it implicitly performs the initializations specified by the variable-initializers
of the instance fields declared in the class. This corresponds to a sequence of assignments that are executed
immediately upon entry to the instance constructor and before the implicit invocation of the direct base class
instance constructor. The variable initializers are executed in the textual order in which they appear in the class
declaration.

10.10.3 Constructor execution

Variableinitiaizers are transformed into assignment statements, and these assignment statements are executed
before the invocation of the base class instance constructor. This ordering ensuresthat al instance fields are
initialized by their variable initidizers before any statements that have access to that instance are executed.

In the example
using System;
class A

pubTlic AQ {
PrintFields(Q);

public virtual void PrintFields() {3}

}
class B: A
int x = 1;
int y;
public BQ {
y = -1;
}

public override void PrintFields() {
Cconsole.writeLine("x = {0}, y = {1}", X, y);

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 259

C#LANGUAGE SPECIFICATION

class T

static void Main() {
B b=newBQ;

}
}
the following output is produced:
x=1,y=0

Thevaue of x is 1 because the variable initializer is executed before the base class instance constructor is
invoked. However, the value of y is O (the default value of an int) because the assignment to y is not executed
until after the base class constructor returns.

It isuseful to think of instance variable initializers and constructor initializers as statements that are
automatically inserted before the constructor-body of an instance constructor. The example

using System;]
using System.Collections;

class A

int x =1, y = -1, count;

public AQ {
count = 0;

pubTic A(int n) {
count = n;
b
class B: A
double sqrt2 = mMath.sqrt(2.0);

ArrayList items = new ArrayList(100);
int max;

public B(): this(100) {
items.Add("default™);

public B(int n): base(n - 1) {
max = n;

}

contains severa variable initializers and also contains constructor initializers of both forms (base and this).
The exampl e corresponds to the code shown below, where each comment indicates an automatically inserted
statement (the syntax used for the automatically inserted constructor invocationsisn't valid, but merely servesto
illustrate the mechanism).

using System.Collections;
class A

int x, y, count;
pubTlic AQ {

x = 1; // Variable initializer
= -1; // Variable initializer

y
object(); // Invoke object() constructor
count = 0;

260 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

public ACint n) {

X = 1; // Variable initializer

y = -1; // variable initializer
object(); // Invoke object() constructor
count = n;

}
}

class B: A

double sqrt2;
ArraylList items;
int max;

public B(): this(100) {
B(100); // Invoke B(int) constructor
items.Add("default™);

public B(int n): base(n - 1) {

sqrt2 = Math.sqrt(2.0); // Vvariable initializer
items = new ArrayList(100); // variable initializer

A(n - 1); // Invoke A(int) constructor
max = n;

}
}

10.10.4 Default constructors

If aclass contains no instance constructor declarations, a default instance constructor is automatically provided.
The default constructor simply invokes the parameterless constructor of the direct base class. If the direct base
class does not have an accessible parameterl ess instance constructor, a compile-time error occurs. If the classis
abstract then the declared accessibility for the default constructor is protected. Otherwise, the declared
accessibility for the default constructor is public. Thus, the default constructor is always of the form

protected C(): base() {}
or

public c(Q: base() {}
where C is the name of the class.
In the example

class Message

object sender;
string text;

adefault constructor is provided because the class contains no instance constructor declarations. Thus, the
exampleis precisely equivalent to

class Message

object sender;
string text;

public Message(): base() {}

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 261

C#LANGUAGE SPECIFICATION

10.10.5 Private constructors

When a class declares only private instance constructors, it is not possible for other classes to derive from the
class or create instances of the class (an exception being classes nested within the class). Private instance
constructors are commonly used in classes that contain only static members. For example:

public class Trig

private Trig(QQ {} // Prevent instantiation
public const double PI = 3.14159265358979323846;

public static double Sin(double x) {...}
public static double Cos(double x) {...}
public static double Tan(double x) {...}

}

The Trig class groups related methods and constants, but is not intended to be instantiated. Therefore it
declares a single empty private instance constructor. At least one instance constructor must be declared to
suppress the automatic generation of a default constructor.

10.10.6 Optional instance constructor parameters

Thethis(...) form of an instance constructor initializer is commonly used in conjunction with overloading
to implement optional instance constructor parameters. In the example

class Text
pubTlic Text(): this(0, 0, null) {}
public Text(int x, int y): this(x, y, null) {}

public Text(int x, int y, string s) {
// Actual constructor implementation

3

the first two instance constructors merely provide the default values for the missing arguments. Both use a
this(...) constructor initializer to invoke the third instance constructor, which actually does the work of
initializing the new instance. The effect isthat of optional instance constructor parameters:

Text tl = new Text(); // Same as Text(0, 0, null)
Text t2 = new Text(5, 10); // Same as Text(5, 10, null)
Text t3 = new Text(5, 20, "Hello");

10.11 Static constructors

A static constructor isamember that implements the actions required to initialize a class. Static constructors are
declared using static-constructor-declarations:

static-constructor-declaration:
attributes,, static-constructor-modifiers identifier () static-constructor-body

static-constructor-body:
block

static-constructor-modifiers;
externgyy static
static externgy

A static-constructor-declaration may include a set of attributes (817) and an extern (810.5.7) modifier.

262 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

The identifier of a static-constructor-declaration must name the class in which the static constructor is declared.
If any other name is specified, a compile-time error occurs.

When a static constructor declaration includes an extern modifier, the static constructor is said to be an
external static constructor. Because an external static constructor declaration provides no actual
implementation, its static-constructor-body consists of a semicolon. For al other static constructor declarations,
the static-constructor-body consists of a block which specifies the statements to execute in order to initiaize the
class. This corresponds exactly to the method-body of a static method with avo1id return type (810.5.8).

Static constructors are not inherited, and cannot be called directly.

The static constructor for a class executes at most once in a given application domain. The execution of a static
constructor istriggered by thefirst of the following eventsto occur within an application domain:

* Aninstance of the classis created.
* Any of the static members of the class are referenced.

If aclass contains the Main method (83.1) in which execution begins, the static constructor for that class
executes before the Main method is called. If aclass contains any static fields with initializers, those initializers
are executed in textual order immediately prior to executing the static constructor.

The example
using System;
class Test

static void Main() {
A.FO;

B.FO;
b

class A

static AQ {]))
console.writeLine("Init A");

public static void F() {
console.writeLine("A.F");

}

class B

static B {]))
console.writeLine("Init B");

public static void F() {
console.writeLine("B.F");

}

must produce the outpuit:
Init A

because the execution of A's static constructor istriggered by the call to A. F, and the execution of B's static
constructor istriggered by the call toB.. F.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 263

C#LANGUAGE SPECIFICATION

It is possible to construct circular dependencies that allow static fields with variable initializers to be observed in
their default value state.
The example

using System;

class A

public static int X;
static AQQ { X = B.Y + 1;}

class B

public static int Y = A.X + 1;
static B {}
static void Main() {
console.writeLine("X = {0}, Y = {1}", A.X, B.Y);

3

produces the output
X=1,Y =2

To execute the Main method, the system first runsthe initializer for B. Y, prior to class B's static constructor.
Y'sinitializer causes A's static constructor to be run because the value of A. X isreferenced. The static
constructor of A in turn proceeds to compute the value of X, and in doing so fetches the default value of v, which
iszero. A.X isthusinitialized to 1. The process of running A's static field initializers and static constructor then
completes, returning to the calculation of the initial value of v, the result of which becomes

10.12 Destructors
A destructor is amember that implements the actions required to destruct an instance of aclass. A destructorsis
declared using a destructor-declaration:

destructor-declaration:
attributes,y externgy ~ identifier () destructor-body

destructor-body:
block

A destructor-declaration may include a set of attributes (817) and an extern modifier.

Theidentifier of adestructor-declarator must name the classin which the destructor is declared. If any other
name is specified, a compile-time error occurs.

When a destructor declaration includes an extern modifier, the destructor is said to be an external destructor.
Because an external destructor declaration provides no actual implementation, its destructor-body consists of a
semicolon. For al other destructors, the destructor-body consists of a block which specifies the statements to
execute in order to destruct an instance of the class. A destructor-body corresponds exactly to the method-body
of an instance method with avoid return type (810.5.8).

Destructors are not inherited. Thus, a class has no destructors other than the one which may be declared in it.

Since adestructor isrequired to have no parameters, it cannot be overloaded. Thus, a class can have, at most,
one destructor.

Destructors are invoked automatically, and cannot be invoked explicitly. An instance becomes eligible for
destruction when it is no longer possible for any code to use the instance. Execution of the destructor for the

264 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1017 ClassesAttributes

instance may occur at any time after the instance becomes eligible for destruction. When an instance is
destructed, the destructorsin its inheritance chain are called, in order, from most derived to least derived. A
destructor may be executed on any thread. For further discussion of the rulesthat govern when and how a
destructor is executed, see 83.9.

The output of the example
using System;

class A
~AQ {]]
console.writeLine("A's destructor");
}
class B: A
~B(O) {]]
console.writeLine("B's destructor");
}
class Test
static void Main() {
B b =new BO;
b = null;
GC.ColTlect();
; GC.waitForPendingFinalizers(Q);
}

B’s destructor
A’s destructor

since destructors in an inheritance chain are caled in order, from most derived to least derived.

Destructors are implemented by overriding the virtual method Finalize on System.0Object. C# programs
are not permitted to override this method or call it (or overrides of it) directly. For instance, the program

class A

override protected void Finalize() {} // error

pubTic void FQ {
this.Finalize(Q); // error

}

produces two compile-time errors. The compiler behaves asiif this method, and overrides of it, do not exist at
al. Thus, this program:

class A

void Finalize() {} // permitted

isvalid, and the method shown hides System.0Object’s Finalize method.

For adiscussion of the behavior when an exception isthrown from a destructor, see §16.3.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 265

Chapter 1147 StructsAttributes |

11. Structs

Structs are similar to classesin that they represent data structures that can contain data members and function
members. Unlike classes, structs are value types and do not require heap allocation. A variable of a struct type
directly contains the data of the struct, whereas a variabl e of a class type contains areference to the data, the
latter known as an object.

Structs are particularly useful for small data structures that have value semantics. Complex numbers, pointsin a
coordinate system, or key-value pairsin adictionary are all good examples of structs. Key to these data
structures is that they have few data members, that they do not require use of inheritance or referentia identity,
and that they can be conveniently implemented using val ue semantics where assignment copies the value instead
of the reference.

Asdescribed in 84.1.3, the simple types provided by C#, such asint, double, and bool, arein fact al struct
types. Just as these predefined types are structs, so it is possible to use structs and operator overloading to
implement new “primitive” typesin the C# language. Two examples of such types are given in at the end of this
chapter (811.3.1011:4).

11.1 Struct declarations
A struct-declaration is atype-declaration (89.5) that declares a new struct:

struct-declaration:
attributesy, struct-modifiersy,, struct identifier struct-interfaces,, struct-body ;o

A struct-declaration consists of an optional set of attributes (817), followed by an optiona set of struct-
modifiers (811.1.1), followed by the keyword struct and an identifier that names the struct, followed by an
optiona struct-interfaces specification (811.1.2), followed by a struct-body (811.1.3), optionally followed by a
semicolon.

11.1.1 Struct modifiers
A struct-declaration may optionally include a sequence of struct modifiers:

struct-modifiers:
struct-modifier
struct-modifiers struct-modifier

struct-modifier:
new
public
protected
internal
private

It isa compile-time error for the same modifier to appear multiple timesin a struct declaration.
The modifiers of astruct declaration have the same meaning as those of a class declaration (810.1.1).

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 267

C#LANGUAGE SPECIFICATION

11.1.2 Struct interfaces

A struct declaration may include a struct-interfaces specification, in which case the struct is said to implement
the given interface types.

struct-interfaces:
interface-type-list

Interface implementations are discussed further in §13.4.

11.1.3 Struct body
The struct-body of a struct defines the members of the struct.

struct-body:
{ struct-member-declarations,;: }

11.2 Struct members

The members of astruct consist of the members introduced by its struct-member-declarations and the members
inherited from System.valueType, which, in turn, inheritsfrom object.

struct-member-declarations:
struct-member-declaration
struct-member-declarations struct-member-declaration

struct-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
stati c-constructor-declaration
type-declaration

Except for the differences noted in §11.3, the descriptions of class members provided in §10.2 through §10.11
apply to struct members as well.

11.3 Class and struct differences
Structs differ from classesin severa important ways:

e Structsare value types (§11.3.1).
e All struct typesimplicitly inherit from classobject (811.3.2).
» Assignment to avariable of astruct type creates a copy of the value being assigned (811.3.3).

» Thedefault value of astruct isthe value produced by setting all value type fieldsto their default value and
all reference typefieldsto nu11 (811.3.4).

» Boxing and unboxing operations are used to convert between a struct type and object (811.3.5).
* Themeaning of this isdifferent for structs (811.3.6).

» Instance field declarations for a struct are not permitted to include variable initiaizers (811.3.7).

268 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1117 StructsAttributes

» A struct is not permitted to declare a parameterless instance constructor (811.3.8).
e A struct is not permitted to declare a destructor (811.3.9).

11.3.1 Value semantics

Structs are value types (84.1) and are said to have value semantics. Classes, on the other hand, are reference
types (84.2) and are said to have reference semantics.

A variable of astruct type directly contains the data of the struct, whereas a variable of a classtype contains a
reference to the data, the latter known as an object.

With classes, it is possible for two variables to reference the same object, and thus possible for operations on
one variable to affect the object referenced by the other variable. With structs, the variables each have their own
copy of the data, and it is hot possible for operations on one to affect the other. Furthermore, because structs are
not reference types, it is not possible for values of astruct typeto be nulT.

Given the declaration

struct Point

public int x, y;

public Point(int x, int y) {
this.x = Xx;

this.y = vy;
3
the code fragment
Point a = new Point(10, 10);
Point b = a;
a.x = 100;

System.Console.WriteLine(b.x);

outputs the value 10. The assignment of a to b creates a copy of the value, and b is thus unaffected by the
assignment to a. x. Had Point instead been declared as a class, the output would be 100 because a and b
would reference the same object.

11.3.2 Inheritance

All struct types implicitly inherit from class object. A struct declaration may specify alist of implemented
interfaces, but it is not possible for a struct declaration to specify a base class.

Struct types are never abstract and are alwaysimplicitly seded. The abstract and sealed modifiers are
therefore not permitted in a struct declaration.

Since inheritance isn't supported for structs, the declared accessibility of a struct member cannot be protected
or protected internal.

Function membersin astruct cannot be abstract or virtual, and the override modifier isalowed only to
override methods inherited from the System.valueType or object type.

11.3.3 Assignment

Assignment to a variable of a struct type creates a copy of the value being assigned. This differsfrom
assignment to a variable of a class type, which copies the reference but not the object identified by the reference.

Similar to an assignment, when a struct is passed as a value parameter or returned as the result of afunction
member, a copy of the struct is created. A struct may be passed by reference to afunction member using aref
or out parameter.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 269

C#LANGUAGE SPECIFICATION

When a property or indexer of a struct isthe target of an assignment, the instance expression associated with the
property or indexer access must be classified asavariable. If the instance expression is classified asavalue, a
compile-time error occurs. Thisis described in further detail in §7.13.1.

11.3.4 Default values

Asdescribed in 85.2, several kinds of variables are automatically initialized to their default value when they are
created. For variables of class types and other reference types, this default valueisnul1. However, since structs
are value types that cannot be nu11, the default value of a struct is the value produced by setting all value type
fields to their default value and al reference type fieldsto nu1.

Referring to the Point struct declared above, the example
Point[] arr = new Point[100];

initializes each Point in the array to the value produced by setting the x and y fieldsto zero.

The default value of a struct corresponds to the value returned by the default constructor of the struct (84.1.1).
Unlike aclass, astruct is not permitted to declare a parameterless instance constructor. Instead, every struct
implicitly has a parameterless instance constructor which always returns the value that results from “ zeroing
out” the fields of the struct.

Structs should be designed to consider the default initialization state a valid state. In the example
using System;
struct KeyvaluePair

string key;
string value;
public KeyvaluePair(string key, string value) {
if (key == null || value == null) throw new ArgumentException();
this.key = key;
) this.value = value;
}

the user-defined instance constructor protects againgt null values only whereit is explicitly called. In cases
where akeyvaluePair variable is subject to default value initialization, the key and value fields will be null,
and the struct must be prepared to handle this state.

11.3.5 Boxing and unboxing

A value of aclasstype can be converted to type object or to an interface type that isimplemented by the class
simply by treating the reference as another type at compile-time. Likewise, avalue of type object or avalue of
an interface type can be converted back to a class type without changing the reference (but of course arun-time

type check isrequired in this case).

Since structs are not reference types, these operations are implemented differently for struct types. When avalue
of agtruct type is converted to type object or to an interface type that isimplemented by the struct, aboxing
operation takes place. Likewise, when avalue of type object or avalue of an interface type is converted back
to a struct type, an unboxing operation takes place. A key difference from the same operations on classtypesis
that boxing and unboxing copies the struct val ue either into or out of the boxed instance. Thus, following a
boxing or unboxing operation, changes made to the unboxed struct are not reflected in the boxed struct.

For further details on boxing and unboxing, see 84.3.

270 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1117 StructsAttributes

11.3.6 Meaning of this

Within an instance constructor or instance function member of aclass, this isclassified as avalue. Thus, while
this can be used to refer to the instance for which the function member was invoked, it is not possible to assign
to this in afunction member of aclass.

Within an instance constructor of a struct, this correspondsto an out parameter of the struct type, and within
an instance function member of astruct, this correspondsto a ref parameter of the struct type. In both cases,
this isclassified asavariable, and it is possible to modify the entire struct for which the function member was
invoked by assigning to this or by passing thisasaref or out parameter.

11.3.7 Field initializers

Asdescribed in 811.3.4, the default value of a struct consists of the value that results from setting all value type
fields to their default value and al reference type fieldsto nu11. For this reason, a struct does not permit
instance field declarations to include variable initializers, and the following example produces compile-time
errors.

struct Point

1; // Error, initializer not permitted

public int x initiali i
1; // Error, initializer not permitted

public int y

This restriction applies only to instance fields. Static fields of a struct are permitted to include variable
initializers.
11.3.8 Constructors

Unlike aclass, astruct is not permitted to declare a parameterless instance constructor. Instead, every struct
implicitly has a parameterless instance constructor which always returns the value that results from setting all
value type fields to their default value and all reference type fields to null (84.1.1).

A struct instance congtructor is not permitted to include a constructor initializer of theform base(. . .).

The th1is variable of astruct instance constructor corresponds to an out parameter of the struct type, and
similar to an out parameter, this must be definitely assigned (85.3) at every location where the instance
constructor returns.

A struct can declare instance constructors having parameters. In the example
struct Point

int x, y;

public Point(int x, int y) {
this.x = X;
this.y = vy;

}

the struct Point declares ainstance constructor with two int parameters. Given this declaration, the statements
Point pl = new Point();
Point p2 = new Point(0, 0);

both create a Point with x and y initialized to zero.

11.3.9 Destructors
A struct is not permitted to declare a destructor.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 271

C#LANGUAGE SPECIFICATION

11.3.10 Static Constructors

Static constructors for structs follow most of the same rules as for classes. The execution of a static constructor
for astruct istriggered by the first of the following events to occur within an application domain:

» Any of theinstance members of the class are referenced.

* Any of the static members of the class are referenced.

» Any of the explicitly declared constructors of the struct is called.

[Note: Note that default values (811.3.4) of struct types can be created without triggering the static constructor,
for example as an array element or by calling the default constructor. end note]

11.4 Struct examples
Struct examples are provided in the following sections.

11.4.1 Database integer type

TheDBInt struct below implements an integer type that can represent the complete set of values of the int
type, plus an additiona state that indicates an unknown value. A type with these characteristicsis commonly
used in databases.

using System;
public struct DBInt

// The Null member represents an unknown DBInt value.
public static readonly DBInt Null = new DBInt();

// When the defined field is true, this DBInt represents a known value
// which is stored in the value field. when the defined field is false,
// this DBInt represents an unknown value, and the value field is 0.

int value;
bool defined;

// Private instance constructor. Creates a DBInt with a known value.

DBInt(int value) {
this.value = value;
this.defined = true;

// The IsNull property is true if this DBInt represents an unknown value.
public bool IsNull { get { return !defined; } }

// The value property is the known value of this DBInt, or 0 if this
// DBInt represents an unknown value.

public int value { get { return value; } }
// Implicit conversion from int to DBInt.

public static implicit operator DBInt(int x) {
return new DBInt(x);

// Explicit conversion from DBInt to int. Throws an exception if the
// given DBInt represents an unknown value.

public static explicit operator int(DBInt x) {)
if (!x.defined) throw new InvalidOperationException();
return x.value;

272 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1117 StructsAttributes

public static DBInt operator +(DBInt x) {
return x;

public static DBInt operator -(DBInt x) {
return x.defined? -x.value: Null;

public static DBInt operator +(DBInt x, DBInt y) {
return x.defined && y.defined? x.value + y.value: Null;

public static DBInt operator -(DBInt x, DBInt y) {
return x.defined && y.defined? x.value - y.value: Null;

public static DBInt operator *(DBInt x, DBInt y) {
return x.defined && y.defined? x.value * y.value: Null;

public static DBInt operator /(DBInt x, DBInt y) {
return x.defined && y.defined? x.value / y.value: Null;

public static DBInt operator %(DBInt x, DBInt y) {
return x.defined && y.defined? x.value % y.value: Null;

public static DBBool operator ==(DBInt x, DBInt y) {
return x.defined && y.defined? x.value == y.value: DBBool.Null;

public static DBBool operator !=(DBInt x, DBInt y) {
return x.defined && y.defined? x.value != y.value: DBBool.Null;

public static DBBool operator >(DBInt x, DBInt y) {
return x.defined && y.defined? x.value > y.value: DBBool.Null;

public static DBBool operator <(DBInt x, DBInt y) {
return x.defined && y.defined? x.value < y.value: DBBool.Null;

public static DBBool operator >=(DBInt x, DBInt y) {
return x.defined && y.defined? x.value >= y.value: DBBool.Null;

public static DBBool operator <=(DBInt x, DBInt y) {
return x.defined && y.defined? x.value <= y.value: DBBool.Null;

public ?verride bool Equals(object o) {
try
return (bool) (this == (DBInt) 0);

catch {
return false;

}

public override int GetHashCode() {
if (defined)
return value;
else
return O;

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 273

C#LANGUAGE SPECIFICATION

public override string Tostring() {
if (defined)
return value.ToString(Q);
else
1 return "DBInt.Null";

11.4.2 Database boolean type

TheDBBoo1 struct below implements athree-valued logical type. The possible values of thistype are
DBBoo1.True, DBBoo1.False, and DBBoo1.NulT1, where the Nu11 member indicates an unknown value.
Such three-valued logical types are commonly used in databases.

274

using System;
public struct DBBool

// The three possible DBBool values.

pub-l'ic stat‘iC I"eadon]y DBBOO] Nu-I-I = hew DBBOC)] (O);
public static readonly DBBool False = new DBBool(-1);
public static readonly DBBool True = new DBBool(1);

// Private field that stores -1, 0, 1 for False, Null, True.
sbyte value;
// Private instance constructor. The value parameter must be -1, 0, or 1.

DBBool(int value) {
this.value = (sbyte)value;

// Properties to examine the value of a DBBool. Return true if this
// DBBool has the given value, false otherwise.

public bool IsNull { get { return value == 0; } }
public bool IsFalse { get { return value < 0; } }
public bool IsTrue { get { return value > 0; } }

// Implicit conversion from bool to DBBool. Maps true to DBBool.True and
// false to DBBool.False.

public static implicit operator DBBool(bool x) {
return x? True: False;

// Explicit conversion_ from DBBool to bool. Throws an_exception if the
// given DBBool is Null, otherwise returns true or false.

public static explicit operator bool(DBBool x) {
if (x.value == 0) throw new InvalidoperationException();
return x.value > 0;

// Equality operator. Returns Null if either operand is Null, otherwise
// returns True or False.

public static DBBool operator ==(DBBool x, DBBool y) {
if (x.value == 0 || y.value == 0) return Null;
return x.value == y.value? True: False;

b
// Inequality operator. Returns Null if either operand is Null, otherwise
// returns True or False.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1117 StructsAttributes

public static DBBool operator !=(DBBool x, DBBool y) {
if (x.value == || y.value == 0) return Null;
return x.value != y.value? True: False;

// Logical negation operator. Returns True if the operand is False, Null
// if the operand is Null, or False if the operand is True.

public static DBBool operator !(DBBool x) {
return new DBBool(-x.value);

// Logical AND operator. Returns False if_either operand is False,
// otherwise Null if either operand is Null, otherwise True.

public static DBBool operator &(DBBool x, DBBool y) {
return new DBBool(x.value < y.value? x.value: y.value);

// Logical OR operator. Returns True if either operand is True, otherwise
// Null if either operand is Null, otherwise False.

public static DBBool operator |(DBBool x, DBBool y) {
return new DBBool(x.value > y.value? x.value: y.value);

// Definitely true operator. Returns true if the operand is True, false
// otherwise.

public static bool operator true(bBBool x) {
return x.value > 0;

// Definitely false operator. Returns true if the operand 1is False, false
// otherwise.

public static bool operator false(bBBool x) {
return x.value < 0;

public ?verride bool Equals(object o) {
try
return (bool) (this == (DBBool) 0);

catch {
return false;

}

public override int GetHashCode() {
return value;

public override string Tostring() {
switch (value) {

case -1:
return "DBBool.False";

case O:
return "DBBool.Null";

case 1:
return "DBBool.True";

default:
throw new InvalidOperationException();

}
13

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 275

Chapter 1247 ArraysAttributes |

12. Arrays

An array is adata structure that contains a number of variables which are accessed through computed indices.
The variables contained in an array, also called the elements of the array, are all of the same type, and thistype
is caled the element type of the array.

An array has arank which determines the number of indices associated with each array element. Therank of an
array isaso referred to as the dimensions of the array. An array with arank of oneiscaled asingle-
dimensional array, and an array with arank greater than one is called a multi-dimensional array. Multi-
dimensional arrays of specific sizes are often referred to by size, as two-dimensional arrays, three-dimensional
arrays, and so on.

Each dimension of an array has an associated length which is an integral number greater than or equal to zero.
The dimension lengths are not part of the type of the array, but rather are established when an instance of the
array typeis created at run-time. The length of a dimension determines the valid range of indices for that
dimension: For adimension of length N, indices can range from 0 to N — 1 inclusive. The total number of
elementsin an array isthe product of the lengths of each dimension in the array. If one or more of the
dimensions of an array have alength of zero, the array is said to be empty.

The element type of an array can be any type, including an array type.

12.1 Array types
An array typeiswritten as a non-array-type followed by one or more rank-specifiers:

array-type:
non-array-type rank-specifiers

non-array-type:
type

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

rank-specifier:
[dim-separatorsy,:]

dim-separators:

dim-separators ,
A non-array-typeis any typethat is not itself an array-type.

Therank of an array type is given by the leftmost rank-specifier in the array-type: A rank-specifier indicates
that the array isan array with arank of one plusthe number of *,” tokensin the rank-specifier.

The element type of an array typeisthe type that results from del eting the leftmost rank-specifier:
* Anarray type of theform T[R] isan array with rank R and anon-array element type T.

* Anarray typeof theform T[R] [R1] . . . [Rx] isan array with rank R and an element type T[R1] . . . [Ru].

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 277

C#LANGUAGE SPECIFICATION

In effect, the rank-specifiers are read from left to right before the final non-array element type. For example, the
typeint[][,,]1[,] isasingle-dimensional array of three-dimensional arrays of two-dimensional arrays of
int.

At run-time, avalue of an array type can be nul11 or areference to an instance of that array type.

12.1.1 The System.Array type

The system.Array typeisthe abstract base type of all array types. Animplicit reference conversion (86.1.4)
existsfrom any array type to System.Array, and an explicit reference conversion (86.2.3) exists from
System.Array to any array type. Note that System.Array itself isnot an array-type. Rather, it isa class-type
from which al array-types are derived.

At run-time, avalue of type System.Array can benul1 or areference to an instance of any array type.

12.2 Array creation

Array instances are created by array-creation-expressions (87.5.10.2) or by field or local variable declarations
that include an array-initializer (812.6).

When an array instance is created, the rank and length of each dimension are established and then remain
constant for the entire lifetime of the instance. In other words, it is hot possible to change the rank of an existing
array instance, nor isit possible to resize its dimensions.

An array instance is always of an array type. The System.Array typeis an abstract type that cannot be
instantiated.

Elements of arrays created by array-creation-expressions are always initialized to their default value (85.2).

12.3 Array element access

Array elements are accessed using element-access expressions (87.5.6.1) of theform A[I1, I, ..., In],
where A is an expression of an array type and each Ix isan expression of typeint, uint, Tong, ulong, or of a
type that can be implicitly converted to one or more of these types. Theresult of an array element accessisa
variable, namely the array element selected by theindices.

The elements of an array can be enumerated using a foreach statement (88.8.4).

12.4 Array members
Every array type inherits the members declared by the System.Array type.

12.5 Array covariance

For any two reference-types A and B, if an implicit reference conversion (86.1.4) or explicit reference conversion
(86.2.3) existsfrom A to B, then the same reference conversion also exists from the array type A[R] to the array
type B[R], whereR isany given rank-specifier (but the same for both array types). Thisrelationship is known as
array covariance. Array covariance in particular means that a value of an array type A[R] may actually be a
reference to an instance of an array type B[R], provided an implicit reference conversion exists from B to A.

Because of array covariance, assignments to elements of reference type arrays include a run-time check which
ensures that the value being assigned to the array element is actually of a permitted type (87.13.1). For example:

class Test

static void Fill(object[] array, int index, int count, object value) {
for (int i = index; i < index + count; i++) array[i] = value;

278 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1247 ArraysAttributes

static void Main() {
string[] strings = new string[100];
Fill(strings, 0, 100, "undefined");
Fill(strings, 0, 10, null);
Fill(strings, 90, 10, 0);

}

Theassignment to array[i] inthe Fi11 method implicitly includes a run-time check which ensures that the
object referenced by value iseither nuT1 or an instance of atype that is compatible with the actual element
type of array. InMain, the first two invocations of Fi11 succeed, but the third invocation causes a
System.ArrayTypeMismatchException to bethrown upon executing thefirst assignment to array[i].
The exception occurs because aboxed int cannot be stored inastring array.

Array covariance specifically does not extend to arrays of value-types. For example, no conversion exists that
permitsan int[] to betreated asan object[].

12.6 Array initializers

Array initializers may be specified in field declarations (810.4), local variable declarations (88.5.1), and array
creation expressions (§7.5.10.2):
array-initializer:
{ variable-initializer-listo: 3}
{ variable-initializer-list , }?}

variable-initializer-list:
variable-initializer
variable-initializer-list , variable-initializer

variable-initializer:

expression

array-initializer
An array initializer consists of a sequence of variableinitializers, enclosed by “{"and “}” tokens and separated
by “,” tokens. Each variable initiaizer isan expression or, in the case of a multi-dimensional array, a nested
array initializer.
The context in which an array initializer is used determines the type of the array being initialized. In an array
creation expression, the array type immediately precedes the initializer. In afield or variable declaration, the
array type isthetype of the field or variable being declared. When an array initializer isused in afield or
variable declaration, such as:

int[] arr = {0, 2, 4, 6, 8};
itis smply shorthand for an equivalent array creation expression:

int[] arr = new int[] {0, 2, 4, 6, 8};
For asingle-dimensional array, the array initializer must consist of a sequence of expressions that are
assignment compatible with the element type of the array. The expressionsinitialize array elementsin increasing
order, starting with the element at index zero. The number of expressionsin the array initializer determines the

length of the array instance being created. For example, the array initializer above createsan int[] instance of
length 5 and then initializes the instance with the following values:

a[0] = 0; a[1] = 2; a[2] = 4; a[3] = 6; a[4] = 8;

For amulti-dimensional array, the array initiaizer must have as many levels of nesting as there are dimensions
in the array. The outermost nesting level corresponds to the leftmost dimension and the innermost nesting level
corresponds to the rightmost dimension. The length of each dimension of the array is determined by the number

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 279

C#LANGUAGE SPECIFICATION

of elements at the corresponding nesting level in the array initializer. For each nested array initializer, the
number of elements must be the same as the other array initiaizers at the same level. The example:

int[,] b = {{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}};

creates atwo-dimensional array with alength of five for the leftmost dimension and alength of two for the
rightmost dimension:

int[,] b = new int[5, 2];
and then initializes the array instance with the following values:

b[0, 0] = 0; b[0, 1] = 1;
b[l, 0] = 2; b[1, 1] = 3;
b[2, 0] = 4; b[2, 1] = 5;
b[3, 0] = 6; b[3, 1] = 7;
b[4, 0] = 8; b[4, 1] = 9;

When an array creation expression includes both explicit dimension lengths and an array initializer, the lengths
must be constant expressions and the number of elements at each nesting level must match the corresponding
dimension length. Some examples:

int i = 3;

int[] x = new int[3] {0, 1, 2%}; // OK

int[] y = new int[i] {0, 1, 2}; // Error, i not a constant

int[] z = new int[3] {0, 1, 2, 3}; // Error, length/initializer mismatch

Here, theinitializer for y resultsin a compile-time error because the dimension length expression isnot a
constant, and theinitializer for z resultsin a compile-time error because the length and the number of elements
in theinitializer do not agree.

280 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1317 |nterfacesAttributes |

13. Interfaces

Aninterface defines a contract. A class or struct that implements an interface must adhere to its contract. An
interface may inherit from multiple base interfaces, and a class or struct may implement multiple interfaces.

Interfaces can contain methods, properties, events, and indexers. The interface itself does not provide
implementations for the members that it defines. The interface merely specifies the members that must be
supplied by classes or interfaces that implement the interface.

13.1 Interface declarations
An interface-declaration is a type-declaration (89.5) that declares a new interface type.

interface-declaration:
attributesy, interface-modifiers, interface identifier interface-base,: interface-body ;g

An interface-declaration consists of an optiona set of attributes (817), followed by an optional set of interface-
modifiers (813.1.1), followed by the keyword interface and an identifier that names the interface, optionally
followed by an optional interface-base specification (813.1.2), followed by ainterface-body (813.1.3),
optionally followed by a semicolon.

13.1.1 Interface modifiers
An interface-declaration may optionally include a sequence of interface modifiers:

interface-modifiers;
interface-modifier
interface-modifiers interface-modifier

interface-modifier:
new
public
protected
internal
private

It isacompile-time error for the same modifier to appear multiple times in an interface declaration.

The new modifier isonly permitted on nested interfaces. It specifies that the interface hides an inherited member
by the same name, as described in §10.2.2.

Thepublic, protected, internal, and private modifiers control the accessibility of the interface.
Depending on the context in which the interface declaration occurs, only some of these modifiers may be
permitted (83.5.1).

13.1.2 Base interfaces

An interface can inherit from zero or more interfaces, which are called the explicit base interfaces of the
interface. When an interface has more than zero explicit base interfaces, then in the declaration of the interface,
the interface identifier is followed by a colon and a comma separated list of base interface identifiers.

interface-base:
interface-type-list

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 281

C#LANGUAGE SPECIFICATION

The explicit base interfaces of an interface must be at least as accessible as the interface itself (83.5.4). For
example, it isacompile-time error to specify aprivate or internal interfacein the interface-base of a
public interface.

It isacompile-time error for an interface to directly or indirectly inherit from itself.

The base interfaces of an interface are the explicit base interfaces and their base interfaces. In other words, the
set of baseinterfaces is the complete transitive closure of the explicit base interfaces, their explicit base
interfaces, and so on. An interface inherits all members of its base interfaces. In the example

interface IControl

void Paint();

nterface ITextBox: IControl

void SetText(string text);

nterface IListBox: IControl

}

.i

{

}

.i

{ . . .
void SetItems(string[] items);

}

interface IComboBox: ITextBox, IListBox {}

the base interfaces of IComboBox are IControl, ITextBox, and IListBox.

In other words, the IComboBox interface above inherits members SetText and SetItems aswell asPaint.

A class or struct that implements an interface aso implicitly implements all of the interface’ s base interfaces.

13.1.3 Interface body
The interface-body of an interface defines the members of the interface.

interface-body:
{ interface-member-declarations,,: 3}

13.2 Interface members

The members of an interface are the members inherited from the base interfaces and the members declared by
the interface itself.

i nterface-member -decl ar ations:
interface-member-declaration
interface-member-declarations interface-member-declaration

i nterface-member-declar ation:
interface-method-declaration
interface-property-declaration
interface-event-declaration
interface-indexer-declaration

An interface declaration may declare zero or more members. The members of an interface must be methods,
properties, events, or indexers. An interface cannot contain constants, fields, operators, instance constructors,
destructors, or types, nor can an interface contain static members of any kind.

All interface members implicitly have public access. It is a compile-time error for interface member declarations
to include any modifiers. In particular, it isa compile-time error for an interface member to include any of the

282 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1317 |nterfacesAttributes

following modifiers: abstract, public, protected, internal, private, virtual, override, or
static.
The example

public delegate void StringListEvent(IStringList sender);

public interface IStringList

void Add(string s);
int Count { get; }
event StringListEvent Changed;
) string this[int index] { get; set; }

declares an interface that contains one each of the possible kinds of members: A method, a property, an event,
and an indexer.

An interface-declaration creates a new declaration space (83.3), and the interface-member -declarations
immediately contained by the interface-declaration introduce new members into this declaration space. The
following rules apply to interface-member-declarations:

* The name of amethod must differ from the names of all properties and events declared in the same
interface. In addition, the signature (83.6) of a method must differ from the signatures of all other methods
declared in the same interface.

* Thename of aproperty or event must differ from the names of all other members declared in the same
interface.

» Thesignature of an indexer must differ from the signatures of all other indexers declared in the same
interface.

The inherited members of an interface are specifically not part of the declaration space of the interface. Thus, an
interface is allowed to declare a member with the same name or signature as an inherited member. When this
occurs, the derived interface member is said to hide the base interface member. Hiding an inherited member is
not considered an error, but it does cause the compiler to issue awarning. To suppress the warning, the
declaration of the derived interface member must include anew modifier to indicate that the derived member is
intended to hide the base member. Thistopic is discussed further in §3.7.1.2.

If anew modifier isincluded in a declaration that doesn’'t hide an inherited member, awarning isissued to that
effect. Thiswarning is suppressed by removing the new modifier.

13.2.1 Interface methods
Interface methods are declared using interface-method-declar ations:

interface-method-declaration:
attributes,,: newqy return-type identifier (formal-parameter-listoy) ;

The attributes, return-type, identifier, and formal-parameter-list of an interface method declaration have the
same meaning as those of a method declaration in a class (810.5). An interface method declaration is not
permitted to specify a method body, and the declaration therefore always ends with a semicolon.

13.2.2 Interface properties
Interface properties are declared using interface-property-declarations:

interface-property-declaration:
attributes,y newqy type identifier { interface-accessors }

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 283

C#LANGUAGE SPECIFICATION

interface-accessors:
attributes,y get ;
attributes,y set ;
attributes,y get ; attributes, set ;
attributes,y set ; attributes, get ;

The attributes, type, and identifier of an interface property declaration have the same meaning as those of a
property declaration in aclass (810.6).

The accessors of an interface property declaration correspond to the accessors of a class property declaration
(810.6.2), except that the accessor body must always be a semicolon. Thus, the accessors simply indicate
whether the property is read-write, read-only, or write-only.

13.2.3 Interface events
Interface events are declared using interface-event-declarations:

interface-event-declaration:
attributes,y newqy event type identifier ;

The attributes, type, and identifier of an interface event declaration have the same meaning as those of an event
declaration in aclass (810.7).

13.2.4 Interface indexers
Interface indexers are declared using interface-indexer-declarations:

interface-indexer-declaration:
attributes,,y newqy type this [formal-parameter-list] { interface-accessors }

The attributes, type, and formal-parameter-list of an interface indexer declaration have the same meaning as
those of an indexer declaration in a class (810.8).

The accessors of an interface indexer declaration correspond to the accessors of a class indexer declaration
(810.8), except that the accessor body must aways be a semicolon. Thus, the accessors simply indicate whether
the indexer is read-write, read-only, or write-only.

13.2.5 Interface member access

Interface members are accessed through member access (87.5.4) and indexer access (87.5.6.2) expressions of
theformI.M and 1 [A], where I isan instance of an interface type, M is amethod, property, or event of that
interface type, and A is an indexer argument list.

For interfaces that are strictly single-inheritance (each interface in the inheritance chain has exactly zero or one
direct base interface), the effects of the member lookup (87.3), method invocation (87.5.5.1), and indexer access
(87.5.6.2) rules are exactly the same as for classes and structs: More derived members hide less derived
members with the same name or signature. However, for multiple-inheritance interfaces, ambiguities can occur
when two or more unrelated base interfaces declare members with the same name or signature. This section
shows several examples of such situations. In all cases, explicit casts can be used to resolve the ambiguities.

In the example
interface IList

int Count { get; set; }

284 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1317 |nterfacesAttributes

interface ICounter

void Count(int i);
interface IListCounter: IList, ICounter {}
class C

void Test(IListCounter x) {

X.Count(1l); // Error
X.Count = 1; // Error
((IList)x).Count = 1; // Ok, invokes IList.Count.set
((ICounter)x) .count(1l); // Ok, invokes ICounter.Count

3

the first two statements cause compile-time errors because the member lookup (87.3) of Count in
IListCounter isambiguous. Asillustrated by the example, the ambiguity is resolved by casting x to the
appropriate base interface type. Such casts have no run-time costs—they merely consist of viewing the instance
as aless derived type at compile-time.

In the example
interface IInteger

void Add(int 1);

interface IDouble

void Add(double d);

interface INumber: IInteger, IDouble {}

class C
void Test(INumber n) {
n.Add(1); // Error, both Add methods are applicable
n.Add(1.0); // 0k, only IDouble.Add is applicable
((IInte%er)n).Add(l); // 0Ok, only IInteger.Add is a candidate
((IDouble)n) .Add(1); // Ok, only IDouble.Add is a candidate

}

the invocation n.Add (1) is ambiguous because a method invocation (87.5.5.1) requires dl overloaded
candidate methods to be declared in the same type. However, the invocation n.Add (1. 0) is permitted because
only IDouble.Add is applicable. When explicit casts are inserted, there is only one candidate method, and thus
no ambiguity.
In the example

interface IBase

void F(int 1);

}
interface ILeft: IBase
{
new void F(int 1i);
}
interface IRight: IBase
{
void GQ);
}

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 285

C#LANGUAGE SPECIFICATION

interface IDerived: ILeft, IRight {}
class A

void Test(IDerived d) {

d.F(1); // Invokes ILeft.F
((IBase)d).F(1); // Invokes IBase.F
((ILeft)d).F(1); // Invokes ILeft.F
((IRight)d) .F(1); // Invokes IBase.F

3

the IBase. F member is hidden by the ILeft.F member. Theinvocation d. F(1) thusselects ILeft.F, even
though IBase. F appearsto not be hidden in the access path that leads through IR1ight.

Theintuitive rule for hiding in multiple-inheritance interfaces is smply this: If amember is hidden in any access
path, it ishidden in al access paths. Because the access path from IDerived to ILeft to IBase hides
IBase.F, the member isalso hidden in the access path from IDerived to IRight to IBase.

13.3 Fully qualified interface member names

An interface member is sometimes referred to by its fully qualified name. The fully qualified name of an
interface member consists of the name of the interface in which the member is declared, followed by a dot,
followed by the name of the member. The fully qualified name of a member references the interface in which
the member is declared. For example, given the declarations

interface IControl

void Paint(Q);

interface ITextBox: IControl

void SetText(string text);

the fully qualified name of Paint isIControl.Paint andthefully qualified name of setText is
ITextBox.SetText.

In the example above, it is not possible to refer to Paint asITextBox.Paint.

When an interface is part of a namespace, the fully qualified name of an interface member includes the
namespace name. For example

namespace System
public interface ICloneable
object Clone();

}
Here, the fully qualified name of the C1one method is System.ICToneable.Clone.

13.4 Interface implementations

Interfaces may be implemented by classes and structs. To indicate that a class or struct implements an interface,
theinterface identifier isincluded in the base classlist of the class or struct.

interface ICloneable

object Clone();

286 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1317 |nterfacesAttributes

interface IComparable

int CompareTo(object other);

class ListEntry: ICloneable, IComparable

public object Clone() {...}
public int CompareTo(object other) {...}

A class or struct that implements an interface a so implicitly implements all of the interface’ s base interfaces.
Thisistrue evenif the class or struct doesn’t explicitly list al base interfacesin the base class|ist.

interface IControl

void Paint(Q);

interface ITextBox: IControl

void SetText(string text);

class TextBox: ITextBox

public void pPaint() {...}
public void SetText(string text) {...}

Here, class TextBox implements both IControl and ITextBox.

13.4.1 Explicit interface memb er implementations

For purposes of implementing interfaces, a class or struct may declare explicit interface member
implementations. An explicit interface member implementation is a method, property, event, or indexer
declaration that references afully qualified interface member name. For example

interface ICloneable

object Clone();

interface IComparable

int CompareTo(object other);

class ListEntry: ICloneable, IComparable

object ICloneable.Clone() {...}
int IComparable.CompareTo(object other) {...}

Here, 1Cloneable.Clone and IComparabTe.CompareTo are explicit interface member implementations.

In some cases, the name of an interface member may not be appropriate for the implementing class, in which
case the interface member may be implemented using explicit interface member implementation. A class
implementing a file abstraction, for example, would likely implement a C1ose member function that has the
effect of releasing the file resource, and implement the Di spose method of the ID1isposable interface using
explicit interface member implementation:

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 287

C#LANGUAGE SPECIFICATION

interface IDisposable {
void Dispose();

class MyFile: IDisposable {
void IDisposable.Dispose() {
Close();

public void Close() {
// Do what's necessary to close the file
System.GC.SuppressFinalize(this);

}

It is not possible to access an explicit interface member implementation through its fully qualified namein a
method invocation, property access, or indexer access. An explicit interface member implementation can only
be accessed through an interface instance, and isin that case referenced simply by its member name.

It isacompile-time error for an explicit interface member implementation to include access modifiers, and itisa
compile-time error to include the abstract, virtual, override, or static modifiers.

Explicit interface member implementations have different accessibility characteristics than other members.
Because explicit interface member implementations are never accessible through their fully qualified namein a
method invocation or a property access, they arein a sense private. However, since they can be accessed
through an interface instance, they arein a sense aso public.

Explicit interface member implementations serve two primary purposes.

» Because explicit interface member implementations are not accessible through class or struct instances, they
alow interface implementations to be excluded from the public interface of aclass or struct. Thisis
particularly useful when aclass or struct implements an internal interface that is of no interest to a consumer
of the class or struct.

» Explicit interface member implementations alow disambiguation of interface members with the same
signature. Without explicit interface member implementations it would be impossible for a class or struct to
have different implementations of interface members with the same signature and return type, as would it be
impossible for aclass or struct to have any implementation at all of interface members with the same
signature but with different return types.

For an explicit interface member implementation to be valid, the class or struct must name an interfacein its
base class list that contains a member whose fully qualified name, type, and parameter types exactly match those
of the explicit interface member implementation. Thus, in the following class

class Shape: ICloneable

object ICloneable.Clone() {...}
int IComparable.CompareTo(object other) {...} // invalid

the declaration of IComparable.CompareTo resultsin acompile-time error because IComparable isnot
listed in the base class list of shape and is not a base interface of ICloneable. Likewise, in the declarations

class Shape: ICloneable

object ICloneable.Clone() {...}

class Ellipse: Shape

object ICloneable.Clone() {...} // invalid

288 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1317 |nterfacesAttributes

the declaration of ICloneabTle.Clone in ET11pse resultsin acompile-time error because ICToneable isnot
explicitly listed in the base class list of ET111ipse.

The fully qualified name of an interface member must reference the interface in which the member was
declared. Thus, in the declarations

interface IControl

void Paint();

interface ITextBox: IControl

void SetText(string text);

class TextBox: ITextBox

void IControl.Paint() {...}
void ITextBox.SetText(string text) {...}

the explicit interface member implementation of Paint must be written as IControl.Paint.

13.4.2 Interface mapping

A class or struct must provide implementations of all members of the interfaces that are listed in the base class
list of the class or struct. The process of locating implementations of interface membersin an implementing
class or struct is known as interface mapping.

Interface mapping for aclass or struct C locates an implementation for each member of each interface specified
in the base class list of C. Theimplementation of a particular interface member I .M, where I istheinterfacein
which the member M is declared, is determined by examining each class or struct S, starting with € and repeating
for each successive base class of ¢, until amatch islocated:

» If s contains a declaration of an explicit interface member implementation that matches I and M, then this
member is the implementation of I.Mm.

* Otherwise, if s contains a declaration of a non-static public member that matches M, then this member isthe
implementation of .M.

A compile-time error occursif implementations cannot be located for all members of al interfaces specified in
the base classlist of C. Note that the members of an interface include those members that are inherited from base
interfaces.

For purposes of interface mapping, a class member A matches an interface member B when:
* A and B are methods, and the name, type, and formal parameter lists of A and B are identical.

* A and B are properties, the name and type of A and B are identical, and A has the same accessorsasB (A is
permitted to have additional accessorsif it is not an explicit interface member implementation).

* A andB are events, and the name and type of A and B areidentical.

* A andB areindexers, the type and formal parameter lists of A and B areidentical, and A has the same
accessors as B (A is permitted to have additional accessorsif it is not an explicit interface member
implementation).

Notable implications of the interface mapping algorithm are:

» Explicit interface member implementations take precedence over other membersin the same class or struct
when determining the class or struct member that implements an interface member.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 289

C#LANGUAGE SPECIFICATION

* Neither non-public nor static members participate in interface mapping.

In the example
interface ICloneable

object Clone();

class C: ICloneable

object ICloneable.Clone() {...}
public object Clone() {...}

the ICloneable.Clone member of C becomes the implementation of Clone in ICloneabTle because explicit

interface member implementations take precedence over other members.

If aclass or struct implements two or more interfaces containing a member with the same name, type, and
parameter types, it is possible to map each of those interface members onto a single class or struct member. For
example

interface IControl

void Paint();

interface IForm

void Paint();

class Page: IControl, IForm

public void pPaint() {...}

Here, the Paint methods of both IControl and IForm are mapped onto the Paint method in Page. It is of
course also possible to have separate explicit interface member implementations for the two methods.

If aclassor struct implements an interface that contains hidden members, then some members must necessarily
be implemented through explicit interface member implementations. For example

interface IBase

int P { get; }
interface IDerived: IBase
new int PQ;

An implementation of thisinterface would require at |east one explicit interface member implementation, and
would take one of the following forms

class C: IDerived

int IBase.P { get {...} }
int IDerived.P() {...}

class C: IDerived

public int P { get {...} }

290 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1317 |nterfacesAttributes

int IDerived.P(Q) {...}

class C: IDerived

int IBase.P { get {...} }
public int PO {...}

When a class implements multiple interfaces that have the same base interface, there can be only one
implementation of the base interface. In the example

interface IControl

void Paint();

nterface ITextBox: IControl

void SetText(string text);

B s T TR T

interface IListBox: IControl

void SetItems(string[] items);

Jass ComboBox: IControl, ITextBox, IListBox

Y e R)

void IControl.Paint() {...}
void ITextBox.SetText(string text) {...}
void IListBox.SetItems(string[] items) {...}

it is not possible to have separate implementations for the IContro1 named in the base classlist, the IControl
inherited by ITextBox, and the IControl inherited by IL1istBox. Indeed, thereisno notion of a separate
identity for these interfaces. Rather, the implementations of ITextBox and IL1istBox share the same
implementation of IControT, and ComboBox issimply considered to implement three interfaces, IControl,
ITextBox, and IListBox.

The members of abase class participate in interface mapping. In the example
interface Interfacel

void FQ);

class Classl

pubTlic void FQ {3}
public void GO {}

class Class2: Classl, Interfacel

new public void GQ) {}
the method F in Classlisusedin Class2'simplementation of Interfacel.

13.4.3 Interface implementation inheritance
A classinherits al interface implementations provided by its base classes.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 291

C#LANGUAGE SPECIFICATION

Without explicitly re-implementing an interface, a derived class cannot in any way alter the interface mappings
it inherits from its base classes. For example, in the declarations

interface IControl

void Paint(Q);

class Control: IControl

public void Paint() {...}

class TextBox: Control
new pubTlic void Paint() {...}
the Paint method in TextBox hidesthe Paint method in Control, but it does not alter the mapping of

Control.Paint onto IControl.Paint, and callsto Paint through class instances and interface instances
will have the following effects

control c = new Control();

TextBox t = new TextBox();

IControl ic = c;

IControl it = t;

c.Paint(); // invokes control.Paint();
t.Paint(); // invokes TextBox.Paint();
ic.Paint(); // invokes control.Paint();
it.Paint(); // invokes control.Paint();

However, when an interface method is mapped onto avirtual method in aclass, it is possible for derived classes
to override the virtual method and alter the implementation of the interface. For example, rewriting the
declarations above to

interface IControl

void Paint();

class cControl: IControl

public virtual void Paint() {...}

class TextBox: Control

public override void Paint() {...}

the following effects will now be observed

control c = new Control();

TextBox t = new TextBox();

IControl ic = c;

IControl it = t;

c.Paint(); // invokes control.Paint();
t.Paint(); // invokes TextBox.Paint();
ic.Paint(Q; // invokes control.Paint();
it.Paint(Q; // invokes TextBox.Paint();

Since explicit interface member implementations cannot be declared virtual, it is not possible to override an
explicit interface member implementation. However, it is perfectly valid for an explicit interface member
implementation to call another method, and that other method can be declared virtual to allow derived classesto
overrideit. For example

292 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1317 |nterfacesAttributes

interface IControl

void Paint();

class cControl: IControl

void IControl.Paint() { PaintControl(Q); }
protected virtual void PaintControl() {...}

class TextBox: Control

protected override void PaintControl() {...}

Here, classes derived from Control can specidize the implementation of IControl.Paint by overriding the
PaintControl method.

13.4.4 Interface re-implementation

A classthat inherits an interface implementation is permitted to re-implement the interface by including it in the
base class list.

A re-implementation of an interface follows exactly the same interface mapping rules as an initial
implementation of an interface. Thus, the inherited interface mapping has no effect whatsoever on the interface
mapping established for the re-implementation of the interface. For example, in the declarations

interface IControl

void Paint(Q);

class Control: IControl

void IControl.Paint() {...}

class MycControl: Control, IControl

public void pPaint() {}

thefact that Control maps IControl.Paint onto Control.IControl.Paint doesn't affect there-
implementation in MyControl, which maps IControl.Paint onto MyControl.Paint.

Inherited public member declarations and inherited explicit interface member declarations participate in the
interface mapping process for re-implemented interfaces. For example

interface IMethods

void FQ);
void GQO);
void HQO);
void I(Q);

class Base: IMethods

void IMethods.F()
void IMethods.G()
public void HO {}
public void 1) {}

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 293

C#LANGUAGE SPECIFICATION

class Derived: Base, IMethods
pubTlic void FQ {3}
void IMethods.H() {}

Here, the implementation of IMethods in Derived maps the interface methods onto Derived.F,
Base.IMethods.G, Derived.IMethods.H, and Base.I

When a class implements an interface, it implicitly also implements al of the interface’ s base interfaces.
Likewise, are-implementation of an interface is also implicitly are-implementation of all of the interface's base
interfaces. For example

interface IBase

void FQ;

interface IDerived: IBase

void GQ);

class C: IDerived

void IBase.F() {...}
void IDerived.c() {...}

class D: C, IDerived

public void FO {...}
pubTlic void c() {...}

Here, the re-implementation of IDerived aso re-implements IBase, mapping IBase.F ontoD.F.

13.4.5 Abstract classes and interfaces

Like a non-abstract class, an abstract class must provide implementations of all members of the interfaces that
arelisted in the base class list of the class. However, an abstract class is permitted to map interface methods onto
abstract methods. For example

interface IMethods

void FQ);
void GQ);

abstract class C: IMethods
public abstract void F(Q);
public abstract void GQ);

Here, the implementation of IMethods maps F and G onto abstract methods, which must be overridden in non-
abstract classes that derive from C.

Note that explicit interface member implementations cannot be abstract, but explicit interface member
implementations are of course permitted to call abstract methods. For example

294 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1317 |nterfacesAttributes

interface IMethods

void FQ);
void GQ);

abstract class C: IMethods

void IMethods.F() { FFQ; }
void IMethods.G() { GGQ; 1}
protected abstract void FF(Q);
protected abstract void GGQ);

Here, non-abstract classes that derive from ¢ would be required to override FF and GG, thus providing the actual
implementation of IMethods.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 295

Chapter 1447 EnumsAttributes |

14. Enums

An enum typeisadistinct type that declares a set of named constants.

The example
enum Color

Red,
Green,
Blue

declares an enum type named Color with members Red, Green, and Blue.

14.1 Enum declarations

An enum declaration declares a new enum type. An enum declaration begins with the keyword enum, and
defines the name, accessibility, underlying type, and members of the enum.

enum-decl aration:
attributes,y enum-modifiers,, enum identifier enum-base,,; enum-body ;o

enum-base:
integral-type

enum-body:
{ enum-member-declarations,; }
{ enum-member-declarations , }

Each enum type has a corresponding integral type called the underlying type of the enum type. This underlying
type must be able to represent al the enumerator values defined in the enumeration. An enum declaration may
explicitly declare an underlying type of byte, sbyte, short, ushort, int, uint, Tong or ulong. Note that
char cannot be used as an underlying type. An enum declaration that does not explicitly declare an underlying
type has an underlying type of int.

Enum member declarations are separated the comma (“,”) character, and acomma.is permitted but not required
after the last one. Both of the enum declarations in the example

enum Colorl
Red,

Green,
Blue

enum Color2

Red,
Green,
Blue,
arevalid.
The example

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 297

C#LANGUAGE SPECIFICATION

enum Color: Tong

Red,
Green,
Blue

declares an enum with an underlying type of Tong. A developer might choose to use an underlying type of
Tong, asin the example, to enable the use of values that are in the range of Tong but not in therange of int, or
to preserve this option for the future.

14.2 Enum modifiers
An enum-declaration may optionally include a sequence of enum modifiers:

enum-modifiers:
enum-modifier
enum-modifiers enum-modifier

enum-modifier:
new
public
protected
internal
private

It isacompile-time error for the same modifier to appear multiple times in an enum declaration.

The modifiers of an enum declaration have the same meaning as those of a class declaration (810.1.1). Note,
however, that the abstract and sealed modifiers are not permitted in an enum declaration. Enums cannot be
abstract and do not permit derivation.

14.3 Enum members

The body of an enum type declaration defines zero or more enum members, which are the named constants of
the enum type. No two enum members can have the same name.

enum-member -declar ations:
enum-member -declaration
enum-member-declarations , enum-member-declaration

enum-member -decl ar ation:
attributes,, identifier
attributes,,, identifier = constant-expression
Each enum member has an associated constant value. The type of this value is the underlying type for the
containing enum. The constant value for each enum member must be in the range of the underlying type for the
enum. The example

enum Color: uint
Red = -1,

Green = -2,
Blue = -3

produces a compile-time error because the constant values -1, -2, and -3 are not in the range of the underlying
integral typeuint.

Multiple enum members may share the same associated value. The example

298 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1417 EnumsAtiributes

enum Color

Red,
Green,
Blue,

Max = Blue

shows an enum that has two enum members—B1ue and Max—that have the same associated value.

The associated val ue of an enum member is assigned either implicitly or explicitly. If the declaration of the
enum member has a constant-expression initializer, the value of that constant expression, implicitly converted to
the underlying type of the enum, is the associated value of the enum member. If the declaration of the enum
member has no initializer, its associated value is set implicitly, as follows:

e If the enum member isthe first enum member declared in the enum type, its associated valueis zero.

» Otherwise, the associated value of the enum member is obtained by increasing the associated value of the
textually preceding enum member by one. Thisincreased value must be within the range of values that can
be represented by the underlying type.

The example
enum Color

Red,
Green = 10,
Blue

class Test

static void Main() {
Console.WriteLine(StringFromColor(Color.Red));
Console.writeLine(StringFromColor(Color.Green));
console.WriteLine(StringFromColor(Color.Blue));

static string StringFromColor(Color c) {
switch (c) {
case Color.Red:
return String.Format("Red = {0}", (int) c);

case Color.Green:)
return Sstring.Format("Green = {0}", (int) c);

case Color.Blue:]
return String.Format("Blue = {0}", (int) c);

default:
) return "Invalid color";
3
3

prints out the enum member names and their associated values. The output is:

Red = 0
Green = 10
Blue = 11

for the following reasons:

* the enum member Red is automatically assigned the value zero (since it has no initiaizer and isthe first
enum member);

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 299

C#LANGUAGE SPECIFICATION

» the enum member Green is explicitly given the value 10;

» and the enum member Blue is automatically assigned the value one greater than the member that textually
precedesit.

The associated val ue of an enum member may not, directly or indirectly, use the value of its own associated
enum member. Other than this circularity restriction, enum member initializers may freely refer to other enum
member initializers, regardless of their textual position. Within an enum member initializer, values of other
enum members are always treated as having the type of their underlying type, so that casts are not necessary
when referring to other enum members.

The example
enum Circular

produces a compile-time error because the declarations of A and B are circular. A depends on B explicitly, and B
depends on A implicitly.

Enum members are named and scoped in a manner exactly analogous to fields within classes. The scope of an
enum member isthe body of its containing enum type. Within that scope, enum members can be referred to by
their smple name. From all other code, the name of an enum member must be qualified with the name of its
enum type. Enum members do not have any declared accessibility—an enum member is accessible if its
containing enum type is accessible.

14.4 Enum values and operations

Each enum type defines a distinct type; an explicit enumeration conversion (86.2.2) is required to convert
between an enum type and an integral type, or between two enum types. The set of values that an enum type can
take on is not limited by its enum members. In particular, any value of the underlying type of an enum can be
cast to the enum type, and is a distinct valid value of that enum type.

Enum members have the type of their containing enum type (except within other enum member initializers: see
§14.3). The value of an enum member declared in enum type E with associated value v is (E) v.

The following operators can be used on values of enum types: ==, !=, <, >, <=, >= (§7.9.5), + (§7.7.4),
- (87.75), A, &, | (§7.10.2), ~ (§7.6.4), ++, -- (§7.5.9 and §7.6.5), and sizeof (§A.5.4).

Every enum type automatically derives from the class System. Enum. Thus, inherited methods and properties of
this class can be used on values of an enum type.

300 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1517 DelegatesAttributes |

15. Delegates

Delegates enabl e scenarios that other languages—such as C++, Pascal, and Modula—have addressed with
function pointers. Unlike C++ function pointers, delegates are fully object oriented; unlike C++ pointersto
member functions, delegates encapsul ate both an object instance and a method.

A delegate declaration defines a class that derives from the class System.Delegate. A delegate instance
encapsulates one or more methods, each of which isreferred to as a callable entity. For instance methods, a
callable entity consists of an instance and a method on the instance. For static methods, a callable entity consists
of just amethod. Given a delegate instance and an appropriate set of arguments, one can invoke all of that
delegate's instance's methods with that set of arguments.

Aninteresting and useful property of a delegate instance is that it does not know or care about the classes of the
methods it encapsulates; all that mattersisthat the methods are compatible (815.1) with the delegate's type. This
makes del egates perfectly suited for “anonymous’ invocation.

15.1 Delegate declarations
A delegate-declaration is a type-declaration (89.5) that declares a new delegate type.

delegate-declaration:
attributes,y delegate-modifiers,: delegate return-type identifier (formal-parameter-listoy
)

delegate-modifiers:
delegate-modifier
delegate-modifiers delegate-modifier

delegate-modifier:
new
public
protected
internal
private

It isacompile-time error for the same modifier to appear multiple times in a delegate declaration.

The new modifier isonly permitted on del egates declared within another type. It specifies that the delegate hides
an inherited member by the same name, as described in §10.2.2.

ThepubTic, protected, internal, and private modifiers control the accessibility of the delegate type.
Depending on the context in which the delegate declaration occurs, some of these modifiers may not be
permitted (83.5.1).

The delegate's type name is identifier.

The optional formal-parameter-list specifies the parameters of the delegate, and return-type indicates the return
type of the delegate. A method and a del egate type are compatible if both of the following are true:

* They have the same number or parameters, with the same types, in the same order, with the same parameter
modifiers.

* Thelr return types are the same.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 301

C#LANGUAGE SPECIFICATION

Delegate types in C# are name equivalent, not structurally equivalent. (However, note that instances of two
distinct but structurally equivalent del egate types may compare as equal (87.9.8).) Specifically, two different
delegate types that have the same parameter lists and signature and return type are considered differ ent delegate

types.

For example:
delegate int D1(int i, double d);
class A
public static int M1(int a, double b) { /* ... */ }
class B

delegate int D2(int c, double d);

public static int M1(Cint f, double g) { /* ... */ }
public static void M2(int k, double 1) { /* ... */ }
public static int M3Cint g) { /* ... */ }
public static void M4Cint ¢) { /* ... */ }

}

The delegate types D1 and D2 are both compatible with the methods A.M1 and B .M1, since they have the same
return type and parameter list; however, these delegate types are two different types, so they are not
interchangeable. The delegate types D1 and D2 are incompatible with the methods B.M2, B.M3, and B. M4, since
they have different return types or parameter lists.

The only way to declare a delegate type is via a delegate-declaration. A delegate typeisaclasstypethat is
derived from system.Delegate. Delegate types are implicitly sealed, so it is hot permissible to derive any
type from a delegate type. It is also not permissible to derive a non-del egate class type from
System.Delegate. Notethat System.Delegate isnot itself a delegate type; it isaclass type from which all
delegate types are derived.

C# provides specia syntax for delegate instantiation and invocation. Except for instantiation, any operation that
can be applied to a class or classinstance can also be applied to a delegate class or instance, respectively. In
particular, it is possible to access members of the System.Delegate type viathe usua member access syntax.

The set of methods encapsulated by a delegate instance is called an invocation list. When a delegate instance is
created (815.2) from a single method, it encapsulates that method, and its invocation list contains only one entry.
However, when two non-null delegate instances are combined, their invocation lists are concatenated—in the
order left operand then right operand—to form a new invocation list, which contains two or more entries.

Delegates are combined using the binary + (87.7.4) and += operators (87.13.2). A delegate can be removed from
a combination of delegates, using the binary - (87.7.5) and -= operators (§7.13.2). Delegates can be compared
for equality (87.9.8).

The example
delegate void D(int x);
class C

public static void M1(Cint i) { /* .. */ }
public static void M2(Cint i) { /* .. */ }

302 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1517 DelegatesAttributes

class Test

static void Main() {

D cdl = new D(C.M1); // M1

D cd2 = new D(C.M2); // M2

D cd3 = cdl + cd2; // M1 + M2

D cd4 = cd3 + cdl; // ML + M2 + M1

D cd5 = cd4 + cd3; // ML + M2 + M1 + M1 + M2

}

shows the instantiation of a number of delegates, and their corresponding invocation lists. When cd1 and cd?2
are instantiated, they each encapsulate one method. When cd3 isinstantiated, it has an invocation list of two
methods, M1 and M2, in that order. cd4’ sinvocation list containsM1, M2, and M1, in that order. Finally, cd5’s
invocation list containsM1, M2, M1, M1, and M2, in that order. For more examples of combining (aswell as
removing) delegates, see 815.3.

15.2 Delegate instantiation

An instance of adelegate is created by a del egate-creation-expression (87.5.10.3). The newly created delegate
instance then refersto either:

» The static method referenced in the del egate-creation-expression, or

* Thetarget object (which cannot be nu11) and instance method referenced in the del egate-creation-
expression, or

* Another delegate

For example:
delegate void D(int x);
class C
public static void M1(Cint i) { /* ... */}
public void M2Cint i) { /* ... */}
class Test
static void Main() {
D cdl = new D(C.M1); // static method
Test t = new c(Q;
D cd2 = new D(t.M2); // instance method
D cd3 = new D(cd2); // another delegate

}
}
Once instantiated, delegate instances always refer to the same target object and method. When two delegates are
combined, or oneis removed from another, a new delegate results with its own invocation list; the invocation
lists of the delegates combined or removed remain unchanged.

15.3 Delegate invocation

C# provides special syntax for invoking a delegate. When a non-null delegate instance whose invocation list
contains one entry isinvoked, it invokes the one method with the same arguments it was given, and returns the
same value as the referred to method. See §7.5.5.2 for detailed information on delegate invocation. If an
exception occurs during the invocation of such a delegate, and the exception is not caught within the method
that was invoked, the search for an exception catch clause continues in the method that called the delegate, asif
that method had directly called the method to which the delegate referred.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 303

C#LANGUAGE SPECIFICATION

Invocation of a delegate instance whose invocation list contains multiple entries proceeds by invoking each of
the methods on the invocation list, synchronously, in order. Each method so caled is passed the same set of
arguments as was given to the delegate instance. If such a delegate invocation includes reference parameters
(810.5.1.2), each method invocation will occur with areference to the same variable; changes to that variable by
one method in the invocation list will be visible to methods further down the invocation list. If the delegate
invocation includes output parameters or areturn value, their final value will come from the invocation of the
last delegate in thelist.

If an exception occurs during processing of the invocation of such a delegate, and the exception is not caught
within the method that was invoked, the search for an exception catch clause continues in the method that called
the delegate, and any methods further down the invocation list are not invoked.

Attempting to invoke a delegate instance whose value is null resultsin an exception of type
System.NullReferenceException

The following example shows how to instantiate, combine, remove, and invoke del egates:
delegate void D(int x);
class C

public static void M1(int i) {

Console.wWriteLine("C.M1: " + 1);

public static void M2(int i) {

console.writeLine("Cc.M2: " + i);

pubTlic void M3(int i) {
console.writeLine("C.M3: " + 1i);

}
class Test

static void Main() {
D cdl = new D(C.M1);
cdl(-1); // call Ml
D cd2 = new D(C.M2);
cd2(-2); // call m2
D cd3 = cdl + cd2;
cd3(10); // call M1 then M2
cd3 += cdl;
cd3(20); // call M1, M2, then M1
Cc=new CQ;
D cd4 = new D(c.M3);
cd3 += cd4;
cd3(30); // call m1, M2, M1, then M3
cd3 -= cdl; // remove Tlast M1
cd3(40); // call M1, M2, then M3
cd3 -= cd4;
cd3(50); // call M1 then M2
cd3 -= cd2;
cd3(60); // call ml
cd3 -= cd2; // impossible removal is benign
cd3(60); // call ml

cd3 -= cdl; // invocation Tist is empty

304 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1517 DelegatesAttributes

// cd3(70); // System.NullReferenceException thrown
cd3 -= cdl; // impossible removal is benign

}
}

As shown in the statement cd3 += cd1;, adelegate can be present in an invocation list multiple times. In this
case, it issimply invoked once per occurrence. In an invocation list such asthis, when that del egate is removed,
the last occurrence in the invocation list is the one actually removed.

Immediately prior to the execution of the final statement, cd3 -= cd1l;, the delegate cd3 refersto an empty
invocation list. Attempting to remove a delegate from an empty list (or to remove a non-existent delegate from a
non-empty list) is not an error.

The output produced is:

M1 -1
M2: -2
.M1: 10
.M2: 10
.M1: 20
.M2: 20
.M1: 20
.M1: 30
.M2: 30

NN nNOnNNONONONONNNN
=
=
w
o

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 305

Chapter 1617 ExceptionsAttributes |

16. Exceptions

Exceptions in C# provide a structured, uniform, and type-safe way of handling both system level and application
level error conditions. The exception mechanism is C# is quite similar to that of C++, with afew important
differences:

* InCH#, al exceptions must be represented by an instance of a class type derived from System. Exception.
In C++, any value of any type can be used to represent an exception.

* InC#, afinaly block (88.10) can be used to write termination code that executes in both normal execution
and exceptional conditions. Such codeis difficult to write in C++ without duplicating code.

* In C#, system-level exceptions such as overflow, divide-by-zero, and null dereferences have well defined
exception classes and are on a par with application-level error conditions.

16.1 Causes of exceptions
Exception can be thrown in two different ways.

* A throw statement (88.9.5) throws an exception immediately and unconditionally. Control never reaches
the statement immediately following the throw.

» Certain exceptional conditions that arise during the processing of C# statements and expression cause an
exception in certain circumstances when the operation cannot be completed normally. For example, an
integer division operation (87.7.2) throwsa System.DivideByZeroException if the denominator is
zero. See 816.4 for alist of the various exceptions that can occur in this way.

16.2 The System.Exception class

The system.Exception classisthe base type of all exceptions. This class has afew notable properties that al
exceptions share:

* Message isaread-only property of type string that contains a human-readabl e description of the reason
for the exception.

* InnerException isaread-only property of type Exception. If itsvalueisnon-null, it refersto the
exception that caused the current exception. Otherwise, its value is null, indicating that this exception was
not caused by another exception. (The number of exception objects chained together in this manner can be
arbitrary.)

The value of these properties can be specified in calls to the instance constructor for System. Exception.

16.3 How exceptions are handled
Exceptions are handled by a try statement (88.10).

When an exception occurs, the system searches for the nearest catch clause that can handle the exception, as
determined by the run-time type of the exception. First, the current method is searched for alexically enclosing
try statement, and the associated catch clauses of the try statement are considered in order. If that fails, the
method that called the current method is searched for alexically enclosing try statement that encloses the point
of the call to the current method. This search continues until a catch clauseisfound that can handle the current

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 307

C#LANGUAGE SPECIFICATION

exception, by naming an exception class that is of the same class, or a base class, of the run-time type of the
exception being thrown. A catch clause that doesn’t name an exception class can handle any exception.

Once a matching catch clause is found, the system prepares to transfer control to the first statement of the catch
clause. Before execution of the catch clause begins, the system first executes, in order, any finally clauses
that were associated with try statements more nested that than the one that caught the exception.

If no matching catch clause is found, one of two things occurs:

» If the search for amatching catch clause reaches a static constructor (810.11) or static field initidizer, then a
System.TypeInitializationException isthrown at the point that triggered the invocation of the
static constructor. The inner exception of the System. TypeInitializationException containsthe
exception that was originally thrown.

» If the search for matching catch clauses reaches the code that initially started the thread, then execution of
the thread isterminated. The impact of such termination isimplementation-defined.

Exceptions that occur during destructor execution are worth special mention. If an exception occurs during
destructor execution and is not caught, then the execution of that destructor is terminated and the destructor of
the base class (if any) is called. If thereisno base class (asin the case of System.0Object) or if thereis no base
class destructor, then the exception is discarded.

16.4 Common Exception Classes
The following exceptions are thrown by certain C# operations.

308 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1617 ExceptionsAttributes

System.ArithmeticException

A base class for exceptions that occur during
arithmetic operations, such as
System.DivideByZeroException and
System.OverflowException.

System.ArrayTypeMismatchException

Thrown when a store into an array fails because the
actual type of the stored element isincompatible
with the actual type of the array.

System.DivideByZeroException

Thrown when an attempt to divide an integral
value by zero occurs.

System.IndexOutOfRangeException

Thrown when an attempt to index an array viaan
index that is less than zero or outside the bounds of
the array.

System.InvalidCastException

Thrown when an explicit conversion from a base
type or interface to a derived types fails at run
time.

System.MulticastNotSupportedException

Thrown when an attempt to combine two non-
null delegatesfails, because the del egate type
does not have avoid return type.

System.NullReferenceException

Thrown when anul1 referenceisused in away
that causes the referenced object to be required.

System.outOofMemoryException

Thrown when an attempt to allocate memory (via
new) fails.

System.OverflowException

Thrown when an arithmetic operationin a
checked context overflows.

System.StackoverflowException

Thrown when the execution stack is exhausted by
having too many pending method calls; typically
indicative of very deep or unbounded recursion.

System.TypeInitializationException

Thrown when a static constructor throws an
exception, and no catch clauses exists to catch it.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

309

Chapter 1747 AttributesAttributes |

17. Attributes

Much of the C# language enabl es the programmer to specify declarative information about the entities defined
in the program. For example, the accessibility of a method in aclassis specified by decorating it with the
method-modifiers pub1ic, protected, internal, and private.

C# enables programmers to invent new kinds of declarative information, called attributes. Programmers can
then attach attributes to various program entities, and retrieve attribute information in a run-time environment.
For instance, a framework might define aHelpAttribute attribute that can be placed on certain program
elements (such as classes and methods) to provide a mapping from those program el ements to documentation.

Attributes are defined through the declaration of attribute classes (817.1), which may have positional and named
parameters (817.1.2). Attributes are attached to entities in a C# program using attribute specification (8(1), and
can beretrieved at run-time as attribute instances (817.3).

17.1 Attribute classes

A classthat derives from the abstract class System.Attribute, whether directly or indirectly, is an attribute
class. The declaration of an attribute class defines a new kind of attribute that can be placed on adeclaration. By
convention, attribute classes are named with a suffix of Attribute. Uses of an attribute may either include or
omit this suffix.

17.1.1 Attribute usage
TheAttributeuUsage attribute (817.4.1) is used to describe how an attribute class can be used.

AttributeUsage hasapostional parameter (817.1.2) that enables an attribute class to specify the kinds of
declarations on which it can be used. The example

[Attributeusage(AttributeTargets.Class | AttributeTargets.Interface)]
?gbhc class SimpleAttribute: Attribute

defines an attribute class named SimpleAttribute that can be placed only on class-declarations and
interface-declarations. The example

[simple] class Classl {...}
[simple] interface Interfacel {...}

shows several uses of the SimpTe attribute. Although this attribute is defined with the name
simpleAttribute, whenitisused the Attribute suffix may be omitted, resulting in the short name
simple. The example above is semantically equivalent to:

[simpleAttribute] class Classl {...}
[simpleAttribute] interface Interfacel {...}

AttributeUsage hasanamed parameter (817.1.2) called A1TowMuTtipTe that indicates whether the attribute
can be specified more than once for agiven entity. If ATTowMuTtipTe for an atribute classistrue, thenitisa
multi-use attribute class, and can be specified more than once on an entity. If ATTowMuTtipTe for an attribute
classisfalse or unspecified, then it is a single-use attribute class, and can be specified at most once on an entity.

The example
using System;

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 311

C#LANGUAGE SPECIFICATION

[AttributeUsage(AttributeTargets.Class, AllowMultiple = true)]
public class AuthorAttribute: Attribute {
public AuthorAttribute(string name) {
this.name = name;

public string Name {
get { return name; }

private string name;

3

defines a multi-use attribute class named AuthorAttribute. The example

[Author("Brian Kernighan"), Author("Dennis Ritchie")]
class Cclassl {...}

shows a class declaration with two uses of the Author attribute.

AttributeUsage has anamed parameter caled Inherited that indicates whether the attribute, when
specified on a base class, is aso inherited by classes that derive from that base class. If Inherited for an
attribute classistrue, then that attribute isinherited. If Inherited for an attribute classisfalseor itis
unspecified, then that attribute is not inherited.

An attribute class X not having an AttributeUsage attribute attached to it, asin

using System;
class X: Attribute { .. }

is equivalent to the following:

using System;

[Att;]buteUsage(AttributeTargets.A11, AllowMuTtiple = false, Inherited =
true

class X: Attribute { .. }

17.1.2 Positional and named p arameters

Attribute classes can have positional parameters and named parameters. Each public instance constructor for
an attribute class defines a valid sequence of positional parameters for the attribute class. Each non-static public
read-write field and property for an attribute class defines a named parameter for the attribute class.

The example

[Attributeusage(AttributeTargets.Class)]
public class HelpAttribute: Attribute

public HelpAttribute(string url) { // url is a positional parameter

}

public string Topic { // Topic is a named parameter
get {...
set {...}

) public string url { get {...} }

defines an attribute class named HelpAttribute that has one positional parameter (string url) and one
named parameter (string Topic). Although it is hon-static and public, the ur1 property does not define a
named parameter because it is not read-write.

The example

312 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1737 AttributesAttributes

[HeTp("http://www.microsoft.com/.../Classl.htm")]
class Classl {

}

[HeTp("http://www.microsoft.com/.../Misc.htm", Topic ="Class2")]
class Class2 {

}
shows several uses of the attribute.

17.1.3 Attribute parameter types

Thetypes of positional and named parameters for an attribute class are limited to the attribute parameter types,
which are:

* Thetypesbool, byte, char, double, float, int, Tong, short, string.
* Thetypeobject.
* Thetypesystem.Type.

* Anenum type provided it has public accessibility and the typesin which it is nested (if any) aso have
public accessibility.

* Single-dimensional arrays of the above types.

17.2 Attribute specification

Attribute specification isthe application of a previously defined attribute to a declaration. An attribute is a piece
of additional declarative information that is specified for a declaration. Attributes can be specified at global
scope (to specify attributes on the containing assembly or module) and for type-declarations (89.5), class-
member-declarations (810.2), interface-member-declarations (813.2), enum-member-declarations (814.3),
accessor-declarations for properties (810.6.2), event-accessor-declarations (810.7.1), and formal-parameter-
lists (810.5.1).

Attributes are specified in attribute sections. An attribute section consists of a pair of square brackets, which
surround a comma-separated list of one or more attributes. The order in which attributes are specified in such a
list, and the order in which sections appear, is not significant. For instance, the attribute specifications [A] [B],
[B]1[A], [A, B],and [B, A] areequivalent.

global-attributes:
global-attribute-sections

global-attribute-sections:
global-attribute-section
global-attribute-sections global-attribute-section

global-attribute-section:
[global-attribute-target-specifier attribute-list]
[global-attribute-target-specifier attribute-list ,]

global-attribute-tar get-specifier:
global-attribute-target

global-attribute-target:
assembly
moduTe

attributes:
attribute-sections

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 313

C#LANGUAGE SPECIFICATION

attribute-sections:
attribute-section
attribute-sections attribute-section

attribute-section:
[attribute-target-specifieryy attribute-list 1]
[attribute-target-specifiery, attribute-list ,]

attribute-target-specifier:
attribute-target

attribute-target:
field
event
method
param
property
return
type

attribute-list:
attribute
attribute-list , attribute

attribute:
attribute-name attribute-argumentsyy

attribute-name;
type-name

attribute-arguments:
(positional-argument-listoy:)
(positional-argument-list , named-argument-list)
(named-argument-list)

positional-argument-list:
positional-argument
positional-argument-list , positional-argument

positional-argument:
attribute-argument-expression

named-ar gument-list:

named-ar gument

named-argument-list named-argument
named-ar gument:

identifier = attribute-argument-expression
attribute-argument-expression:

expression

An attribute consists of an attribute-name and an optional list of positional and named arguments. The positiona
arguments (if any) precede the named arguments. A positional argument consists of an attribute-argument-
expression; a named argument consists of a name, followed by an equal sign, followed by an attribute-
argument-expression. The order of named arguments is not significant.

The attribute-name identifies an attribute class. If the form of attribute-name is type-name then this name must
refer to an attribute class. Otherwise, a compile-time error occurs. The example

314 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1737 AttributesAttributes

class Classl {}
[class1l] class Class2 {} // Error

produces a compile-time error because it attempts to use CTass1, whichis not an attribute class, as an attribute
class.

Certain contexts permit the specification of an attribute on more than one target. A program can explicitly
specify the target by including an attribute-tar get-specifier. When an attribute is placed at the global level, a
global-attribute-target-specifier is required. In all other locations, a reasonable default is applied, but an
attribute-target-specifier can be used to affirm or override the default in certain ambiguous cases (or to just
affirm the default in non-ambiguous cases). Thus, attribute-target-specifiers can typically be omitted except at
the global level. The potentially ambiguous contexts are resolved as follows:

An attribute specified at global scope can apply either to the target assembly or the target module. No
default exists for this context, so an attribute-target-specifier is aways required in this context. The
presence of the assemb1y attribute-target-specifier indicates that the attribute applies to the target
assembly; the presence of the modue attribute-target-specifier indicates that the attribute applies to the
target module.

An attribute specified on a delegate declaration can apply either to the delegate being declared or to its
return value. In the absence of an attribute-target-specifier, the attribute applies to the delegate. The
presence of the type attribute-target-specifier indicates that the attribute applies to the delegate; the
presence of the return attribute-target-specifier indicates that the attribute applies to the return value.

An attribute specified on a method declaration can apply either to the method being declared or to itsreturn
value. In the absence of an attribute-target-specifier, the attribute applies to the method. The presence of the
method attribute-target-specifier indicates that the attribute applies to the method; the presence of the
return attribute-target-specifier indicates that the attribute applies to the return value.

An attribute specified on an operator declaration can apply either to the operator being declared or to its
return value. In the absence of an attribute-target-specifier, the attribute applies to the operator. The
presence of the method attribute-target-specifier indicates that the attribute applies to the operator; the
presence of the return attribute-target-specifier indicates that the attribute applies to the return value.

An attribute specified on an event declaration that omits event accessors can apply to the event being
declared, to the associated field (if the event is not abstract), or to the associated add and remove methods.
In the absence of an attribute-target-specifier, the attribute applies to the event. The presence of the event
attribute-target-specifier indicates that the attribute applies to the event; the presence of the field
attribute-target-specifier indicates that the attribute applies to the field; and the presence of the method
attribute-target-specifier indicates that the attribute applies to the methods.

An attribute specified on a get accessor declaration for a property or indexer declaration can apply either to
the associated method or to its return value. In the absence of an attribute-target-specifier, the attribute
appliesto the method. The presence of the method attribute-target-specifier indicates that the attribute
applies to the method; the presence of the return attribute-target-specifier indicates that the attribute
appliesto the return value.

An attribute specified on a set accessor for a property or indexer declaration can apply either to the
associated method or to itsimplicit “value” parameter. In the absence of an attribute-target-specifier, the
attribute applies to the method. The presence of the method attribute-target-specifier indicates that the
attribute applies to the method; the presence of the param attribute-target-specifier indicates that the
attribute applies to the parameter.

An attribute specified on an add or remove accessor declaration for an event declaration can apply either to
the associated method or to its lone parameter. In the absence of an attribute-tar get-specifier, the attribute

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 315

C#LANGUAGE SPECIFICATION

applies to the method. The presence of the method attribute-target-specifier indicates that the attribute
applies to the method; the presence of the param attribute-target-specifier indicates that the attribute applies
to the parameter.

In other contexts, inclusion of an attribute-target-specifier is permitted but unnecessary. For instance, a class
declaration may either include or omit the type attribute-tar get-specifier:

[type: Author("Brian Kernighan")]
class Classl {}

[Author("Dennis Ritchie")]

class Class2 {}
It isacompile-time error to specify an invalid attribute-target-specifier. For instance, the param attribute-target-
specifier cannot be used on a class declaration:

[param: Author("Brian Kernighan")]

class Classl {}

An implementation may accept additional attribute target specifiers with implementation-defined semantics.
However, an implementation that does not recognize such atarget shall issue awarning.

By convention, attribute classes are named with a suffix of Attribute. An attribute-name of the form type-
name may either include or omit this suffix. An exact match between the attribute-name and the name of the
attribute classis preferred. The example

[AttributeUsage(AttributeTargets.All1)]
?gb11c class X: Attribute

[AttributeUsage(AttributeTargets.All1)]
?gb11c class XAttribute: Attribute

[x] // refers to X
class Classl {}
[XAttribute] // refers to XAttribute

class Cclass2 {}

shows two attribute classes named X and XAttribute. The attribute [X] refersto the class named X, and the
attribute [XAttribute] refersto the attribute class named [XAttribute]. If the declaration for class X is
removed, then both attributes refer to the attribute class named XAttribute:

[AttributeUsage(AttributeTargets.Al1)]
public class XAttribute: Attribute

{}

[X] // refers to XAttribute
class Classl {}

[XAttribute] // refers to XAttribute
class Class2 {}

It isacompile-time error to use a single-use attribute class more than once on the same entity. The example

[Attributeusage(AttributeTargets.Class)]
public class HelpStringAttribute: Attribute

string value;
public HelpStringAttribute(string value) {
this.value = value;

public string value { get {...} }

316 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1737 AttributesAttributes

[Helpstring("Description of Classl")]
[Helpstring("Another description of Classl")]
public class Classl {}

produces a compile-time error because it attempts to use Helpstring, which is asingle-use attribute class,
more than once on the declaration of Class1.

An expression E is an attribute-argument-expression if al of the following statements are true:
e Thetype of E isan attribute parameter type (817.1.3).
» At compile-time, the value of E can be resolved to one of the following:

0 A constant-expression (§7.15).

0 A typeof-expression (87.5.11).

0 Anarray-creation-expression (87.5.10.2) of theformnew T[] {E, E, ..., E}, where T isan attribute
parameter type and each E is an attribute-argument-expression.

17.3 Attribute instances

An attribute instance is an instance that represents an attribute at run-time. An attribute is defined with an
attribute class, positional arguments, and named arguments. An attribute instance is an instance of the attribute
classthat isinitialized with the positional and hamed arguments.

Retrieval of an attribute instance involves both compile-time and run-time processing, as described in the
following sections.

17.3.1 Compilation of an attribute

The compilation of an attribute with attribute class T, positional-argument-list P and named-argument-list N,
consists of the following steps:

» Follow the compile-time processing steps for compiling an object-creation-expression of the form new
T(P). These steps either result in acompile-time error, or determine a constructor on T that can be invoked
at run-time. Call this instance constructor C.

» |If c does not have public accessibility, then a compile-time error occurs.
» For each named-argument Arg in N:
0 Let Name bethe identifier of the named-argument Arg.

0 Name must identify a non-static read-write public field or property on T. If T has no such field or
property, then a compile-time error occurs.

» Keep thefollowing information for run-time instantiation of the attribute: the attribute class T, the instance
constructor C on T, the positional-argument-list P and the named-argument-list N.

17.3.2 Run-time retrieval of an attribute instance

Compilation of an attribute yields an attribute class T, an instance constructor € on T, a positional-argument-list
P and a named-argument-list N. Given thisinformation, an attribute instance can be retrieved at run-time using
the following steps:

» Follow the run-time processing steps for executing an object-creation-expression of theform new T(P),
using the instance constructor C as determined at compile-time. These steps either result in an exception, or
produce an instance of T. Call thisinstance 0.

» For each named-argument Arg inN, in order:

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 317

C#LANGUAGE SPECIFICATION

0 Let Name betheidentifier of the named-argument Arg. If Name does not identify a non-static public
read-write field or property on 0, then an exception is thrown.

Let value bethe result of evaluating the attribute-argument-expression of Arg.
If Name identifiesafield on 0, then set thisfield to the value value.

Otherwise, Name identifies a property on 0. Set this property to the value value.

o O O O

Theresult is 0, an instance of the attribute class T that has been initialized with the positional -argument-
list P and the named-argument-list N.

17.4 Reserved attributes
A small number of attributes affect the language in some way. These attributes include:

* System.AttributeUsageAttribute (817.4.1), which is used to describe the ways in which an attribute
class can be used.

* System.ConditionalAttribute (817.4.2), whichisused to define conditiona methods.

* System.ObsoleteAttribute (817.4.3), whichis used to mark a member as obsolete.

17.4.1 The AttributeUsage attribute

TheAttributeUsage attribute is used to describe the manner in which the attribute class can be used.

A classthat is decorated with the AttributeUsage attribute must derive from System.Attribute, either
directly or indirectly. Otherwise, a compile-time error occurs.

[Attributeusage(AttributeTargets.Class)]
public class AttributeUsageAttribute: Attribute

public AttributeUsageAttribute(AttributeTargets validon) {...}
public virtual bool AllowMultiple { get {...} set {...} }
public virtual bool Inherited { get {...} set {...} }

public virtual AttributeTargets validon { get {...} }

b

public enum AttributeTargets
Assembly = 0x0001,
Module = 0x0002,
Class = 0x0004,
Struct = 0x0008,
Enum = 0x0010,
Constructor = 0x0020,
Method = 0x0040,
Property = 0x0080,
Field = 0x0100,
Event = 0x0200,
Interface = 0x0400,
Parameter = 0x0800,
Delegate = 0x1000,
Returnvalue = 0x2000,

A1l = Assembly | Module | Class | Struct | Enum | Constructor |
Method | Property | Field | Event | Interface | Parameter |
Delegate | Returnvalue,

318 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Chapter 1737 AttributesAttributes

ClassMembers = Class | Struct | Enum | Constructor | Method |
Property | Field | Event | Delegate | Interface,

17.4.2 The Conditional attribute

The Conditional attribute enables the definition of conditional methods. The Cond1itional attribute
indicates a condition by testing a conditional compilation symbol. Callsto a conditional method are either
included or omitted depending on whether this symbol is defined at the point of the call. If the symbol is
defined, then the call isincluded; otherwise, the call is omitted.

[Attributeusage(AttributeTargets.Method, AllowMultiple = true)]
public class ConditionalAttribute: Attribute

public ConditionalAttribute(string conditionalsymbol) {...}
public string Conditionalsymbol { get {...} }

A conditional method is subject to the following restrictions:
* Theconditional method must be a method in a class-declaration.
* Theconditional method must not be an override method.
» The conditional method must have areturn type of void.

» The conditional method must not be marked with the override modifier. A conditional method may be
marked with the vi rtual modifier, however. Overrides of such a method areimplicitly conditional, and
must not be explicitly marked with aConditional attribute.

» The conditional method must not be an implementation of an interface method. Otherwise, a compile-time
error occurs.

In addition, a compile-time error occurs if aconditional method is used in a del egate-creation-expression. The
example

#define DEBUG

using System.Diagnostics;

class Classl

[conditional ("DEBUG")]
public static void M() {
console.writeLine("Executed Classl.M");

}

class Class?

public static void Test() {
Classl1.MQ);

}

declares Class1.M as aconditiona method. CTass2's Test method calls this method. Since the conditiona
compilation symbol DEBUG is defined, if Class2.Test iscalled, it will call M. If the symbol DEBUG had not
been defined, then cClass2.Test would not call Class1.Mm.

It isimportant to note that the inclusion or exclusion of acall to aconditional method is controlled by the
conditional compilation symbols at the point of the call. In the example

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 319

C#LANGUAGE SPECIFICATION

// Begin classl.cs _
using System.Diagnhostics;

class Classl

[conditional ("DEBUG")]
public static void F() {
Console.writeLine("Executed Classl.F");

End classl.cs

//

//

Begin class2.cs
#define DEBUG

using System.Diagnostics;
class Class2

public static void GO {

Classl.FQ); // F is called

}
End class2.cs

//

//

Begin class3.cs
#undef DEBUG

class Class3

pubTlic static void H(Q) {

Classl.FQ; // F is not called

b
// End class3.cs

the classesClass2 and Class3

each contain calls to the conditional method class1.F, which is conditional

based on whether DEBUG is defined. Since this symbol is defined in the context of Class?2 but not Class3, the
cdl toFin class?2 isincluded, whilethe call to Fin Class3 isomitted.

17.4.3 The Obsolete attribute
Theobsolete attribute is used to mark program types and members that should no longer be used.
[AttributeUsage(AttributeTargets.Class |

AttributeTargets.
AttributeTargets.
AttributeTargets.
AttributeTargets.
AttributeTargets.
AttributeTargets.
AttributeTargets.
AttributeTargets.
AttributeTargets.

Struct

Enum |
Interface |
Delegate |
Method |
constructor |
Property |
Field |
Event)]

public class ObsoleteAttribute: Attribute

public ObsoleteAttribute() {...}
public ObsoleteAttribute(string message) {...}

public ObsoleteAttribute(string message, bool error) {...}

public string Message { get {...} }

320

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Chapter 1737 AttributesAttributes

public bool Istrror { get {...} }

If aprogram uses atype or member that is decorated with the Obsolete attribute, then the compiler shall issue a
warning or error in order to aert the developer, so the offending code can be fixed. Specifically, the compiler
shall issue awarning if no error parameter is provided, or if the error parameter is provided and has the value
false. The compiler shall issue a compile-time error if the error parameter is specified and has the value true.

In the example

[Obsolete("This class is obsolete; use class B instead")]
class A

public void FO {}

class B

pubTlic void FQ {3}

class Test

static void Main() {
A a = new AQ; // warning
a.FQ;

}

the class A is decorated with the Obso1ete attribute. Each use of A inMain resultsin awarning that includes
the specified message, “ This classis obsolete; use class B instead.”

17.5 Attributes for Interoperation
Note: This section is applicable only to the Microsoft .NET implementation of C#.

17.5.1 Interoperation with COM and Win32 components

The .NET runtime provides alarge number of attributes that enable C# programs to interoperate with
components written in COM and Win32 DLLs. For example, the b1 1Import attribute can be used onastatic
extern method to indicate that the implementation of the method isto be found inaWin32 DLL. These
attributes are found in the Ssystem.Runtime.InteropServices namespace, and detailed documentation for
these attributesis found in the .NET runtime documentation.

17.5.2 Interoperation with other .NET languages

17.5.2.1 The IndexerName attribute

Indexers are implemented in .NET using indexed properties, and have aname in the NET metadata. If no
IndexerName attributeis present for an indexer, then the name Item isused by default. The IndexerName
attribute enables a devel oper to override this default and specify a different name.

namespace System.Runtime.CompilerServices.CSharp

[AttributeUsage(AttributeTargets.Property)])
public class IndexerNameAttribute: System.Attribute

public IndexerNameAttribute(string indexerName) {...}
public string value { get {...} }

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 321

~N o o~ 0N

[ee]

10
11
12

13
14
15

16
17
18

19

20
21

22
23
24

25
26
27

28
29

30
31

32
33
34

35
36
37

Chapter 1747 AttributesAttributes |

A. Unsafe code

The core C# language, as defined in the preceding chapters, differs notably from C and C++ in its omission of
pointers as a datatype. C# instead provides references and the ability to create objectsthat are managed by a
garbage collector. This design, coupled with other features, makes C# a much safer language than C or C++. In
the core C# language it is simply not possible to have an uninitialized variable, a“dangling” pointer, or an
expression that indexes an array beyond its bounds. Whole categories of bugs that routinely plague C and C++
programs are thus eliminated.

While practically every pointer type construct in C or C++ has areference type counterpart in C#, there are
nonethel ess situations where access to pointer types becomes a necessity. For example, interfacing with the
underlying operating system, accessing a memory-mapped device, or implementing atime-critical algorithm
may not be possible or practical without access to pointers. To address this need, C# provides the ability to write
unsafe code.

In unsafe code it is possible to declare and operate on pointers, to perform conversions between pointers and
integral types, to take the address of variables, and so forth. In a sense, writing unsafe code is much like writing
C code within a C# program.

Unsafe codeisin fact a“safe” feature from the perspective of both developers and users. Unsafe code must be
clearly marked with the modifier unsafe, so developers can't possibly use unsafe features accidentally, and the
execution engine works to ensure that unsafe code cannot be executed in an untrusted environment.

A.1 Unsafe contexts

The unsafe features of C# are available only in unsafe contexts. An unsafe context isintroduced by including an
unsafe modifier in the declaration of atype or member, or by employing an unsafe-statement:

» A declaration of aclass, struct, interface, or delegate may include an unsafe modifier, in which case the
entire textual extent of that type declaration (including the body of the class, struct, or interface) is
considered an unsafe context.

* A declaration of afield, method, property, event, indexer, operator, constructor, destructor, or static
constructor may include an unsafe modifier, in which case the entire textual extent of that member
declaration is considered an unsafe context.

* Anunsafe-statement enables the use of an unsafe context within a block. The entire textual extent of the
associated block is considered an unsafe context.

The associated grammar extensions are shown below. For brevity, ellipses (...) are used to represent productions
that appear in preceding chapters.

class-modifier:

unsafe

struct-modifier:

unsafe

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 323

10
11
12

13
14
15

16
17
18

19
20
21

22
23
24

25
26
27

28
29
30

31
32
33
34
35
36
37

38
39
40

41
42

43

C#LANGUAGE SPECIFICATION

interface-modifier:

unsafe

delegate-modifier:

uﬁsafe
fiedld-modifier:

;Hsafe
method-modifier:

unsafe

property-modifier:

unsafe

event-modifier:

unsafe

indexer-modifier:

unsafe

operator-modifier:

unsafe

constructor-modifier:

unsafe

destructor-declaration:
attributes,y externgy unsafeqy ~ identifier () destructor-body
attributes,y unsafeqy externg ~ identifier () destructor-body

static-constructor-modifiers:
unsafeqy externy, static
unsafey; static externgy
externy: unsafeqg; static
static unsafey, externgy
externyy static unsafegy
static externgy: unsafeg

embedded-statement:

unsafe-statement

unsafe-statement:
unsafe block
In the example
324

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

OO WNPE

10
11
12
13
14
15

16

17
18

19
20
21
22
23
24
25

26
27
28
29
30
31
32

33
34
35

36

37
38
39
40

41
42
43
44

45
46
47

48
49

Chapter 1737 AttributesAttributes

public unsafe struct Node

public int value;
public Node* Left;
public Node* Right;

the unsafe modifier specified in the struct declaration causes the entire textual extent of the struct declaration
to become an unsafe context. Thus, it is possible to declare the Left and Right fields to be of a pointer type.
The example above could also be written

public struct Node

public int value;
public unsafe Node* Left;
public unsafe Node* Right;

Here, the unsafte modifiersin the field declarations cause those declarations to be considered unsafe contexts.

Other than establishing an unsafe context, thus permitting the use of pointer types, the unsafe modifier has no
effect on atype or amember. In the example

public class A

public unsafe virtual void FQ {
char* p;

}
}

public class B: A
public override void F(Q) {
base.FQ;

}
}

the unsafe modifier on the F method in A simply causes the textual extent of F to become an unsafe context in
which the unsafe features of the language can be used. In the override of F in B, there is no need to re-specify the
unsafe modifier—unless, of course, the F method in B itself needs access to unsafe features.

The situation is dightly different when a pointer typeis part of the method’ s signature
public unsafe class A

public virtual void F(char* p) {...}

public class B: A

public unsafe override void F(char* p) {...}

Here, because F's signature includes a pointer type, it can only be written in an unsafe context. However, the
unsafe context can be introduced by either making the entire class unsafe, asisthe casein A, or by including an
unsafte modifier in the method declaration, asisthe casein B.

A.2 Pointer types
In an unsafe context, atype (84) may be a pointer-type aswell as a value-type or areference-type.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 325

A WO DN P

10

11
12

13
14
15
16

17
18

19

20

21

22

23
24

25
26

27
28

29
30

31

32

33
34

C#LANGUAGE SPECIFICATION

type:
value-type
reference-type
pointer-type

A pointer-type is written as an unmanaged-type or the keyword vo1id, followed by a * token:

poi nter-type:
unmanaged-type *
void *
unmanaged-type:
type

The type specified before the * in apointer typeis called the referent type of the pointer type. It represents the
type of the variable to which a value of the pointer type points.

Unlike references (values of reference types), pointers are not tracked by the garbage coll ector—the garbage
collector has no knowledge of pointers and the data to which they point. For this reason a pointer is not
permitted to point to areference or to a struct that contains references, and the referent type of a pointer must be
an unmanaged-type.

An unmanaged-type is any type that isn't a reference-type and doesn’t contain reference-type fields at any level
of nesting. In other words, an unmanaged-type is one of the following:

e sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, decimal, or bool.
* Any enum-type.

* Any pointer-type.

* Any user-defined struct-type that contains fields of unmanaged-types only.

The intuitive rule for mixing of pointers and references is that referents of references (objects) are permitted to
contain pointers, but referents of pointers are not permitted to contain references.

Some examples of pointer types are given in the table below:

Example Description

byte* Pointer to byte

char* Pointer to char

int®* Pointer to pointer to int

int*[] Single-dimensional array of pointersto int
void¥ Pointer to unknown type

For a given implementation, al pointer types must have the same size and representation.

Unlike C and C++, when multiple pointers are declared in the same declaration, in C# the * iswritten along
with the underlying type only, not as a prefix punctuator on each pointer name. The example

int* pi, pj; // NOT as int *pi, *pj;
declares two variables, named pi and pj, of type int*.

The value of a pointer having type T* represents the address of a variable of type T. The pointer indirection
operator * (A.5.1) may be used to access this variable. For example, given

326 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

10

11

12
13
14

15

16
17
18

19
20
21

22
23
24
25
26

27
28
29
30

31
32
33
34
35

36
37
38

39
40
41
42
43
44
45
46

47

48

49

Chapter 1737 AttributesAttributes

avariable P of type int*, the expression *P denotes the int variable found at the address contained in P.

Like an object reference, a pointer may be nul1. Applying the indirection operator to anul1 pointer resultsin
implementation-defined behavior. A pointer with the value nul1 is represented by all-bits-zero.

The void* type represents a pointer to an unknown type. Because the referent type is unknown, the indirection
operator cannot be applied to a pointer of type void*, nor can any arithmetic be performed on such a pointer.
However, apointer of type void* can be cast to any other pointer type (and vice versa).

Pointer types are a separate category of types. Unlike reference types and val ue types, pointer types do not
inherit from object and no conversions exist between pointer types and object. In particular, boxing and
unboxing (84.3) are not supported for pointers. However, conversions are permitted between different pointer
types and between pointer types and the integral types. Thisisdescribed in 8A 4.

A pointer-type may be used as the type of avolatile field (§10.4.3).

Although pointers can be passed as ref or out parameters, doing so can cause undefined behavior, since the
pointer may well be set to point to alocal variable which no longer exists when the called method returns, or the
fixed object to which it used to point, is no longer fixed. For example:

using System;
class Test

static int value = 20;
unsafe static void F(out int* pil, ref int* pi2) {
int i = 10;
pil = &i;
fixed (int* pj = &value) {
7T
pi2 = pj;
}

unsafe static void Main() {
int* px1;
int i = 10;
int* px2 = &i;
FCout px1l, ref px2);
Console.writeLine("*px1 = {0}, *px2 = {1}",

) *px1l, *px2); // undefined behavior
}

A method can return avalue of some type, and that type can be a pointer. For example, when given a pointer to
a contiguous sequence of int values, the sequence's element count, and some other int value, the following
method returns the address of the indicated value in that array, if amatch occurs; otherwiseit returnsnul1:

unsafe static int* Find(int* pi, int size, int value) {
for (int i =0; i < size; ++1) {
if (*pi == value)
return pi;
++pi;

return null;

In an unsafe context, several constructs are available for operating on pointers:
e The * operator may be used to perform pointer indirection (8A.5.1).

» The -> operator may be used to access a member of a struct through a pointer (8A.5.2).

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 327

10

11
12
13
14

15
16
17
18

19

20

21
22

23
24

25

26
27
28

29

30
31

32

33

34
35

36

37

C#LANGUAGE SPECIFICATION

e The [] operator may be used to index a pointer (8A.5.3).

* The& operator may be used to obtain the address of avariable (8A.5.4).

* The++ and -- operators may be used to increment and decrement pointers (8A.5.5).

e The+ and - operators may be used to perform pointer arithmetic (8A.5.6).

e The==, != <, >, <=, and => operators may be used to compare pointers (8A.5.7).

e Thestackalloc operator may be used to alocate memory from the call stack (8A.7).

» The fixed statement may be used to temporarily fix a variable so its address can be obtained (8A.6).

A.3 Fixed and moveable variables

The address-of operator (8A.5.4) and the f1ixed statement (8A.6) divide variables into two categories: Fixed
variables and moveable variables.

Fixed variablesreside in storage locations that are unaffected by operation of the garbage collector. Examples of
fixed variables include local variables, value parameters, and variables created by dereferencing pointers.
Moveable variables on the other hand reside in storage |locations that are subject to relocation or disposal by the
garbage collector. Examples of moveable variables include fields in objects and elements of arrays.

The & operator (8A.5.4) permits the address of afixed variable to be obtained without restrictions. However,
because a moveable variable is subject to relocation or disposal by the garbage collector, the address of a
moveable variable can only be obtained using a fixed statement (8A.6), and the address remains valid only for
the duration of that f1ixed statement.

In precise terms, afixed variable is one of the following:
* A variableresulting from asimple-name (87.5.2) that refersto aloca variable or a value parameter.

* A variableresulting from a member-access (87.5.4) of theformVv. I, where v isafixed variable of a struct-
type.

* A variableresulting from a pointer-indirection-expression (8A.5.1) of the form *P, a pointer-member -
access (8A.5.2) of theform P->1I, or a pointer-element-access (8A.5.3) of theform P[E].

All other variables are classified as moveable variables.

Note that a static field is classified as amoveable variable. Also note that a ref or out parameter isclassified as
amoveable variable, even if the argument given for the parameter is afixed variable. Finaly, note that a
variable produced by dereferencing a pointer is always classified as afixed variable.

A.4 Pointer conversions

In an unsafe context, the set of available implicit conversions (86.1) is extended to include the following implicit
pointer conversions:

» From any pointer-type to the type void*.
* From the null type to any pointer-type.

Additionally, in an unsafe context, the set of available explicit conversions (86.2) is extended to include the
following explicit pointer conversions:

* From any pointer-type to any other pointer-type.
* Fromsbyte, byte, short, ushort, int, uint, Tong, or uTong to any pointer-type.

328 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

11

12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31

32

33
34
35

36

37
38
39
40

41
42

43
44
45
46
47

Chapter 1737 AttributesAttributes

* Fromany pointer-typeto sbyte, byte, short, ushort, int, uint, Tong, or ulong.

Finaly, in an unsafe context, the set of standard implicit conversions (86.3.1) includes the following pointer
conversion:

» From any pointer-type to the type void*.

Conversions between two pointer types never change the actual pointer value. In other words, a conversion from
one pointer type to another has no effect on the underlying address given by the pointer.

When one pointer type is converted to another, if the resulting pointer is not correctly aligned for the pointed-to
type, the behavior is undefined if the result is dereferenced. In general, the concept “correctly aligned” is
trangitive: if apointer to type A is correctly aligned for a pointer to type B, which, in turn, is correctly aligned for
apointer to type C, then a pointer to type A is correctly aligned for a pointer to type C.

Consider the following case in which a variable having one type is accessed via a pointer to a different type:

char c = 'A';

char* pc = &c;

void* pv = pc;

int* pi = (int*)pv;

int i = *pi; // undefined
*pi = 123456; // undefined

When a pointer type is converted to a pointer to byte, the result points to the lowest addressed byte of the
variable. Successive increments of the result, up to the size of the variable, yield pointers to the remaining bytes
of that variable. For example, the following method displays each of the eight bytesin adouble as a
hexadecimal value:

using System;
class Test

{
unsafe static void Main() {
double d = 123.456e23;
byte* pb = (byte*)&d;
for (int i = 0; i < sizeof(double); ++i)
) console.write(" {0,2:X}", (uint) (*pb++));
}

Of course, the output produced depends on endianness.

M appings between pointers and integers are implementation-defined. However, on 32- and 64-bit CPU
architectures with alinear address space, conversions of pointersto or from integral types typically behave
exactly like aconversion of uint or uTong values, respectively, to or from thoseintegral types.

A.5 Pointers in expressions

In an unsafe context an expression may yield aresult of a pointer type, but outside an unsafe context itisa
compile-time error for an expression to be of a pointer type. In precise terms, outside an unsafe context a
compile-time error occursif any simple-name (87.5.2), member-access (87.5.4), invocation-expression (87.5.5),
or element-access (87.5.6) is of a pointer type.

In an unsafe context, the primary-no-array-creation-expression (87.5) and unary-expression (87.6) productions
permit the following additional constructs:

primary-no-array-creati on-expression:
poi nter-member-access

poi nter-el ement-access
sizeof-expression

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 329

A WO DN P

(&)]

10

11
12
13
14

15
16

17
18
19

20
21

22
23

24
25

26
27

28
29

30

31
32
33
34

35
36
37
38

C#LANGUAGE SPECIFICATION

unary-expression:

poi nter-indir ection-expression
addressof-expression

These constructs are described in the following sections. The precedence and associativity of the unsafe
operatorsisimplied by the grammar.

A.5.1 Pointer indirection
A pointer-indirection-expression consists of an asterisk (*) followed by a unary-expression.
poi nter-indir ection-expression:
unary-expression

The unary * operator denotes pointer indirection and is used to obtain the variable to which a pointer points.
Theresult of evaluating *P, where P is an expression of a pointer type T*, isavariable of type T. It isacompile-
time error to apply the unary * operator to an expression of type void* or to an expression that isn't of a pointer

type.

The effect of applying the unary * operator to anul1 pointer is implementation-defined. In particular, thereis
no guarantee that this operation throws asystem.Nul1ReferenceException.

If an invalid value has been assigned to the pointer, the behavior of the unary * operator is undefined. Among
theinvalid values for dereferencing a pointer by the unary * operator are an address inappropriately aligned for
the type pointed to (see example in 8A.4), and the address of a variable after the end of itslifetime.

For purposes of definite assignment analysis, a variable produced by evaluating an expression of the form *p is
considered initially assigned (85.3.1).

A.5.2 Pointer member access
A pointer-member-access consists of a primary-expression, followed by a“->" token, followed by an identifier.
poi nter-member -access:
primary-expression -> identifier

In a pointer member access of the form P->I, P must be an expression of a pointer type other than void*, and I
must denote an accessible member of the type to which P points.

A pointer member access of the form P->1 is evaluated exactly as (*P) . I. For a description of the pointer
indirection operator (*), see 8A.5.1. For a description of the member access operator (.), see §7.5.4.
In the example
struct Point
public int x;
public int y;
public override string Tostring() {

return "(" + x + ",)" +y + ";

330 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

O OWwO~NOOULAWNEPE

=

12

13
14
15
16
17
18
19
20
21
22

23

24
25

26
27

28
29

30
31

32

33
34
35
36
37
38
39

40
41

42
43
44
45
46
a7
48

49
50

Chapter 1737 AttributesAttributes

class Test

unsafe static void Main() {
Point point;
Point* p = &point;
p->x = 10;
p->y = 20;
) Cconsole.writeLine(p->ToString());
}

the -> operator is used to access fields and invoke a method of a struct through a pointer. Because the operation
P->I isprecisely equivalent to (*P) . I, theMain method could equally well have been written:

class Test

unsafe static void Main() {
Point point;
Point* p = &point;
(*p).x = 10;
p).y = 20; _
Cconsole.WriteLine((*p).ToString());

}
}

A.5.3 Pointer element access
A pointer-element-access consists of a primary-no-array-creation-expression followed by an expression
enclosed in“[” and“]".
poi nter-el ement-access:
primary-no-array-creation-expression [expression]

In a pointer element access of theform PLE], P must be an expression of a pointer type other than void*, and E
must be an expression of atype that can be implicitly converted to int, uint, Tong, or uTong.

A pointer element access of the form P[E] is evaluated exactly as * (P + E). For adescription of the pointer
indirection operator (*), see 8A.5.1. For a description of the pointer addition operator (+), see 8A.5.6.

In the example
class Test

unsafe static void Main() {
char* p = stackalloc char[256];
for (int i = 0; i < 256; 1i++) p[i] = (char)i;

}

apointer element accessis used to initialize the character buffer in a for loop. Because the operation P[E] is
precisely equivalent to * (P + E), the example could equally well have been written:

class Test
unsafe static void Main() {
char* p = stackalloc char[256];
for (int i = 0; i < 256; i++) *(p + i) = (char)i;

3

The pointer element access operator does not check for out-of-bounds errors and the effects of accessing an out-
of-bounds element are undefined.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 331

S

© 00 N o O

10
11
12
13

14
15

16
17
18
19
20
21
22
23
24

25
26
27

28
29
30
31

32
33
34

35

36
37

38
39
40

41
42

43
44

C#LANGUAGE SPECIFICATION

A.5.4 The address-of operator
An addressof-expression consists of an ampersand (&) followed by a unary-expression.
addressof-expression:
& unary-expression

Given an expression E which isof atype T and is classified as afixed variable (8A.3), the construct &E
computes the address of the variable given by E. Thetype of theresult is T* and is classified asavalue. A
compile-time error occursif E isnot classified asavariable, if E isclassified asavolatile field, or if E denotesa
moveable variable. In the last case, afixed statement (8A.6) can be used to temporarily “fix” the variable before
obtaining its address.

The & operator does not require its argument to be definitely assigned, but following an & operation, the variable
to which the operator is applied is considered definitely assigned in the execution path in which the operation
occurs. It isthe responsibility of the programmer to ensure that correct initialization of the variable actually does
take place in this situation.
In the example

using System;

unsafe class Test

static void Main() {

int i;
int* p = &i;
*p = 123;

console.writeLine(i);

}

1 is considered definitely assigned following the &1 operation used to initialize p. The assignment to *p in
effect initializes 1, but theinclusion of thisinitiaization is the responsibility of the programmer, and no
compile-time error would occur if the assignment was removed.

Therules of definite assignment for the & operator exist such that redundant initialization of local variables can
be avoided. For example, many external APIstake a pointer to astructure which isfilled in by the API. Callsto
such APIs typically pass the address of alocal struct variable, and without the rule, redundant initialization of
the struct variable would be required.

As stated earlier (87.5.4), outside an instance constructor or static constructor for a struct or class that defines a
readonly field, that field is considered a value, not avariable. As such, its address cannot be taken. Similarly,
the address of a constant cannot be taken.

A.5.5 Pointer increment and d ecrement

In an unsafe context, the ++ operator (87.5.9) and the -- operator (87.6.5) can be applied to pointer variables of
all types except void*. Thus, for every pointer type T*, the following operators are implicitly defined:

T* operator ++(T* X);
T* operator --(T* Xx);
The operators produce the same results asx+1 and x-1, respectively (8A.5.6). In other words, for a pointer

variable of type T*, the ++ operator adds sizeof (T) to the address contained in the variable, and the --
operator subtracts sizeof (T) from the address contained in the variable.

If apointer increment or decrement operation overflows the domain of the pointer type, the result is
implementation-defined, but no exceptions are produced.

332 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

0w ~No obh w N =

41

42
43

44
45
46
47

Chapter 1737 AttributesAttributes

A.5.6 Pointer arithmetic

In an unsafe context, the + operator (87.7.4) and - operator (87.7.5) can be applied to values of al pointer types
except void*. Thus, for every pointer type T*, the following operators are implicitly defined:

* operator +(T* x, int y);

operator +(T* x, uint y);
operator +(T* x, long y);
operator +(T* x, ulong y);

operator +(int x, T* y);

operator +(uint x, T* y);
operator +(long x, T* y);
operator +(ulong x, T* y);

%

sk

%

%

F

%

operator —-(T* x, int y);

operator —-(T* x, uint y);
operator —-(T* x, long y);
operator —-(T* x, ulong y);

P

%

A4 4444 d4—4--

long operator -(T* x, T* y);

Given an expression P of apointer type T* and an expression N of type int, uint, Tong, or ulong, the
expressions P + N and N + P compute the pointer value of type T* that results from adding N * sizeof (T) to
the address given by p. Likewise, the expression P - N computes the pointer value of type T* that results from
subtracting N * sizeof (T) from the address given by Pp.

Given two expressions, P and Q, of a pointer type T*, the expression P - Q computes the difference between the
addresses given by P and Q and then divides the difference by sizeof (T). Thetype of the result is always
Tong. In effect, P - Q iscomputed as ((Tong) (P) - (Tong) (Q)) / sizeof(T).

For example, this program:
using System;
class Test

unsafe static void Main() {
int* values = stackalloc int[20];
int* p = &values[1];
int* q = &values[15];

Console.writeLine("p - q = {0}", p - Q);
) console.writeLine("q - p = {0}", q - p);
}
produces the output:
p-q=-14
q-p=14

If apointer arithmetic operation overflows the domain of the pointer type, the result is truncated in an
implementation-defined fashion, but no exceptions are produced.

A.5.7 Pointer comparison

In an unsafe context, the==, !=, <, >, <=, and => operators (87.9) can be applied to values of al pointer types.
The pointer comparison operators are:

bool operator ==(void* x, void* y);
bool operator !=(void* x, void* y);
bool operator <(void* x, void* y);
bool operator >(void* x, void* y);

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 333

C#LANGUAGE SPECIFICATION

bool operator <=(void* x, void* y);
bool operator >=(void* x, void* y);
Because an implicit conversion exists from any pointer type to the void* type, operands of any pointer type can

be compared using these operators. The comparison operators compare the addresses given by the two operands
asif they were unsigned integers.

A.5.8 The sizeof operator
The sizeof operator returns the number of bytes occupied by avariable of agiven type. The type specified as
an operand to sizeof must be an unmanaged-type (8A.2).
sizeof-expression:
sizeof (unmanaged-type)

Theresult of the sizeof operator isavalue of type int. For certain predefined types, the sizeof operator
yields a constant value as shown in the table below.

Expression Result

sizeof(sbyte)

sizeof(byte)

sizeof(short)

sizeof (ushort)

sizeof(int)

sizeof(uint)

sizeof(Tong)

sizeof(ulong)

sizeof(char)
sizeof(float)
sizeof(double)
sizeof(bool)

Rloo|sN|[o|o| | D|N[N|[R|R

14
15
16

17

18
19

20
21

22

23
24
25

For al other types, the result of the sizeof operator isimplementation-defined and is classified as a value, not

aconstant.

The order in which members are packed into a struct is unspecified.

For alignment purposes, there may be unnamed padding at the beginning of a struct, within a struct, and at the
end of the struct. The contents of the bits used as padding are indeterminate.

When applied to an operand that has struct type, the result is the total number of bytes in a variable of that type,

including any padding.

A.6 The fixed statement

In an unsafe context, the embedded-statement (88) production permits an additional construct, the f1ixed
statement, which is used to “fix” a moveable variable such that its address remains constant for the duration of

the statement.

334

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

10

11
12
13

14
15
16
17
18
19

20

21
22
23
24

25
26
27
28
29

30
31
32
33

34
35
36
37
38

39
40
41

42
43

44

Chapter 1737 AttributesAttributes

embedded-statement:

fixed-statement

fixed-statement:
fixed (pointer-type fixed-pointer-declarators) embedded-statement

fixed-pointer-declarators:
fixed-pointer-declarator
fixed-pointer-declarators , fixed-pointer-declarator

fixed-pointer-declarator:

identifier = fixed-pointer-initializer
fixed-pointer-initializer:

& variable-reference

expression

Each fixed-pointer-declarator declares alocal variable of the given pointer-type and initializes the local variable
with the address computed by the corresponding fixed-pointer-initializer. A local variable declared in a fixed
statement is accessible in any fixed-pointer-initializers occurring to the right of the declaration, and in the
embedded-statement of the f1i xed statement. A local variable declared by a fixed statement is considered
read-only. A compile-time error occurs if the embedded statement attempts to modify thislocal variable (via
assignment or the ++ and - - operators) or passit asaref or out parameter.

A fixed-pointer-initializer can be one of the following:

* Thetoken “&” followed by avariable-reference (85.3.3) to amoveable variable (8A.3) of an unmanaged
type T, provided the type T* isimplicitly convertible to the pointer type given in the fixed statement. In
this case, theinitializer computes the address of the given variable, and the variable is guaranteed to remain
at afixed address for the duration of the fixed statement.

* Anexpression of an array-type with elements of an unmanaged type T, provided the type T* isimplicitly
convertible to the pointer type given in the fixed statement. In this case, theinitializer computes the
address of the first element in the array, and the entire array is guaranteed to remain at a fixed address for
the duration of the f1ixed statement. The behavior of the fixed statement is implementation-defined if the
array expression isnull or if the array has zero elements.

* Anexpression of type string, provided the type char* isimplicitly convertible to the pointer type given
in the fixed statement. In this case, theinitializer computes the address of the first character in the string,
and the entire string is guaranteed to remain at afixed address for the duration of the fixed statement. The
behavior of the fixed statement isimplementation-defined if the string expression is null.

For each address computed by a fixed-pointer-initializer the fixed statement ensures that the variable
referenced by the addressis not subject to relocation or disposa by the garbage collector for the duration of the
f1ixed statement. For example, if the address computed by a fixed-pointer-initializer references afield of an
object or an element of an array instance, the f1ixed statement guarantees that the containing object instanceis
not relocated or disposed of during the lifetime of the statement.

It isthe programmer’ s responsibility to ensure that pointers created by f1ixed statements do not survive beyond
execution of those statements. For example, when pointers created by fixed statements are passed to external
APIs, it isthe programmer’ s responsibility to ensure that the APIs retain no memory of these pointers.

Fixed objects may cause fragmentation of the heap (because they can’t be moved). For that reason, objects
should be fixed only when absolutely necessary and then only for the shortest amount of time possible.

The example

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 335

o ~No o h~WNPE

23

24
25
26

27
28
29
30

31
32
33
34
35

36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54

C#LANGUAGE SPECIFICATION

unsafe class Test

static int x;

int y;
static void F(int* p) {
} *p o= 1;

static void Main() {
Test_t = new Test(Q);
int[] arr = new int[10];

fixed (int* p = &) F(p);
fixed (int* p = &t.y) F(p);
fixed (int* p = &arr[0]) F(p);
fixed (int* p = arr) F(p);

}
}

demonstrates several uses of the 1 xed statement. The first statement fixes and obtains the address of a static
field, the second statement fixes and obtains the address of an instance field, and the third statement fixes and
obtains the address of an array element. In each case it would have been an error to use the regular & operator
since the variables are dl classified as moveable variables.

The third and fourth fixed statements in the example above produce identical results. In genera, for an array
instance arr, specifying&arr[0] in afixed statement is the same as simply specifying arr.

Here's another example of the fixed statement, thistime using string:
class Test

static string name = "xx";
unsafe static void F(char* p) {

for (int i = 0; p[i] != "\0"; ++i)
y Console.writeLine(p[i]);

unsafe static void Main() {
fixed (char* p name) F(p);
fixed (char* p "xx") F(p);

3

In an unsafe context array elements of single-dimensional arrays are stored in increasing index order, starting
with index 0 and ending with index Length - 1. For multi-dimensional arrays, array elements are stored such
that the indices of the rightmost dimension are increased first, then the next left dimension, and so on to the lft.
Within a fixed statement that obtains a pointer p to an array instance a, the pointer values ranging from p to p
+arr.Length - 1 represent addresses of the elementsin the array. Likewise, the variables ranging from p [0]
top[arr.Length - 1] represent the actual array elements. Given the way in which arrays are stored, we can
treat an array of any dimension as though it were linear.

The example

class Test

static void Main() {
int[,,] a = new int[2,3,4];

unsafe {
fixed (int* p = a) {
for (int i = 0; i < a.Length; ++i) // treat as Tlinear
p[i]l = i;
}

336 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

O~NO O~ WNPRE

10
11
12
13
14
15

16

17
18
19
20
21

22
23
24
25
26

27

28
29
30
31

32
33
34

35
36
37

38

39
40

41
42
43
44

45
46

47
48

Chapter 1737 AttributesAttributes

for (int i =0; 1 < 2; ++1)
for (int j =0; j < 3; ++j) {
for (int k = 0; k < 4; ++k)
Console.write("[{0},{1},{2}] = {3,2} ", i, j, k, a[i,]J,k]);
console.writeLine();

}
}
produces the output:
[0,0,0] = O [0,0,1] = 1 [0,0,2] = 2 [0,0,3] = 3
[0’1’0] = 4 [0’1!1] = 5 [0!1’2] = 6 [0’1’3] = 7
(0,2,0] = 8 [0,2,1] = 9 [0,2,2] = 10 [0,2,3] = 11
[1,0,0] = 12 [1,0,1] = 13 [1,0,2] = 14 [1,0,3] = 15
[1,1,0] = 16 [1,1,1] = 17 [1,1,2] = 18 [1,1,3] = 19
[1,2,0] = 20 [1,2,1] = 21 [1,2,2] = 22 [1,2,3] = 23
In the example

unsafe class Test

static void Fill1(int* p, int count, int value) {
for (; count !'= 0; count--) *p++ = value;

static void Main() {
int[] arr = new int[100];
fixed (int* p = arr) Fill(p, 100, -1);

}
a fixed statement is used to fix an array so its address can be passed to a method that takes a pointer.

A char* value produced by fixing a string instance always points to a null-terminated string. Within afixed
statement that obtains a pointer p to astring instance s, the pointer values ranging fromptop + s.Length - 1
represent addresses of the charactersin the string, and the pointer value p + s. Length always pointsto anull
character (the character with value "\0").

Modifying objects of managed type through fixed pointers can results in undefined behavior. Because strings are
immutable, it isthe programmer’ s responsibility to ensure that the characters referenced by a pointer to afixed
string are not modified.

The automatic null-termination of stringsis particularly convenient when calling external APIs that expect “C-
style” strings. Note, however, that a string instance is permitted to contain null characters. If such null characters
are present, the string will appear truncated when treated as a null-terminated char*.

A.7 Stack allocation

In an unsafe context, alocal variable declaration (88.5.1) may include a stack allocation initializer which
allocates memory from the call stack.

|ocal-variable-initializer:
expression
array-initializer
stackalloc-initializer

stackalloc-initializer:
stackalloc unmanaged-type [expression]

The unmanaged-type indicates the type of the items that will be stored in the newly allocated location, and the
expression indicates the number of these items. Taken together, these specify the required allocation size. Since

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 337

N

N o 0o b~ W

10
11
12

13

14
15

16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33

34
35

36

37
38
39
40

41

42
43
44
45

46
47
48

C#LANGUAGE SPECIFICATION

the size of a stack allocation cannot be negative, it isa compile-time error to specify the number of itemsasa
constant-expression that evaluatesto a negative value.

A stack allocation initializer of the form stackalloc T[E] requires T to be an unmanaged type (8A.2) and E to
be an expression of type int. The construct allocates E * sizeof (T) bytesfrom the call stack and returnsa
pointer, of type T*, to the newly allocated block. If E is a negative value, then the behavior is undefined. If E is
zero, then no allocation is made, and the pointer returned isimplementation-defined. If there is not enough
memory available to allocate a block of the given size, aSystem.StackoverflowException isthrown.

The content of the newly allocated memory is undefined.

There is no way to explicitly free memory alocated using stackalToc. Instead, al stack allocated memory
blocks created during the execution of a function member are automatically discarded when the function
member returns. This corresponds to the alToca function, an extension commonly found in C and C++
implementations.

Stack allocation initializers are not permitted in catch or finally blocks (88.10).

In the example
using System;
class Test

unsafe static string IntToString(int value) {
char* buffer = stackalloc char[16];
char* p = buffer + 16;
int n = value >= 0?7 value: -value;
do {
——p 1O(Char)(n % 10 + '0");

} wh11e (n != 0),
if (value < 0) * = '-';
) return new str1ng(p, 0, (int) (buffer + 16 - p));

static void Main() {
Console.WriteLine(IntToString(12345));
console.WriteLine(IntToString(-999));

}

astackalToc initidizer isused in the IntToString method to allocate a buffer of 16 characters on the stack.
The buffer is automatically discarded when the method returns.

A.8 Dynamic memory allo cation

Except for the stackalloc operator, C# provides no predefined constructs for managing non-garbage collected
memory. Such services are typically provided by supporting class libraries or imported directly from the
underlying operating system. For example, the Memory class below illustrates how the heap functions of an
underlying operating system might be accessed from C#:

using System.Runtime.InteropServices;
public unsafe class Memory

// Handle for the process heap. This handle is used in all calls to the
// HeapXXX APIs in the methods below.

static int ph = GetProcessHeap();
// Private instance constructor to prevent instantiation.
private Memory() {}

338 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

o ~Nouoh~hw NP

}

Chapter 1737 AttributesAttributes

// Allocates a memory block of the given size. The allocated memory is
// automatically initialized to zero.

public static void* Alloc(int size) {
void* result = HeapAlloc(ph, HEAP_ZERO_MEMORY, size);
if (result == null) throw new OoutOfMemoryException();
return result;

// Copies count bytes from src to dst. The source and destination
// blocks are permitted to overlap.

public static void Copy(void* src, void* dst, int count) {
byte* ps = (byte*)src;
byte* pd = (byte*)dst;
if (ps > pd) {

) for (; count != 0; count--) *pd++ = *ps++;
else if (ps < pd) {
for (ps += count, pd += count; count != 0; count--) *--pd = *--ps;

}
// Frees a memory block.

public static void Free(void* block) {
if (!HeapFree(ph, 0, block)) throw new InvalidoperationException();

// Re-allocates a memory block. If the reallocation request is_for a
// larger_size, the additional region of memory is automatically
// initialized to zero.

public static void* ReAlloc(void* block, int size) {
void* result = HeapReAlloc(ph, HEAP_ZERO_MEMORY, block, size);
if (result == null) throw new outOofMemoryException();
return result;

// Returns the size of a memory block.

public static int Sizeof(void* block) {
int result = HeapSize(ph, 0, block);
if (result == -1) throw new InvalidOperationException();
return result;

// Heap API flags
const int HEAP_ZERO_MEMORY = 0x00000008;
// Heap API functions

[DTTImport("kernel32")]
static extern int GetProcessHeap();

[DTTImport("kernel32")]
static extern void* HeapAlloc(int hHeap, int flags, int size);

[DT1T1Import("kernel32")]
static extern bool HeapFree(int hHeap, int flags, void* block);

[DTTImport("kernel32")]
static extern void* HeapReAlloc(int hHeap, int flags,
void* block, int size);

[DTTImport("kernel32")]
static extern int HeapSize(int hHeap, int flags, void* block);

An example that usesthe Memory classis given below:

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 339

P OOWoOO~NOUA~WNEPE

[e =
w N

=
62N

C#LANGUAGE SPECIFICATION

class Test

unsafe static void Main() {
byte* buffer = (byte*)Memory.AlTloc(256);
for (int i = 0; i < 256; i++) buffer[i] = (byte)i;
byte[] array = new byte[256];
fixed (byte* p = array) Memory.Copy(buffer, p, 256);
Memory.Free(buffer);
; for (int i = 0; i < 256; 1i++) Console.writeLine(array[i]);
}

The exampl e allocates 256 bytes of memory through Memory . AT1Toc and initializes the memory block with
valuesincreasing from 0 to 255. It then allocates a 256 €lement byte array and uses Memory . Copy to copy the
contents of the memory block into the byte array. Finally, the memory block is freed using Memory . Free and
the contents of the byte array are output on the console.

340 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Appendix BB Documentation commentsReferences |

B. Documentation comments

C# provides a mechanism for programmers to document their code using a special comment syntax that contains
XML text. In source code files, comments having a certain form can be used to direct atool to produce XML
from those comments and the source code elements, which they precede. Comments using such syntax are
called documentation comments, and are single-line comments of theform ///.. They must immediately
precede a user-defined type (such as a class, delegate, or interface) or amember (such as afield, event, property,
or method). The XML generation tool is called the documentation generator. (This generator could be, but need
not be, the C# compiler itself.) The output produced by the documentation generator is called the

documentation file. A documentation fileis used asinput to a documentation viewer; atool intended to produce
some sort of visual display of typeinformation and its associated documentation.

This specification suggests a set of tags to be used in documentation comments, but use of these tagsis not
required, and other tags may be used if desired, as long the rules of well-formed XML are followed.

B.1 Introduction

Comments having a specia form can be used to direct atool to produce XML from those comments and the
source code elements, which they precede. Such comments are single-line comments of theform ///... They
must immediately precede a user-defined type (such as a class, delegate, or interface) or amember (such asa
field, event, property, or method) that they annotate.

Syntax:

single-line-doc-comment::
/// input-charactersyy

In asingle-line-doc-comment, if there is a whitespace character following the /// characters on each of the
single-line-doc-comments adjacent to the current single-line-doc-comment, then that whitespace character is not
included in the XML output.

Example:
/// <remarks>Class <c>Point</c> models a point in a two-dimensional
/// plane.</remarks>
/77 _
?ub11c class Point

/// <remarks>method <c>draw</c> renders the point.</remarks>
void draw() {..}

The text within documentation comments must be well formed according to the rules of XML
(http://www.w3.org/ TR/REC-xml). If the XML isill formed, awarning is generated and the documentation file
will contain acomment saying that an error was encountered.

Although devel opers are free to create their own set of tags, a recommended set is defined in 8B.2. Some of the
recommended tags have special meanings:

» The<param> tagisused to describe parameters. If such atag is used, the documentation generator must
verify that the specified parameter exists and that all parameters are described in documentation comments.
If such verification fails, the documentation generator issues awarning.

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 341

C#LANGUAGE SPECIFICATION

» Thecref attribute can be attached to any tag to provide areference to a code element. The documentation
generator must verify that this code element exists. If the verification fails, the documentation generator
issues awarning. When looking for a name described in a cref attribute, the documentation generator must
respect namespace visibility according to using statements appearing within the source code.

* The<summary> tag isintended to be used by a documentation viewer to display additiona information
about atype or member.

Note carefully that the documentation file does not provide full information about the type and members (for
example, it does not contain any type information). To get such information about atype or member, the
documentation file must be used in conjunction with reflection on the actual type or member.

B.2 Recommended tags

The documentation generator must accept and process any tag that is valid according to therules of XML. The
following tags provide commonly used functionality in user documentation. (Of course, other tags are possible.)

Tag Reference Purpose
<c> §B.2.1 | Settextinacode-like font
<code> §B.2.2 Set one or more lines of source code or program output
<example> §8.2.3 | Indicate an example
<exception> §B.2.4 | |dentifies the exceptions a method can throw
<list> §B.2.5 Create alist or table
<para> §B.2.6 Permit structure to be added to text
<param> §B.2.7 | Describe aparameter for amethod or constructor
<paramref> §B.2.8 | |dentify that aword isa parameter name
<permission> §8.2.9 | Document the security accessibility of a member
<remarks> §8.2.10 | Describeatype
<returns> §B.2.11 | Describe the return value of amethod
<see> §8.2.12 | Specify alink
<seealso> §8.2.13 Generate a See Also entry
<summary> §B.2.14 | Describe a member of atype
<value> §B.2.15 | Describe a property
B.2.1 <c>

This tag provides a mechanism to indicate that a fragment of text within a description should be set a specia
font such asthat used for ablock of code. (For lines of actual code, use <code> (8B.2.2).)

Syntax:

<c>text to be set Iike code</c>

Example:

342 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Appendix BB Documentation commentsReferences

// <remarks>Class <c>Point</c> models a point in a two-dimensional
//_plane.</remarks>
ublic class Point

B.2.2 <code>

Thistag is used to set one or more lines of source code or program output in some specia font. (For small code
fragments in narrative, use <c> (8B.2.1).)

Syntax:
<code>source code or program output</code>

Example
/// <summary>This method changes the point's Tlocation by
/// the given x- and y-offsets.
/// <example>For example:
/// <code>
/// Point p = new Point(3,5);
/// p.Translate(-1,3);
/// </code>
/// results in <c>p</c>'s having the value (2,8).
/// </example>
/// </summary>
public void Translate(int xor, int yor) {
X += Xor;
y Y += yor;

B.2.3 <example>

This tag allows example code within a comment, to specify how a method or other library member may be used.
Ordinarily, this would aso involve use of the tag <code> (8B.2.2) aswéll.

Syntax:
<example>description</example>

Example:

See <code> (8B.2.2) for an example.

B.2.4 <exception>
Thistag provides away to document the exceptions a method can throw.
Syntax:
<exception cref="member">description</exception>
where
cref="member"

The name of a member. The documentation generator checks that the given member exists and
translates member to the canonical element name in the documentation file.

description

A description of the circumstances in which the exception is thrown.

Example:

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 343

C#LANGUAGE SPECIFICATION

public class DataBaseOperations

/// <exception cref="MasterFileFormatCorruptException"></exception>
/// <exception cref="MasterFileLockedOpenException'></exception>
public static void ReadRecord(int flag) {

if (flag == 1)

throw new MasterFileFormatCorruptException();

else if (flag == 2)

1 throw new MasterFileLockedOpenException();
}

3

B.2.5 <list>

Thistagis used to create alist or table of items. It may contain a<11istheader> block to define the heading
row of either atable or definition list. (When defining atable, only an entry for termin the heading need be
supplied.)

Each itemin thelist is specified with an <item> block. When creating a definition lit, both term and
description must be specified. However, for atable, bulleted list, or numbered list, only description need
be specified.

Syntax:

<list type="bullet" | "number" | "table">
<Tistheader>
<term>term</term>
<description>description</description>
</1istheader>
<item>
<term>term</term>
<description>description</description>
</item>
<item>
<term>term</term>
<description>description</description>
</item>
</Tist>

where
term
The term to define, whose definitionisin description.
description

Either an item in a bullet or numbered list, or the definition of a term.

Example:

344 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix BB Documentation commentsReferences

?ub1ic class MycClass
/// <remarks>Here 1is an example of a bulleted Tist:
/// <list type="bullet">
/// <item>
/// <description>Item 1.</description>
/// </item>
/// <item>
/// <description>Item 2.</description>
/// </item>
/// </Tist>
/// </remarks>
public static void Main () {

//

b

}

B.2.6 <para>

Thistag isfor useinside other tags, such as <remarks> (8B.2.10) or <returns> (8B.2.11), and permits
structure to be added to text.

Syntax:
<para>content</para>
where
content

Thetext of the paragraph.

/// <summary>This 1is the entry point of the Point class testing program.
/// <para>This program tests each method and operator, and

/// is intended to be run after any non-trvial maintenance has

/// been performed on the Point class.</para></summary>

public static void Main() {

N // .

B.2.7 <param>
Thistag is used to describe a parameter for a method, constructor, or indexer.
Syntax:
<param name="name">description</param>
where
name

The name of the parameter.
description

A description of the parameter.

Example:

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 345

C#LANGUAGE SPECIFICATION

/// <summary>This method changes the point's Tocation to
/// the given coordinates.</summary>

/// <param><c>xor</c> is the new x-coordinate.</param>
/// <param><c>yor</c> is the new y-coordinate.</param>
public void Move(int xor, int yor) {

Xor;

1
X
Y = yor;

B.2.8 <paramref>

Thistag is used to indicate that aword is a parameter. The documentation file can be processed to format this
parameter in some distinct way.

Syntax:
<paramref name="name" />
where
name

The name of the parameter.

Example:

/// <summary>This constructor initializes the new Point to
/// (<paramref name="xor"/>,<paramref name="yor"/>).</summary>
/// <param><c>xor</c> is the new Point's x-coordinate.</param>
/// <param><c>yor</c> is the new Point's y-coordinate.</param>
public Point(int xor, 1int yor) {

X = Xor;

Y = yor;
b

B.2.9 <permission>

This tag allows the security accessibility of a member to be documented.
Syntax:
<permission cref="member">description</permission>
where
cref="member"

The name of a member. The documentation generator checks that the given code element exists and
translates member to the canonical element name in the documentation file.

description
A description of the access to the member.

Example:

/// <permission cref="System.Security.PermissionSet">Everyone can
///_access this method.</permission>
public static void Test() {

B.2.10 <remarks>

Thistag is used to specify overview information about atype. (Use <summary> (8B.2.14) to describe the
members of atype.)

346 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Appendix BB Documentation commentsReferences

Syntax:

<remarks>description</remarks>
where
description
The text of the remarks.
Example:

/// <remarks>Class <c>Point</c> models a point in a two-dimensional
plane.</remarks>
public class Point

// .
}

B.2.11 <returns>
Thistag is used to describe the return value of a method.

Syntax:

<returns>description</returns>

where
description

A description of the return value.

Example:
/// <summary>Report a point's Tocation as a string.</summary>
/// <returns>A string representing a point's location, in the form (x,y),
/// without any Tleading, training, or embedded whitespace.</returns>
public override string ToString() {

return "(" + X+ ",)" + Y + ";

}

B.2.12 <see>

Thistag allows alink to be specified within text. (Use <seealso> (8B.2.13) to indicate text that isto appear in
a See Also section.)

Syntax:
<see cref="member" />
where
cref="member"

The name of a member. The documentation generator checks that the given code element exists and
passes member to the element name in the documentation file.

Example:

/// <summary>This method changes the point's Tlocation to
/// the given coordinates.</summary>

/// <see cref="Translate"/>

public void Move(int xor, int yor) {
X = xor;

Y = yor;

}

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 347

C#LANGUAGE SPECIFICATION

/// <summary>This method changes the point's Tlocation by
/// the given x- and y-offsets.
/// </summary>
/// <see cref="Move"/>
public void Translate(int xor, int yor) {
X += Xor;
Y += yor;

B.2.13 <seealso>

Thistag allows an entry to be generated for the See Also section. (Use <see> (8B.2.12) to specify alink from
within text.)

Syntax:
<seealso cref="member" />
where
cref="member"

The name of a member. The documentation generator checks that the given code element exists and
passes member to the element name in the documentation file.

Example:

/// <summary>This method determines whether two Points have the same
/// location.</summary>

/// <seealso cref="operator=="/>

/// <seealso cref="operator!="/>

public override bool Equals(object o) {

b

//

B.2.14 <summary>
Thistag can be used to describe a member for atype. (Use <remarks> (8B.2.10) to describe the type itself.)

Syntax:
<summary>description</summary>
where
description
A summary of the member.

Example:

/// <summary>This constructor initializes the new Point to (0,0).</summary>
gub11c Point() : this(0,0) {

B.2.15 <value>
Thistag allows a property to be described.
Syntax:
<value>property description</value>

where
property description

348 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Appendix BB Documentation commentsReferences

A description for the property.

Example:

///_<value>Property <c>X</c> represents the point's x-coordinate.</value>
public int X

get { return x; }
set { x = value; }

B.3 Processing the documentation file

The documentation generator generates an ID string for each element in the source code that istagged with a
documentation comment. This ID string uniquely identifies a source element. A documentation viewer can use
an ID string to identify the corresponding metadata/reflection item to which the documentation applies.

The documentation file is not a hierarchical representation of the source code; rather, it isaflat list with a
generated 1D string for each element.

B.3.1 ID string format
The documentation generator observes the following rules when it generatesthe ID strings:

* Nowhite spaceis placed in the string.

» Thefirst part of the string identifies the kind of member being documented, via a single character followed
by a colon. The following kinds of members are defined:

Character Description

Event

F Field

M Method (including constructors, destructors, and operators)

N Namespace

P Property (including indexers)

T Type (such as class, delegate, enum, interface, and struct)

! Error string; the rest of the string provides information about the error. For
example, the documentation generator generates error information for links that
cannot be resolved.

* Thesecond part of the string is the fully qualified name of the element, starting at the root of the namespace.
The name of the element, its enclosing type(s), and namespace are separated by periods. If the name of the
item itself has periods, they are replaced by the NUMBER SIGN # (U+000D). (It is assumed that no element
has this character in its name.)

* For methods and properties with arguments, the argument list follows, enclosed in parentheses. For those
without arguments, the parentheses are omitted. The arguments are separated by commas. The encoding of
each argument is the same as a CLI signature, as follows. Arguments are represented by their fully qualified
name. For example, int becomes System.Int32, string becomesSystem.String, object becomes
System.0bject, and so on. Arguments having the out or ref modifier have a'@' following their type
name. Arguments passed by value or via params have no special notation. Arguments that are arrays are
represented as [lowerbound:size, ..., lowerbound:size] where the number of commasisthe rank — 1, and the
lower bounds and size of each dimension, if known, are represented in decimal. If alower bound or sizeis

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 349

C#LANGUAGE SPECIFICATION

not specified, it is omitted. If the lower bound and size for a particular dimension are omitted, the "' is
omitted as well. Jagged arrays are represented by one "[]" per level. Arguments that have pointer types other
than void are represented using a ** following the type name. A void pointer is represented using atype
name of "System.void".

B.3.2 ID string examples

The following examples each show afragment of C# code, aong with the ID string produced from each source
element capable of having a documentation comment:

» Typesarerepresented using their fully qualified name.

enum Ccolor {Red, Blue, Green};
namespace Acme

interface IProcess { /* .. */ }

struct valueType { /* .. */ }

class widget: Iprocess
public class NestedClass { /* */ }
public interface IMenuItem { /* . */ }

public delegate void Del(int 1),
public enum Direction {North, South, East, west};

(ST

:Ccolor"

:Acme.IProcess"
:Acme.valueType"
:Acme.Widget"
:Acme.wWidget.NestedClass"
:Acme.Widget.IMenuItem"
:Acme.Widget.Del"
:Acme.widget.Direction"

JI544444

» Fields arerepresented by their fully qualified name.
namespace Acme
struct valueType

private int total;

class widget: Iprocess
public class NestedClass

private int value;

private string message;

private static Color defaultColor;
private const double PI = 3.14159;
protected readonly double monthlyAverage;
private long[] arrayl;

private widget[,] array2

private unsafe int *pCount;

private unsafe float **ppva1ues

350 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Appendix BB Documentation commentsReferences

MMM TATmAAT

:Acme.valueType.total"
:Acme.Widget.NestedClass.value"
:Acme.widget.message
:Acme.widget.defau%tCo1or"
:Acme.wWidget.PI"
:Acme.widget.monthlyAverage"
:Acme.widget.arrayl"
:Acme.widget.array2"
:Acme.widget.pCount"
:Acme.widget.ppvalues"

e Constructors.
namespace Acme

class widget: Iprocess

static widget() { /* .. */ }

public widget() { /* .. */ }
public widget(string) { /% . %/}

by
}
"M:Acme.widget.#cctor"

"M:Acme.widget.#ctor")
"M:Acme.widget.#ctor(System.String)"

* Destructors.
namespace Acme
class widget: Iprocess
y ~widget() { /* .. */ }
}
"M:Acme.widget.Finalize"
* Methods.
namespace Acme

struct valueType
pubTlic void M(Cint i) { /* .. */ }

class widget: IProcess
public class NestedClass
public void M(Cint i) { /* .. */ }
public static void m0Q) { /* .. */ }
public void Ml(char c, out float f, ref valueType v) { /* .. */ }

public void M2(short[] x1, int[,] x2, 1ong[][] x3) { /* . %/}
public void M3(long[][] x3 W1dget[][,,] x4) { /* .. %/}

public unsafe void M4(char * “pc, color **pf) { /* . */ }
public unsafe void M5(void *pv, double *[][,] pd) { /* .. */ }
public void M6(Cint i, params object[] args) { /* .. */ }

(WS

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 351

C#LANGUAGE SPECIFICATION

EEE=EEZE=E=Z=Z

:Acme.valueType.M(System.Int32)"
:Acme.Widget.NestedClass.M(System.Int32)"

:Acme.Widget.mM0"
:Acme.Widget.M1(System.Char,System.Single@,Acme.valueType@)"
:Acme.Widget.M2(System. Int16[] System. Int32[0 ,0:7, System Int64[]1[]DD"
:Acme.Widget.M3(System. Int64[][] Acme W1dget[0 ,0:,0:1[DO"
:Acme.Widget.M4(System.Char* ,Co]or
:Acme.widget.MSCSystem.Void*,System.Doub]e*[O:,0:][])"
:Acme.Widget.M6(System.Int32,System.Object[])"

* Properties and indexers.
namespace Acme

class widget: Iprocess

pubTlic int width {get { /* .. */ } set { /* */ }}
pubTlic int this[int 1i] {get { /¥ . %/ ¥ set { /* . %/ }}
public int this[string s, int i] {get { /* .. */ } set { /* .. */ }}

by

}

"P:Acme.widget.width"

"P:Acme.widget.Item(System.Int32)"

"P:Acme.widget.Item(System.String,System.Int32)"
* Events

namespace Acme

class widget: Iprocess

) public event Del AnEvent;
}
"E:Acme.widget.AnEvent"
* Unary operators.
namespace Acme
class widget: Iprocess
) public static widget operator+(widget x) { /* .. */ }
}
"M:Acme.widget.op_UnaryPlus(Acme.widget)"

The complete set of unary operator function names used is as follows: op_unarypPlus, ,
op_UnaryNegation, op_Negation, op_OnesComplement,, op_Increment,, op_Decrement,,
op_True,andd op_False.

* Binary operators.
namespace Acme
class widget: Iprocess

public static widget operator+(widget x1, widget x2) { return x1; }

}
"M:Acme.widget.op_Addition(Acme.widget,Acme.widget)"

352 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Appendix BB Documentation commentsReferences

The complete set of binary operator function names used is as follows: op_Addi tion,
op_Subtraction, op_Multiply, op_Division, op_Modulus, op_B1itwiseAnd, op_Bitwiseor,
op_Exclusiveor, op_Leftshift, op_Rightshift, op_Equality, op_Inequality,
op_LessThan, op_LessThanOreEqual, op_GreaterThan, and op_GreaterThanOorequal.

e Conversion operators have atrailing '~' followed by the return type.

namespace Acme
class widget: Iprocess

public static explicit operator int(widget x) { /* .. */ }
) public static implicit operator long(widget x) { /* .. */ }
}
"M:Acme.widget.op_Explicit(Acme.widget)~System.Int32"
"M:Acme.widget.op_ImpTlicit(Acme.widget)~System.Int64"

B.4 An example

B.4.1 C# source code
The following exampl e shows the source code of a Point class:
hamespace Graphics

/// <remarks>Class <c>Point</c> models a point in a two-dimensional plane.
///_</remarks>
public class Point

/// <summary>Instance variable <c>x</c> represents the point's
/// x-coordinate.</summary>
private int x;

/// <summary>Instance variable <c>y</c> represents the point's
/// y-coordinate.</summary>
private int y;

/// _<value>Property <c>X</c> represents the point's x-coordinate.</value>
public int X

get { return x; }
set { x = value; }

/// _<value>Property <c>Y</c> represents the point's y-coordinate.</value>
public int Y

get { return y; }
set { y = value; }

// <summary>This constructor initializes the new Point to
//_ (0,0).</summary>
ub

b
/
public Point() : this(0,0) {3}

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 353

C#LANGUAGE SPECIFICATION

354

/// <summary>This constructor initializes the new Point to

/// (<paramref name="xor"/>, <paramref name="yor"/>) .</summary>
/// <param><c>xor</c> is the new Point's x-coordinate.</param>
///_<param><c>yor</c> is the new Point's y-coordinate.</param>
public Point(int xor, int yor) {

Xor;

yor;

3
/// <summary>This method changes the point's Tlocation to
/// the given coordinates.</summary>
/// <param><c>xor</c> is the new x-coordinate.</param>
/// <param><c>yor</c> is the new y-coordinate.</param>
/// <see cref="Translate"/>
public void Move(int xor, int yor) {

X = Xor;

Y = yor;

// <summary>This method changes the point's Tocation by
// the given x- and y-offsets.

// <example>For example:

// <code>

// Point p = new Point(3,5);

// p.Translate(-1,3);

// </code>

// results in <c>p</c>'s having the value (2,8).

// </example>

// </summary>

// <param><c>xor</c> is the relative x-offset.</param>
// <param><c>yor</c> is the relative y-offset.</param>
// <see cref="Move"/>

ublic void Translate(int xor, int yor) {

X += Xxor;

Y += yor;

TN NN NN\ w

// <summary>This method determines whether two Points have the same
// Tlocation.</summary>
// <param><c>o</c> is the object to be compared to the current object.
// </param>
// <returns>True if the Points have the same Tocation and they have
// the exact same type; otherwise, false.</returns>
// <seealso cref="operator=="/>
// <seealso cref="operator!="/>
ublic override bool Equals(object o) {
if (o == null) {
return false;

T NN\ v

if (this == 0) {
return true;

if (GetType() == o.GetType()) {
Point p = (Po1nt)o
return (X == p.X) && (Y == p.Y);

return false;

}
/// <summary>Report a point's location as a string.</summary>

/// <returns>A string representing a point's Tlocation, in the form (x,y),
///_ without any leading, training, or embedded wh1tespace </returns>
public override string ToStr1ng() {

}

unTn

return "(" + X+ "," + Y + ";

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix BB Documentation commentsReferences

// <summary>This operator determines whether two Points have the same
// location.</summary>
// <param><c>pl</c> is the first Point to be compared.</param>
// <param><c>p2</c> is the second Point to be compared.</param>
// <returns>True if the Points have the same Tocation and they have
// the exact same type; otherwise, false.</returns>
// <seealso cref="Equals"/>
// <seealso cref="operator!="/>
ublic static bool operator==(Point pl, Point p2) {

if ((object)pl == null || (object)p2 == null) {

return false;

T NN\

if (pl.GetType() == p2.GetType()) {

return (pl.X == p2.X) && (pl.Y == p2.Y);

return false;

// <summary>This operator determines whether two Points have the same
// Tlocation.</summary>
// <param><c>pl</c> is the first Point to be compared.</param>
// <param><c>p2</c> is the second Point to be compared.</param>
// <returns>True if the Points do not have the same Tocation and the
// exact same type; otherwise, false.</returns>
// <seealso cref="Equals"/>
// <seealso cref="operator=="/>
ublic static bool operator!=(Point pl, Point p2) {
return !(pl == p2);

/ <summary>This is the entry point of the Point class testing
/ program.

/ <para>This program tests each method and operator, and

/ is intended to be run after any non-trvial maintenance has
/ been performed on the Point class.</para></summary>

blic static void Main() {

// class test code goes here

/
/
/
/
/
u

OO NN\ Y T NN\ w

[SeSTee

B.4.2 Resulting XML

Hereisthe output produced by one documentation generator when given the source code for class Point,
shown above:

<?xml version="1.0"7>
<doc>
<assembly>
<nhame>Point</name>
</assembly>
<members>
<member name="T:Graphics.Point">
<remarks>Class <c>Point</c> models a point in a two-dimensional
plane.
</remarks>
</member>

<member name="F:Graphics.Point.x">
<summary>Instance variable <c>x</c> represents the point's
x-coordinate.</summary>

</member>

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 355

C#LANGUAGE SPECIFICATION

cref="M

356

<member name="F:Graphics.Point.y">

<summary>Instance variable <c>y</c> represents the point's

y-coordinate.</summary>
</member>

<member name="M:Graphics.Point.#ctor">

<summary>This constructor initializes the new Point to

(0,0) .</summary>
</member>

<member name="M:Graphics.Point.#ctor(System.Int32,System.Int32)">
<summary>This constructor initializes the new Point to
(<paramref name="xor"/>,<paramref name="yor"/>).</summary>
<param><c>Xxor</c> 1is the new Point's x-coordinate.</param>
<param><c>yor</c> is the new Point's y-coordinate.</param>

</member>

<member name="M:Graphics.Point.Move(System.Int32,System.Int32)">
<summary>This method changes the point's location to

the given coordinates.</summary>

<param><c>xor</c> is the new x-coordinate.</param>
<param><c>yor</c> is the new y-coordinate.</param>

<see

:Graphics.Point.Translate(System.Int32,System.Int32)"/>

</member>
<member

name="M:Graphics.Point. Trans1ate($ystem Int32,System.Int32)">

<summary>This method changes the point's Jocation

the given x- and y-offsets.

<example>For example:

<code>

Point p = new Point(3,5);

p.Translate(-1,3);

</code>

results in <c>p</c>'s having the value (2,8).
</example>

</summary>

<param><c>xor</c> is the relative x-offset.</param>
<param><c>yor</c> is the relative y-offset.</param>

by

<see cref="M:Graphics.Point.Move(System.Int32,System.Int32)"/>

</member>

<member name="M:Graphics.Point.Equals(System.0Object)">

<summary>This method determines whether two Points have the same

location.</summary>

<param><c>o</c> is the object to be compared to the current

object.
</param>

<returns>True if the Points have the same location and they have

the exact same type; otherwise, false.</returns>

<seealso
<seealso

</member>
<member name="M:Graphics.Point.ToString">

cref="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)"/>

cref="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)"/>

<summary>Report a point's location as a string.</summary>

<returns>A string representing a point's location,

x,y),

in the form

without any leading, training, or embedded whitespace.</returns>

</member>

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix BB Documentation commentsReferences

<member
name="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)">
<summary>This operator determines whether two Points have the
same
location.</summary>
<param><c>pl</c> is the first Point to be compared.</param>
<param><c>p2</c> is the second Point to be compared.</param>
<returns>True if the Points have the same location and they have
the exact same type; otherwise, false.</returns>
<seealso cref="M:Graphics.Point.Equals(System.Object)"/>
<seealso
cref="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)"/>
</member>

<member

name="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)">
<summary>This operator determines whether two Points have the
same
location.</summary>))
<param><c>pl</c> is the first Point to be compared.</param>
<param><c>p2</c> is the second Point to be compared.</param>
<returns>True if the Points do not have the same location and
the
exact_same type; otherwise, false.</returns>]
<seealso cref="M:Graphics.Point.Equals(System.Object)"/>

<seealso))))))
cref="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.pPoint)"/>
</member>

<member name="M:Graphics.Point.Main">
<summary>This is the entry point of the Point class testing
program.
<para>This program tests each method and operator, and
is intended to be run after any non-trvial maintenance has
been performed on the Point class.</para></summary>
</member>

<member name="P:Graphics.Point.X">
<value>Property <c>X</c> represents the point's
x-coordinate.</value>

</member>

<member name="P:Graphics.Point.Y">
<value>Property <c>Y</c> represents the point's
y-coordinate.</value>
</member>
</members>
</doc>

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 357

Appendix CB Grammar References |

C. Grammar

This appendix contains summaries of the lexical and syntactic grammars found in the main document, and of the
grammar extensions for unsafe code. Grammar productions appear here in the same order that they appear in the
main document.

C.1 Lexical grammar

input:
I NPUt-SECti 0Nyt

i nput-section:
input-section-part
input-section input-section-part

input-section-part:
input-elements,,y new-line
pp-directive

input-el ements:
input-el ement
input-elements input-element

input-el ement:
whitespace
comment
token

C.1.1 Line terminators

new-line:
Carriage return character (U+000D)
Line feed character (U+000A)
Carriage return character (U+000D) followed by line feed character (U+000A)
Line separator character (U+2028)
Paragraph separator character (U+2029)

C.1.2 White space

whitespace:
Any character with Unicode class Zs
Horizontal tab character (U+0009)
Vertica tab character (U+000B)
Form feed character (U+000C)

C.1.3 Comments

comment:
single-line-comment
delimited-comment

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 359

C#LANGUAGE SPECIFICATION

single-line-comment:
// input-charactersyy

input-characters:
input-character
input-characters input-character

input-character:
Any Unicode character except a new-line-character

new-line-character:
Carriage return character (U+000D)
Line feed character (U+000A)
Line separator character (U+2028)
Paragraph separator character (U+2029)

delimited-comment:
/* delimited-comment-characters,,, */

delimited-comment-char acters:
delimited-comment-character
delimited-comment-characters delimited-comment-character

delimited-comment-character:
not-asterisk
* not-dash

not-asterisk:
Any Unicode character except *

not-slash:
Any Unicode character except /

C.1.4 Tokens

token:
identifier
keyword
integer-literal
real-literal
character-literal
string-literal
oper ator-or-punctuator

C.1.5 Unicode character escape sequences

uni code-escape-sequence:
\u hex-digit hex-digit hex-digit hex-digit
\U hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit

C.1.6 Identifiers
identifier:
available-identifier
@ identifier-or-keyword

available-identifier:
An identifier-or-keyword that is not a keyword

360 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Appendix CB Grammar References

identifier-or-keyword:
identifier-start-character identifier-part-character sy

identifier-start-character:
| etter-character
_ (the underscore character u+005F)

identifier-part-characters:
identifier-part-character
identifier-part-characters identifier-part-character

identifier-part-character:
letter-character
decimal-digit-character
connecting-character
combining-character
formatting-character

|etter-character:
A Unicode character of classesLu, LI, Lt,Lm, Lo, or NI
A unicode-escape-sequence representing a character of classesLu, LI, Lt, Lm, Lo, or NI

combining-character:
A Unicode character of classes Mn or Mc
A unicode-escape-sequence representing a character of classes Mn or Mc

decimal-digit-character:
A Unicode character of the class Nd
A unicode-escape-sequence representing a character of the class Nd

connecting-character:
A Unicode character of the class Pc
A unicode-escape-sequence representing a character of the class Pc

formatting-character:
A Unicode character of the class Cf
A unicode-escape-sequence representing a character of the class Cf

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 361

C#LANGUAGE SPECIFICATION

C.1.7 Keywords

keyword: one of

abstract as base
byte case catch
class const continue
delegate do double
event explicit extern
fixed float for
if implicit in
internal is Tock
new null object
override params private
readonly ref return
short sizeof stackalloc
struct switch this
try typeof uint
unsafe ushort using
volatile while
C.1.8 Literals

literal:
boolean-literal
integer-literal
real-literal
character-literal
string-literal
null-literal

boolean-literal:
true
false

integer-literal:

362

decimal-integer-literal
hexadecimal -integer-literal

decimal-integer-literal:
decimal-digits integer-type-suffiXqp

decimal-digits:

decimal-digit
decimal-digits decimal-digit

decimal-digit: one of

0 1 2 3 456 7 8 9
integer-type-suffix: one of
U u L uL vl ul LU Lu

hexadecimal -integer-literal:

bool break
char checked
decimal default
else enum
false finally
foreach goto

int interface
Tong namespace
operator out
protected public
sbyte sealed
static string
throw true
ulong unchecked
virtual void

Tu 1u

0x hex-digits integer-type-suffiXop
0X hex-digits integer-type-suffiXop

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix CB Grammar References

hex-digits:
hex-digit
hex-digits hex-digit

hex-digit: one of
0 1 2 3 45 6 7 8 9 A B CDETF abcdef

real-literal:
decimal-digits . decimal-digits exponent-partq, real-type-suffiXop
decimal-digits exponent-party, real-type-suffiXoy
decimal-digits exponent-part real-type-suffiXp
decimal-digits real-type-suffix

exponent-part:
e Signy: decimal-digits
E Signy: decimal-digits

sign: one of
+ -_

real-type-suffix: one of
F f Dd Mm

character-literal:
' character '

character:
single-character
simple-escape-sequence
hexadecimal -escape-sequence
unicode-escape-sequence

single-character:
Any character except ' (U+0027), \ (U+005C), and new-line-character

simple-escape-sequence: one of
AN NN N0 Na \b A \n \r A\t \v

hexadecimal -escape-sequence:
\x hex-digit hex-digity, hex-digite,: hex-digitoy

string-literal:
regular-string-literal
verbatim-string-literal

regular-string-literal:
" regular-string-literal-characters,, "

regular-string-literal-characters:
regular-string-literal-character
regular-string-literal-characters regular-string-literal-character

regular-string-literal-character:
single-regular-string-literal-character
simple-escape-sequence
hexadecimal -escape-sequence
unicode-escape-sequence

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 363

C#LANGUAGE SPECIFICATION

single-regular-string-literal-character:
Any character except " (U+0022), \ (U+005C), and new-line-character

verbatim-string-literal:
@" verbatim-string-literal-character Sy

verbatim-string-literal-characters:
verbatim-string-literal -character
verbatim-string-literal-characters verbatim-string-literal-character

verbatim-string-literal-character:
single-verbatim-string-literal-character
guote-escape-sequence

single-verbatim-string-literal-character:
any character except "

quote-escape-sequence:

null-literal:
null

C.1.9 Operators and punctuators

operator-or-punctuator: one of
{ } [] () . ; : ;

+ - * / % & | A ! ~

= < > ? ++ -- && | << >>

== 1= <= >= += -= *= = %= =
= A= <<= >>= ->

C.1.10 Pre-processing directives

pp-directive:
pp-declaration
pp-conditional
pp-line
pp-diagnostic
pp-region

pp-new-line:
whitespace,, single-line-comment,, new-line

conditional-symbol:
Any identifier-or-keyword except true or false

pp-expression:

whitespace,, [pp-or-expression whitespace
pp-Or-expression:

pp-and-expression

pp-or-expression whitespace,: || whitespace,: pp-and-expression
pp-and-expr ession:

pp-equality-expression

pp-and-expression whitespace,;: && whitespace, pp-equality-expression

364 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Appendix CB Grammar References

pp-equality-expression:
pp-unary-expression

pp-equality-expression whitespace,; == whitespace,, pp-unary-expression
pp-equality-expression whitespace,,: != whitespace,, pp-unary-expression

pp-unary-expression:
pp-primary-expression
I whitespace, pp-unary-expression

Pp-primary-expression:
true
false
conditional -symbol
(whitespace,; pp-expression whitespace,,)

pp-declaration:
whitespace,; # whitespace,; define whitespace conditional-symbol pp-new-line
whitespace,, # whitespace,; undef whitespace conditional-symbol pp-new-line

pp-conditional:
pp-if-section pp-elif-sections,, pp-€lse-sectiony,: pp-endif

pp-if-section:
whitespace,, # whitespace,, if whitespace pp-expresson pp-new-line conditional-
SECti 0Nyt

pp-€lif-sections:
pp-elif-section
pp-elif-sections pp-€lif-section

pp-€lif-section:
whitespace,, # whitespace,; elif whitespace pp-expression pp-new-line conditional-
SECti ONgpt

pp-€l se-section:
whitespace,, # whitespace,; else pp-new-line conditional-sectiongy

pp-endif-line:
whitespace,, # whitespace,; endif pp-new-line

conditional-section:
input-section
skipped-section
skipped-section:
skipped-section-part
skipped-section skipped-section-part

skipped-section-part:
skipped-characters,;: new-line
pp-directive

skipped-characters:
whitespace,, not-number-sign input-character Syy

not-number-sign:
Any input-character except #

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 365

C#LANGUAGE SPECIFICATION

pp-line:

whitespace, # whitespace,; 1ine whitespace line-indicator pp-new-line

line-indicator:

decimal-digitswhitespace file-name

decimal-digits
default

file-name;
" file-name-characters

file-name-characters:
file-name-char acter

file-name-characters file-name-character

file-name-character:

Any input-character except "

pp-diagnogtic:

whitespace,, # whitespace,; error pp-message
whitespace,, # whitespace, warning pp-message

pp-message:
new-line

whitespace input-characters, new-line

pp-region:

pp-start-region conditional-sectiony,: pp-end-region

pp-start-region:

whitespace,y # whitespace,; region pp-message

pp-end-region:

whitespace, # whitespace, endregion pp-message

C.2 Syntactic grammar

C.2.1 Basic concepts

namespace-name;
namespace-or -type-name

type-name:
namespace-or -type-name

namespace-or -type-name;
identifier

namespace-or-type-name .

C.2.2 Types

type:
value-type
reference-type

value-type:
struct-type
enum-type

366

identifier

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix CB Grammar References

struct-type:
type-name
simple-type

simple-type:
numeric-type
bool

numeric-type:
integral-type
floating-point-type
decimal

integral-type:
sbyte
byte
short
ushort
int
uint
Tong
ulong
char

floating-point-type:
float
double

enum-type:
type-name

reference-type:
class-type
interface-type
array-type
delegate-type

class-type:
type-name
object
string

interface-type:
type-name
array-type:
non-array-type rank-specifiers
non-array-type:
type
rank-specifiers:
rank-specifier
rank-specifiers rank-specifier
rank-specifier:
[dim-separatorsy,:]

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 367

C#LANGUAGE SPECIFICATION

dim-separators:

dim-separators ,

delegate-type:
type-name

C.2.3 Variables

variable-reference;
expression

C.2.4 Expressions

argument-list:
argument

argument-list , argument

argument:
expression

ref variable-reference
out variable-reference

primary-expression:

primary-no-array-creation-expression
array-creation-expression

primary-no-array-creati on-expression:

literal
simple-name

par enthesi zed-expression

member-access
invocation-expression
element-access
this-access
base-access

post-increment-expression
post-decr ement-expression
obj ect-creation-expression
del egate-creation-expression

typeof-expression
sizeof-expression
checked-expression
unchecked-expression
simple-name:
identifier
parenthesi zed-expression:
(expression)

member-access:
primary-expression

predefined-type . identifier

368

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix CB Grammar References

predefined-type: one of
bool byte char decimal double float int Tong
object shyte short string uint ulong ushort

invocati on-expression:
primary-expression (argument-listoy:)

element-access:
primary-no-array-creation-expression [expression-list]

expression-list:
expression
expression-list , expression

this-access;
this

base-access:
base . identifier
base [expresson-list]

post-increment-expr essi on:
primary-expression ++

post-decr ement-expression:
primary-expression --

object-creati on-expression:
new type (argument-listyy)

array-creation-expression:
new non-array-type [expression-list] rank-specifiers,: array-initializer gy
new array-type array-initializer

del egate-creati on-expression:
new delegate-type (expresson)

typeof-expression:
typeof (type)
typeof (void)

checked-expression:
checked (expression)

unchecked-expression:
unchecked (expression)

unary-expression:
primary-expression
+ Unary-expression
- unary-expression
I unary-expression
~ Uunary-expression
* unary-expression
pre-increment-expression
pre-decrement-expression
cast-expression

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 369

C#LANGUAGE SPECIFICATION

pre-increment-expression:
++ Unary-expression

pre-decrement-expression:
-- unary-expression

cast-expression:
(type) unary-expression

multi plicative-expression:
unary-expression
multiplicative-expression unary-expression
multiplicative-expression / unary-expression
multiplicative-expression % unary-expression

A
w

additive-expression:
multiplicative-expression
additive-expresson + multiplicative-expression
additive-expresson - multiplicative-expression

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

rel ational -expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
relational-expression is type
relational-expression as type

equality-expression:
relational -expression

equality-expression == relational-expression
equality-expression != relational-expression

and-expression:
equality-expression
and-expression & equality-expression

exclusive-or-expression:
and-expression
exclusive-or-expression A and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

conditional-and-expression:
inclusive-or-expression
conditional-and-expression && inclusive-or-expression

conditional -or-expression:
conditional-and-expression
conditional-or-expression || conditional-and-expression

370 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Appendix CB Grammar References

conditional-expression:

conditional-or-expression

conditional-or-expression ? expresson : expression
assignment:

unary-expression assignment-operator expression

assignment-operator: one of

= += - = /= %: &: | = A= <<L= >>=
expression:

conditional -expression

assignment

constant-expression:
expression

bool ean-expression:
expression

C.2.5 Statements

statement:
| abel ed-statement
declaration-statement
embedded-statement

embedded-statement:
block
empty-statement
expressi on-statement
sel ection-statement
iteration-statement
jump-statement
try-statement
checked-statement
unchecked-statement
| ock-statement
using-statement

block:
{ statement-listo: }

statement-list:
statement
statement-list statement

empty-statement:

| abel ed-statement:
identifier : statement

declaration-statement:
|ocal-variable-declaration ;
|ocal-constant-declaration ;

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 371

C#LANGUAGE SPECIFICATION

local -variable-declaration:
type local-variable-declarators

|ocal-variable-declarators:
|ocal-variable-declar ator

|local-variable-declarators , local-variable-declarator
|ocal-variable-declarator:

identifier

identifier = local-variable-initializer

local-variable-initializer:
expression
array-initializer
local -constant-declaration:
const type constant-declarators

constant-declarators:
constant-declar ator
constant-declarators , constant-declarator

constant-declarator:
identifier = constant-expression

expressi on-statement:
statement-expression ;

statement-expression:
invocati on-expression
obj ect-creation-expression
assignment
post-increment-expression
post-decrement-expression
pre-increment-expression
pre-decrement-expression

sel ection-statement:
if-statement
switch-statement

if-statement:
if (boolean-expression) embedded-statement
if (boolean-expresson) embedded-statement else embedded-statement

bool ean-expression:

expression
switch-statement:

switch (expresson) switch-block
switch-block:

{ switch-sectionsy, }

switch-sections:
switch-section
switch-sections switch-section

372 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Appendix CB Grammar References

switch-section:

switch-labels statement-list
switch-labels;

switch-label

switch-labels switch-label
switch-label:

case constant-expression

default

iteration-statement:
while-statement
do-statement
for-statement
foreach-statement

while-statement:
while (boolean-expression) embedded-statement

do-statement:
do embedded-statement while (boolean-expression) ;

for-statement:
for (for-initializeroy ; for-conditiony, ; for-iteratoryy) embedded-statement

for-initializer:
|ocal-variable-declaration
statement-expression-list

for-condition:
boolean-expression

for-iterator:
statement-expression-list

statement-expression-list:
statement-expression
statement-expression-list , statement-expression

foreach-statement:
foreach (type identifier in expression) embedded-statement

jump-statement:
break-statement
continue-statement
goto-statement
retur n-statement
throw-statement

break-statement:
break ;

continue-statement:
continue ;

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 373

C#LANGUAGE SPECIFICATION

goto-statement:
goto identifier ;
goto case constant-expression ;
goto default ;

retur n-statement:
return expressiony ;

throw-statement:
throw expressiony ;

try-statement:
try block catch-clauses
try block finally-clause
try block catch-clauses finally-clause

catch-clauses:
specific-catch-clauses general-catch-clauseqy
specific-catch-clauses,: general-catch-clause

specific-catch-clauses:
specific-catch-clause
specific-catch-clauses specific-catch-clause

specific-catch-clause:
catch (classtype identifieroy) block

general-catch-clause:
catch block

finally-clause:
finally block

checked-statement:
checked block

unchecked-statement:
unchecked block

|ock-statement:
Tock (expresson) embedded-statement

using-statement:
using (resource-acquisition) embedded-statement

resource-acquisition:
local-variable-declaration
expression

17.5.3 Namespaces

compilation-unit:

using-directives,, global-attributes,,; namespace-member-decl arationSyy
namespace-declaration:

namespace qualified-identifier namespace-body ;g
qualified-identifier:

identifier

qualified-identifier . identifier

374 Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix CB Grammar References

namespace-body:
{ using-directives,; namespace-member-declarations,,: }

using-directives:
using-directive
using-directives using-directive

using-directive:
using-alias-directive
using-namespace-directive

using-alias-directive:
using identifier = namespace-or-type-name ;

using-namespace-dir ective:
using namespace-name ;

namespace-member-declarations:
namespace-member-declaration
namespace-member-declarations namespace-member-declaration

namespace-member -decl aration:
namespace-declaration
type-declaration

type-declaration:
class-declaration
struct-declaration
interface-declaration
enum-declaration
delegate-declaration

C.2.6 Classes

class-declaration:
attributes,,y class-modifiers, class identifier class-base,: class-body ;g

class-modifiers;
class-modifier
class-modifiers class-modifier

class-modifier:
new
public
protected
internal
private
abstract
sealed

class-base:
class-type
interface-type-list
classtype , interface-type-list

interface-type-list:
interface-type
interface-type-list , interface-type

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 375

C#LANGUAGE SPECIFICATION

class-body:
{ class-member-declarations,; }

class-member -declarations:
class-member-declaration
class-member-declarations class-member-declaration

class-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
destructor-declaration
static-constructor-declaration
type-declaration

constant-declaration:
attributes,y constant-modifiers,;; const type constant-declarators ;

constant-modifiers:
constant-modifier
constant-modifiers constant-modifier

constant-modifier:
new
public
protected
internal
private

constant-declarators:
constant-declar ator
constant-declarators , constant-declarator

constant-declarator:
identifier = constant-expression

field-declaration:
attributes,,, field-modifiersy,: type variable-declarators ;

field-modifiers:
field-modifier
field-modifiers field-modifier

field-modifier:
new
public
protected
internal
private
static
readonly
volatile

376 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Appendix CB Grammar References

variable-declarators:
variable-declarator
variable-declarators , variable-declarator

variable-declarator:

identifier

identifier = variable-initializer
variable-initializer:

expression

array-initializer
method-declaration:

method-header method-body

method-header:
attributes,,y method-modifiersy, return-type member-name (formal-parameter-listo:)

method-modifiers:
method-modifier
method-modifiers method-modifier

method-modifier:
new
public
protected
internal
private
static
virtual
sealed
override
abstract
extern

return-type:

type

void
member-name;

identifier

interface-type . identifier
method-body:

block

formal-parameter-list:
fixed-parameters
fixed-parameters , parameter-array
parameter-array

fixed-parameters:
fixed-parameter
fixed-parameters , fixed-parameter

fixed-parameter:
attributes,,, parameter-modifierq, type identifier

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved. 377

C#LANGUAGE SPECIFICATION

parameter-modifier:
ref
out

parameter-array:
attributes,y params array-type identifier

property-declaration:
attributes,,y property-modifiers,, type member-name { accessor-declarations }

property-modifiers:
property-modifier
property-modifiers property-modifier

property-modifier:
new
public
protected
internal
private
static
virtual
sealed
override
abstract
extern

member-name:
identifier
interface-type . identifier
accessor-declarations:
get-accessor-declaration set-accessor-declarati ongy
set-accessor-declaration get-accessor-declar ationgy

get-accessor-declaration:
attributes,y get accessor-body

set-accessor-declaration:
attributes,y set accessor-body

accessor-body:
block

event-declaration:
attributes,,y event-modifiers, event type variable-declarators ;
attributes,,y event-modifiers,: event type member-name { event-accessor-declarations }

event-modifiers:
event-modifier
event-modifiers event-modifier

378 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Appendix CB Grammar References

event-modifier:
new
public
protected
internal
private
static
virtual
sealed
override
abstract
extern

event-accessor-declarations:
add-accessor-declaration remove-accessor-declaration
remove-accessor-declaration add-accessor-declaration

add-accessor-declaration:
attributes,y add block

remove-accessor-declaration:
attributes,y remove block

indexer-declaration:
attributesy,, indexer-modifiers,; indexer-declarator { accessor-declarations }

indexer-modifiers:
indexer-modifier
indexer-modifiers indexer-modifier

indexer-modifier:
new
public
protected
internal
private
virtual
sealed
override
abstract
extern

indexer-declarator:
type this [formal-parameter-list]
type interface-type . this [formal-parameter-list]

oper ator-declaration:
attributes,y operator-modifiers operator-declarator operator-body

operator-modifiers:
operator-modifier
operator-modifiers operator-modifier

operator-modifier:
public
static
extern

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 379

C#LANGUAGE SPECIFICATION

operator-declarator:
unary-oper ator -declarator
binary-operator-declarator
conver sion-oper ator-declar ator

unary-operator-declarator:
type operator overloadable-unary-operator (type identifier)

overloadable-unary-operator: one of
+ - ! ~ ++ -- true false

binary-operator-declarator:
type operator overloadable-binary-operator (type identifier , type identifier)

overloadable-binary-operator: one of
+ - * / % & | A << >> == I= > < >= <=

conver sion-oper ator-declarator
implicit operator type (type identifier)
explicit operator type (type identifier)

operator-body:
block

constructor-declaration:
attributes,,: constructor-modifiers,, constructor-declarator constructor-body

constructor-modifiers:
constructor-modifier
constructor-modifiers constructor-modifier

constructor-modifier:
public
protected
internal
private
extern

constructor-declarator:
identifier (formal-parameter-listyy) constructor-initializer oy

constructor-initializer:
base (argument-listyy)
this (argument-listey)

constructor-body:
block

stati c-constructor-declaration:
attributes,, static-constructor-modifiers identifier () static-constructor-body

static-constructor-body:
block

380 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Appendix CB Grammar References

static-constructor-modifiers:
externgyy static
static externgy

destructor-declaration:
attributes,y externg: ~ identifier () destructor-body

destructor-body:
block

C.2.7 Structs

struct-declaration:
attributesy, struct-modifiers,, struct identifier struct-interfaces,, struct-body ;o

struct-modifiers;
struct-modifier
struct-modifiers struct-modifier

struct-modifier:
new
public
protected
internal
private

struct-interfaces:
interface-type-list

struct-body:
{ struct-member-declarations,: }

struct-member -declar ations:
struct-member-declaration
struct-member-declarations struct-member-declaration

struct-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
static-constructor-declaration
type-declaration

C.2.8 Arrays

array-type:
non-array-type rank-specifiers

non-array-type:
type

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 381

C#LANGUAGE SPECIFICATION

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

rank-specifier:
[dim-separatorsy,]

dim-separators:

dim-separators ,
array-initializer:

{ variable-initializer-listo: }

{ variable-initializer-list , }

variable-initializer-list:
variable-initializer
variable-initializer-list , variable-initializer

variable-initializer:
expression
array-initializer

C.2.9 Interfaces

interface-declaration:
attributesy, interface-modifiers, interface identifier interface-base,: interface-body ;g

interface-modifiers;
interface-modifier
interface-modifiers interface-modifier

interface-modifier:
new
public
protected
internal
private

interface-base:
interface-type-list

interface-body:
{ interface-member-declarations,,: 3}

i nterface-member -decl ar ations:
interface-member-declaration
interface-member-declarations interface-member-declaration

i nterface-member-declar ation:
i nterface-method-decl aration
interface-property-declaration
interface-event-declaration
interface-indexer-declaration

interface-method-declaration:
attributes,,: newqy return-type identifier (formal-parameter-listoy:) ;

382 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Appendix CB Grammar References

interface-property-declaration:
attributes,y newqy type identifier { interface-accessors }

interface-accessors:
attributes,y get ;
attributes,y set ;
attributes,y get ; attributes,; set ;
attributes,y set ; attributes,y get ;

interface-event-declaration:
attributes,y newqy event type identifier ;

interface-indexer-declaration:
attributes,: newqy type this [formal-parameter-list] { interface-accessors }

C.2.10 Enums

enum-declaration:
attributes,y enumr-modifiersy, enum identifier enum-base,: enum-body ;o

enum-base:
integral-type

enum-body:
{ enum-member-declarations,,: }
{ enum-member-declarations , }

enum-modifiers:
enum-modifier
enum-modifiers enum-modifier

enum-modifier:
new
public
protected
internal
private

enum-member -declar ations:
enum-member -declaration
enum-member-declarations , enum-member-declaration

enum-member -declaration:
attributesy, identifier
attributes,,, identifier = constant-expression

C.2.11 Delegates
delegate-declaration:
attributes,y delegate-modifiers,; delegate return-type identifier (formal-parameter-listoy
)
delegate-modifiers:

delegate-modifier
delegate-modifiers delegate-modifier

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 383

C#LANGUAGE SPECIFICATION

delegate-modifier:
new
public
protected
internal
private

C.2.12 Attributes

global-attributes:
global-attribute-sections

global-attribute-sections:
global-attribute-section
global-attribute-sections global-attribute-section

global-attribute-section:
[global-attribute-target-specifier attribute-list]
[global-attribute-target-specifier attribute-list ,]

global-attribute-tar get-specifier:
global-attribute-target

global-attribute-target:
assembly
moduTe

attributes:
attribute-sections

attribute-sections:
attribute-section
attribute-sections attribute-section

attribute-section:
[attribute-target-specifieryy, attribute-list 1]
[attribute-target-specifiery, attribute-list ,]

attribute-target-specifier:
attribute-target

attribute-target:
field
event
method
param
property
return
type

attribute-list:
attribute
attribute-list , attribute

attribute:
attribute-name attribute-argumentsyy

384 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

attribute-name;
type-name

attribute-arguments:
(positional-argument-listoy:)

(positional-argument-list , named-argument-list)

(named-argument-list)

positional-argument-list:
positional-argument

positional-argument-list positional-argument

positional-argument:
attribute-argument-expression
named-ar gument-list:
named-ar gument

named-argument-list named-argument

named-argument:
identifier = attribute-argument-expression

attribute-argument-expression:
expression

C.3 Grammar extensions for unsafe code

C.3.1 Unsafe contexts
class-modifier:

unsafe

struct-modifier:

unsafe

interface-modifier:

unsafe

delegate-modifier:

uﬁsafe
fiedld-modifier:

;Hsafe
method-modifier:

unsafe

property-modifier:

unsafe

Copyright [J Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix CB Grammar References

385

C#LANGUAGE SPECIFICATION

event-modifier:

unsafe

indexer-modifier:

unsafe

operator-modifier:

unsafe

constructor-modifier:

unsafe

destructor-declaration:
attributes,y externg: unsafeqy: ~ identifier () destructor-body
attributes,y unsafeq externg ~ identifier () destructor-body

static-constructor-modifiers:
unsafeqy externy, static
unsafeqy static externgy
externgy unsafey, static
static unsafeq: externgy
externyy static unsafegy
static externyy: unsafegy

embedded-statement:

unsafe-statement

unsafe-statement:
unsafe block

C.3.1.1 Pointer types

type:
value-type
reference-type
pointer-type

poi nter-type:
unmanaged-type *
void *
unmanaged-type:
type

C.3.1.2 Pointers in expressions
primary-no-array-creati on-expression:
poi nter-member-access

poi nter-el ement-access
Sizeof-expression

386 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Appendix CB Grammar References

unary-expression:

poi nter-indir ection-expression
addressof-expression

C.3.1.3 Pointer indirection

poi nter-indirecti on-expression:
* unary-expression

C.3.1.4 Pointer member access
poi nter-member-access:
primary-expression -> identifier

poi nter-el ement-access:
primary-no-array-creation-expression [expression]

C.3.1.5 The address-of operator

addressof-expression:
& unary-expression

C.3.1.6 The sizeof operator
sizeof-expression:
sizeof (unmanaged-type)

C.3.1.7 The fixed statement
embedded-statement:

fixed-statement

fixed-statement:
fixed (pointer-type fixed-pointer-declarators) embedded-statement

fixed-pointer-declarators:
fixed-pointer-declarator
fixed-pointer-declarators , fixed-pointer-declarator

fixed-pointer-declarator:

identifier = fixed-pointer-initializer
fixed-pointer-initializer:

& variable-reference

expression

C.3.1.8 Stack allocation
|ocal-variable-initializer:
expression
array-initializer
stackalloc-initializer

stackalloc-initializer:
stackalloc unmanaged-type [expression]

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 387

C#LANGUAGE SPECIFICATION

388 Copyright [J Microsoft Cor poration 1999-2000. All Rights Reserved.

Appendix DB Refer encesReferences |

D. References

Unicode Consortium. The Unicode Sandard, Version 3.0. Addison-Wesley, Reading, Massachusetts, 2000,
ISBN 0-201-616335-5.

IEEE. |IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Standard 754-1985. Available from
http://www.ieee.org.

ISO/IEC. C++. ANSI/ISO/IEC 14882:1998.

Copyright 0 Microsoft Corporation 1999-2000. All Rights Reserved. 389

