
Copyright  Microsoft Corporation 1999-2001. All Rights Reserved.
Please send corrections, comments, and other feedback to sharp@microsoft.com

C#
Language Specification

Copyright  Microsoft Corporation 1999-2001. All Rights Reserved.

Notice

© 1999-2001 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or trademarks of Microsoft
Corporation in the U.S.A. and/or other countries/regions.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Table of Contents

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. iii

Table of Contents

1. Introduction... 1
1.1 Getting started ... 1
1.2 Types ... 2

1.2.1 Predefined types.. 4
1.2.2 Conversions .. 6
1.2.3 Array types.. 6
1.2.4 Type system unification.. 8

1.3 Variables and parameters .. 9
1.4 Automatic memory management... 12
1.5 Expressions.. 14
1.6 Statements ... 15
1.7 Classes ... 18

1.7.1 Constants... 20
1.7.2 Fields... 20
1.7.3 Methods .. 21
1.7.4 Properties .. 22
1.7.5 Events ... 23
1.7.6 Operators... 24
1.7.7 Indexers... 25
1.7.8 Instance constructors... 26
1.7.9 Destructors .. 27
1.7.10 Static constructors... 28
1.7.11 Inheritance .. 28

1.8 Structs .. 29
1.9 Interfaces ... 30
1.10 Delegates ... 31
1.11 Enums.. 32
1.12 Namespaces and assemblies .. 33
1.13 Versioning ... 35
1.14 Attributes ... 37

2. Lexical structure.. 39
2.1 Programs.. 39
2.2 Grammars .. 39

2.2.1 Grammar notation ... 39
2.2.2 Lexical grammar ... 40
2.2.3 Syntactic grammar .. 40

2.3 Lexical analysis ... 40
2.3.1 Line terminators.. 41
2.3.2 White space... 41
2.3.3 Comments ... 42

2.4 Tokens ... 43
2.4.1 Unicode character escape sequences .. 43
2.4.2 Identifiers .. 44
2.4.3 Keywords .. 45
2.4.4 Literals .. 46

2.4.4.1 Boolean literals... 46
2.4.4.2 Integer literals... 46
2.4.4.3 Real literals... 47

C# LANGUAGE SPECIFICATION

iv Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

2.4.4.4 Character literals .. 48
2.4.4.5 String literals .. 49
2.4.4.6 The null literal .. 51

2.4.5 Operators and punctuators .. 51
2.5 Pre-processing directives... 51

2.5.1 Conditional compilation symbols ... 52
2.5.2 Pre-processing expressions ... 53
2.5.3 Declaration directives ... 53
2.5.4 Conditional compilation directives ... 54
2.5.5 Line directives... 56
2.5.6 Diagnostic directives... 57
2.5.7 Region directives .. 57

3. Basic concepts .. 59
3.1 Application Startup.. 59
3.2 Application termination... 60
3.3 Declarations... 60
3.4 Members .. 62

3.4.1 Namespace members .. 62
3.4.2 Struct members ... 63
3.4.3 Enumeration members .. 63
3.4.4 Class members .. 63
3.4.5 Interface members... 63
3.4.6 Array members ... 64
3.4.7 Delegate members... 64

3.5 Member access .. 64
3.5.1 Declared accessibility ... 64
3.5.2 Accessibility domains ... 65
3.5.3 Protected access for instance members... 67
3.5.4 Accessibility constraints ... 68

3.6 Signatures and overloading ... 68
3.7 Scopes.. 69

3.7.1 Name hiding.. 71
3.7.1.1 Hiding through nesting... 72
3.7.1.2 Hiding through inheritance... 72

3.8 Namespace and type names... 74
3.8.1 Fully qualified names.. 75

3.9 Automatic memory management... 75
3.10 Execution order ... 78

4. Types .. 79
4.1 Value types .. 79

4.1.1 Default constructors .. 80
4.1.2 Struct types ... 81
4.1.3 Simple types.. 81
4.1.4 Integral types... 82
4.1.5 Floating point types .. 83
4.1.6 The decimal type... 84
4.1.7 The bool type .. 85
4.1.8 Enumeration types .. 85

4.2 Reference types ... 85

Table of Contents

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. v

4.2.1 Class types .. 86
4.2.2 The object type.. 86
4.2.3 The string type .. 86
4.2.4 Interface types... 86
4.2.5 Array types.. 87
4.2.6 Delegate types... 87

4.3 Boxing and unboxing .. 87
4.3.1 Boxing conversions... 87
4.3.2 Unboxing conversions .. 88

5. Variables .. 89
5.1 Variable categories .. 89

5.1.1 Static variables.. 89
5.1.2 Instance variables.. 89

5.1.2.1 Instance variables in classes... 90
5.1.2.2 Instance variables in structs.. 90

5.1.3 Array elements.. 90
5.1.4 Value parameters .. 90
5.1.5 Reference parameters.. 90
5.1.6 Output parameters... 90
5.1.7 Local variables.. 91

5.2 Default values.. 91
5.3 Definite assignment ... 92

5.3.1 Initially assigned variables.. 93
5.3.2 Initially unassigned variables.. 93
5.3.3 Precise rules for determining definite assignment .. 93

5.3.3.1 General rules for statements... 94
5.3.3.2 Block statements, checked, and unchecked statements.. 94
5.3.3.3 Expression statements .. 94
5.3.3.4 Declaration statements ... 94
5.3.3.5 If statements ... 94
5.3.3.6 Switch statements... 95
5.3.3.7 While statements .. 95
5.3.3.8 Do statements ... 95
5.3.3.9 For statements .. 96
5.3.3.10 Break, continue, and goto statements... 96
5.3.3.11 Throw statements ... 96
5.3.3.12 Return statements ... 96
5.3.3.13 Try-catch statements .. 96
5.3.3.14 Try-finally statements .. 97
5.3.3.15 Try-catch-finally statements... 97
5.3.3.16 Foreach statements ... 98
5.3.3.17 Using statements .. 98
5.3.3.18 Lock statements.. 98
5.3.3.19 General rules for simple expressions ... 99
5.3.3.20 General rules for expressions with embedded expressions .. 99
5.3.3.21 Invocation expressions and object creation expressions .. 99
5.3.3.22 Simple assignment expressions.. 100
5.3.3.23 && expressions.. 100
5.3.3.24 || expressions... 101
5.3.3.25 ! expressions... 101

C# LANGUAGE SPECIFICATION

vi Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

5.3.3.26 ?: expressions ... 102
5.4 Variable references.. 102
5.5 Atomicity of variable references ... 102

6. Conversions.. 103
6.1 Implicit conversions .. 103

6.1.1 Identity conversion ... 103
6.1.2 Implicit numeric conversions.. 103
6.1.3 Implicit enumeration conversions... 104
6.1.4 Implicit reference conversions.. 104
6.1.5 Boxing conversions... 104
6.1.6 Implicit constant expression conversions ... 105
6.1.7 User-defined implicit conversions .. 105

6.2 Explicit conversions .. 105
6.2.1 Explicit numeric conversions.. 105
6.2.2 Explicit enumeration conversions... 107
6.2.3 Explicit reference conversions.. 107
6.2.4 Unboxing conversions .. 108
6.2.5 User-defined explicit conversions... 108

6.3 Standard conversions... 108
6.3.1 Standard implicit conversions... 108
6.3.2 Standard explicit conversions ... 108

6.4 User-defined conversions .. 108
6.4.1 Permitted user-defined conversions.. 109
6.4.2 Evaluation of user-defined conversions.. 109
6.4.3 User-defined implicit conversions .. 110
6.4.4 User-defined explicit conversions... 110

7. Expressions .. 113
7.1 Expression classifications.. 113

7.1.1 Values of expressions ... 114
7.2 Operators ... 114

7.2.1 Operator precedence and associativity.. 114
7.2.2 Operator overloading .. 115
7.2.3 Unary operator overload resolution .. 116
7.2.4 Binary operator overload resolution ... 117
7.2.5 Candidate user-defined operators ... 117
7.2.6 Numeric promotions ... 117

7.2.6.1 Unary numeric promotions... 118
7.2.6.2 Binary numeric promotions.. 118

7.3 Member lookup ... 119
7.3.1 Base types ... 119

7.4 Function members ... 119
7.4.1 Argument lists... 122
7.4.2 Overload resolution... 124

7.4.2.1 Applicable function member .. 125
7.4.2.2 Better function member.. 125
7.4.2.3 Better conversion ... 126

7.4.3 Function member invocation .. 126
7.4.3.1 Invocations on boxed instances.. 127

7.5 Primary expressions... 128

Table of Contents

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. vii

7.5.1 Literals .. 128
7.5.2 Simple names.. 128

7.5.2.1 Invariant meaning in blocks ... 129
7.5.3 Parenthesized expressions... 130
7.5.4 Member access.. 130

7.5.4.1 Identical simple names and type names ... 132
7.5.5 Invocation expressions.. 132

7.5.5.1 Method invocations.. 133
7.5.5.2 Delegate invocations .. 133

7.5.6 Element access.. 134
7.5.6.1 Array access ... 134
7.5.6.2 Indexer access .. 135

7.5.7 This access .. 135
7.5.8 Base access ... 136
7.5.9 Postfix increment and decrement operators .. 136
7.5.10 new operator ... 137

7.5.10.1 Object creation expressions.. 137
7.5.10.2 Array creation expressions ... 138
7.5.10.3 Delegate creation expressions .. 140

7.5.11 The typeof operator... 141
7.5.12 The checked and unchecked operators ... 142

7.6 Unary operators ... 144
7.6.1 Unary plus operator .. 145
7.6.2 Unary minus operator ... 145
7.6.3 Logical negation operator ... 146
7.6.4 Bitwise complement operator ... 146
7.6.5 Prefix increment and decrement operators ... 146
7.6.6 Cast expressions.. 147

7.7 Arithmetic operators.. 148
7.7.1 Multiplication operator ... 148
7.7.2 Division operator .. 149
7.7.3 Remainder operator... 150
7.7.4 Addition operator.. 150
7.7.5 Subtraction operator.. 152

7.8 Shift operators ... 154
7.9 Relational and type testing operators... 155

7.9.1 Integer comparison operators.. 156
7.9.2 Floating-point comparison operators .. 156
7.9.3 Decimal comparison operators ... 157
7.9.4 Boolean equality operators ... 157
7.9.5 Enumeration comparison operators .. 157
7.9.6 Reference type equality operators... 158
7.9.7 String equality operators ... 159
7.9.8 Delegate equality operators... 159
7.9.9 The is operator .. 160
7.9.10 The as operator.. 160

7.10 Logical operators ... 161
7.10.1 Integer logical operators ... 161
7.10.2 Enumeration logical operators .. 161
7.10.3 Boolean logical operators ... 162

7.11 Conditional logical operators .. 162

C# LANGUAGE SPECIFICATION

viii Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

7.11.1 Boolean conditional logical operators .. 163
7.11.2 User-defined conditional logical operators ... 163

7.12 Conditional operator.. 163
7.13 Assignment operators .. 164

7.13.1 Simple assignment .. 165
7.13.2 Compound assignment.. 167
7.13.3 Event assignment .. 167

7.14 Expression ... 168
7.15 Constant expressions ... 168
7.16 Boolean expressions .. 169

8. Statements.. 171
8.1 End points and reachability ... 171
8.2 Blocks.. 173

8.2.1 Statement lists ... 173
8.3 The empty statement.. 173
8.4 Labeled statements .. 174
8.5 Declaration statements... 174

8.5.1 Local variable declarations ... 175
8.5.2 Local constant declarations... 175

8.6 Expression statements ... 176
8.7 Selection statements .. 176

8.7.1 The if statement .. 177
8.7.2 The switch statement .. 177

8.8 Iteration statements.. 181
8.8.1 The while statement .. 181
8.8.2 The do statement ... 181
8.8.3 The for statement .. 182
8.8.4 The foreach statement ... 183

8.9 Jump statements... 185
8.9.1 The break statement .. 186
8.9.2 The continue statement ... 187
8.9.3 The goto statement.. 187
8.9.4 The return statement ... 188
8.9.5 The throw statement.. 189

8.10 The try statement ... 190
8.11 The checked and unchecked statements .. 192
8.12 The lock statement... 193
8.13 The using statement ... 193

9. Namespaces.. 197
9.1 Compilation units .. 197
9.2 Namespace declarations .. 197
9.3 Using directives ... 198

9.3.1 Using alias directives .. 199
9.3.2 Using namespace directives.. 201

9.4 Namespace members ... 203
9.5 Type declarations... 203

10. Classes .. 205
10.1 Class declarations .. 205

10.1.1 Class modifiers ... 205

Table of Contents

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. ix

10.1.1.1 Abstract classes .. 205
10.1.1.2 Sealed classes ... 206

10.1.2 Class base specification .. 206
10.1.2.1 Base classes.. 207
10.1.2.2 Interface implementations .. 208

10.1.3 Class body... 208
10.2 Class members... 208

10.2.1 Inheritance .. 209
10.2.2 The new modifier.. 210
10.2.3 Access modifiers... 210
10.2.4 Constituent types... 210
10.2.5 Static and instance members... 210
10.2.6 Nested types.. 211

10.2.6.1 Fully qualified name... 211
10.2.6.2 Declared accessibility... 212
10.2.6.3 Hiding... 212
10.2.6.4 this access... 213
10.2.6.5 Access to private and protected members of the containing type .. 213

10.2.7 Reserved member names .. 214
10.2.7.1 Member names reserved for properties .. 215
10.2.7.2 Member names reserved for events.. 215
10.2.7.3 Member names reserved for indexers .. 216
10.2.7.4 Member names reserved for destructors .. 216

10.3 Constants ... 216
10.4 Fields ... 217

10.4.1 Static and instance fields... 219
10.4.2 Readonly fields ... 219

10.4.2.1 Using static readonly fields for constants... 219
10.4.2.2 Versioning of constants and static readonly fields... 220

10.4.3 Volatile fields.. 220
10.4.4 Field initialization ... 221
10.4.5 Variable initializers... 222

10.4.5.1 Static field initialization ... 223
10.4.5.2 Instance field initialization ... 224

10.5 Methods ... 224
10.5.1 Method parameters ... 226

10.5.1.1 Value parameters.. 227
10.5.1.2 Reference parameters ... 227
10.5.1.3 Output parameters .. 228
10.5.1.4 Parameter arrays... 229

10.5.2 Static and instance methods .. 231
10.5.3 Virtual methods... 231
10.5.4 Override methods.. 233
10.5.5 Sealed methods ... 235
10.5.6 Abstract methods .. 235
10.5.7 External methods .. 237
10.5.8 Method body... 237
10.5.9 Method overloading.. 238

10.6 Properties... 238
10.6.1 Static and instance properties.. 239
10.6.2 Accessors .. 239

C# LANGUAGE SPECIFICATION

x Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

10.6.3 Virtual, sealed, override, and abstract accessors... 244
10.7 Events .. 245

10.7.1 Field-like events.. 247
10.7.2 Event accessors ... 248
10.7.3 Static and instance events ... 249
10.7.4 Virtual, sealed, override, and abstract accessors... 250

10.8 Indexers ... 250
10.8.1 Indexer overloading .. 253

10.9 Operators ... 253
10.9.1 Unary operators... 255
10.9.2 Binary operators.. 256
10.9.3 Conversion operators .. 256

10.10 Instance constructors ... 257
10.10.1 Constructor initializers.. 258
10.10.2 Instance variable initializers ... 259
10.10.3 Constructor execution ... 259
10.10.4 Default constructors .. 261
10.10.5 Private constructors... 262
10.10.6 Optional instance constructor parameters ... 262

10.11 Static constructors ... 262
10.12 Destructors... 264

11. Structs .. 267
11.1 Struct declarations ... 267

11.1.1 Struct modifiers... 267
11.1.2 Struct interfaces .. 268
11.1.3 Struct body.. 268

11.2 Struct members.. 268
11.3 Class and struct differences ... 268

11.3.1 Value semantics .. 269
11.3.2 Inheritance .. 269
11.3.3 Assignment ... 269
11.3.4 Default values ... 270
11.3.5 Boxing and unboxing.. 270
11.3.6 Meaning of this ... 271
11.3.7 Field initializers .. 271
11.3.8 Constructors .. 271
11.3.9 Destructors .. 271
11.3.10 Static Constructors .. 272

11.4 Struct examples ... 272
11.4.1 Database integer type.. 272
11.4.2 Database boolean type .. 274

12. Arrays... 277
12.1 Array types .. 277

12.1.1 The System.Array type ... 278
12.2 Array creation.. 278
12.3 Array element access ... 278
12.4 Array members .. 278
12.5 Array covariance ... 278
12.6 Array initializers.. 279

Table of Contents

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. xi

13. Interfaces.. 281
13.1 Interface declarations... 281

13.1.1 Interface modifiers .. 281
13.1.2 Base interfaces .. 281
13.1.3 Interface body ... 282

13.2 Interface members ... 282
13.2.1 Interface methods.. 283
13.2.2 Interface properties ... 283
13.2.3 Interface events ... 284
13.2.4 Interface indexers.. 284
13.2.5 Interface member access ... 284

13.3 Fully qualified interface member names ... 286
13.4 Interface implementations ... 286

13.4.1 Explicit interface member implementations ... 287
13.4.2 Interface mapping ... 289
13.4.3 Interface implementation inheritance ... 291
13.4.4 Interface re-implementation.. 293
13.4.5 Abstract classes and interfaces.. 294

14. Enums... 297
14.1 Enum declarations ... 297
14.2 Enum modifiers ... 298
14.3 Enum members.. 298
14.4 Enum values and operations.. 300

15. Delegates .. 301
15.1 Delegate declarations... 301
15.2 Delegate instantiation .. 303
15.3 Delegate invocation ... 303

16. Exceptions .. 307
16.1 Causes of exceptions ... 307
16.2 The System.Exception class .. 307
16.3 How exceptions are handled.. 307
16.4 Common Exception Classes .. 308

17. Attributes ... 311
17.1 Attribute classes... 311

17.1.1 Attribute usage.. 311
17.1.2 Positional and named parameters.. 312
17.1.3 Attribute parameter types.. 313

17.2 Attribute specification ... 313
17.3 Attribute instances ... 317

17.3.1 Compilation of an attribute ... 317
17.3.2 Run-time retrieval of an attribute instance.. 317

17.4 Reserved attributes .. 318
17.4.1 The AttributeUsage attribute... 318
17.4.2 The Conditional attribute .. 319
17.4.3 The Obsolete attribute... 320

17.5 Attributes for Interoperation.. 321
17.5.1 Interoperation with COM and Win32 components... 321
17.5.2 Interoperation with other .NET languages.. 321

C# LANGUAGE SPECIFICATION

xii Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

17.5.2.1 The IndexerName attribute... 321

A. Unsafe code ... 323
A.1 Unsafe contexts... 323
A.2 Pointer types ... 325
A.3 Fixed and moveable variables .. 328
A.4 Pointer conversions... 328
A.5 Pointers in expressions ... 329

A.5.1 Pointer indirection.. 330
A.5.2 Pointer member access... 330
A.5.3 Pointer element access ... 331
A.5.4 The address-of operator ... 332
A.5.5 Pointer increment and decrement... 332
A.5.6 Pointer arithmetic... 333
A.5.7 Pointer comparison .. 333
A.5.8 The sizeof operator .. 334

A.6 The fixed statement .. 334
A.7 Stack allocation... 337
A.8 Dynamic memory allocation .. 338

B. Documentation comments.. 341
B.1 Introduction... 341
B.2 Recommended tags ... 342

B.2.1 <c> ... 342
B.2.2 <code>.. 343
B.2.3 <example>.. 343
B.2.4 <exception>.. 343
B.2.5 <list> .. 344
B.2.6 <para> .. 345
B.2.7 <param> ... 345
B.2.8 <paramref>... 346
B.2.9 <permission>.. 346
B.2.10 <remarks> .. 346347
B.2.11 <returns> .. 347
B.2.12 <see> .. 347
B.2.13 <seealso>.. 348
B.2.14 <summary> .. 348
B.2.15 <value>... 348349

B.3 Processing the documentation file .. 349
B.3.1 ID string format.. 349
B.3.2 ID string examples ... 350

B.4 An example ... 353
B.4.1 C# source code ... 353
B.4.2 Resulting XML... 355356

C. Grammar .. 359
C.1 Lexical grammar ... 359

C.1.1 Line terminators ... 359
C.1.2 White space .. 359
C.1.3 Comments .. 359
C.1.4 Tokens .. 360
C.1.5 Unicode character escape sequences.. 360

Table of Contents

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. xiii

C.1.6 Identifiers ... 360
C.1.7 Keywords ... 362
C.1.8 Literals ... 362
C.1.9 Operators and punctuators.. 364
C.1.10 Pre-processing directives.. 364

C.2 Syntactic grammar .. 366
C.2.1 Basic concepts.. 366
C.2.2 Types.. 366
C.2.3 Variables .. 368
C.2.4 Expressions .. 368
C.2.5 Statements .. 371
17.5.3 Namespaces .. 374
C.2.6 Classes.. 375
C.2.7 Structs... 381
C.2.8 Arrays... 381
C.2.9 Interfaces .. 382
C.2.10 Enums... 383
C.2.11 Delegates .. 383
C.2.12 Attributes.. 384

C.3 Grammar extensions for unsafe code.. 385
C.3.1 Unsafe contexts .. 385

C.3.1.1 Pointer types .. 386
C.3.1.2 Pointers in expressions .. 386
C.3.1.3 Pointer indirection ... 387
C.3.1.4 Pointer member access .. 387
C.3.1.5 The address-of operator ... 387
C.3.1.6 The sizeof operator .. 387
C.3.1.7 The fixed statement ... 387
C.3.1.8 Stack allocation ... 387

D. References ... 389

Chapter 117 IntroductionAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 1

1. Introduction

C# is a simple, modern, object oriented, and type-safe programming language derived from C and C++. It will
immediately be familiar to C and C++ programmers. C# aims to combine the high productivity of Visual Basic
and the raw power of C++.

Visual C# .NET is Microsoft’s C# development tool. It includes an interactive development environment, visual
designers for building Windows and Web applications, a compiler, and a debugger. Visual C# .NET is part of a
suite of products, called Visual Studio .NET, that also includes Visual Basic .NET, Visual C++ .NET, and the
JScript scripting language. All of these languages provide access to the Microsoft .NET Framework, which
includes a common execution engine and a rich class library. The.NET Framework defines a “Common
Language Specification” (CLS), a sort of lingua franca that ensures seamless interoperability between CLS-
compliant languages and class libraries. For C# developers, this means that even though C# is a new language, it
has complete access to the same rich class libraries that are used by seasoned tools such as Visual Basic .NET
and Visual C++ .NET. C# itself does not include a class library.

The rest of this chapter describes the essential features of the language. While later chapters describe rules and
exceptions in a detail-oriented and sometimes mathematical manner, this chapter strives for clarity and brevity at
the expense of completeness. The intent is to provide the reader with an introduction to the language that will
facilitate the writing of early programs and the reading of later chapters.

1.1 Getting started
The canonical “hello, world” program can be written as follows:

���������	
��

������
���
�

�	�	�
��������������
������
����	
���
���
����� �������

!
!

The source code for a C# program is typically stored in one or more text files with a file extension of �
�, as in
�
����
�. Using the command-line compiler provided with Visual Studio .NET, such a program can be
compiled with the command line directive

�
��
����
�

which produces an application named �
����
"
. The output produced by this application when it is run is:

�
����� ����

Close examination of this program is illuminating:

• The ���������	
�� directive references a namespace called ���	
� that is provided by the Microsoft
.NET Framework class library. This namespace contains the ������
 class referred to in the ���� method.
Namespaces provide a hierarchical means of organizing the elements of one or more programs. A “using”
directive enables unqualified use of the types that are members of the namespace. The “hello, world”
program uses ������
����	
���
 as shorthand for ���	
��������
����	
���
. (For the sake of
brevity, most examples in this specification omit the ���������	
�� directive.)

C# LANGUAGE SPECIFICATION

2 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• The ���� method is a member of the class �
���. It has the �	�	�
 modifier, and so it is a method on the
class �
��� rather than on instances of this class.

• The entry point for an application—the method that is called to begin execution—is always a static method
named ����.

• The “hello, world” output is produced using a class library. The language does not itself provide a class
library. Instead, it uses a class library that is also used by Visual Basic .NET and Visual C++ .NET.

For C and C++ developers, it is interesting to note a few things that do not appear in the “hello, world” program.

• The program does not use a global method for ����. Methods and variables are not supported at the global
level; such elements are always contained within type declarations (e.g., class and struct declarations).

• The program does not use either “##” or “$%” operators. The “##” is not an operator at all, and the “$%”
operator is used in only a small fraction of programs – those that employ unsafe code (§A). The separator
“�” is used in compound names such as ������
����	
���
.

• The program does not contain forward declarations. Forward declarations are never needed, as declaration
order is not significant.

• The program does not use &��
���
 to import program text. Dependencies among programs are handled
symbolically rather than textually. This approach eliminates barriers between applications written using
different languages. For example, the ������
 class need not be written in C#.

1.2 Types
C# supports two kinds of types: value types and reference types. Value types include simple types (e.g.,
���,
��	, and '���), enum types, and struct types. Reference types include class types, interface types, delegate
types, and array types.

Value types differ from reference types in that variables of the value types directly contain their data, whereas
variables of the reference types store references to objects. With reference types, it is possible for two variables
to reference the same object, and thus possible for operations on one variable to affect the object referenced by
the other variable. With value types, the variables each have their own copy of the data, and it is not possible for
operations on one to affect the other.

The example

����������(
�

)�*��
���	�+���
�,�-�
!

�����.
�	
�

�	�	�
��������������
��	����(�,�-�
��	����/�,����(�
���/�,�(/0�

�����(��
'(�,��
 ������(���
�����(��
'/�,��
'(�
�
'/�+���
�,�(/0�

������
����	
���
��+���
�#��-!���(!������(�����/��
������
����	
���
��1
'�#��-!���(!����
'(�+���
���
'/�+���
��

!
!

shows this difference. The output produced is

Chapter 117 IntroductionAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 3

+���
�#�-��(/0
1
'�#�(/0��(/0

The assignment to the local variable ���(does not impact the local variable ���/ because both local variables
are of a value type (the type ��) and each local variable of a value type has its own storage. In contrast, the
assignment �
'/�+���
�,�(/0� affects the object that both �
'(and �
'/ reference.

The lines

������
����	
���
��+���
�#��-!���(!������(�����/��
������
����	
���
��1
'�#��-!���(!����
'(�+���
���
'/�+���
��

deserve further comment, as they demonstrate some of the string formatting behavior of ������
����	
���
,
which takes a variable number of arguments. The first argument is a string, which may contain numbered
placeholders like �-! and �(!. Each placeholder refers to a trailing argument with �-! referring to the second
argument, �(! referring to the third argument, and so on. Before the output is sent to the console, each
placeholder is replaced with the formatted value of its corresponding argument.

Developers can define new value types through enum and struct declarations, and can define new reference
types via class, interface, and delegate declarations. The example

)�*��
�
���������
�

1
���2��
��3�

�
!

)�*��
��	��
	�4���	
�

)�*��
���	�"����
!

)�*��
���	
�'�

�52��

�

�����6���
!

)�*��
���	
�'�

�57
���
�#�52��

�

�����3���
!

)�*��
�
�����8
�

)��	

	
�����	��������������
������
����	
���
��8�����

!
!

)�*��
�
�����2#�8��57
���
�
�

)�*��
������6����
������
����	
���
��2�6����)�
�
�	�	�����'�57
���
��6���

!

)�*��
������3����
������
����	
���
��2�3����)�
�
�	�	�����'�57
���
��3���

!

��
����
�)��	

	
������������
������
����	
���
��2������
����
��'�8�����

!
!

)�*��
��
�
��	
������9�)	�7
�
��	
���

shows an example of each kind of type declaration. Later sections describe type declarations in detail.

C# LANGUAGE SPECIFICATION

4 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

1.2.1 Predefined types

C# provides a set of predefined types, most of which will be familiar to C and C++ developers.

The predefined reference types are �*:

	 and �	����. The type �*:

	 is the ultimate base type of all other
types. The type �	���� is used to represent Unicode string values. Values of type �	���� are immutable.

The predefined value types include signed and unsigned integral types, floating point types, and the types *���,

���, and �

����. The signed integral types are �*�	
, ����	, ��	, and ����; the unsigned integral types
are *�	
, �����	, ���	, and �����; and the floating point types are '���	 and ���*�
.

The *��� type is used to represent boolean values: values that are either true or false. The inclusion of *���
makes it easier to write self-documenting code, and also helps eliminate the all-too-common C++ coding error
in which a developer mistakenly uses “,” when “,,” should have been used. In C#, the example

��	���,�����
6����
�'����,�-���;;�2��#�	�
�	
�	��������*
����,,�-�
��3���

results in a compile-time error because the expression ��,�- is of type ��	, and �' statements require an
expression of type *���.

The
��� type is used to represent Unicode characters. A variable of type
��� represents a single 16-bit
Unicode character.

The �

���� type is appropriate for calculations in which rounding errors caused by floating point
representations are unacceptable. Common examples include financial calculations such as tax computations
and currency conversions. The �

���� type provides 28 significant digits.

The table below lists the predefined types, and shows how to write literal values for each of them.

Chapter 117 IntroductionAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 5

Type Description Example

�*:

	 The ultimate base type of all other types �*:

	���,������

�	���� String type; a string is a sequence of Unicode
characters

�	�������,���
�����

�*�	
 8-bit signed integral type �*�	
�����,�(/�

����	 16-bit signed integral type ����	�����,�(/�

��	 32-bit signed integral type ��	�����,�(/�

���� 64-bit signed integral type ��������(�,�(/�
��������/�,�0<��

*�	
 8-bit unsigned integral type *�	
����(�,�(/�

�����	 16-bit unsigned integral type �����	����(�,�(/�

���	 32-bit unsigned integral type ���	����(�,�(/�
���	����/�,�0<=�

����� 64-bit unsigned integral type ���������(�,�(/�
���������/�,�0<=�
���������0�,�>?��
���������<�,�@A=��

'���	 Single-precision floating point type '���	�����,�(�/06�

���*�
 Double-precision floating point type ���*�
����(�,�(�/0�
���*�
����/�,�<�>?7�

*��� Boolean type; a *��� value is either true or false *�������(�,�	��
�
*�������/�,�'���
�

��� Character type; a
��� value is a Unicode character
��������,�B�B�

�

���� Precise decimal type with 28 significant digits �

���������,�(�/0��

Each of the predefined types is shorthand for a system-provided type. For example, the keyword ��	 refers to
the struct ���	
��5�	0/. As a matter of style, use of the keyword is favored over use of the complete system
type name.

Predefined value types such as ��	 are treated specially in a few ways but are for the most part treated exactly
like other structs. Operator overloading enables developers to define new struct types that behave much like the
predefined value types. For instance, a 7���	 struct can support the same mathematical operations as the
predefined integral types, and can define conversions between 7���	 and predefined types.

The predefined types employ operator overloading themselves. For example, the comparison operators ,, and
C, have different semantics for different predefined types:

• Two expressions of type ��	 are considered equal if they represent the same integer value.

• Two expressions of type �*:

	 are considered equal if both refer to the same object, or if both are ����.

• Two expressions of type �	���� are considered equal if the string instances have identical lengths and
identical characters in each character position, or if both are ����.

The example

C# LANGUAGE SPECIFICATION

6 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

�����.
�	
�

�	�	�
��������������
�	�������,��.
�	��
�	�����	�,��	�������)�����
������
����	
���
���,,�	��
������
����	
���
���*:

	���,,���*:

	�	��

!
!

produces the output

.��

6���

because the first comparison compares two expressions of type �	����, and the second comparison compares
two expressions of type �*:

	.

1.2.2 Conversions

The predefined types also have predefined conversions. For instance, conversions exist between the predefined
types ��	 and ����. C# differentiates between two kinds of conversions: implicit conversions and explicit
conversions. Implicit conversions are supplied for conversions that can safely be performed without careful
scrutiny. For instance, the conversion from ��	 to ���� is an implicit conversion. This conversion always
succeeds, and never results in a loss of information. Implicit conversions can be performed implicitly, as shown
in the example

�����.
�	
�

�	�	�
��������������
��	���	+���
�,�(/0�
���������+���
�,���	+���
�
������
����	
���
���-!���(!�����	+���
������+���
��

!
!

which implicitly converts an ��	 to a ����.

In contrast, explicit conversions are performed with a cast expression. The example

�����.
�	
�

�	�	�
��������������
���������+���
�,�5�	?<���"+���
�
��	���	+���
�,����	������+���
�
������
����	
���
�����	���-!�,��(!�������+���
����	+���
��

!
!

uses an explicit conversion to convert a ���� to an ��	. The output is:

���	��D//00@/-0?A><@@>A-@�,�$(

because an overflow occurs. Cast expressions permit the use of both implicit and explicit conversions.

1.2.3 Array types

Arrays may be single-dimensional or multi-dimensional. Both “rectangular” and “jagged” arrays are supported.

Single-dimensional arrays are the most common type. The example

�����.
�	
�

�	�	�
��������������
��	EF�����,��
 ���	E>F�

Chapter 117 IntroductionAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 7

'������	���,�-����G������
��	����HH�
���E�F�,���I���

'������	���,�-����G������
��	����HH�
������
����	
���
�����E�-!F�,��(!���������E�F��

!
!

creates a single-dimensional array of ��	 values, initializes the array elements, and then prints each of them out.
The output produced is:

���E-F�,�-
���E(F�,�(
���E/F�,�<
���E0F�,�D
���E<F�,�(?

The type ��	EF used in the previous example is an array type. Array types are written using a non-array-type
followed by one or more rank specifiers. The example

�����.
�	
�

�	�	�
��������������
��	EF��(� ;;������
$���
���������������'���	
��	E�F��/� ;;�/$���
���������������'���	
��	E��F��0� ;;�0$���
���������������'���	

��	EFEF�:/� ;;��:���
��������#��������'���������'���	�
��	EFEFEF�:0� ;;��������'���������'���������'���	��

!
!

shows a variety of local variable declarations that use array types with ��	 as the element type.

Array types are reference types, and so the declaration of an array variable merely sets aside space for the
reference to the array. Array instances are actually created via array initializers and array creation expressions.
The example

�����.
�	
�

�	�	�
��������������
��	EF��(�,��
 ���	EF��(��/��0!�
��	E�F��/�,��
 ���	E�F���(��/��0!���<��>��?!!�
��	E��F��0�,��
 ���	E(-��/-��0-F�

��	EFEF�:/�,��
 ���	E0FEF�
:/E-F�,��
 ���	EF��(��/��0!�
:/E(F�,��
 ���	EF��(��/��0��<��>��?!�
:/E/F�,��
 ���	EF��(��/��0��<��>��?��@��A��D!�

!
!

shows a variety of array creation expressions. The variables �(, �/ and �0 denote rectangular arrays, and the
variable :/ denotes a jagged array. It should be no surprise that these terms are based on the shapes of the
arrays. Rectangular arrays always have a rectangular shape. Given the length of each dimension of the array, its
rectangular shape is clear. For example, the lengths of �0’ s three dimensions are 10, 20, and 30 respectively,
and it is easy to see that this array contains (-I/-I0- elements.

In contrast, the variable :/ denotes a “ jagged” array, or an “array of arrays” . Specifically, :/ denotes an array of
an array of ��	, or a single-dimensional array of type ��	EF. Each of these ��	EF variables can be initialized
individually, and this allows the array to take on a jagged shape. The example gives each of the ��	EF arrays a
different length. Specifically, the length of :/E-F is 0, the length of :/E(F is ?, and the length of :/E/F is D.

C# LANGUAGE SPECIFICATION

8 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The element type and shape of an array—including whether it is jagged or rectangular, and the number of
dimensions it has—are part of its type. On the other hand, the size of the array—as represented by the length of
each of its dimensions—is not part of an array’s type. This split is made clear in the language syntax, as the
length of each dimension is specified in the array creation expression rather than in the array type. For instance
the declaration

��	E��F��0�,��
 ���	E(-��/-��0-F�

has an array type of ��	E��F and an array creation expression of �
 ���	E(-��/-��0-F.

For local variable and field declarations, a shorthand form is permitted so that it is not necessary to re-state the
array type. For instance, the example

��	EF��(�,��
 ���	EF��(��/��0!�

can be shortened to

��	EF��(�,��(��/��0!�

without any change in program semantics.

The context in which an array initializer such as �(��/��0! is used determines the type of the array being
initialized. The example

�����.
�	
�

�	�	�
��������������
����	EF���,��(��/��0!�
��	EF *�,��(��/��0!�
����EF�
�,��(��/��0!�

!
!

shows that the same array initializer syntax can be used for several different array types. Because context is
required to determine the type of an array initializer, it is not possible to use an array initializer in an expression
context without explicitly stating the type of the array.

1.2.4 Type system unification

C# provides a “unified type system”. All types—including value types—derive from the type �*:

	. It is
possible to call object methods on any value, even values of “primitive” types such as ��	. The example

�����.
�	
�

�	�	�
��������������
������
����	
���
�0�.��	��������

!
!

calls the �*:

	-defined .��	���� method on an integer literal, resulting in the output “0” .

The example

�����.
�	
�

�	�	�
��������������
��	���,�(/0�
�*:

	���,��� ;;�*�"���
��	�:�,����	���� ;;���*�"���

!
!

is more interesting. An ��	 value can be converted to �*:

	 and back again to ��	. This example shows both
boxing and unboxing. When a variable of a value type needs to be converted to a reference type, an object box

Chapter 117 IntroductionAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 9

is allocated to hold the value, and the value is copied into the box. Unboxing is just the opposite. When an
object box is cast back to its original value type, the value is copied out of the box and into the appropriate
storage location.

This type system unification provides value types with the benefits of object-ness without introducing
unnecessary overhead. For programs that don’ t need ��	 values to act like objects, ��	 values are simply 32-bit
values. For programs that need ��	 values to behave like objects, this capability is available on demand. This
ability to treat value types as objects bridges the gap between value types and reference types that exists in most
languages. For example, a �	�
J class can provide 4��� and 4�) methods that take and return �*:

	 values.

)�*��
�
������	�
J
�

)�*��
��*:

	�4�)�������!

)�*��
������4�����*:

	��������!
!

Because C# has a unified type system, the �	�
J class can be used with elements of any type, including value
types like ��	.

1.3 Variables and parameters
Variables represent storage locations. Every variable has a type that determines what values can be stored in the
variable. Local variables are variables that are declared in methods, properties, or indexers. A local variable is
defined by specifying a type name and a declarator that specifies the variable name and an optional initial value,
as in:

��	���
��	�*�,�(�

but it is also possible for a local variable declaration to include multiple declarators. The declarations of � and *
can be rewritten as:

��	����*�,�(�

A variable must be assigned before its value can be obtained. The example

�����.
�	
�

�	�	�
��������������
��	���
��	�*�,�(�
��	�
�,���H�*� ;;�
����������	��
	�������
�
���

!
!

results in a compile-time error because it attempts to use the variable � before it is assigned a value. The rules
governing definite assignment are defined in §5.3.

A field (§10.4) is a variable that is associated with a class or struct, or an instance of a class or struct. A field
declared with the �	�	�
 modifier defines a static variable, and a field declared without this modifier defines
an instance variable. A static field is associated with a type, whereas an instance variable is associated with an
instance. The example

������4
�����
��7�	��

�����9�)���

�

)����	
��	�	�
�7�	��
	����

)�*��
��	�����K��
�
)�*��
��

������������

C# LANGUAGE SPECIFICATION

10 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

���
!

shows an 9�)���

 class that has a private static variable and two public instance variables.

Formal parameter declarations also define variables. There are four kinds of parameters: value parameters,
reference parameters, output parameters, and parameter arrays.

A value parameter is used for “in” parameter passing, in which the value of an argument is passed into a
method, and modifications of the parameter do not impact the original argument. A value parameter refers to its
own variable, one that is distinct from the corresponding argument. This variable is initialized by copying the
value of the corresponding argument. The example

�����.
�	��
�	�	�
������6���	�)���

������
����	
���
��)�,��-!���)��
)HH�

!

�	�	�
��������������
��	���,�(�
������
����	
���
��)�
#����,��-!������
6����
������
����	
���
��)��	#���,��-!������

!
!

shows a method 6 that has a value parameter named). The output produced is:

)�
#����,�(
)�,�(
)��	#���,�(

even though the value parameter) is modified.

A reference parameter is used for “by reference” parameter passing, in which the parameter acts as an alias for
a caller-provided argument. A reference parameter does not itself define a variable, but rather refers to the
variable of the corresponding argument. Modifications of a reference impact the corresponding argument. A
reference parameter is declared with a �
' modifier. The example

�����.
�	��
�	�	�
������� �)��
'���	�����
'���	�*���

��	�	�,���
��,�*�
*�,�	�

!

�	�	�
��������������
��	�"�,�(�
��	���,�/�

������
����	
���
��)�
#��"�,��-!����,��(!���"�����
� �)��
'�"���
'����
������
����	
���
��)��	#�"�,��-!����,��(!���"�����

!
!

shows a � �) method that has two reference parameters. The output of the program is:

)�
#��"�,�(����,�/
)��	#�"�,�/����,�(

The �
' keyword must be used in both the declaration of the formal parameter and in uses of it. The use of �
'
at the call site calls special attention to the parameter so that a developer reading the code will understand that
the value of the argument could change as a result of the call.

Chapter 117 IntroductionAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 11

An output parameter is similar to a reference parameter, except that the initial value of the caller-provided
argument is unimportant. An output parameter is declared with an ��	 modifier. The example

�����.
�	��
�	�	�
������7����
���	������	�*����	���	��
���	����	���	��
�����
����

�
���	�,���;�*�
�
�����
��,���L�*�

!

�	�	�
��������������
'������	���,�(����G�(-���HH�

'������	�:�,�(��:�G�(-��:HH���
��	��������
7����
����:����	��������	����
������
����	
���
���-!�;��(!�,��/!��0!������:����������

!
!

!

shows a 7����
 method that includes two output parameters—one for the result of the division and another for
the remainder.

For value, reference, and output parameters, there is a one-to-one correspondence between caller-provided
arguments and the parameters used to represent them. A parameter array enables a many-to-one relationship:
many arguments can be represented by a single parameter array. In other words, parameter arrays enable
variable length argument lists.

A parameter array is declared with a)����� modifier. There can be only one parameter array for a given
method, and it must be the right-most parameter. The type of a parameter array is always a single dimensional
array type. A caller can either pass a single argument of this array type, or any number of arguments of the
element type of this array type. For instance, the example

�����.
�	
�

�	�	�
������6�)��������	EF��������
������
����	
���
��&��'������
�	�#��-!���������
��	���
'������	���,�-����G�������
��	����HH�

������
����	
���
��M	����E�-!F�,��(!����������E�F��
!

�	�	�
��������������
6���
6�(��
6�(��/��
6�(��/��0��
6��
 ���	EF��(��/��0��<!��

!
!

shows a method 6 that takes a variable number of ��	 arguments, and several invocations of this method. The
output is:

C# LANGUAGE SPECIFICATION

12 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

&��'������
�	�#�-
&��'������
�	�#�(

����E-F�,�(
&��'������
�	�#�/

����E-F�,�(
����E(F�,�/

&��'������
�	�#�0
����E-F�,�(
����E(F�,�/
����E/F�,�0

&��'������
�	�#�<
����E-F�,�(
����E(F�,�/
����E/F�,�0
����E0F�,�<

Most of the examples presented in this introduction use the ���	
���
 method of the ������
 class. The
argument substitution behavior of this method, as exhibited in the example

��	���,�(��*�,�/�
������
����	
���
����,��-!��*�,��(!������*��

is accomplished using a parameter array. The ���	
���
 method provides several overloaded methods for the
common cases in which a small number of arguments are passed, and one method that uses a parameter array.

���
�)�

����	
�
�

)�*��
�
�����������

�

)�*��
��	�	�
���������	
���
��	������������!

)�*��
��	�	�
���������	
���
��	���������*:

	��������!

)�*��
��	�	�
���������	
���
��	���������*:

	�����*:

	�*������!

���

)�*��
��	�	�
���������	
���
��	��������)�������*:

	EF�����������!
!

!

1.4 Automatic memory management
Manual memory management requires developers to manage the allocation and de-allocation of blocks of
memory. Manual memory management is both time-consuming and difficult. In C#, automatic memory
management is provided so that developers are freed from this burdensome task. In the vast majority of cases,
automatic memory management increases code quality and enhances developer productivity without negatively
impacting either expressiveness or performance.

The example

)�*��
�
������	�
J
�

)����	
�K��
�'���	�,������

)�*��
�*����9�)	���
�
	��

�
	�����'���	�,,�������
!

!

Chapter 117 IntroductionAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 13

)�*��
��*:

	�4�)����
�'��'���	�,,������

	��� ��
 �9"

)	��������B	�4�)�'�������
�)	���	�
J����

��
��

�*:

	�	
�)�,�'���	�+���
�
'���	�,�'���	�K
"	�
�
	����	
�)�

!
!

)�*��
������4�����*:

	�����
'���	�,��
 �K��
����'���	��

!

�����K��

�

)�*��
�K��
�K
"	�

)�*��
��*:

	�+���
�

)�*��
�K��
��*:

	�����
�#�	��������
���������!

)�*��
�K��
��*:

	�����
��K��
��
"	���
K
"	�,��
"	�
+���
�,�����
�

!
!

!

shows a �	�
J class implemented as a linked list of K��
 instances. Node instances are created in the 4���
method and are garbage collected when no longer needed. A K��
 instance becomes eligible for garbage
collection when it is no longer possible for any code to access it. For instance, when an item is removed from
the �	�
J, the associated K��
 instance becomes eligible for garbage collection.

The example

�����.
�	
�

�	�	�
��������������
�	�
J���,��
 ��	�
J���

'������	���,�-����G�(-���HH�
��4�������

��,������
!

!

shows code that uses the �	�
J class. A �	�
J is created and initialized with 10 elements, and then assigned
the value ����. Once the variable � is assigned null, the �	�
J and the associated 10 K��
 instances become
eligible for garbage collection. The garbage collector is permitted to clean up immediately, but is not required to
do so.

The garbage collector underlying C# may work by moving objects around in memory, but this motion is
invisible to most C# developers. For developers who are generally content with automatic memory management
but sometimes need fine-grained control or that extra bit of performance, C# provides the ability to write
“unsafe” code. Such code can deal directly with pointer types and object addresses. However, C# requires the
programmer to fix objects to temporarily prevent the garbage collector from moving them.

This “unsafe” code feature is in fact a “safe” feature from the perspective of both developers and users. Unsafe
code must be clearly marked in the code with the modifier ����'
, so developers can't possibly use unsafe
language features accidentally, and the compiler and the execution engine work together to ensure that unsafe
code cannot masquerade as safe code. These restrictions limit the use of unsafe code to situations in which the
code is trusted.

C# LANGUAGE SPECIFICATION

14 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The example

�����.
�	
�

����'
��	�	�
���������	
��
�	�����*�	
EF�������
'�"
���*�	
�I)8�����,�������

*�	
�I)9�
��,�)8�����
'������	���,�-����G������
��	����HH���

*�	
�����
�,�I)9�
��
������
����	
���
�����E�-!F��	�-"�(#N!�����/!��

�������	�)9�
�������
��
)9�
�HH�

!
!

!

�	�	�
��������������
*�	
EF�����,��
 �*�	
EF��(��/��0��<��>!�
���	
��
�	����������

!
!

shows an unsafe method named ���	
��
�	���� that fixes an array instance and uses pointer manipulation to
iterate over the elements. The index, value, and location of each array element are written to the console. One
possible example of output:

���E-F��	�-"A9-0?-����(
���E(F��	�-"A9-0?(����/
���E/F��	�-"A9-0?/����0
���E0F��	�-"A9-0?0����<
���E<F��	�-"A9-0?<����>

but of course the exact memory locations may be different in different executions of the application.

1.5 Expressions
C# includes unary operators, binary operators, and one ternary operator. The following table summarizes the
operators, listing them in order of precedence from highest to lowest:

Chapter 117 IntroductionAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 15

Section Category Operators

7.5 Primary "����'�"����E"F��"HH��"$$���

	�)
�'��
�

J
�����
�

J
�

7.6 Unary H��$��C��O��HH"��$$"���.�"

7.7 Multiplicative I��;��L

7.7 Additive H��$

7.8 Shift GG��%%

7.9 Relational and
type testing

G��%��G,��%,��������

7.9 Equality ,,��C,

7.10 Logical AND P

7.10 Logical XOR Q

7.10 Logical OR R

7.11 Conditional AND PP

7.11 Conditional OR RR

7.12 Conditional S#

7.13 Assignment ,��I,��;,��L,��H,��$,��GG,��%%,��P,��Q,��R,

When an expression contains multiple operators, the precedence of the operators controls the order in which the
individual operators are evaluated. For example, the expression " H � I T is evaluated as " H �� I T� because
the I operator has higher precedence than the H operator.

When an operand occurs between two operators with the same precedence, the associativity of the operators
controls the order in which the operations are performed:

• Except for the assignment operators, all binary operators are left-associative, meaning that operations are
performed from left to right. For example, " H � H T is evaluated as �" H �� H T.

• The assignment operators and the conditional operator (S#) are right-associative, meaning that operations
are performed from right to left. For example, " , � , T is evaluated as " , �� , T�.

Precedence and associativity can be controlled using parentheses. For example, " H � I T first multiplies � by T
and then adds the result to ", but �" H �� I T first adds " and � and then multiplies the result by T.

1.6 Statements
C# borrows most of its statements directly from C and C++, though there are some noteworthy additions and
modifications. The table below lists the kinds of statements that can be used, and provides an example for each.

C# LANGUAGE SPECIFICATION

16 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Statement Example

Statement lists and block
statements

�	�	�
��������������
����6���
����3���
�����
������������
��������5���
����!
!

Labeled statements and ��	�
statements

�	�	�
������������	����EF��������
�����'��������
��	��,,�-�
����������	�����
�
����������
����	
���
�������
��	���

���
#
����������
����	
���
��7��
���
!

Local constant declarations �	�	�
��������������
����
���	�'���	�)��,�0�(<'�
����
���	���	���,�(/0�
����������
����	
���
�)��I���I����
!

Local variable declarations �	�	�
��������������
������	���
������	�*�,�/��
�,�0�
������,�(�
����������
����	
���
���H�*�H�
��
!

Expression statements �	�	�
���	�6���	������	�*���
�����
	������H�*�
!

�	�	�
��������������
����6�(��/����;;�9")�
�������	�	
�
�	
!

�' statements �	�	�
������������	����EF��������
�����'��������
��	��,,�-�
��������������
����	
���
��K���������
����
��

��������������
����	
���
��8������
!

� �	
� statements �	�	�
������������	����EF��������
����� �	
���������
��	����
��������
��
�-#
������������������
����	
���
��K���������
������������*�
�J�
��������
��
�(#
������������������
����	
���
��U�
��������
������������*�
�J�
���������
'���	#
��������������	���,�������
��	��
������������������
����	
���
���-!�����������
������������*�
�J�
����!
!

 ���
 statements �	�	�
������������	����EF��������
������	���,�-�
���� ���
����G�������
��	����
��������������
����	
���
�����E�F��

Chapter 117 IntroductionAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 17

���������HH�
����!
!

�� statements �	�	�
��������������
�����	�������
�����������,�������
�1
�����
����!
���� ���
����C,��9"�	���
!

'�� statements �	�	�
������������	����EF��������
����'������	���,�-����G�������
��	����HH�
��������������
����	
���
�����E�F��
!

'��
�
� statements �	�	�
������������	����EF��������
����'��
�
����	���������������
��������������
����	
���
����
!

*�
�J statements �	�	�
������������	����EF��������
������	���,�-�
���� ���
��	��
���
���������'����,,�������
��	��
������������*�
�J�
��������������
����	
���
�����E�HHF��
����!
!

��	���
 statements �	�	�
������������	����EF��������
������	���,�-�
���� ���
��	��
���
�������������
����	
���
�����E�HHF��
��������'����G�������
��	��
������������
��	���
�
�������*�
�J�
����!
!

�
	��� statements �	�	�
���	�6���	������	�*���
�����
	������H�*�
!

�	�	�
��������������
����������
����	
���
�6�(��/���
�����
	����
!

	��� statements and 	��
statements

�	�	�
���	�6���	������	�*���
�����'��*�,,�-�
��������	��� ��
 �9"

)	�����7����
�*��T
�����
�����
	������;�*�
!

�	�	�
��������������
����	����
��������������
����	
���
�6�>��-���
����!
����
�	
��9"

)	����
���
��������������
����	
���
��9�������
����!
!

�

J
� and ��
�

J
�
statements

�	�	�
��������������
������	�"�,�5�	0/���"+���
�

����������
����	
���
�"�H�(��������;;�U�
�'��

C# LANGUAGE SPECIFICATION

18 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

����
�

J
���
��������������
����	
���
�"�H�(����;;�9"

)	���
����!

������
�

J
���
��������������
����	
���
�"�H�(����;;�U�
�'��
����!
!

��
J statements �	�	�
��������������
����8���,�����
������
J�����
����������4�,���4�H�(�
����!
!

����� statements �	�	�
��������������
�����������1
����

���,��
 �1
����

�����
����������6���
����!
!

1.7 Classes
Class declarations define new reference types. A class can inherit from another class, and can implement
interfaces.

Class members can include constants, fields, methods, properties, events, indexers, operators, instance
constructors, destructors, static constructors, and nested type declarations. Each member has an associated
accessibility, which controls the regions of program text that are able to access the member. There are five
possible forms of accessibility. These are summarized in the table below.

Form Intuitive meaning

)�*��
 Access not limited

)��	

	
� Access limited to the containing class or types derived from the containing class

��	
���� Access limited to this program

)��	

	
�
��	
����

Access limited to this program or types derived from the containing class

)����	
 Access limited to the containing type

The example

������������
�

)�*��
������������
������
����	
���
��5��	��

�
���	��
	�����

!

)�*��
�����������	�����
���
��6�
���,�����
�
������
����	
���
��5��	��

�
���	��
	�����

!

O�����������
������
����	
���
��7
�	��
	�����

!

)�*��
�
���	���	�������	�,�(/�

Chapter 117 IntroductionAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 19

)�*��
���	���6�
���,�0<�

)�*��
���������
	������
������
����	
���
�������������
	������

!

)�*��
���	���4��)
�	���
�
	��

�
	������6�
���
!

�
	��
��6�
���,�����
�

!
!

)�*��
���	�	���E��	����
"F��
�
	��

�
	����-�
!

�
	��
������
����	
���
��	���E�-!F�,��(!������
"������
��

!
!

)�*��
�
�
�	�9�
�	�����
����9�
�	�

)�*��
��	�	�
����������)
��	��H��������������������*���
�
	�����
 �������������6�
���H�*���6�
����

!

��	
�����
�������K
�	
������
�!

!

shows a class that contains each kind of member. The example

�����.
�	
�

�	�	�
��������������
;;�5��	��

�
���	��
	�������

����������,��
 �����������
��������*�,��
 ���������(/0��

;;�����	��	�����

������
����	
���
��������	�,��-!�����������������	��

;;�6�
�������

����6�
��HH�
������
����	
���
������6�
���,��-!�������6�
����

;;��
	��������

�����
	������

;;�4��)
�	������

����4��)
�	�HH�
������
����	
���
������4��)
�	��,��-!�������4��)
�	���

;;�5��
"
������

�E0F�,��E(F�,��E/F�
������
����	
���
���E0F�,��-!����E0F��

;;�9�
�	�����

����9�
�	�H,��
 �9�
�	�����
���������
���

;;�U�
�����
���)
��	�������

��������
�,���H�*�

!

C# LANGUAGE SPECIFICATION

20 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

�	�	�
�������������
���*:

	��
��
���9�
�	8����
���
������
����	
���
��.
�	��������
����

!

��	
�����
�������K
�	
������
�!

!

shows uses of these members.

1.7.1 Constants

A constant is a class member that represents a constant value: a value that can be computed at compile-time.
Constants are permitted to depend on other constants within the same program as long as there are no circular
dependencies. The rules governing constant expressions are defined in §7.15. The example

���������	��	�
�

)�*��
�
���	���	�8�,�(�
)�*��
�
���	���	�2�,�8�H�(�

!

shows a class named ����	��	� that has two public constants.

Even though constants are considered static members, a constant declaration neither requires nor allows the
�	�	�
 modifier. Constants can be accessed through the class, as in

�����.
�	
�

�	�	�
��������������
������
����	
���
���-!���(!�������	��	��8������	��	��2��

!
!

which prints out the values of ����	��	��8 and ����	��	��2.

1.7.2 Fields

A field is a member that represents a variable associated with an object or class. The example

����������
�

��	
����������	��
�4��	�
��	
����������	�*��
4��	�
��	
����������	���

�4��	�

)�*��
������������	��
��������	�*��
�������	���

����
�
�4��	�,��
��
*��
4��	�,�*��
�
��

�4��	�,���

��

!

���
!

shows a ����� class that has internal instance fields named �
�4��	, *��
4��	, and ��

�4��	. Fields can
also be static, as shown in the example

����������
�

)�*��
��	�	�
�������1
��,��
 �������-"66��-��-��
)�*��
��	�	�
�������2��
�,��
 �������-��-"66��-��
)�*��
��	�	�
�������3�

��,��
 �������-��-��-"66��
)�*��
��	�	�
����������	
�,��
 �������-"66��-"66��-"66��
���

!

Chapter 117 IntroductionAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 21

which shows static fields for 1
�, 2��
, 3�

�, and ���	
.

The use of static fields in this manner is not ideal. The fields are initialized at some point before they are used,
but after this initialization there is nothing to stop a client from changing them. Such a modification could cause
unpredictable errors in other programs that use ����� and assume that the values do not change. Readonly
fields can be used to prevent such problems. Assignments to a readonly field can only occur as part of the
declaration, or in an instance constructor or static constructor in the same class. A static readonly field can be
assigned in a static constructor, and a non-static readonly field can be assigned in an instance constructor. Thus,
the ����� class can be enhanced by adding the �
������ modifier to the static fields:

����������
�

��	
����������	��
�4��	�
��	
����������	�*��
4��	�
��	
����������	���

�4��	�

)�*��
������������	��
��������	�*��
�������	���

����
�
�4��	�,��
��
*��
4��	�,�*��
�
��

�4��	�,���

��

!

)�*��
��	�	�
��
�������������1
��,��
 �������-"66��-��-��
)�*��
��	�	�
��
�������������2��
�,��
 �������-��-"66��-��
)�*��
��	�	�
��
�������������3�

��,��
 �������-��-��-"66��
)�*��
��	�	�
��
����������������	
�,��
 �������-"66��-"66��-"66��

!

1.7.3 Methods

A method is a member that implements a computation or action that can be performed by an object or class.
Methods have a list of formal parameters (which may be empty), a return value (unless the method’s return-type
is ����), and are either static or non-static. Static methods are accessed through the class. Non-static methods,
which are also called instance methods, are accessed through instances of the class. The example

)�*��
�
������	�
J
�

)�*��
��	�	�
��	�
J�����
��	�
J��������!

)�*��
��	�	�
��	�
J�6��)��	�
J��������!

)�*��
��*:

	�4�)�������!

)�*��
������4�����*:

	��������!

)�*��
���
����
��	�����.��	�����������!

���
!

�����.
�	
�

�	�	�
��������������
�	�
J���,��
 ��	�
J���
'������	���,�(����G�(-���HH�

��4�������

�	�
J�'��))
��,��	�
J�6��)����

�	�
J�
���
��,��	�
J�����
����

������
����	
���
��U���������	�
J#���H���.��	��������
������
����	
���
��6��))
���	�
J#���H�'��))
��.��	��������
������
����	
���
������
���	�
J#���H�
���
��.��	��������

!
!

C# LANGUAGE SPECIFICATION

22 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

shows a �	�
J that has several static methods (����
 and 6��)) and several instance methods (4���, 4�),
and .��	����).

Methods can be overloaded, which means that multiple methods may have the same name so long as they have
unique signatures. The signature of a method consists of the name of the method and the number, modifiers, and
types of its formal parameters. The signature of a method does not include the return type. The example

�����.
�	
�

�	�	�
������6����
������
����	
���
��6�����

!

�	�	�
������6��*:

	�����
������
����	
���
��6��*:

	����

!

�	�	�
������6���	�����
���
������
����	
���
��6���	����

!

�	�	�
������6��
'���	�����
���
������
����	
���
��6��
'���	����

!

�	�	�
������6���	������	�*���
������
����	
���
��6���	����	����

!

�	�	�
������6���	EF�����
����
������
����	
���
��6���	EF����

!

�	�	�
��������������
6���
6�(��
��	���,�(-�
6��
'����
6���*:

	�(��
6�(��/��
6��
 ���	EF��(��/��0!��

!
!

shows a class with a number of methods named 6. The output produced is

6��
6���	�
6��
'���	�
6��*:

	�
6���	����	�
6���	EF�

1.7.4 Properties

A property is a member that provides access to a characteristic of an object or a class. Examples of properties
include the length of a string, the size of a font, the caption of a window, the name of a customer, and so on.
Properties are a natural extension of fields. Both are named members with associated types, and the syntax for
accessing fields and properties is the same. However, unlike fields, properties do not denote storage locations.
Instead, properties have accessors that specify the statements to be executed when their values are read or
written.

Properties are defined with property declarations. The first part of a property declaration looks quite similar to a
field declaration. The second part includes a get accessor and/or a set accessor. In the example below, the
2�		�� class defines a ��)	��� property.

Chapter 117 IntroductionAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 23

)�*��
�
�����2�		��
�

)����	
��	�����
�)	����

)�*��
��	�������)	�����
�
	��

�
	����
�)	����
!

�
	��

�)	����,�����
�
1
)���	���

!
!

!

Properties that can be both read and written, such as ��)	���, include both get and set accessors. The get
accessor is called when the property’s value is read; the set accessor is called when the property’s value is
written. In a set accessor, the new value for the property is made available via an implicit parameter named
����
.

The declaration of properties is real value of properties is seen when they are used. For example, the ��)	���
property can be read and written in the same way that fields can be read and written:

2�		���*�,��
 �2�		�����

*���)	����,��82��� ;;��
	��
���
���
)���	

�	�������,�*���)	���� ;;��
	

*���)	����H,��796�� ;;��
	�P��
	��
���
���
)���	

1.7.5 Events

An event is a member that enables an object or class to provide notifications. A class defines an event by
providing an event declaration, which resembles a field declaration, though with an added
�
�	 keyword, and
an optional set of event accessors. The type of this declaration must be a delegate type.

An instance of a delegate type encapsulates one or more callable entities. For instance methods, a callable entity
consists of an instance and a method on that instance. For static methods, a callable entity consists of just a
method. Given a delegate instance and an appropriate set of arguments, one can invoke all of that delegate
instance’s methods with that set of arguments.

In the example

)�*��
��
�
��	
������9�
�	�����
���*:

	��
��
������	
��9�
�	8����
��

)�*��
�
�����2�		��
�

)�*��
�
�
�	�9�
�	�����
�����
J�

)�*��
������1
�
	����
���
J�,������

!
!

the 2�		�� class defines a ���
J event of type 9�
�	�����
�. Inside the 2�		�� class, the ���
J member
is exactly like a private field of type 9�
�	�����
�. However, outside the 2�		�� class, the ���
J member
can only be used on the left hand side of the H, and $, operators. The H, operator adds a handler for the event,
and the $, operator removes a handler for the event. The example

C# LANGUAGE SPECIFICATION

24 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

)�*��
�
�����6���(
�

)�*��
�6���(����
;;�8���2�		��(V���
J�������
�
�	������
��'���2�		��(W�����
J�
�
�	
2�		��(����
J�H,��
 �9�
�	�����
��2�		��(V���
J��

!

2�		���2�		��(�,��
 �2�		�����

�����2�		��(V���
J��*:

	��
��
���9�
�	8����
���
������
����	
���
��2�		��(� ���
��
J
�C���

!

)�*��
������7��
���

	����
2�		��(����
J�$,��
 �9�
�	�����
��2�		��(V���
J��

!
!

shows a 6���(class that adds 2�		��(V���
J as an event handler for 2�		��(’s ���
J event. In the
7��
���

	 method, the event handler is removed.

For a simple event declaration such as

)�*��
�
�
�	�9�
�	�����
�����
J�

the compiler automatically provides the implementation underlying the H, and $, operators.

An implementer who wants more control can get it by explicitly providing add and remove accessors. For
example, the 2�		�� class could be rewritten as follows:

)�*��
�
�����2�		��
�

)����	
�9�
�	�����
�������
��

)�*��
�
�
�	�9�
�	�����
�����
J��

�����������
��H,�����
��!

�
���
��������
��$,�����
��!
!

!

This change has no effect on client code, but allows the 2�		�� class more implementation flexibility. For
example, the event handler for ���
J need not be represented by a field.

1.7.6 Operators

An operator is a member that defines the meaning of an expression operator that can be applied to instances of
the class. There are three kinds of operators that can be defined: unary operators, binary operators, and
conversion operators.

The following example defines a 7���	 type that represents decimal digits—integral values between - and D.

)�*��
��	��
	�7���	
�

*�	
�����
�

)�*��
�7���	�*�	
�����
���
�'������
�G�-�RR�����
�%�D��	��� ��
 �8����
�	9"

)	������
	��������
�,�����
�

!

)�*��
�7���	���	�����
�#�	�����*�	
������
���!

)�*��
��	�	�
���)��
�	��)
��	���*�	
�7���	�����
�
	����������
�

!

Chapter 117 IntroductionAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 25

)�*��
��	�	�
�
")��
�	��)
��	���7���	�*�	
�*���
�
	�����
 �7���	�*��

!

)�*��
��	�	�
�7���	��)
��	��H�7���	����7���	�*���
�
	�����
 �7���	�������
�H�*�����
��

!

)�*��
��	�	�
�7���	��)
��	��$�7���	����7���	�*���
�
	�����
 �7���	�������
�$�*�����
��

!

)�*��
��	�	�
�*�����)
��	��,,�7���	����7���	�*���
�
	����������
�,,�*�����
�

!

)�*��
��	�	�
�*�����)
��	��C,�7���	����7���	�*���
�
	����������
�C,�*�����
�

!

)�*��
���
����
�*����9X������*:

	�����
���
�'������
�,,��������
	����'���
�
�'��3
	.�)
���,,�����
�3
	.�)
�����
	����	����,,��7���	�����
�
�
	����'���
�

!

)�*��
���
����
���	�3
	�������
����
�
	��������
�3
	�������
���

!

)�*��
���
����
��	�����.��	��������
�
	��������
�.��	�������

!
!

�����.
�	
�

�	�	�
��������������
7���	���,��7���	��>�
7���	�*�,��7���	��0�
7���	�)����,���H�*�
7���	�������,���Y�*�
*����
X�����,����,,�*��
������
����	
���
���-!�H��(!�,��/!������*��)�����
������
����	
���
���-!�$��(!�,��/!������*���������
������
����	
���
���-!�,,��(!�,��/!������*��
X������

!
!

The 7���	 type defines the following operators:

• An implicit conversion operator from 7���	 to *�	
.

• An explicit conversion operator from *�	
 to 7���	.

• An addition operator that adds two 7���	 values and returns a 7���	 value.

• A subtraction operator that subtracts one 7���	 value from another, and returns a 7���	 value.

• The equality (,,) and inequality (C,) operators, which compare two 7���	 values.

1.7.7 Indexers

An indexer is a member that enables an object to be indexed in the same way as an array. Whereas properties
enable field-like access, indexers enable array-like access.

C# LANGUAGE SPECIFICATION

26 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

As an example, consider the �	�
J class presented earlier. The designer of this class might want to expose
array-like access so that it is possible to inspect or alter the items on the stack without performing unnecessary
4��� and 4�) operations. That is, �	�
J is implemented as a linked list, but it also provides the convenience of
array access.

Indexer declarations are similar to property declarations, with the main differences being that indexers are
nameless (the “name” used in the declaration is 	���, since 	��� is being indexed) and that indexers include
indexing parameters. The indexing parameters are provided between square brackets. The example

)�*��
�
������	�
J
�

)����	
�K��
�3
	K��
���	����
"���
K��
�	
�)�,�'���	�
 ���
�����
"�%�-���

	
�)�,�	
�)�K
"	�
���
"$$�

!
�
	����	
�)�

!

)�*��
��*:

	�	���E��	����
"F��
�
	��

�'��C+����5��
"����
"��
	��� ��
 �9"

)	�����5��
"���	��'�����
����

��

�
	����3
	K��
����
"��+���
�

!

�
	��
�'��C+����5��
"����
"��

	��� ��
 �9"

)	�����5��
"���	��'�����
����

��

3
	K��
����
"��+���
�,�����
�
!

!

���
!

�����.
�	
�

�	�	�
��������������
�	�
J���,��
 ��	�
J���

��4����(��
��4����/��
��4����0��

�E-F�,�00� ;;������
��	�
�	�)��	
��'����0�	��00
�E(F�,�//� ;;������
��	�
������
��	
��'����/�	��//
�E/F�,�((� ;;������
��	�
�*�		����	
��'����(�	��((

!
!

shows an indexer for the �	�
J class.

1.7.8 Instance constructors

An instance constructor is a member that implements the actions required to initialize an instance of a class.

The example

�����4���	
�

)�*��
����*�
�"����

Chapter 117 IntroductionAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 27

)�*��
�4���	����
	����"�,�-�
	������,�-�

!

)�*��
�4���	����*�
�"�����*�
�����
	����"�,�"�
	������,���

!

)�*��
��	�	�
����*�
�7��	��

�4���	����4���	�*���
���*�
�"��''�,���"�Y�*�"�
���*�
����''�,�����Y�*���
�
	������	���X�	�"��''�I�"��''�H����''�I����''��

!

)�*��
���
����
��	�����.��	��������
�
	�����	�����6����	����-!���(!����"�����

!
!

�����.
�	
�

�	�	�
��������������
4���	���,��
 �4���	���
4���	�*�,��
 �4���	�0��<��
���*�
���,�4���	�7��	��

����*��
������
����	
���
��7��	��

�'�����-!�	���(!�����/!������*�����

!
!

shows a 4���	 class that provides two public instance constructors. One instance constructor takes no
arguments, and the other takes two ���*�
 arguments.

If no instance constructor is supplied for a class, then an empty instance constructor with no parameters is
automatically provided.

1.7.9 Destructors

A destructor is a member that implements the actions required to destruct an instance of a class. Destructors
cannot have parameters, cannot have accessibility modifiers, and cannot be called explicitly. The destructor for
an instance is called automatically during garbage collection.

The example

�����4���	
�

)�*��
����*�
�"����

)�*��
�4���	����*�
�"�����*�
�����
	����"�,�"�
	������,���

!

O4���	����
������
����	
���
��7
�	��
	
���-!���	�����

!

)�*��
���
����
��	�����.��	��������
�
	�����	�����6����	����-!���(!����"�����

!
!

shows a 4���	 class with a destructor.

C# LANGUAGE SPECIFICATION

28 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

1.7.10 Static constructors

A static constructor is a member that implements the actions required to initialize a class. Static constructors
cannot have parameters, cannot have accessibility modifiers, and cannot be called explicitly. The static
constructor for a class is called automatically.

The example

������4
�����
��7�	��

�����9�)���

�

)����	
��	�	�
�7�	��
	����

�	�	�
�9�)���

����
���,��
 �7�	��
	������

!

)�*��
��	�����K��
�
)�*��
��

������������

���
!

shows an 9�)���

 class with a static constructor that initializes a static field.

1.7.11 Inheritance

Classes support single inheritance, and the type �*:

	 is the ultimate base class for all classes.

The classes shown in earlier examples all implicitly derive from �*:

	. The example

�����8
�

)�*��
������6�����������
����	
���
��8�6����!
!

shows a class 8 that implicitly derives from �*:

	. The example

�����2#�8
�

)�*��
������3�����������
����	
���
��2�3����!
!

�����.
�	
�

�	�	�
��������������
2�*�,��
 �2���
*�6��� ;;�5��
��	
��'����8
*�3��� ;;�5�	����

�����2

8���,�*� ;;�.�
�	���2�������8
��6���

!
!

shows a class 2 that derives from 8. The class 2 inherits 8’s 6 method, and introduces a 3 method of its own.

Methods, properties, and indexers can be virtual, which means that their implementation can be overridden in
derived classes. The example

�����8
�

)�*��
����	���������6�����������
����	
���
��8�6����!
!

Chapter 117 IntroductionAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 29

�����2#�8
�

)�*��
���
����
������6����
*��
�6���
������
����	
���
��2�6���

!
!

�����.
�	
�

�	�	�
��������������
2�*�,��
 �2���
*�6���

8���,�*�
��6���

!
!

shows a class 8 with a virtual method 6, and a class 2 that overrides 6. The overriding method in 2 contains a
call, *��
�6��, which calls the overridden method in 8.

A class can indicate that it is incomplete, and is intended only as a base class for other classes, by including the
�*�	��
	 modifier. Such a class is called an abstract class. An abstract class can specify abstract members—
members that a non-abstract derived class must implement. The example

�*�	��
	�
�����8
�

)�*��
��*�	��
	������6���
!

�����2#�8
�

)�*��
���
����
������6�����������
����	
���
��2�6����!
!

�����.
�	
�

�	�	�
��������������
2�*�,��
 �2���
*�6���

8���,�*�
��6���

!
!

introduces an abstract method 6 in the abstract class 8. The non-abstract class 2 provides an implementation for
this method.

1.8 Structs
The list of similarities between classes and structs is long—structs can implement interfaces, and can have the
same kinds of members as classes. Structs differ from classes in several important ways, however: structs are
value types rather than reference types, and inheritance is not supported for structs. Struct values are stored “on
the stack” or “in-line”. Careful programmers can sometimes enhance performance through judicious use of
structs.

For example, the use of a struct rather than a class for a 4���	 can make a large difference in the number of
memory allocations performed at runtime. The program below creates and initializes an array of 100 points.
With 4���	 implemented as a class, 101 separate objects are instantiated—one for the array and one each for
the 100 elements.

C# LANGUAGE SPECIFICATION

30 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

�����4���	
�

)�*��
���	�"����

)�*��
�4���	���	�"����	�����
	����"�,�"�
	������,���

!
!

�����.
�	
�

�	�	�
��������������
4���	EF�)���	��,��
 �4���	E(--F�
'������	���,�-����G�(--���HH�

)���	�E�F�,��
 �4���	�����I���
!

!

If 4���	 is instead implemented as a struct, as in

�	��
	�4���	
�

)�*��
���	�"����

)�*��
�4���	���	�"����	�����
	����"�,�"�
	������,���

!
!

then only one object is instantiated—the one for the array. The 4���	 instances are allocated in-line within the
array. This optimization can be misused. Using structs instead of classes can also make an application run
slower, or take up more memory, as passing a struct instance as a value parameter causes a copy of the struct to
be created. There is no substitute for careful data structure and algorithm design.

1.9 Interfaces
An interface defines a contract. A class or struct that implements an interface must adhere to its contract.
Interfaces can contain methods, properties, events and indexers.

The example

��	
�'�

�59"��)�

�

�	�����	���E��	����
"F����
	���
	��!

�
�	�9�
�	�����
��9�

�����6���	�����
��

�	�����4����
	���
	��!
!

)�*��
��
�
��	
������9�
�	�����
���*:

	��
��
���9�
�	8����
��

shows an interface that contains an indexer, an event 9, a method 6, and a property 4.

Interfaces may employ multiple inheritance. In the example

��	
�'�

�5���	���
�

�����4���	���
!

Chapter 117 IntroductionAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 31

��	
�'�

�5.
"	2�"#�5���	���
�

������
	.
"	��	�����	
"	��
!

��	
�'�

�5���	2�"#�5���	���
�

������
	5	
����	����EF��	
����
!

��	
�'�

�5���*�2�"#�5.
"	2�"��5���	2�"��!

the interface 5���*�2�" inherits from both 5.
"	2�" and 5���	2�".

Classes and structs can implement multiple interfaces. In the example

��	
�'�

�57�	�2����
�

�����2����2���
��*��
!

)�*��
�
�����9��	2�"#����	�����5���	�����57�	�2����
�

)�*��
������4���	�������!

)�*��
������2����2���
��*������!
!

the class 9��	2�" derives from the class ���	��� and implements both 5���	��� and 57�	�2����.

In previous example, the 4���	 method from the 5���	��� interface and the 2��� method from 57�	�2����
interface are implemented using public members on the 9��	2�" class. C# provides an alternative way of
implementing these methods that allows the implementing class to avoid having these members be public.
Interface members can be implemented using a qualified name. For example, the 9��	2�" class could instead
be implemented by providing 5���	����4���	 and 57�	�2�����2��� methods.

)�*��
�
�����9��	2�"#�5���	�����57�	�2����
�

�����5���	����4���	�������!

�����57�	�2�����2����2���
��*������!
!

Interface members implemented in this way are called explicit interface members because each member
explicitly designates the interface member being implemented. Explicit interface members can only be called
via the interface. For example, the 9��	2�"’s implementation of the 4���	 method can be called only by
casting to the 5���	��� interface.

�����.
�	
�

�	�	�
��������������
9��	2�"�
��	*�"�,��
 �9��	2�"���

��	*�"�4���	��� ;;�
����#������
���
	���

5���	����
��	����,�
��	*�"�

��	����4���	��� ;;�
�����9��	2�"W��4���	���)�
�
�	�	���

!
!

1.10 Delegates
Delegates enable scenarios that some other languages have addressed with function pointers. However, unlike
function pointers, delegates are object-oriented, type-safe, and secure.

A delegate declaration defines a class that is derived from the class ���	
��7
�
��	
. A delegate instance
encapsulates one or more methods, each of which is referred to as a callable entity. For instance methods, a

C# LANGUAGE SPECIFICATION

32 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

callable entity consists of an instance and a method on that instance. For static methods, a callable entity consists
of just a method. Given a delegate instance and an appropriate set of arguments, one can invoke all of that
delegate instance’s methods with that set of arguments.

An interesting and useful property of a delegate instance is that it does not know or care about the classes of the
methods it encapsulates; all that matters is that those methods be compatible (§15.1) with the delegate’s type.
This makes delegates perfectly suited for “anonymous” invocation. This is a powerful capability.

There are three steps in defining and using delegates: declaration, instantiation, and invocation. Delegates are
declared using delegate declaration syntax. The example

�
�
��	
���������)�
7
�
��	
���

declares a delegate named ���)�
7
�
��	
 that takes no arguments and returns ����.

The example

�����.
�	
�

�	�	�
������6����
���	
��������
����	
���
��.
�	�6���

!

�	�	�
��������������
���)�
7
�
��	
���,��
 ����)�
7
�
��	
�6��
����

!
!

creates a ���)�
7
�
��	
 instance and then immediately calls it.

There is not much point in instantiating a delegate for a method and then immediately calling it via the delegate,
as it would be simpler to call the method directly. Delegates really show their usefulness when their anonymity
is used. The example

��������	���������)�
7
�
��	
������	�
���	���
'������	���,�-����G�
���	���HH�

����
!

!

shows a ���	����� method that repeatedly calls a ���)�
7
�
��	
. The ���	����� method doesn’t know
or care about the type of target method for the ���)�
7
�
��	
, what accessibility the method has, or whether
or not the method is static. All that matters is that the target method is compatible (§15.1) with
���)�
7
�
��	
.

1.11 Enums
An enum type declaration defines a type name for a related group of symbolic constants. Enums are used for
“multiple choice” scenarios, in which a runtime decision is made from a fixed number of choices that are known
at compile-time.

The example

���������
�

1
��
2��
�
3�

�

!

Chapter 117 IntroductionAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 33

��������)

�

)�*��
������6����������
�������
� �	
��
�������

��
�������1
�#
���
*�
�J�

��
�������2��
#
���
*�
�J�

��
�������3�

�#
���
*�
�J�

�
'���	#
*�
�J�

!
!

!

shows a ����� enum and a method that uses this enum. The signature of the 6��� method makes it clear that
the shape can be filled with one of the given colors.

The use of enums is superior to the use of integer constants—as is common in languages without enums—
because the use of enums makes the code more readable and self-documenting. The self-documenting nature of
the code also makes it possible for the development tool to assist with code writing and other “designer”
activities. For example, the use of ����� rather than ��	 for a parameter type enables smart code editors to
suggest ����� values.

1.12 Namespaces and assemblies
The programs presented so far have stood on their own except for dependence on a few system-provided classes
such as ���	
��������
. It is far more common, however, for real-world applications to consist of several
different pieces, each compiled separately. For example, a corporate application might depend on several
different components, including some developed internally and some purchased from independent software
vendors.

Namespaces and assemblies enable this component-based system. Namespaces provide a logical organizational
system. Namespaces are used both as an “internal” organization system for a program, and as an “external”
organization system—a way of presenting program elements that are exposed to other programs.

Assemblies are used for physical packaging and deployment. An assembly may contain types, the executable
code used to implement these types, and references to other assemblies.

There are two main kinds of assemblies: applications and libraries. Applications have a main entry point and
usually have a file extension of �
"
; libraries do not have a main entry point, and usually have a file extension
of ����.

To demonstrate the use of namespaces and assemblies, this section revisits the “hello, world” program presented
earlier, and splits it into two pieces: a class library that provides messages and a console application that
displays them.

The class library will contain a single class named �
����
����
. The example

;;��
�����*�����
�

C# LANGUAGE SPECIFICATION

34 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

���
�)�

���
����'	������)�5�	����
	���
�

)�*��
�
������
����
����

�

)�*��
��	������
����
��
�
	��

�
	������
����� ������
!

!
!

!

shows the �
����
����
 class in a namespace named ��
����'	������)�5�	����
	���. The
�
����
����
 class provides a read-only property named �
����
. Namespaces can nest, and the declaration

���
�)�

���
����'	������)�5�	����
	���
����!

is shorthand for several levels of namespace nesting:

���
�)�

���
����'	
�

���
�)�

������)
�

���
�)�

�5�	����
	���
����!

!
!

The next step in the componentization of “hello, world” is to write a console application that uses the
�
����
����
 class. The fully qualified name for the class—
��
����'	������)�5�	����
	�����
����
����
—could be used, but this name is quite long and
unwieldy. An easier way is to use a using namespace directive, which makes it possible to use all of the types in
a namespace without qualification. The example

;;��
���8))�
�

��������
����'	������)�5�	����
	����

������
���8))
�

�	�	�
��������������
�
����
����
���,��
 ��
����
����
���
���	
��������
����	
���
����
����
��

!
!

shows a using namespace directive that refers to the ��
����'	������)�5�	����
	��� namespace. The
occurrences of �
����
����
 are shorthand for ��
����'	������)�5�	����
	�����
����
����
.

C# also enables the definition and use of aliases. A using alias directive defines an alias for a type. Such aliases
can be useful in situation in which name collisions occur between two class libraries, or when a small number of
types from a much larger namespace are being used. The example

�������
����
����

�,���
����'	������)�5�	����
	�����
����
����
�

shows a using alias directive that defines �
����
����

 as an alias for the �
����
����
 class.

The code we have written can be compiled into a class library containing the class �
����
����
 and an
application containing the class �
���8)). The details of this compilation step might differ based on the
compiler or tool being used. Using the command-line compiler provided in Visual Studio .NET, the correct
invocations are

�
�;	���
	#��*������
�����*�����
�

Chapter 117 IntroductionAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 35

which produces a class library �
�����*�������� and

�
�;�
'
�
�

#�
�����*����������
���8))�
�

which produces the application �
���8))�
"
.

1.13 Versioning
Versioning is the process of evolving a component over time in a compatible manner. A new version of a
component is source compatible with a previous version if code that depends on the previous version can, when
recompiled, work with the new version. In contrast, a new version of a component is binary compatible if an
application that depended on the old version can, without recompilation, work with the new version.

Most languages do not support binary compatibility at all, and many do little to facilitate source compatibility.
In fact, some languages contain flaws that make it impossible, in general, to evolve a class over time without
breaking at least some client code.

As an example, consider the situation of a base class author who ships a class named 2��
. In the first version,
2��
 contains no 6 method. A component named 7
���
� derives from 2��
, and introduces an 6. This
7
���
� class, along with the class 2��
 on which it depends, is released to customers, who deploy to
numerous clients and servers.

;;�8�	����8
���
�)�

�8
�

)�*��
�
�����2��
 ;;��
������(
�
!

!

;;�8�	����2
���
�)�

�2
�

�����7
���
�#�8�2��

�

)�*��
����	���������6����
���	
��������
����	
���
��7
���
��6���

!
!

!

So far, so good. But now the versioning trouble begins. The author of 2��
 produces a new version, giving it its
own 6 method.

;;�8�	����8
���
�)�

�8
�

)�*��
�
�����2��
 ;;��
������/
�

)�*��
����	���������6���� ;;����
������
������/
���	
��������
����	
���
��2��
�6���

!
!

!

This new version of 2��
 should be both source and binary compatible with the initial version. (If it weren’t
possible to simply add a method then a base class could never evolve.) Unfortunately, the new 6 in 2��
 makes
the meaning of 7
���
�’s 6 unclear. Did 7
���
� mean to override 2��
’s 6? This seems unlikely, since
when 7
���
� was compiled, 2��
 did not even have an 6! Further, if 7
���
�’s 6 does override 2��
’s 6,
then it must adhere to the contract specified by 2��
—a contract that was unspecified when 7
���
� was
written? In some cases, this is impossible. For example, the contract of 2��
’s 6 might require that overrides of
it always call the base. 7
���
�’s 6 could not possibly adhere to such a contract.

C# LANGUAGE SPECIFICATION

36 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

C# addresses this versioning problem by requiring developers to state their intent clearly. In the original code
example, the code was clear, since 2��
 did not even have an 6. Clearly, 7
���
�’s 6 is intended as a new
method rather than an override of a base method, since no base method named 6 exists.

If 2��
 adds an 6 and ships a new version, then the intent of a binary version of 7
���
� is still clear—
7
���
�’s 6 is semantically unrelated, and should not be treated as an override.

However, when 7
���
� is recompiled, the meaning is unclear—the author of 7
���
� may intend its 6 to
override 2��
’s 6, or to hide it. Since the intent is unclear, the compiler produces a warning, and by default
makes 7
���
�’s 6 hide 2��
’s 6. This course of action duplicates the semantics for the case in which
7
���
� is not recompiled. The warning that is generated alerts 7
���
�’s author to the presence of the 6
method in 2��
.

If 7
���
�’s 6 is semantically unrelated to 2��
’s 6, then 7
���
�’s author can express this intent—and, in
effect, turn off the warning—by using the �
 keyword in the declaration of 6.

;;�8�	����8
���
�)�

�8
�

)�*��
�
�����2��
 ;;��
������/
�

)�*��
����	���������6�����;;����
������
������/
���	
��������
����	
���
��2��
�6���

!
!

!

;;�8�	����2
���
�)�

�2
�

�����7
���
�#�8�2��
 ;;��
������/�#��

�

�
 �)�*��
����	���������6����
���	
��������
����	
���
��7
���
��6���

!
!

!

On the other hand, 7
���
�’s author might investigate further, and decide that 7
���
�’s 6 should override
2��
’s 6. This intent can be specified by using the ��
����
 keyword, as shown below.

;;�8�	����8
���
�)�

�8
�

)�*��
�
�����2��
 ;;��
������/
�

)�*��
����	���������6�����;;����
������
������/
���	
��������
����	
���
��2��
�6���

!
!

!

;;�8�	����2
���
�)�

�2
�

�����7
���
�#�8�2��
 ;;��
������/*#���
����

�

)�*��
���
����
������6����
*��
�6���
���	
��������
����	
���
��7
���
��6���

!
!

!

Chapter 117 IntroductionAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 37

The author of 7
���
� has one other option, and that is to change the name of 6, thus completely avoiding the
name collision. Though this change would break source and binary compatibility for 7
���
�, the importance
of this compatibility varies depending on the scenario. If 7
���
� is not exposed to other programs, then
changing the name of 6 is likely a good idea, as it would improve the readability of the program—there would
no longer be any confusion about the meaning of 6.

1.14 Attributes
C# is an imperative language, but like all imperative languages it does have some declarative elements. For
example, the accessibility of a method in a class is specified by declaring it)�*��
,)��	

	
�, ��	
����,
)��	

	
����	
����, or)����	
. Through its support for attributes, C# generalizes this capability, so that
programmers can invent new kinds of declarative information, attach this declarative information to various
program entities, and retrieve this declarative information at run-time. Programs specify this additional
declarative information by defining and using attributes.

For instance, a framework might define a �
�)8		��*�	
 attribute that can be placed on program elements
such as classes and methods, enabling developers to provide a mapping from program elements to
documentation for them. The example

�E8		��*�	
=���
�8		��*�	
.���
	��8���F
)�*��
�
������
�)8		��*�	
#�8		��*�	

�

)�*��
��
�)8		��*�	
��	�����������
	��������,�����

!

)�*��
��	�����.�)�
�,������

)����	
��	���������

)�*��
��	�����=����
�
	����
	���������!

!
!

defines an attribute class named �
�)8		��*�	
, or �
�) for short, that has one positional parameter
(�	��������) and one named argument (�	�����.�)�
). Positional parameters are defined by the formal
parameters for public instance constructors of the attribute class, and named parameters are defined by public
non-static read-write fields and properties of the attribute class.

The example

E�
�)���)#;; ���
����'	�
��;���;�����(��	���F
)�*��
�
����������(
�

E�
�)���)#;; ���
����'	�
��;���;�����(��	����.�)�
�,��6��F
)�*��
������6����!

!

shows several uses of the attribute.

Attribute information for a given program element can be retrieved at run-time by using reflection support. The
example

C# LANGUAGE SPECIFICATION

38 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

�����.
�	
�

�	�	�
��������������
.�)
�	�)
�,�	�)
�'������(��
�*:

	EF�����,�	�)
�3
	���	��8		��*�	
��	�)
�'��
�)8		��*�	
���	��
��
�'�������
��	��,,�-�

������
����	
���
�������(���������
�)��		��*�	
����

��
��

�
�)8		��*�	
����,���
�)8		��*�	
�����E-F�
������
����	
���
��=���,��-!��.�)�
�,��(!������=�������.�)�
��

!
!

!

checks to see if �����(has a �
�) attribute, and writes out the associated .�)�
 and =�� values if the
attribute is present.

Chapter 217 Lexical structureAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 39

2. Lexical structure

This chapter defines the lexical structure of C# programs.

2.1 Programs
A C# program consists of one or more source files. A source file is an ordered sequence of Unicode characters.
Source files typically have a one-to-one correspondence with files in a file system, but this correspondence is
not required. For mamixal portability, it is recommended that files in a file system be encoded with the UTF-8
encoding.

Conceptually speaking, a program is compiled using three steps:

1. Transliteration, which converts a file from a particular character repertoire and encoding scheme into a
sequence of Unicode characters.

2. Lexical analysis, which translates a stream of Unicode input characters into a stream of tokens.

3. Syntactic analysis, which translates the stream of tokens into executable code.

2.2 Grammars
This specification presents the syntax of the C# programming language using two grammars. The lexical
grammar (§2.2.2) defines how Unicode characters are combined to form line terminators, white space,
comments, tokens, and pre-processing directives. The syntactic grammar (§2.2.3) defines how the tokens
resulting from the lexical grammar are combined to form C# programs.

2.2.1 Grammar notation

The lexical and syntactic grammars are presented using grammar productions. Each grammar production
defines a non-terminal symbol and the possible expansions of that non-terminal symbol into sequences of non-
terminal or terminal symbols. In grammar productions, non-terminal symbols are shown in italic type, and
	
������ symbols are shown in a fixed-width font.

The first line of a grammar production is the name of the non-terminal symbol being defined, followed by a
colon. Each successive indented line contains a possible expansion of the non-terminal given as a sequence of
non-terminal or terminal symbols. For example, the production:

while-statement:
 ���
 � boolean-expression � embedded-statement

defines a while-statement to consist of the token ���
, followed by the token “�”, followed by a boolean-
expression, followed by the token “�”, followed by an embedded-statement.

When there is more than one possible expansion of a non-terminal symbol, the alternatives are listed on separate
lines. For example, the production:

statement-list:
statement
statement-list statement

defines a statement-list to either consist of a statement or consist of a statement-list followed by a statement. In
other words, the definition is recursive and specifies that a statement list consists of one or more statements.

C# LANGUAGE SPECIFICATION

40 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

A subscripted suffix “opt” is used to indicate an optional symbol. The production:

block:
� statement-listopt !

is shorthand for:

block:
� !
� statement-list !

and defines a block to consist of an optional statement-list enclosed in “�” and “!” tokens.

Alternatives are normally listed on separate lines, though in cases where there are many alternatives, the phrase
“one of” may precede a list of expansions given on a single line. This is simply shorthand for listing each of the
alternatives on a separate line. For example, the production:

real-type-suffix: one of
6��'��7���������

is shorthand for:

real-type-suffix:
6

'

7

�

�

�

2.2.2 Lexical grammar

The lexical grammar of C# is presented in §2.3, §2.4, and §2.5. The terminal symbols of the lexical grammar are
the characters of the Unicode character set, and the lexical grammar specifies how characters are combined to
form tokens (§2.4), white space (§2.3.2), comments (§2.3.3), and pre-processing directives (§2.5).

Every source file in a C# program must conform to the input production of the lexical grammar (§2.3).

2.2.3 Syntactic grammar

The syntactic grammar of C# is presented in the chapters and appendices that follow this chapter. The terminal
symbols of the syntactic grammar are the tokens defined by the lexical grammar, and the syntactic grammar
specifies how tokens are combined to form C# programs.

Every source file in a C# program must conform to the compilation-unit production of the syntactic grammar
(§9.1).

2.3 Lexical analysis
The input production defines the lexical structure of a C# source file. Each source file in a C# program must
conform to this lexical grammar production.

input:
input-sectionopt

input-section:
input-section-part
input-section input-section-part

Chapter 217 Lexical structureAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 41

input-section-part:
input-elementsopt new-line
pp-directive

input-elements:
input-element
input-elements input-element

input-element:
whitespace
comment
token

Five basic elements make up the lexical structure of a C# source file: Line terminators (§2.3.1), white space
(§2.3.2), comments (§2.3.3), tokens (§2.4), and pre-processing directives (§2.5). Of these basic elements, only
tokens are significant in the syntactic grammar of a C# program (§2.2.3).

The lexical processing of a C# source file consists of reducing the file into a sequence of tokens which becomes
the input to the syntactic analysis. Line terminators, white space, and comments can serve to separate tokens,
and pre-processing directives can cause sections of the source file to be skipped, but otherwise these lexical
elements have no impact on the syntactic structure of a C# program.

When several lexical grammar productions match a sequence of characters in a source file, the lexical
processing always forms the longest possible lexical element. For example, the character sequence ;; is
processed as the beginning of a single-line comment because that lexical element is longer than a single ; token.

2.3.1 Line terminators

Line terminators divide the characters of a C# source file into lines.

new-line:
Carriage return character (=H---7)
Line feed character (=H---8)
Carriage return character (=H---7) followed by line feed character (=H---8)
Line separator character (=H/-/A)
Paragraph separator character (=H/-/D)

For compatibility with source code editing tools that add end-of-file markers, and to enable a source file to be
viewed as a sequence of properly terminated lines, the following transformations are applied, in order, to every
source file in a C# program:

• If the last character of the source file is a Control-Z character (=H--(8), this character is deleted.

• A carriage-return character (=H---7) is added to the end of the source file if the source file is non-empty
and if the last character of the source file is not a carriage return (=H---7), a line feed (=H---8), a line
separator (=H/-/A), or a paragraph separator (=H/-/D).

2.3.2 White space

White space is defined as any character with Unicode class Zs (which includes the space character) as well as
the horizontal tab character, the vertical tab character, and the form feed character.

whitespace:
Any character with Unicode class Zs
Horizontal tab character (=H---D)
Vertical tab character (=H---2)
Form feed character (=H---�)

C# LANGUAGE SPECIFICATION

42 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

2.3.3 Comments

Two forms of comments are supported: single-line comments and delimited comments. Single-line comments
start with the characters ;; and extend to the end of the source line. Delimited comments start with the
characters ;I and end with the characters I;. Delimited comments may span multiple lines.

comment:
single-line-comment
delimited-comment

single-line-comment:
;; input-charactersopt

input-characters:
input-character
input-characters input-character

input-character:
Any Unicode character except a new-line-character

new-line-character:
Carriage return character (=H---7)
Line feed character (=H---8)
Line separator character (=H/-/A)
Paragraph separator character (=H/-/D)

delimited-comment:
;I delimited-comment-charactersopt I;

delimited-comment-characters:
delimited-comment-character
delimited-comment-characters delimited-comment-character

delimited-comment-character:
not-asterisk
* not-slash

not-asterisk:
Any Unicode character except I

not-slash:
Any Unicode character except ;

Comments do not nest. The character sequences ;I and I; have no special meaning within a ;; comment, and
the character sequences ;; and ;I have no special meaning within a delimited comment.

Comments are not processed within character and string literals.

The example

;I��
����� �����)������
.����)������� ��	
��Z�
����� ����[�	��	�
�
�����

I;

������
���
�

�	�	�
��������������
���	
��������
����	
���
���
����� �������

!
!

includes a delimited comment.

Chapter 217 Lexical structureAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 43

The example

;;��
����� �����)������
;; .����)������� ��	
��Z�
����� ����[�	��	�
�
�����

;;

������
����;;��������
� �������'���	����
����
�

�	�	�
���������������;;�	�����
	�������	�*
����
��������
���	
��������
����	
���
���
����� �������

!
!

shows several single-line comments.

2.4 Tokens
There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space and
comments are not tokens, though they may act as separators for tokens.

token:
identifier
keyword
integer-literal
real-literal
character-literal
string-literal
operator-or-punctuator

2.4.1 Unicode character escape sequences

A Unicode character escape sequence represents a Unicode character. Unicode character escape sequences are
processed in identifiers (§2.4.2), character literals (§2.4.4.4), and regular string literals (§2.4.4.5). A Unicode
character escape is not processed in any other location (for example, to form an operator, punctuator, or
keyword).

unicode-escape-sequence:
M� hex-digit hex-digit hex-digit hex-digit
M= hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit

A Unicode escape sequence represents the single Unicode character formed by the hexadecimal number
following the “M�” or “M=” characters. Since C# uses a 16-bit encoding of Unicode characters in characters and
string values, a Unicode character in the range U+10000 to U+10FFFF is not permitted in a character literal and
is represented using two Unicode surrogate characters in a string literal. Unicode characters with code points
above 0x10FFFF are not supported.

Multiple translations are not performed. For instance, the string literal “M�-->��-->�” is equivalent to
“M�-->�” rather than “MM”. (The Unicode value M�-->� is the character “\”.)

The example

����������(
�

�	�	�
������.
�	�*����M�--??���

����
�,�BM�--??B�
�'��M�--??�

���	
��������
����	
���
�
�.��	��������
!

!

C# LANGUAGE SPECIFICATION

44 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

shows several uses of M�--??, which is the character escape sequence for the letter “'”. The program is
equivalent to

����������(
�

�	�	�
������.
�	�*����'���

����
�,�B'B�
�'��'�

���	
��������
����	
���
�
�.��	��������
!

!

2.4.2 Identifiers

The rules for identifiers given in this section correspond exactly to those recommended by the Unicode 3.0
standard, Technical Report 15, Annex 7, except that underscore is allowed as an initial character (as is
traditional in the C programming language), Unicode escape characters are permitted in identifiers, and the “@”
character is allowed as a prefix to enable keywords to be used as identifiers.

identifier:
available-identifier
\ identifier-or-keyword

available-identifier:
An identifier-or-keyword that is not a keyword

identifier-or-keyword:
identifier-start-character identifier-part-charactersopt

identifier-start-character:
letter-character
V (the underscore character =H-->6)

identifier-part-characters:
identifier-part-character
identifier-part-characters identifier-part-character

identifier-part-character:
letter-character
decimal-digit-character
connecting-character
combining-character
formatting-character

letter-character:
A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nl
A unicode-escape-sequence representing a character of classes Lu, Ll, Lt, Lm, Lo, or Nl

combining-character:
A Unicode character of classes Mn or Mc
A unicode-escape-sequence representing a character of classes Mn or Mc

decimal-digit-character:
A Unicode character of the class Nd
A unicode-escape-sequence representing a character of the class Nd

connecting-character:
A Unicode character of the class Pc
A unicode-escape-sequence representing a character of the class Pc

Chapter 217 Lexical structureAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 45

formatting-character:
A Unicode character of the class Cf
A unicode-escape-sequence representing a character of the class Cf

Examples of valid identifiers include “��
�	�'�
�(”, “V��
�	�'�
�/”, and “\�'”.

An identifier in a conforming program must be in the canonical format defined by Unicode Normalization
Form C, as defined by Unicode Standard Annex 15. The behavior when encountering an identifier not in
Normalization Form C is implementation-defined; however, a diagnostic is not required.

The prefix “\” enables the use of keywords as identifiers, which is useful when interfacing with other
programming languages. The character \ is not actually part of the identifier, so the identifier might be seen in
other languages as a normal identifier, without the prefix. An identifier with an \ prefix is called a verbatim
identifier. Use of the \ prefix for identifiers that are not keywords is permitted, but strongly discouraged as a
matter of style.

The example:

�����\
����
�

)�*��
��	�	�
������\�	�	�
�*����*������
�'��*����

���	
��������
����	
���
��	��
���

��

���	
��������
����	
���
��'���
���
!

!

����������(
�

�	�	�
�����������

�M�--?(����	M�--?(�
�	��
��

!
!

defines a class named “
����” with a static method named “�	�	�
” that takes a parameter named “*���”.
Note that since Unicode escapes are not permitted in keywords, the token “
�M�--?(��” is an identifier, and is
the same identifier as “\
����”.

Two identifiers are considered the same if they are identical after the following transformations are applied, in
order:

• The prefix “\”, if used, is removed.

• Each unicode-escape-sequence is transformed into its corresponding Unicode character

Identifiers containing two consecutive underscore characters are reserved for use by the implementation. For
example, an implementation might provide extended keywords that begin with two underscores.

2.4.3 Keywords

A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier except
when prefaced by the \ character.

C# LANGUAGE SPECIFICATION

46 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

keyword: one of
�*�	��
	 �� *��
 *��� *�
�J

*�	

��

�	
�
���
�

J
�

����
���	
��	���
 �

���� �
'���	

�
�
��	
 �� ���*�

��

���

�
�	
")��
�	
"	
�� '���
 '������

'�"
� '���	 '�� '��
�
� ��	�

�' ��)��
�	 �� ��	 ��	
�'�

��	
���� �� ��
J ���� ���
�)�

�
 ���� �*:

	 �)
��	�� ��	

��
����
)�����)����	
)��	

	
�)�*��

�
������ �
' �
	��� �*�	
 �
��
�

����	 ��T
�' �	�
J����
 �	�	�
 �	����

�	��
	 � �	
� 	��� 	��� 	��

	�� 	�)
�' ���	 ����� ��
�

J
�

����'
 �����	 ����� ���	��� ����

����	��
 ���

In some places in the grammar, specific identifiers have special meaning, but are not keywords. For example,
within a property declaration, the “�
	” and “�
	” identifiers have special meaning (§10.6.2). An identifier
other than �
	 or �
	 is never permitted in these locations, so this use does not conflict with a use of these
words as identifiers.

2.4.4 Literals

A literal is a source code representation of a value.

literal:
boolean-literal
integer-literal
real-literal
character-literal
string-literal
null-literal

2.4.4.1 Boolean literals

There are two boolean literal values: 	��
 and '���
.

boolean-literal:
	��

'���

The type of a boolean-literal is *���.

2.4.4.2 Integer literals

Integer literals are used to write values of types ��	, ���	, ����, and �����. Integer literals have two possible
forms: decimal and hexadecimal.

integer-literal:
decimal-integer-literal
hexadecimal-integer-literal

decimal-integer-literal:
decimal-digits integer-type-suffixopt

Chapter 217 Lexical structureAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 47

decimal-digits:
decimal-digit
decimal-digits decimal-digit

decimal-digit: one of
-��(��/��0��<��>��?��@��A��D

integer-type-suffix: one of
=�����������=���=������������=�������=����

hexadecimal-integer-literal:
-" hex-digits integer-type-suffixopt

-N hex-digits integer-type-suffixopt

hex-digits:
hex-digit
hex-digits hex-digit

hex-digit: one of
-��(��/��0��<��>��?��@��A��D��8��2�����7��9��6�����*��
�����
��'

The type of an integer literal is determined as follows:

• If the literal has no suffix, it has the first of these types in which its value can be represented: ��	, ���	,
����, �����.

• If the literal is suffixed by = or �, it has the first of these types in which its value can be represented: ���	,
�����.

• If the literal is suffixed by � or �, it has the first of these types in which its value can be represented: ����,
�����.

• If the literal is suffixed by =�, =�, ��, ��, �=, ��, �=, or ��, it is of type �����.

If the value represented by an integer literal is outside the range of the ����� type, a compile-time error occurs.

As a matter of style, it is suggested that “�” be used instead of “�” when writing literals of type ����, since it is
easy to confuse the letter “�” with the digit “(”.

To permit the smallest possible ��	 and ���� values to be written as decimal integer literals, the following two
rules exist:

• When a decimal-integer-literal with the value 2147483648 (231) and no integer-type-suffix appears as the
token immediately following a unary minus operator token (§7.6.2), the result is a constant of type ��	 with
the value �����������	
��31). In all other situations, such a decimal-integer-literal is of type ���	.

• When a decimal-integer-literal with the value 9223372036854775808 (263) and no integer-type-suffix
appears as the token immediately following a unary minus operator token (§7.6.2), the result is a constant of
type ���� with the value ������������
���
���	
��63). In all other situations, such a decimal-integer-
literal is of type �����.

2.4.4.3 Real literals

Real literals are used to write values of types '���	, ���*�
, and �

����.

real-literal:
decimal-digits � decimal-digits exponent-partopt real-type-suffixopt

� decimal-digits exponent-partopt real-type-suffixopt

decimal-digits exponent-part real-type-suffixopt

decimal-digits real-type-suffix

C# LANGUAGE SPECIFICATION

48 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

exponent-part:

 signopt decimal-digits
9 signopt decimal-digits

sign: one of
H��$

real-type-suffix: one of
6��'��7���������

If no real-type-suffix is specified, the type of the real literal is ���*�
. Otherwise, the real type suffix
determines the type of the real literal, as follows:

• A real literal suffixed by 6 or ' is of type '���	. For example, the literals (', (�>', (
(-', and
(/0�<>?6 are all of type '���	.

• A real literal suffixed by 7 or � is of type ���*�
. For example, the literals (�, (�>�, (
(-�, and
(/0�<>?7 are all of type ���*�
.

• A real literal suffixed by � or � is of type �

����. For example, the literals (�, (�>�, (
(-�, and
(/0�<>?� are all of type �

����. This literal is converted to a �

���� value by taking the exact value,
and, if necessary, rounding to the nearest representable value using banker's rounding. Any scale apparent in
the literal is preserved unless the value is rounded or the value is zero (in which latter case the sign and scale
will be 0). Hence, the literal /�D--� will be parsed to form the decimal with sign -, coefficient /D--, and
scale 0.

If the specified literal cannot be represented in the indicated type, then a compile-time error occurs.

The value of a real literal of type '���	 or ���*�
 is determined by using the IEEE “round to nearest” mode.

2.4.4.4 Character literals

A character literal represents a single character, and usually consists of a character in quotes, as in B�B.

character-literal:
B character B

character:
single-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-escape-sequence

single-character:
 Any character except B (=H--/@), M (=H-->�), and new-line-character

simple-escape-sequence: one of
MB��M���MM��M-��M���M*��M'��M���M���M	��M�

hexadecimal-escape-sequence:
M" hex-digit hex-digitopt hex-digitopt hex-digitopt

A character that follows a backslash character (M) in a character must be one of the following characters: B, �,
M, -, �, *, ', �, �, 	, �, =, ", �. Otherwise, a compile-time error occurs.

A simple escape sequence represents a Unicode character encoding, as described in the table below.

Chapter 217 Lexical structureAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 49

Escape
sequence

Character
name

Unicode
encoding

MB Single quote -"--/@

M� Double quote -"--//

MM Backslash -"-->�

M- Null -"----

M� Alert -"---@

M* Backspace -"---A

M' Form feed -"---�

M� New line -"---8

M� Carriage return -"---7

M	 Horizontal tab -"---D

M� Vertical tab -"---2

A hexadecimal escape sequence represents a single Unicode character, with the value formed by the
hexadecimal number following “M"”.

If the value represented by a character literal is greater than U+FFFF, a compile-time error occurs.

A Unicode character escape sequence (§2.4.1) in a character literal must be in the range =H---- to =H6666.

The type of a character-literal is
���.

2.4.4.5 String literals

C# supports two forms of string literals: regular string literals and verbatim string literals.

A regular string literal consists of zero or more characters enclosed in double quotes, as in ��
����, and may
include both simple escape sequences (such as M	 for the tab character), hexadecimal escape sequences, and
Unicode escape sequences.

A verbatim string literal consists of an \ character followed by a double-quote character, zero or more
characters, and a closing double-quote character. A simple example is \��
����. In a verbatim string literal,
the characters between the delimiters are interpreted verbatim, the only exception being a quote-escape-
sequence. In particular, simple escape sequences, hexadecimal escape sequences, and Unicode character escape
sequences are not processed in verbatim string literals. A verbatim string literal may span multiple lines.

string-literal:
regular-string-literal
verbatim-string-literal

regular-string-literal:
� regular-string-literal-charactersopt �

regular-string-literal-characters:
regular-string-literal-character
regular-string-literal-characters regular-string-literal-character

C# LANGUAGE SPECIFICATION

50 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

regular-string-literal-character:
single-regular-string-literal-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-escape-sequence

single-regular-string-literal-character:
Any character except � (=H--//), M (=H-->�), and new-line-character

verbatim-string-literal:
\� verbatim -string-literal-charactersopt �

verbatim-string-literal-characters:
verbatim-string-literal-character
verbatim-string-literal-characters verbatim-string-literal-character

verbatim-string-literal-character:
single-verbatim-string-literal-character
quote-escape-sequence

single-verbatim-string-literal-character:
any character except �

quote-escape-sequence:
��

A character that follows a backslash character (M) in a regular-string-literal-character must be one of the
following characters: B, �, M, -, �, *, ', �, �, 	, �, =, ", �. Otherwise, a compile-time error occurs.

The example

�	�������,���
����� ������ ;;��
����� ����
�	�����*�,�\��
����� ������ ;;��
����� ����

�	�����
�,���
����M	� ������ ;;��
���� � ����
�	�������,�\��
����M	� ������ ;;��
����M	� ����

�	�����
�,��]�
������M��
���M��	���
�� ;;�]�
��������
�����	���

�	�����'�,�\�]�
���������
������	���
�� ;;�]�
��������
�����	���

�	�������,��MMMM�
��
�MM����
MM'��
�	"	�� ;;�MM�
��
�M����
M'��
�	"	
�	�������,�\�MM�
��
�M����
M'��
�	"	�� ;;�MM�
��
�M����
M'��
�	"	

�	�������,����
M�	 �M�	��

��
�	�����:�,�\���

	 �
	��

��

shows a variety of string literals. The last string literal, :, is a verbatim string literal that spans multiple lines.
The characters between the quotation marks, including white space such as newline characters, are preserved
verbatim.

Since a hexadecimal escape sequence can have a variable number of hex digits, the string literal �M"(/0�
contains�a single character with hex value 123. To create a string containing the two characters with hex values
0012 and 0003, respectively, one could write �M"--(/---0��or��M"--(/��H��M"---0� instead.

The type of a string-literal is �	����.

Each string literal does not necessarily result in a new string instance. When two or more string literals that are
equivalent according to the string equality operator (§7.9.7) appear in the same assembly, these string literals
refer to the same string instance. For instance, the output produced by

Chapter 217 Lexical structureAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 51

�����.
�	
�

�	�	�
��������������
�*:

	���,���
�����
�*:

	�*�,���
�����
���	
��������
����	
���
���,,�*��

!
!

is .��
 because the two literals refer to the same string instance.

2.4.4.6 The null literal

null-literal:
����

The type of a null-literal is the null type.

2.4.5 Operators and punctuators

There are several kinds of operators and punctuators. Operators are used in expressions to describe operations
involving one or more operands. For example, the expression ��H�* uses the H operator to add the two
operands � and *. Punctuators are for grouping and separating.

operator-or-punctuator: one of
� ! E F � � � � # �

H $ I ; L P R Q C O

, G % S HH $$ PP RR GG %%

,, C, G, %, H, $, I, ;, L, P,

R, Q, GG, %%, $%

2.5 Pre-processing direct ives
The pre-processing directives provide the ability to conditionally skip sections of source files, to report error and
warning conditions, and to delineate distinct regions of source code. The term “pre-processing directives” is
used only for consistency with the C and C++ programming languages. In C#, there is no separate pre-
processing step; pre-processing directives are processed as part of the lexical analysis phase.

pp-directive:
pp-declaration
pp-conditional
pp-line
pp-diagnostic
pp-region

pp-new-line:
whitespaceopt single-line-commentopt new-line

The following pre-processing directives are available:

• &�
'��
 and &���
', which are used to define and undefine conditional compilation symbols (§2.5.3).

• &�', &
��', &
��
, and &
���', which are used to conditionally skip sections of source code (§2.5.4).

• &���
, which is used to control line numbers emitted for errors and warnings (§2.5.5).

• &
���� and & ������, which are used to issue errors and warnings (§2.5.6).

• &�
���� and &
���
����, which are used to explicitly mark sections of source code (§2.5.7).

C# LANGUAGE SPECIFICATION

52 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

A pre-processing directive always occupies a separate line of source code and always begins with a & character
and a pre-processing directive name. Whitespace may occur before the & character and between the & character
and the directive name.

A source line containing a &�
'��
, &���
', &�', &
��', &
��
, &
���', or &���
 directive may end with
a single-line comment. Delimited comments (the ;I I; style of comments) are not permitted on source lines
containing pre-processing directives.

Pre-processing directives are not tokens and are not part of the syntactic grammar of C#. However, pre-
processing directives can be used to include or exclude sequences of tokens and can in that way affect the
meaning of a C# program. For example, the program:

&�
'��
�8
&���
'�2

������
�
&�'�8

�����6����!
&
��

�����3����!
&
���'

&�'�2
����������!

&
��

�����5����!

&
���'
!

produces the exact same sequence of tokens as the program:

������
�

�����6����!
�����5����!

!

Thus, whereas the two programs are lexically quite different, they are syntactically identical.

2.5.1 Conditional compilation symbols

The conditional compilation functionality provided by the &�', &
��', &
��
, and &
���' directives is
controlled through pre-processing expressions (§2.5.1) and conditional compilation symbols.

conditional-symbol:
Any identifier-or-keyword except 	��
 or '���

A conditional compilation symbol has two possible states: defined or undefined. At the beginning of the lexical
processing of a source file, a conditional compilation symbol is undefined unless it has been explicitly defined
by an external mechanism (such as a command-line compiler option). When a &�
'��
 directive is processed,
the conditional compilation symbol named in the directive becomes defined in that source file. The symbol
remains defined until an &���
' directive for that same symbol is processed, or until the end of the source file
is reached. An implication of this is that &�
'��
 and &���
' directives in one source file have no effect on
other source files in the same program.

When referenced in a pre-processing expression, a defined conditional compilation symbol has the boolean
value 	��
, and an undefined conditional compilation symbol has the boolean value '���
. There is no
requirement that conditional compilation symbols be explicitly declared before they are referenced in pre-
processing expressions. Instead, undeclared symbols are simply undefined and thus have the value '���
.

Chapter 217 Lexical structureAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 53

The name space for conditional compilation symbols is distinct and separate from all other named entities in a
C# program. Conditional compilation symbols can only be referenced in &�
'��
 and &���
' directives and
in pre-processing expressions.

2.5.2 Pre-processing expressions

Pre-processing expressions can occur in &�' and &
��' directives. The C, ,,, C,, PP and RR operators are
permitted in pre-processing expressions, and parentheses may be used for grouping.

pp-expression:
whitespaceopt pp-or-expression whitespaceopt

pp-or-expression:
pp-and-expression
pp-or-expression whitespaceopt RR whitespaceopt pp-and-expression

pp-and-expression:
pp-equality-expression
pp-and-expression whitespaceopt PP whitespaceopt pp-equality-expression

pp-equality-expression:
pp-unary-expression
pp-equality-expression whitespaceopt ,, whitespaceopt pp-unary-expression
pp-equality-expression whitespaceopt C, whitespaceopt pp-unary-expression

pp-unary-expression:
pp-primary-expression
C whitespaceopt pp-unary-expression

pp-primary-expression:
	��

'���

conditional-symbol
� whitespaceopt pp-expression whitespaceopt �

When referenced in a pre-processing expression, a defined conditional compilation symbol has the boolean
value 	��
, and an undefined conditional compilation symbol has the boolean value '���
.

Evaluation of a pre-processing expression always yields a boolean value. The rules of evaluation for a pre-
processing expression are the same as those for a constant expression (§7.15), except that the only user-defined
entities that can be referenced are conditional compilation symbols.

2.5.3 Declaration directives

The declaration directives are used to define or undefine conditional compilation symbols.

pp-declaration:
whitespaceopt & whitespaceopt �
'��
 whitespace conditional-symbol pp-new-line
whitespaceopt & whitespaceopt ���
' whitespace conditional-symbol pp-new-line

The processing of a &�
'��
 directive causes the given conditional compilation symbol to become defined,
starting with the source line that follows the directive. Likewise, the processing of an &���
' directive causes
the given conditional compilation symbol to become undefined, starting with the source line that follows the
directive.

Any &�
'��
 and &���
' directives in a source file must occur before the first token (§2.4) in the source file,
or otherwise a compile-time error occurs. In intuitive terms, &�
'��
 and &���
' directives must precede any
“real code” in the source file.

C# LANGUAGE SPECIFICATION

54 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The example:

&�
'��
�9�	
�)���

&�'�4��'
��������RR�9�	
�)���

&�
'��
�8����

�

&
���'

���
�)�

��
��
��)�7�	�
�

&�'�8����

�

�����4���	.�*�
�����!
&
���'

!

is valid because the &�
'��
 directives precede the first token (the ���
�)�

 keyword) in the source file.

A &�
'��
 may define a conditional compilation symbol that is already defined, without there being any
intervening &���
' for that symbol. The example below defines a conditional compilation symbol 8 and then
defines it again.

&�
'��
�8
&�
'��
�8

An &���
' directive may undefine a conditional compilation symbol that is not defined. The example below
defines a conditional compilation symbol and then undefines it twice; the second &���
' has no effect but is
still valid.

&�
'��
�8
&���
'�8
&���
'�8

2.5.4 Conditional compilation directives

The conditional compilation directives are used to conditionally include or exclude portions of a source file.

pp-conditional:
pp-if-section pp-elif-sectionsopt pp-else-sectionopt pp-endif

pp-if-section:
whitespaceopt & whitespaceopt �' whitespace pp-expression pp-new-line conditional-
sectionopt

pp-elif-sections:
pp-elif-section
pp-elif-sections pp-elif-section

pp-elif-section:
whitespaceopt & whitespaceopt
��' whitespace pp-expression pp-new-line conditional-
sectionopt

pp-else-section:
whitespaceopt & whitespaceopt
��
 pp-new-line conditional-sectionopt

pp-endif-line:
whitespaceopt & whitespaceopt
���' pp-new-line

conditional-section:
input-section
skipped-section

Chapter 217 Lexical structureAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 55

skipped-section:
skipped-section-part
skipped-section skipped-section-part

skipped-section-part:
skipped-charactersopt new-line
pp-directive

skipped-characters:
whitespaceopt not-number-sign input-charactersopt

not-number-sign:
Any input-character except &

As indicated by the syntax, conditional compilation directives must be written as sets consisting of, in order, an
&�' directive, zero or more &
��' directives, zero or one &
��
 directive, and an &
���' directive. Between
the directives are conditional sections of source code. Each section is controlled by the immediately preceding
directive. A conditional section may itself contain nested conditional compilation directives provided these
directives form complete sets.

A pp-conditional selects at most one of the contained conditional-sections for normal lexical processing:

• The pp-expressions of the &�' and &
��' directives are evaluated in order until one yields 	��
. If an
expression yields 	��
, the conditional-section of the corresponding directive is selected.

• If all pp-expressions yield '���
, and if an &
��
 directive is present, the conditional-section of the &
��

directive is selected.

• Otherwise, no conditional-section is selected.

The selected conditional-section, if any, is processed as a normal input-section: the source code contained in the
section must adhere to the lexical grammar; tokens are generated from the source code in the section; and pre-
processing directives in the section have the prescribed effects.

The remaining conditional-sections, if any, are processed as skipped-sections: except for pre-processing
directives, the source code in the section need not adhere to the lexical grammar; no tokens are generated from
the source code in the section; and pre-processing directives in the section must be lexically correct but are not
otherwise processed. Within a conditional-section that is being processed as a skipped-section, any nested
conditional-sections (contained in nested &�'...&
���' and &�
����...&
���
���� constructs) are also
processed as skipped-sections.

The following example illustrates how conditional compilation directives can nest:

&�
'��
�7
*�� ;;�7
*���������
&���
'�.��

 ;;�.��
�����''

�����4��
���
.�����
	���
�

����������	����
&�'�7
*��

��

J������	
�
����
&�'�.��

���	
.�����	����.��	��������
&
���'

&
���'
�����	�
�)
����

!
!

Except for pre-processing directives, skipped source code is not subject to lexical analysis. For example, the
following is valid despite the unterminated comment in the &
��
 section:

C# LANGUAGE SPECIFICATION

56 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

&�
'��
�7
*�� ;;�7
*���������

�����4��
���
.�����
	���
�

����������	����
&�'�7
*��

��

J������	
�
����
&
��

���������;I�7�����
	�����
��

������&
���'

!
!

Note, however, that pre-processing directives are required to be lexically correct even in skipped sections of
source code.

Pre-processing directives are not processed when they appear inside multi-line input elements. For example, the
program:

������
���
�

�	�	�
��������������
���	
��������
����	
���
�\��
����

&�'�7
*��
 ����

&
��

K
*���J�

&
���'
���������

!
!

produces the output:

�
����
&�'�7
*��

 ����
&
��

K
*���J�
&
���'

In peculiar cases, the set of pre-processing directives that are processed might depend on the evaluation of the
pp-expression. The example:

&�'�N
;I

&
��

;I�I;�
�����^���!

&
���'

always produces the same token stream (
���� ^ � !), regardless of whether N is defined or not. If N is defined,
the only processed directives are &�' and &
���', due to the multi-line comment. If N is undefined, then three
directives (&�', &
��
, &
���') are part of the directive set.

2.5.5 Line directives

Line directives may be used to alter the line numbers and source file names that are reported by the compiler in
output such as warnings and errors.

pp-line:
whitespaceopt & whitespaceopt ���
 whitespace line-indicator pp-new-line

Chapter 217 Lexical structureAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 57

line-indicator:
decimal-digits whitespace file-name
decimal-digits
�
'���	

file-name:
� file-name-characters �

file-name-characters:
file-name-character
file-name-characters file-name-character

file-name-character:
Any input-character except �

When no &���
 directives are present, the compiler reports true line numbers and source file names in its
output. The &���
 directive is most commonly used in meta-programming tools that generate C# source code
from some other text input. When processing a &���
 directive that includes a line-indicator that is not
�
'���	, the compiler treats the line after the directive as having the given line number (and file name, if
specified).

A &���
��
'���	 directive reverses the effect of all preceding #line directives. The compiler reports true line
information for subsequent lines, precisely as if no &���
 directives had been processed.

Note that the file-name of a &���
 directive differs from an ordinary string literal in that escape characters are
not processed; the ‘M’ character simply designates an ordinary backslash character within a file-name.

2.5.6 Diagnostic directives

The diagnostic directives are used to explicitly generate error and warning messages that are reported in the
same way as other compile-time errors and warnings.

pp-diagnostic:
whitespaceopt & whitespaceopt
���� pp-message
whitespaceopt & whitespaceopt ������ pp-message

pp-message:
new-line
whitespace input-charactersopt new-line

The example:

& ����������
��
��
 ��

�
��*
'��
�
�

J$��

&�'�7
*���PP�1
	���
&
�����8�*�����
��B	�*
�*�	���
*��������
	���

&
���'

�����.
�	�����!

always produces a warning (“Code review needed before check-in”), and produces a compile-time error (“A
build can’ t be both debug and retail”) if the conditional symbols 7
*�� and 1
	��� are both defined.

2.5.7 Region directives

The region directives are used to explicitly mark regions of source code.

pp-region:
pp-start-region conditional-sectionopt pp-end-region

C# LANGUAGE SPECIFICATION

58 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

pp-start-region:
whitespaceopt & whitespaceopt �
���� pp-message

pp-end-region:
whitespaceopt & whitespaceopt
���
���� pp-message

No semantic meaning is attached to a region; regions are intended for use by the programmer or automated tools
to mark a section of source code. The message specified in a &�
���� or &
���
���� directive likewise has
no semantic meaning; it merely serves to identify the region. Matching &�
���� and &
���
���� directives
may have different pp-messages.

The lexical processing of a region:

&�
����
���
&
���
����

corresponds exactly to the lexical processing of a conditional compilation directive of the form:

&�'�	��

���
&
���'

Chapter 317 Basic conceptsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 59

3. Basic concepts

This chapter defines basic concepts that are required for understanding subsequent chapters.

3.1 Application Startup
An assembly that has an entry point is called an application. When an application is run, a new application
domain is created. Several different instantiations of an application may exist on the same machine at the same
time, and each has its own application domain.

An application domain enables application isolation by acting as a container for application state. An application
domain acts as a container and boundary for the types defined in the application and the class libraries it uses.
Types loaded into one application domain are distinct from the same type loaded into another application
domain, and instances of objects are not directly shared between application domains. For instance, each
application domain has its own copy of static variables for these types, and a static constructor for a type is run
at most once per application domain. Implementations are free to provide implementation-specific policy or
mechanisms for the creation and destruction of application domains.

Application startup occurs when the execution environment calls a designated method, which is referred to as
the application's entry point. This entry point method is always named ����, and can have one of the following
signatures:

�	�	�
�����������������!

�	�	�
������������	����EF�����������!

�	�	�
���	������������!

�	�	�
���	�������	����EF�����������!

As shown, the entry point may optionally return an ��	 value. This return value is used in application
termination (§3.2).

The entry point may optionally have one formal parameter, and this formal parameter may have any name. If
such a parameter is declared, it must obey the following constraints:

• The value of this parameter must not be ����.

• Let ���� be the name of the parameter. If the length of the array designated by ���� is greater than zero,
the array members ����E-F through ����E������
��	�$(F, inclusive, must refer to strings, called
application parameters, which are given implementation-defined values by the host environment prior to
application startup. The intent is to supply to the application information determined prior to application
startup from elsewhere in the hosted environment. If the host environment is not capable of supplying
strings with letters in both uppercase and lowercase, the implementation shall ensure that the strings are
received in lowercase. On systems supporting a command line, application parameters correspond to what
are generally known as command-line arguments.

Since C# supports method overloading, a class or struct may contain multiple definitions of some method,
provided each has a different signature. However, within a single program, no class or struct shall contain more
than one method called ���� whose definition qualifies it to be used as an application entry point. Other
overloaded versions of ���� are permitted, provided they have more than one parameter, or their only
parameter is other than type �	����EF.

C# LANGUAGE SPECIFICATION

60 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

An application can be made up of multiple classes or structs. It is possible for more than one of these classes or
structs to contain a method called ���� whose definition qualifies it to be used as an application entry point. In
such cases, one of these ���� methods must be chosen as the entry point so that application startup can occur.
This choice of an entry point is beyond the scope of this specification—no mechanism for specifying or
determining an entry point is provided.

In C#, every method must be defined as a member of a class or struct. Ordinarily, the declared accessibility
(§3.5.1) of a method is determined by the access modifiers (§10.2.3) specified in its declaration, and similarly
the declared accessibility of a type is determined by the access modifiers specified in its declaration. In order for
a given method of a given type to be callable, both the type and the member must be accessible. However, the
application entry point is a special case. Specifically, the execution environment can access the application's
entry point regardless of its declared accessibility and regardless of the declared accessibility of its enclosing
type declarations.

In all other respects, entry point methods behave like those that are not entry points.

3.2 Application termination
Application termination returns control to the execution environment.

If the return type of the application’s entry point method is ��	, the value returned serves as the application's
termination status code. The purpose of this code is to allow communication of success or failure to the
execution environment.

If the return type of the entry point method is ����, reaching the right brace (!) which terminates that method,
or executing a �
	��� statement that has no expression, results in a termination status code of -.

Prior to an application’s termination, destructors for all of its objects that have not yet been garbage collected
are called, unless such cleanup has been suppressed. (The means of suppression are outside the scope of this
specification.)

3.3 Declarations
Declarations in a C# program define the constituent elements of the program. C# programs are organized using
namespaces (§9), which can contain type declarations and nested namespace declarations. Type declarations
(§9.5) are used to define classes (§10), structs (§11), interfaces (§13), enums (§14), and delegates (§15). The
kinds of members permitted in a type declaration depend on the form of the type declaration. For instance, class
declarations can contain declarations for constants (§10.3), fields (§10.4), methods (§10.5), properties (§10.6),
events (§10.7), indexers (§10.8), operators (§10.9), instance constructors (§10.10), static constructors (§10.11),
destructors (§10.12), and nested types.

A declaration defines a name in the declaration space to which the declaration belongs. Except for overloaded
members (§3.6), it is a compile-time error to have two or more declarations that introduce members with the
same name in a declaration space. It is never possible for a declaration space to contain different kinds of
members with the same name. For example, a declaration space can never contain a field and a method by the
same name.

There are several different types of declaration spaces, as described in the following.

• Within all source files of a program, namespace-member-declarations with no enclosing namespace-
declaration are members of a single combined declaration space called the global declaration space.

• Within all source files of a program, namespace-member-declarations within namespace-declarations that
have the same fully qualified namespace name are members of a single combined declaration space.

• Each class, struct, or interface declaration creates a new declaration space. Names are introduced into this
declaration space through class-member-declarations, struct-member-declarations, or interface-member-

Chapter 317 Basic conceptsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 61

declarations. Except for overloaded instance constructor declarations and static constructor declarations, a
class or struct member declaration cannot introduce a member by the same name as the class or struct. A
class, struct, or interface permits the declaration of overloaded methods and indexers. Furthermore, a class
or struct permits the declaration of overloaded instance constructors and overloaded operators. For example,
a class, struct, or interface may contain multiple method declarations with the same name, provided these
method declarations differ in their signature (§3.6). Note that base classes do not contribute to the
declaration space of a class, and base interfaces do not contribute to the declaration space of an interface.
Thus, a derived class or interface is allowed to declare a member with the same name as an inherited
member. Such a member is said to hide the inherited member.

• Each enumeration declaration creates a new declaration space. Names are introduced into this declaration
space through enum-member-declarations.

• Each block or switch-block creates a different declaration space for local variables. Names are introduced
into this declaration space through local-variable-declarations. If a block is the body of an instance
constructor, method declaration, operator declaration, or a get or set accessor for an indexer declaration, the
parameters declared in such a declaration are members of the block’s local variable declaration space. The
local variable declaration space of a block includes any nested blocks. Thus, within a nested block it is not
possible to declare a local variable with the same name as a local variable in an enclosing block.

• Each block or switch-block creates a separate declaration space for labels. Names are introduced into this
declaration space through labeled-statements, and the names are referenced through goto-statements. The
label declaration space of a block includes any nested blocks. Thus, within a nested block it is not possible
to declare a label with the same name as a label in an enclosing block.

The textual order in which names are declared is generally of no significance. In particular, textual order is not
significant for the declaration and use of namespaces, constants, methods, properties, events, indexers,
operators, instance constructors, destructors, types, static constructors, and types. Declaration order is significant
in the following ways:

• Declaration order for field declarations and local variable declarations determines the order in which their
initializers (if any) are executed.

• Local variables must be defined before they are used (§3.7).

• Declaration order for enum member declarations (§14.3) is significant when constant-expression values are
omitted.

The declaration space of a namespace is “open ended”, and two namespace declarations with the same fully
qualified name contribute to the same declaration space. For example

���
�)�

��
��
��)�7�	�
�

��������	��
�
�

���
!

!

���
�)�

��
��
��)�7�	�
�

�����U��
�
�

���
!

!

The two namespace declarations above contribute to the same declaration space, in this case declaring two
classes with the fully qualified names �
��
��)�7�	�����	��
� and �
��
��)�7�	��U��
�. Because the

C# LANGUAGE SPECIFICATION

62 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

two declarations contribute to the same declaration space, it would have caused a compile-time error if each
contained a declaration of a class with the same name.

The declaration space of a block includes any nested blocks. Thus, in the following example, the 6 and 3
methods result in a compile-time error because the name � is declared in the outer block and cannot be
redeclared in the inner block. However, the � and 5 methods are valid since the two �’s are declared in separate
non-nested blocks.

�����8
�

�����6����
��	���,�-�
�'��	��
���

��	���,�(�
!

!

�����3����
�'��	��
���

��	���,�-�
!
��	���,�(�

!

����������
�'��	��
���

��	���,�-�
!
�'��	��
���

��	���,�(�
!

!

�����5����
'������	���,�-����G�(-���HH�

����
'������	���,�-����G�(-���HH�

����
!

!

3.4 Members
Namespaces and types have members. The members of an entity are generally available through the use of a
qualified name that starts with a reference to the entity, followed by a “�” token, followed by the name of the
member.

Members of a type are either declared in the type or inherited from the base class of the type. When a type
inherits from a base class, all members of the base class, except instance constructors, destructors and static
constructors, become members of the derived type. The declared accessibility of a base class member does not
control whether the member is inherited—inheritance extends to any member that isn’t an instance constructor,
static constructor, or destructor. However, an inherited member may not be accessible in a derived type, either
because of its declared accessibility (§3.5.1) or because it is hidden by a declaration in the type itself (§3.7.1.2).

3.4.1 Namespace members

Namespaces and types that have no enclosing namespace are members of the global namespace. This
corresponds directly to the names declared in the global declaration space.

Namespaces and types declared within a namespace are members of that namespace. This corresponds directly
to the names declared in the declaration space of the namespace.

Chapter 317 Basic conceptsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 63

Namespaces have no access restrictions. It is not possible to declare private, protected, or internal namespaces,
and namespace names are always publicly accessible.

3.4.2 Struct members

The members of a struct are the members declared in the struct and the members inherited from class �*:

	.

The members of a simple type correspond directly to the members of the struct type aliased by the simple type:

• The members of �*�	
 are the members of the ���	
���2�	
 struct.

• The members of *�	
 are the members of the ���	
��2�	
 struct.

• The members of ����	 are the members of the ���	
��5�	(? struct.

• The members of �����	 are the members of the ���	
��=5�	(? struct.

• The members of ��	 are the members of the ���	
��5�	0/ struct.

• The members of ���	 are the members of the ���	
��=5�	0/ struct.

• The members of ���� are the members of the ���	
��5�	?< struct.

• The members of ����� are the members of the ���	
��=5�	?< struct.

• The members of
��� are the members of the ���	
������ struct.

• The members of '���	 are the members of the ���	
�������
 struct.

• The members of ���*�
 are the members of the ���	
��7��*�
 struct.

• The members of �

���� are the members of the ���	
��7

���� struct.

• The members of *��� are the members of the ���	
��2���
�� struct.

3.4.3 Enumeration members

The members of an enumeration are the constants declared in the enumeration and the members inherited from
class �*:

	.

3.4.4 Class members

The members of a class are the members declared in the class and the members inherited from the base class
(except for class �*:

	 which has no base class). The members inherited from the base class include the
constants, fields, methods, properties, events, indexers, operators, and types of the base class, but not the
instance constructors, destructors and static constructors of the base class. Base class members are inherited
without regard to their accessibility.

A class declaration may contain declarations of constants, fields, methods, properties, events, indexers,
operators, instance constructors, destructors, static constructors and types.

The members of �*:

	 and �	���� correspond directly to the members of the class types they alias:

• The members of �*:

	 are the members of the ���	
��U*:

	 class.

• The members of �	���� are the members of the ���	
���	���� class.

3.4.5 Interface members

The members of an interface are the members declared in the interface and in all base interfaces of the interface,
and the members inherited from class �*:

	.

C# LANGUAGE SPECIFICATION

64 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

3.4.6 Array members

The members of an array are the members inherited from class ���	
��8����.

3.4.7 Delegate members

The members of a delegate are the members inherited from class ���	
��7
�
��	
.

3.5 Member access
Declarations of members allow control over member access. The accessibility of a member is established by the
declared accessibility (§3.5.1) of the member combined with the accessibility of the immediately containing
type, if any.

When access to a particular member is allowed, the member is said to be accessible. Conversely, when access to
a particular member is disallowed, the member is said to be inaccessible. Access to a member is permitted when
the textual location in which the access takes place is included in the accessibility domain (§3.5.2) of the
member.

3.5.1 Declared accessibility

The declared accessibility of a member can be one of the following:

• Public, which is selected by including a)�*��
 modifier in the member declaration. The intuitive meaning
of)�*��
 is “access not limited”.

• Protected internal (meaning protected or internal), which is selected by including both a)��	

	
� and an
��	
���� modifier in the member declaration. The intuitive meaning of)��	

	
� ��	
���� is “access
limited to this program or types derived from the containing class”.

• Protected, which is selected by including a)��	

	
� modifier in the member declaration. The intuitive
meaning of)��	

	
� is “access limited to the containing class or types derived from the containing
class”.

• Internal, which is selected by including an ��	
���� modifier in the member declaration. The intuitive
meaning of ��	
���� is “access limited to this program”.

• Private, which is selected by including a)����	
 modifier in the member declaration. The intuitive
meaning of)����	
 is “access limited to the containing type”.

Depending on the context in which a member declaration takes place, only certain types of declared accessibility
are permitted. Furthermore, when a member declaration does not include any access modifiers, the context in
which the declaration takes place determines the default declared accessibility.

• Namespaces implicitly have)�*��
 declared accessibility. No access modifiers are allowed on namespace
declarations.

• Types declared in compilation units or namespaces can have)�*��
 or ��	
���� declared accessibility
and default to ��	
���� declared accessibility.

• Class members can have any of the five kinds of declared accessibility and default to)����	
 declared
accessibility. (Note that a type declared as a member of a class can have any of the five kinds of declared
accessibility, whereas a type declared as a member of a namespace can have only)�*��
 or ��	
����
declared accessibility.)

• Struct members can have)�*��
, ��	
����, or)����	
 declared accessibility and default to)����	

declared accessibility because structs are implicitly sealed. Struct members cannot have)��	

	
� or
)��	

	
� ��	
���� declared accessibility. (Note that a type declared as a member of a struct can have

Chapter 317 Basic conceptsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 65

)�*��
, ��	
����, or)����	
 declared accessibility, whereas a type declared as a member of a
namespace can have only)�*��
 or ��	
���� declared accessibility.)

• Interface members implicitly have)�*��
 declared accessibility. No access modifiers are allowed on
interface member declarations.

• Enumeration members implicitly have)�*��
 declared accessibility. No access modifiers are allowed on
enumeration member declarations.

3.5.2 Accessibility domains

The accessibility domain of a member consists of the (possibly disjoint) sections of program text in which
access to the member is permitted. For purposes of defining the accessibility domain of a member, a member is
said to be top-level if it is not declared within a type, and a member is said to be nested if it is declared within
another type. Furthermore, the program text of a program is defined as all program text contained in all source
files of the program, and the program text of a type is defined as all program text contained between the opening
and closing “�” and “!” tokens in the class-body, struct-body, interface-body, or enum-body of the type
(including, possibly, types that are nested within the type).

The accessibility domain of a predefined type (such as �*:

	, ��	, or ���*�
) is unlimited.

The accessibility domain of a top-level type . declared in a program 4 is defined as follows:

• If the declared accessibility of . is)�*��
, the accessibility domain of . is the program text of 4 and any
program that references 4.

• If the declared accessibility of . is ��	
����, the accessibility domain of . is the program text of 4.

From these definitions it follows that the accessibility domain of a top-level type is always at least the program
text of the program in which the type is declared.

The accessibility domain of a nested member � declared in a type . within a program 4 is defined as follows
(noting that M may itself possibly be a type):

• If the declared accessibility of � is)�*��
, the accessibility domain of � is the accessibility domain of ..

• If the declared accessibility of � is)��	

	
� ��	
����, let 7 be the union of the program text of 4 and
the program text of any type derived from ., which is declared outside 4. The accessibility domain of � is
the intersection of the accessibility domain of . with 7.

• If the declared accessibility of � is)��	

	
�, let 7 be the union of the program text of . and the program
text of any type derived from .. The accessibility domain of � is the intersection of the accessibility domain
of . with 7.

• If the declared accessibility of � is ��	
����, the accessibility domain of � is the intersection of the
accessibility domain of . with the program text of 4.

• If the declared accessibility of � is)����	
, the accessibility domain of � is the program text of ..

From these definitions it follows that the accessibility domain of a nested member is always at least the program
text of the type in which the member is declared. Furthermore, it follows that the accessibility domain of a
member is never more inclusive than the accessibility domain of the type in which the member is declared.

In intuitive terms, when a type or member � is accessed, the following steps are evaluated to ensure that the
access is permitted:

• First, if � is declared within a type (as opposed to a compilation unit or a namespace), a compile-time error
occurs if that type is not accessible.

• Then, if � is)�*��
, the access is permitted.

C# LANGUAGE SPECIFICATION

66 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• Otherwise, if � is)��	

	
� ��	
����, the access is permitted if it occurs within the program in which �
is declared, or if it occurs within a class derived from the class in which � is declared and takes place
through the derived class type (§3.5.3).

• Otherwise, if � is)��	

	
�, the access is permitted if it occurs within the class in which � is declared, or
if it occurs within a class derived from the class in which � is declared and takes place through the derived
class type (§3.5.3).

• Otherwise, if � is ��	
����, the access is permitted if it occurs within the program in which � is declared.

• Otherwise, if � is)����	
, the access is permitted if it occurs within the type in which � is declared.

• Otherwise, the type or member is inaccessible, and a compile-time error occurs.

In the example

)�*��
�
�����8
�

)�*��
��	�	�
���	�N�
��	
������	�	�
���	�_�
)����	
��	�	�
���	�`�

!

��	
�����
�����2
�

)�*��
��	�	�
���	�N�
��	
������	�	�
���	�_�
)����	
��	�	�
���	�`�

)�*��
�
������
�

)�*��
��	�	�
���	�N�
��	
������	�	�
���	�_�
)����	
��	�	�
���	�`�

!

)����	
�
�����7
�

)�*��
��	�	�
���	�N�
��	
������	�	�
���	�_�
)����	
��	�	�
���	�`�

!
!

the classes and members have the following accessibility domains:

• The accessibility domain of 8 and 8�N is unlimited.

• The accessibility domain of 8�_, 2, 2�N, 2�_, 2��, 2���N, and 2���_ is the program text of the containing
program.

• The accessibility domain of 8�` is the program text of 8.

• The accessibility domain of 2�` and 2�7 is the program text of 2, including the program text of 2�� and
2�7.

• The accessibility domain of 2���` is the program text of 2��.

• The accessibility domain of 2�7�N, 2�7�_, and 2�7�` is the program text of 2�7.

As the example illustrates, the accessibility domain of a member is never larger than that of a containing type.
For example, even though all N members have public declared accessibility, all but 8�N have accessibility
domains that are constrained by a containing type.

Chapter 317 Basic conceptsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 67

As described in §3.4, all members of a base class, except for instance constructors, destructors and static
constructors, are inherited by derived types. This includes even private members of a base class. However, the
accessibility domain of a private member includes only the program text of the type in which the member is
declared. In the example

�����8
�

��	�"�

�	�	�
������6�2�*���
*�"�,�(� ;;�UJ

!
!

�����2#�8
�

�	�	�
������6�2�*���
*�"�,�(� ;;�9������"���	��

���*�

!
!

the 2 class inherits the private member " from the 8 class. Because the member is private, it is only accessible
within the class-body of 8. Thus, the access to *�" succeeds in the 8�6 method, but fails in the 2�6 method.

3.5.3 Protected access for instance members

When a)��	

	
� instance member is accessed outside the program text of the class in which it is declared,
and when a)��	

	
� ��	
���� instance member is accessed outside the program text of the program in
which it is declared, the access is required to take place through an instance of the derived class type in which
the access occurs. Let 2 be a base class that declares a protected instance member �, and let 7 be a class that
derives from 2. Within the class-body of 7, access to � can take one of the following forms:

• An unqualified type-name or primary-expression of the form �.

• A primary-expression of the form 9��, provided the type of 9 is 7 or a class derived from 7.

• A primary-expression of the form *��
��.

In addition to these forms of access, a derived class can access a protected instance constructor of a base class in
a constructor-initializer (§10.10.1).

In the example

)�*��
�
�����8
�

)��	

	
����	�"�

�	�	�
������6�8����2�*���
��"�,�(� ;;�UJ
*�"�,�(� ;;�UJ

!
!

)�*��
�
�����2#�8
�

�	�	�
������6�8����2�*���
��"�,�(� ;;�9���������	��

���	����������	��

��'�2
*�"�,�(� ;;�UJ

!
!

within 8, it is possible to access " through instances of both 8 and 2, since in either case the access takes place
through an instance of 8 or a class derived from 8. However, within 2, it is not possible to access " through an
instance of 8, since 8 does not derive from 2.

C# LANGUAGE SPECIFICATION

68 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

3.5.4 Accessibility constraints

Several constructs in the C# language require a type to be at least as accessible as a member or another type. A
type . is said to be at least as accessible as a member or type � if the accessibility domain of . is a superset of
the accessibility domain of �. In other words, . is at least as accessible as � if . is accessible in all contexts
where � is accessible.

The following accessibility constraints exist:

• The direct base class of a class type must be at least as accessible as the class type itself.

• The explicit base interfaces of an interface type must be at least as accessible as the interface type itself.

• The return type and parameter types of a delegate type must be at least as accessible as the delegate type
itself.

• The type of a constant must be at least as accessible as the constant itself.

• The type of a field must be at least as accessible as the field itself.

• The return type and parameter types of a method must be at least as accessible as the method itself.

• The type of a property must be at least as accessible as the property itself.

• The type of an event must be at least as accessible as the event itself.

• The type and parameter types of an indexer must be at least as accessible as the indexer itself.

• The return type and parameter types of an operator must be at least as accessible as the operator itself.

• The parameter types of an instance constructor must be at least as accessible as the instance constructor
itself.

In the example

�����8�����!

)�*��
�
�����2#�8�����!

the 2 class results in a compile-time error because 8 is not at least as accessible as 2.

Likewise, in the example

�����8�����!

)�*��
�
�����2
�

8�6�������!

��	
�����8�3�������!

)�*��
�8���������!
!

the � method in 2 results in a compile-time error because the return type 8 is not at least as accessible as the
method.

3.6 Signatures and overloading
Methods, instance constructors, indexers, and operators are characterized by their signatures:

• The signature of a method consists of the name of the method and the type and kind (value, reference, or
output) of each of its formal parameters, considered in the order left to right. The signature of a method
specifically does not include the return type, nor does it include the)����� modifier that may be specified
for the right-most parameter.

Chapter 317 Basic conceptsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 69

• The signature of an instance constructor consists of the type and kind (value, reference, or output) of each of
its formal parameters, considered in the order left to right. The signature of an instance constructor
specifically does not include the)����� modifier that may be specified for the right-most parameter.

• The signature of an indexer consists of the type of each of its formal parameters, considered in the order left
to right. The signature of an indexer specifically does not include the element type.

• The signature of an operator consists of the name of the operator and the type of each of its formal
parameters, considered in the order left to right. The signature of an operator specifically does not include
the result type.

Signatures are the enabling mechanism for overloading of members in classes, structs, and interfaces:

• Overloading of methods permits a class, struct, or interface to declare multiple methods with the same name,
provided their signatures are unique.

• Overloading of instance constructors permits a class or struct to declare multiple instance constructors,
provided their signatures are unique.

• Overloading of indexers permits a class, struct, or interface to declare multiple indexers, provided their
signatures are unique.

• Overloading of operators permits a class or struct to declare multiple operators with the same name,
provided their signatures are unique.

The following example shows a set of overloaded method declarations along with their signatures.

��	
�'�

�5.
�	
�

�����6��� ;;�6��

�����6���	�"�� ;;�6���	�

�����6��
'���	�"�� ;;�6��
'���	�

�����6���	���	�"�� ;;�6���	���	�

�����6���	�"����	���� ;;�6���	����	�

��	�6��	�������� ;;�6��	�����

��	�6���	�"�� ;;�6���	�
����

�����6��	����EF���� ;;�6��	����EF�

�����6�)�������	����EF���� ;;�6��	����EF�
����
!

Note that any �
' and ��	 parameter modifiers (§10.5.1) are part of a signature. Thus, 6���	�, 6��
' ��	�,
and 6���	 ��	� are all unique signatures. Also, note that the return type and the)����� modifier are not part
of a signature, so it is not possible to overload solely based on return type or on the inclusion or exclusion of the
)����� modifier. Because of these restrictions, the declarations of the methods 6���	� and 6�)�����
�	����EF� in the example above result in a compile-time error.

3.7 Scopes
The scope of a name is the region of program text within which it is possible to refer to the entity declared by
the name without qualification of the name. Scopes can be nested, and an inner scope may redeclare the
meaning of a name from an outer scope. (This does not, however, remove the restriction imposed by §3.3 that
within a nested block it is not possible to declare a local variable with the same name as a local variable in an
enclosing block.) The name from the outer scope is then said to be hidden in the region of program text covered
by the inner scope, and access to the outer name is only possible by qualifying the name.

C# LANGUAGE SPECIFICATION

70 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• The scope of a namespace member declared by a namespace-member-declaration (§9.4) with no enclosing
namespace-declaration is the entire program text.

• The scope of a namespace member declared by a namespace-member-declaration within a namespace-
declaration whose fully qualified name is K is the namespace-body of every namespace-declaration whose
fully qualified name is K or starts with K, followed by a period.

• The scope of a name defined or imported by a using-directive (§9.3) extends over the namespace-member-
declarations of the compilation-unit or namespace-body in which the using-directive occurs. A using-
directive may make zero or more namespace or type names available within a particular compilation-unit or
namespace-body, but does not contribute any new members to the underlying declaration space. In other
words, a using-directive is not transitive but rather affects only the compilation-unit or namespace-body in
which it occurs.

• The scope of a member declared by a class-member-declaration (§10.2) is the class-body in which the
declaration occurs. In addition, the scope of a class member extends to the class-body of those derived
classes that are included in the accessibility domain (§3.5.2) of the member.

• The scope of a member declared by a struct-member-declaration (§11.2) is the struct-body in which the
declaration occurs.

• The scope of a member declared by an enum-member-declaration (§14.3) is the enum-body in which the
declaration occurs.

• The scope of a parameter declared in a method-declaration (§10.5) is the method-body of that method-
declaration.

• The scope of a parameter declared in an indexer-declaration (§10.8) is the accessor-declarations of that
indexer-declaration.

• The scope of a parameter declared in an operator-declaration (§10.9) is the block of that operator-
declaration.

• The scope of a parameter declared in a constructor-declaration (§10.10) is the constructor-initializer and
block of that constructor-declaration.

• The scope of a label declared in a labeled-statement (§8.4) is the block in which the declaration occurs.

• The scope of a local variable declared in a local-variable-declaration (§8.5.1) is the block in which the
declaration occurs. It is a compile-time error to refer to a local variable in a textual position that precedes its
local-variable-declarator.

• The scope of a local variable declared in a switch-block of a � �	
� statement (§8.7.2) is the switch-block.

• The scope of a local variable declared in a for-initializer of a '�� statement (§8.8.3) is the for-initializer, the
for-condition, the for-iterator, and the contained statement of the '�� statement.

• The scope of a local constant declared in a local-constant-declaration (§8.5.2) is the block in which the
declaration occurs. It is a compile-time error to refer to a local constant in a textual position that precedes its
constant-declarator.

Within the scope of a namespace, class, struct, or enumeration member it is possible to refer to the member in a
textual position that precedes the declaration of the member. For example

�����8
�

�����6����
��,�(�

!

Chapter 317 Basic conceptsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 71

��	���,�-�
!

Here, it is valid for 6 to refer to � before it is declared.

Within the scope of a local variable, it is a compile-time error to refer to the local variable in a textual position
that precedes the local-variable-declarator of the local variable. For example

�����8
�

��	���,�-�

�����6����
��,�(� ;;�9��������
�)�

�
���

����	���
��	���
��,�/�

!

�����3����
��	�:�,��:�,�(�� ;;�+����

!

����������
��	���,�(��*�,�HH�� ;;�+����

!
!

In the 6 method above, the first assignment to � specifically does not refer to the field declared in the outer
scope. Rather, it refers to the local variable and it results in a compile-time error because it textually precedes
the declaration of the variable. In the 3 method, the use of : in the initializer for the declaration of : is valid
because the use does not precede the local-variable-declarator. In the � method, a subsequent local-variable-
declarator refers to a local variable declared in an earlier local-variable-declarator within the same local-
variable-declaration.

The scoping rules for local variables are designed to guarantee that the meaning of a name used in an expression
context is always the same within a block. If the scope of a local variable was to extend only from its declaration
to the end of the block, then in the example above, the first assignment would assign to the instance variable and
the second assignment would assign to the local variable, possibly leading to compile-time errors if the
statements of the block were later to be rearranged.

The meaning of a name within a block may differ based on the context in which the name is used. In the
example

�����8��!

�����.
�	
�

�	�	�
��������������
�	�����8�,���
����� ������
�	�������,�8� ;;�
")�
������
��	
"	

.�)
�	�,�	�)
�'�8�� ;;�	�)
�
��	
"	

������
����	
���
���� ;;� ��	
����
����� �����
������
����	
���
�	�� ;;� ��	
���8�

!
!

the name 8 is used in an expression context to refer to the local variable 8 and in a type context to refer to the
class 8.

3.7.1 Name hiding

The scope of an entity typically encompasses more program text than the declaration space of the entity. In
particular, the scope of an entity may include declarations that introduce new declaration spaces containing

C# LANGUAGE SPECIFICATION

72 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

entities of the same name. Such declarations cause the original entity to become hidden. Conversely, an entity is
said to be visible when it is not hidden.

Name hiding occurs when scopes overlap through nesting and when scopes overlap through inheritance. The
characteristics of the two types of hiding are described in the following sections.

3.7.1.1 Hiding through nesting

Name hiding through nesting can occur as a result of nesting namespaces or types within namespaces, as a result
of nesting types within classes or structs, and as a result of parameter and local variable declarations.

In the example

�����8
�

��	���,�-�

�����6����
��	���,�(�

!

�����3����
��,�(�

!
!

within the 6 method, the instance variable � is hidden by the local variable �, but within the 3 method, � still
refers to the instance variable.

When a name in an inner scope hides a name in an outer scope, it hides all overloaded occurrences of that name.
In the example

�����U�	
�
�

�	�	�
������6���	�����!

�	�	�
������6��	���������!

�����5��
�
�

�����3����
6�(�� ;;�5���J
��U�	
��5��
��6
6���
������ ;;�9����

!

�	�	�
������6����������!
!

!

the call 6�(� invokes the 6 declared in 5��
� because all outer occurrences of 6 are hidden by the inner
declaration. For the same reason, the call 6���
����� results in a compile-time error.

3.7.1.2 Hiding through inheritance

Name hiding through inheritance occurs when classes or structs redeclare names that were inherited from base
classes. This type of name hiding takes one of the following forms:

• A constant, field, property, event, or type introduced in a class or struct hides all base class members with
the same name.

• A method introduced in a class or struct hides all non-method base class members with the same name, and
all base class methods with the same signature (method name and parameter count, modifiers, and types).

Chapter 317 Basic conceptsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 73

• An indexer introduced in a class or struct hides all base class indexers with the same signature (parameter
count and types).

The rules governing operator declarations (§10.9) make it impossible for a derived class to declare an operator
with the same signature as an operator in a base class. Thus, operators never hide one another.

Contrary to hiding a name from an outer scope, hiding an accessible name from an inherited scope causes a
warning to be reported. In the example

�����2��

�

)�*��
������6����!
!

�����7
���
�#�2��

�

)�*��
������6����! ;;�����������������������
��	
�����

!

the declaration of 6 in 7
���
� causes a warning to be reported. Hiding an inherited name is specifically not an
error, since that would preclude separate evolution of base classes. For example, the above situation might have
come about because a later version of 2��
 introduced an 6 method that wasn’t present in an earlier version of
the class. Had the above situation been an error, then any change made to a base class in a separately versioned
class library could potentially cause derived classes to become invalid.

The warning caused by hiding an inherited name can be eliminated through use of the �
 modifier:

�����2��

�

)�*��
������6����!
!

�����7
���
�#�2��

�

�
 �)�*��
������6����!
!

The �
 modifier indicates that the 6 in 7
���
� is “new”, and that it is indeed intended to hide the inherited
member.

A declaration of a new member hides an inherited member only within the scope of the new member.

�����2��

�

)�*��
��	�	�
������6����!
!

�����7
���
�#�2��

�

�
 �)����	
��	�	�
������6����! ;;����
��2��
�6����7
���
������
!

��������
7
���
�#�7
���
�
�

�	�	�
������3�����6����! ;;�5���J
��2��
�6
!

In the example above, the declaration of 6 in 7
���
� hides the 6 that was inherited from 2��
, but since the
new 6 in 7
���
� has private access, its scope does not extend to ���
7
���
�. Thus, the call 6�� in
���
7
���
��3 is valid and will invoke 2��
�6.

C# LANGUAGE SPECIFICATION

74 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

3.8 Namespace and type names
Several contexts in a C# program require a namespace-name or a type-name to be specified. Either form of
name is written as one or more identifiers separated by “�” tokens.

namespace-name:
namespace-or-type-name

type-name:
namespace-or-type-name

namespace-or-type-name:
identifier
namespace-or-type-name � identifier

A type-name is a namespace-or-type-name that refers to a type. Following resolution as described below, the
namespace-or-type-name of a type-name must refer to a type, or otherwise a compile-time error occurs.

A namespace-name is a namespace-or-type-name that refers to a namespace. Following resolution as described
below, the namespace-or-type-name of a namespace-name must refer to a namespace, or otherwise a compile-
time error occurs.

The meaning of a namespace-or-type-name is determined as follows:

• If the namespace-or-type-name consists of a single identifier:

o If the namespace-or-type-name appears within the body of a class or struct declaration, then starting
with that class or struct declaration and continuing with each enclosing class or struct declaration (if
any), if a member with the given name exists, is accessible, and denotes a type, then the namespace-or-
type-name refers to that member. Note that non-type members (constants, fields, methods, properties,
indexers, operators, instance constructors, destructors, and static constructors) are ignored when
determining the meaning of a namespace-or-type-name.

o Otherwise, starting with the namespace in which the namespace-or-type-name occurs (if any),
continuing with each enclosing namespace (if any), and ending with the global namespace, the
following steps are evaluated until an entity is located:

• If the namespace contains a namespace member with the given name, then the namespace-or-type-
name refers to that member and, depending on the member, is classified as a namespace or a type.

• Otherwise, if the namespace has a corresponding namespace declaration enclosing the location
where the namespace-or-type-name occurs, then:

o If the namespace declaration contains a using-alias-directive that associates the given name
with an imported namespace or type, then the namespace-or-type-name refers to that namespace
or type.

o Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain exactly one type with the given name, then the namespace-or-type-name
refers to that type.

o Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain more than one type with the given name, then the namespace-or-type-name
is ambiguous and a compile-time error.

o Otherwise, the namespace-or-type-name is undefined and a compile-time error occurs.

• Otherwise, the namespace-or-type-name is of the form K�5, where K is a namespace-or-type-name
consisting of all identifiers but the rightmost one, and 5 is the rightmost identifier. K is first resolved as a

Chapter 317 Basic conceptsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 75

namespace-or-type-name. If the resolution of K is not successful, a compile-time error occurs. Otherwise,
K�5 is resolved as follows:

o If K is a namespace and 5 is the name of an accessible member of that namespace, then K�5 refers to
that member and, depending on the member, is classified as a namespace or a type.

o If K is a class or struct type and 5 is the name of an accessible type in K, then K�5 refers to that type.

o Otherwise, K�5 is an invalid namespace-or-type-name, and a compile-time error occurs.

3.8.1 Fully qualified names

Every namespace and type has a fully qualified name which uniquely identifies the namespace or type amongst
all others. The fully qualified name of a namespace or type K is determined as follows:

• If K is a member of the global namespace, its fully qualified name is K.

• Otherwise, its fully qualified name is ��K, where � is the fully qualified name of the namespace or type in
which K is declared.

In other words, the fully qualified name of K is the complete hierarchical path of identifiers that lead to K,
starting from the global namespace. Because every member of a namespace or type must have a unique name, it
follows that the fully qualified name of a namespace or type is always unique.

The example below shows several namespace and type declarations along with their associated fully qualified
names.

�����8��! ;;�8

���
�)�

�N ;;�N
�

�����2 ;;�N�2
�

��������! ;;�N�2��
!

���
�)�

�_ ;;�N�_
�

�����7��! ;;�N�_�7
!

!

���
�)�

�N�_ ;;�N�_
�

�����9��! ;;�N�_�9
!

3.9 Automatic memory management
C# employs automatic memory management, which frees developers from manually allocating and freeing the
memory occupied by objects. Automatic memory management policies are implemented by a garbage collector.
The memory management life cycle of an object is as follows:

1. When the object is created, memory is allocated for it, the constructor is run, and the object is considered
live.

2. If the object, or any part of it, cannot be accessed by any possible continuation of execution, other than the
running of destructors, the object is considered no longer in use, and it becomes eligible for destruction.
Implementations may choose to analyze code to determine which references to an object may be used in the
future. For instance, if a local variable that is in scope is the only existing reference to an object, but that
local variable is never referred to in any possible continuation of execution from the current execution point
in the procedure, an implementation may (but is not required to) treat the object as no longer in use.

C# LANGUAGE SPECIFICATION

76 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

3. Once the object is eligible for destruction, at some unspecified later time the destructor (§10.12) (if any) for
the object is run. Unless overridden by explicit calls, the destructor for the object is run once only.

4. Once the destructor for an object is run, if that object, or any part of it, cannot be accessed by any possible
continuation of execution, including the running of destructors, the object is considered inaccessible and the
object becomes eligible for collection.

5. Finally, at some time after the object becomes eligible for collection, the garbage collector frees the memory
associated with that object.

The garbage collector maintains information about object usage, and uses this information to make memory
management decisions, such as where in memory to locate a newly created object, when to relocate an object,
and when an object is no longer in use or inaccessible.

Like other languages that assume the existence of a garbage collector, C# is designed so that the garbage
collector may implement a wide range of memory management policies. For instance, C# does not require that
destructors be run or that objects be collected as soon as they are eligible, or that destructors be run in any
particular order, or on any particular thread.

The behavior of the garbage collector can be controlled, to some degree, via static methods on the class
���	
��3�. This class can be used to request a collection to occur, destructors to be run (or not run), and so
forth.

Since the garbage collector is allowed wide latitude in deciding when to collect objects and run destructors, a
conforming implementation may produce output that differs from that shown by the following code. The
program

�����8
�

O8����
������
����	
���
��7
�	��
	����	��

��'�8���

!
!

�����2
�

�*:

	�1
'�

)�*��
�2��*:

	�����
1
'�,���

!

O2����
������
����	
���
��7
�	��
	����	��

��'�2���

!
!

�����.
�	
�

�	�	�
��������������
2�*�,��
 �2��
 �8����
*�,������
3������

	���
3�����	6��4
�����6�����T
�����

!
!

creates an instance of class 8 and an instance of class 2. These objects become eligible for garbage collection
when the variable * is assigned the value ����, since after this time it is impossible for any user-written code to
access them. The output could be either

7
�	��
	����	��

��'�8
7
�	��
	����	��

��'�2

Chapter 317 Basic conceptsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 77

or

7
�	��
	����	��

��'�2
7
�	��
	����	��

��'�8

because the language imposes no constraints on the order in which objects are garbage collected.

In subtle cases, the distinction between “eligible for destruction” and “eligible for collection” can be important.
For example,

�����8
�

O8����
������
����	
���
��7
�	��
	����	��

��'�8���

!

)�*��
������6����
������
����	
���
��8�6���
.
�	�1
'8�,�	����

!
!

�����2
�

)�*��
�8�1
'�

O2����
������
����	
���
��7
�	��
	����	��

��'�2���
1
'�6���

!
!

�����.
�	
�

)�*��
��	�	�
�8�1
'8�
)�*��
��	�	�
�2�1
'2�

�	�	�
��������������
1
'2�,��
 �2���
1
'8�,��
 �8���
1
'2�1
'�,�1
'8�
1
'2�,������
1
'8�,������

;;�8�����2��� �
����*�
�'����
�	��
	���
3������

	���
3�����	6��4
�����6�����T
�����

;;�2��� �
����*�
�'���
���

	�����*�	�8������	
�'��1
'8�C,������

������
����	
���
��1
'8������	��������
!

!

In the above program, if the garbage collector chooses to run the destructor of 2 before the destructor of 8, then
the output of this program might be:

7
�	��
	����	��

��'�8
7
�	��
	����	��

��'�2
8�6
1
'8������	�����

Note that although the instance of 8 was not in use and 8's destructor was run, it is still possible for methods of 8
(in this case, 6) to be called from another destructor. Also, note that running of a destructor may cause an object
to become usable from the mainline program again. In this case, the running of 2's destructor caused an instance
of 8 that was previously not in use to become accessible from the live reference 1
'8. After the call to

C# LANGUAGE SPECIFICATION

78 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

���	6��4
�����6�����T
��, the instance of 2 is eligible for collection, but the instance of 8 is not, because
of the reference 1
'8.

To avoid confusion and unexpected behavior, it is generally a good idea for destructors to only perform cleanup
on data stored in their object's own fields, and not to perform any actions on referenced objects or static fields.

3.10 Execution order
Execution shall proceed such that the side effects of each executing thread are preserved at critical execution
points. A side effect is defined as a read or write of a volatile field, a write to a non-volatile variable, a write to
an external resource, and the throwing of an exception. The critical execution points at which the order of these
side effects must be preserved are references to volatile fields (§10.4.3), ��
J statements (§8.12), and thread
creation and termination. An implementation is free to change the order of execution of a C# program, subject to
the following constraints:

• Data dependence is preserved within a thread of execution. That is, the value of each variable is computed
as if all statements in the thread were executed in original program order.

• Initialization ordering rules are preserved (§10.4.4 and §10.4.5).

• The ordering of side effects is preserved with respect to volatile reads and writes (§10.4.3). Additionally, an
implementation need not evaluate part of an expression if it can deduce that that expression’s value is not
used and that no needed side effects are produced (including any caused by calling a method or accessing a
volatile field). When program execution is interrupted by an asynchronous event (such as an exception
thrown by another thread), it is not guaranteed that the observable side effects are visible in the original
program order.

Chapter 417 TypesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 79

4. Types

The types of the C# language are divided into two categories: value types and reference types.

type:
value-type
reference-type

A third category of types, pointers, is available only in unsafe code. This is discussed further in §A.2.

Value types differ from reference types in that variables of the value types directly contain their data, whereas
variables of the reference types store references to their data, the latter being known as objects. With reference
types, it is possible for two variables to reference the same object, and thus possible for operations on one
variable to affect the object referenced by the other variable. With value types, the variables each have their own
copy of the data, and it is not possible for operations on one to affect the other.

C#’s type system is unified such that a value of any type can be treated as an object. Every type in C# directly
or indirectly derives from the �*:

	 class type, and �*:

	 is the ultimate base class of all types. Values of
reference types are treated as objects simply by viewing the values as type �*:

	. Values of value types are
treated as objects by performing boxing and unboxing operations (§4.3).

4.1 Value types
A value type is either a struct type or an enumeration type. C# provides a set of predefined struct types called the
simple types. The simple types are identified through reserved words.

value-type:
struct-type
enum-type

struct-type:
type-name
simple-type

simple-type:
numeric-type
*���

numeric-type:
integral-type
floating-point-type
�

����

C# LANGUAGE SPECIFICATION

80 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

integral-type:
�*�	

*�	

����	

�����	

��	

���	

����

�����

���

floating-point-type:
'���	

���*�

enum-type:
type-name

All value types implicitly inherit from class �*:

	. It is not possible for any type to derive from a value type,
and value types are thus implicitly sealed (§10.1.1.2).

A variable of a value type always contains a value of that type. Unlike reference types, it is not possible for a
value of a value type to be ���� or to reference an object of a more derived type.

Assignment to a variable of a value type creates a copy of the value being assigned. This differs from
assignment to a variable of a reference type, which copies the reference but not the object identified by the
reference.

4.1.1 Default constructors

All value types implicitly declare a public parameterless instance constructor called the default constructor. The
default constructor returns a zero-initialized instance known as the default value for the value type:

• For all simple-types, the default value is the value produced by a bit pattern of all zeros:

o For �*�	
, *�	
, ����	, �����	, ��	, ���	, ����, and �����, the default value is -.

o For
���, the default value is BM"----B.

o For '���	, the default value is -�-'.

o For ���*�
, the default value is -�-�.

o For �

����, the default value is -�-�.

o For *���, the default value is '���
.

• For an enum-type 9, the default value is -.

• For a struct-type, the default value is the value produced by setting all value type fields to their default value
and all reference type fields to ����.

Like any other instance constructor, the default constructor of a value type is invoked using the �
 operator.
(Note: for efficiency reasons, this requirement is not intended to actually have the implementation generate a
constructor call.) In the example below, the variables � and : are both initialized to zero.

Chapter 417 TypesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 81

�����8
�

�����6����
��	���,�-�
��	�:�,��
 ���	���

!
!

Because every value type implicitly has a public parameterless instance constructor, it is not possible for a struct
type to contain an explicit declaration of a parameterless constructor. A struct type is however permitted to
declare parameterized instance constructors (§11.3.8). For example

�	��
	�4���	
�

��	�"����

)�*��
�4���	���	�"����	�����
	����"�,�"�
	������,���

!
!

Given the above declaration, the statements

4���	�)(�,��
 �4���	���
4���	�)/�,��
 �4���	�-��-��

both create a 4���	 with " and � initialized to zero.

4.1.2 Struct types

A struct type is a value type that can declare constants, fields, methods, properties, indexers, operators, instance
constructors, static constructors, and nested types. Struct types are described in §11.

4.1.3 Simple types

C# provides a set of predefined struct types called the simple types. The simple types are identified through
reserved words, but these reserved words are simply aliases for predefined struct types in the ���	
�
namespace, as described in the table below.

C# LANGUAGE SPECIFICATION

82 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Reserved word Aliased type

�*�	
 ���	
���2�	

*�	
 ���	
��2�	

����	 ���	
��5�	(?

�����	 ���	
��=5�	(?

��	 ���	
��5�	0/

���	 ���	
��=5�	0/

���� ���	
��5�	?<

����� ���	
��=5�	?<

��� ���	
������

'���	 ���	
�������

���*�
 ���	
��7��*�

*��� ���	
��2���
��

�

���� ���	
��7

����

Because a simple type aliases a struct type, every simple type has members. For example, ��	 has the members
declared in ���	
��5�	0/ and the members inherited from ���	
��U*:

	, and the following statements
are permitted:

��	���,���	���"+���
� ;;����	
��5�	0/���"+���
�
���	��	
�	�������,���.��	������� ;;����	
��5�	0/�.��	����������	��

��
	���
�	�����	�,�(/0�.��	������� ;;����	
��5�	0/�.��	����������	��

��
	���

The simple types differ from other struct types in that they permit certain additional operations:

• Most simple types permit values to be created by writing literals (§2.4.4). For example, (/0 is a literal of
type ��	 and B�B is a literal of type
���. C# makes no provision for literals of other struct types, and non-
default values of other struct types are ultimately always created through instance constructors of those
struct types.

• When the operands of an expression are all simple type constants, it is possible for the compiler to evaluate
the expression at compile-time. Such an expression is known as a constant-expression (§7.15). Expressions
involving operators defined by other struct types are not considered constant expressions.

• Through
���	 declarations it is possible to declare constants of the simple types (§10.3). It is not possible
to have constants of other struct types, but a similar effect is provided by �	�	�
 �
������ fields.

• Conversions involving simple types can participate in evaluation of conversion operators defined by other
struct types, but a user-defined conversion operator can never participate in evaluation of another user-
defined operator (§6.4.2).

4.1.4 Integral types

C# supports nine integral types: �*�	
, *�	
, ����	, �����	, ��	, ���	, ����, �����, and
���. The
integral types have the following sizes and ranges of values:

• The �*�	
 type represents signed 8-bit integers with values between –128 and 127.

• The *�	
 type represents unsigned 8-bit integers with values between 0 and 255.

• The ����	 type represents signed 16-bit integers with values between –32768 and 32767.

Chapter 417 TypesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 83

• The �����	 type represents unsigned 16-bit integers with values between 0 and 65535.

• The ��	 type represents signed 32-bit integers with values between –2147483648 and 2147483647.

• The ���	 type represents unsigned 32-bit integers with values between 0 and 4294967295.

• The ���� type represents signed 64-bit integers with values between –9223372036854775808 and
9223372036854775807.

• The ����� type represents unsigned 64-bit integers with values between 0 and 18446744073709551615.

• The
��� type represents unsigned 16-bit integers with values between 0 and 65535. The set of possible
values for the
��� type corresponds to the Unicode character set. Although
��� has the same
representation as �����	, not all operations permitted on one type are permitted on the other.

The integral-type unary and binary operators always operate with signed 32-bit precision, unsigned 32-bit
precision, signed 64-bit precision, or unsigned 64-bit precision:

• For the unary H and ~ operators, the operand is converted to type ., where . is the first of ��	, ���	, ����,
and ����� that can fully represent all possible values of the operand. The operation is then performed using
the precision of type ., and the type of the result is ..

• For the unary—operator, the operand is converted to type ., where . is the first of ��	 and ���� that can
fully represent all possible values of the operand. The operation is then performed using the precision of
type ., and the type of the result is .. The unary—operator cannot be applied to operands of type �����.

• For the binary H, Y, I, ;, L, P, Q, R, ,,, C,, %, G, %,, and G, operators, the operands are converted to type .,
where . is the first of ��	, ���	, ����, and ����� that can fully represent all possible values of both
operands. The operation is then performed using the precision of type ., and the type of the result is . (or
*��� for the relational operators). It is not permitted for one operand to be of type ���� and the other to be
of type ����� with the binary operators.

• For the binary GG and %% operators, the left operand is converted to type ., where . is the first of ��	,
���	, ����, and ����� that can fully represent all possible values of the operand. The operation is then
performed using the precision of type ., and the type of the result is ..

The
��� type is classified as an integral type, but it differs from the other integral types in two ways:

• There are no implicit conversions from other types to the
��� type. In particular, even though the �*�	
,
*�	
, and �����	 types have ranges of values that are fully representable using the
��� type, implicit
conversions from �*�	
, *�	
, or �����	 to
��� do not exist.

• Constants of the
��� type must be written as character-literals or as integer-literals in combination with a
cast to type
���. For example, �
����(- is the same as BM"---8B.

The
�

J
� and ��
�

J
� operators and statements are used to control overflow checking for integral-type
arithmetic operations and conversions (§7.5.12). In a
�

J
� context, an overflow produces a compile-time
error or causes a ���	
��U�
�'�� 9"

)	��� to be thrown. In an ��
�

J
� context, overflows are
ignored and any high-order bits that do not fit in the destination type are discarded.

4.1.5 Floating point types

C# supports two floating point types: '���	 and ���*�
. The '���	 and ���*�
 types are represented using
the 32-bit single-precision and 64-bit double-precision IEEE 754 formats, which provide the following sets of
values:

• Positive zero and negative zero. In most situations, positive zero and negative zero behave identically as the
simple value zero, but certain operations distinguish between the two (§7.7.2).

C# LANGUAGE SPECIFICATION

84 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• Positive infinity and negative infinity. Infinities are produced by such operations as dividing a non-zero
number by zero. For example, (�- ; -�- yields positive infinity, and Y(�- ; -�- yields negative infinity.

• The Not-a-Number value, often abbreviated NaN. NaN’s are produced by invalid floating-point operations,
such as dividing zero by zero.

• The finite set of non-zero values of the form s × m × 2e, where s is 1 or ��������m and e are determined by
the particular floating-point type: For '���	, 0 < m < 224 and ���	�
�e
�����������
�����*�
, 0 < m < 253

and ������
�e
�	�������
�����������
�������
�����������������
��������� ������
�����
� ������

The '���	 type can represent values ranging from approximately 1.5 × 10��� to 3.4 × 1038 with a precision of 7
digits.

The ���*�
 type can represent values ranging from approximately 5.0 × 10�!"� to 1.7 × 10308 with a precision of
15-16 digits.

If one of the operands of a binary operator is of a floating-point type, then the other operand must be of an
integral type or a floating-point type, and the operation is evaluated as follows:

• If one of the operands is of an integral type, then that operand is converted to the floating-point type of the
other operand.

• Then, if either of the operands is of type ���*�
, the other operand is converted to ���*�
, the operation is
performed using at least ���*�
 range and precision, and the type of the result is ���*�
 (or *��� for the
relational operators).

• Otherwise, the operation is performed using at least '���	 range and precision, and the type of the result is
'���	 (or *��� for the relational operators).

The floating-point operators, including the assignment operators, never produce exceptions. Instead, in
exceptional situations, floating-point operations produce zero, infinity, or NaN, as described below:

• If the result of a floating-point operation is too small for the destination format, the result of the operation
becomes positive zero or negative zero.

• If the result of a floating-point operation is too large for the destination format, the result of the operation
becomes positive infinity or negative infinity.

• If a floating-point operation is invalid, the result of the operation becomes NaN.

• If one or both operands of a floating-point operation is NaN, the result of the operation becomes NaN.

Floating-point operations may be performed with higher precision than the result type of the operation. For
example, some hardware architectures support an “extended” or “ long double” floating-point type with greater
range and precision than the ���*�
 type, and implicitly perform all floating-point operations using this higher
precision type. Only at excessive cost in performance can such hardware architectures be made to perform
floating-point operations with less precision, and rather than require an implementation to forfeit both
performance and precision, C# allows a higher precision type to be used for all floating-point operations. Other
than delivering more precise results, this rarely has any measurable effects. However, in expressions of the form
" I � ; T, where the multiplication produces a result that is outside the ���*�
 range, but the subsequent
division brings the temporary result back into the ���*�
 range, the fact that the expression is evaluated in a
higher range format may cause a finite result to be produced instead of an infinity.

4.1.6 The decimal type

The �

���� type is a 128-bit data type suitable for financial and monetary calculations. The �

���� type
can represent values ranging from 1.0 × 10�"# to approximately 7.9 × 1028 with 28-29 significant digits.

Chapter 417 TypesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 85

The finite set of values of type ������� are of the form –1s × c × 10-e, where the sign s is 0 or 1, the
coefficient c is given by 0
 c < 296, and the scale e is such that 0
 e
 28.The ������� type does not support
signed zeros, infinities, or NaN's.A ������� is represented as a 96-bit integer scaled by a power of ten. For
�������s with an absolute value less than �	
�, the value is exact to the 28th decimal place, but no further. For
�������s with an absolute value greater than or equal to �	
�, the value is exact to 28 or 29 digits. Contrary to
the ����
 and ������ data types, decimal fractional numbers such as 0.1 can be represented exactly in the
������� representation. In the ����
 and ������ representations, such numbers are often infinite fractions,
making those representations more prone to round-off errors.

If one of the operands of a binary operator is of type �������, then the other operand must be of an integral
type or of type �������. If an integral type operand is present, it is converted to ������� before the operation
is performed.

The result of an operation on values of type ������� is that which would result from calculating an exact result
and then rounding to fit the representation. Results are rounded to the nearest representable value, and, when a
result is equally close to two representable values, to the value that has an even number in the least significant
digit position (this is known as “banker’s rounding”). That is, results are exact to 28 or 29 digits, but to no more
than 28 decimal places. A zero result always has a sign of 0 and a scale of 0.If a decimal arithmetic operation
produces a value that is too small for the decimal format after rounding, the result of the operation becomes
zero. If a ������� arithmetic operation produces a result that is too large for the ������� format, a
���
��	�������������
��� is thrown.

The ������� type has greater precision but smaller range than the floating-point types. Thus, conversions from
the floating-point types to ������� might produce overflow exceptions, and conversions from ������� to the
floating-point types might cause loss of precision. For these reasons, no implicit conversions exist between the
floating-point types and �������, and without explicit casts, it is not possible to mix floating-point and
������� operands in the same expression.

4.1.7 The bool type

The ���� type represents boolean logical quantities. The possible values of type ���� are
��� and �����.

No standard conversions exist between ���� and other types. In particular, the ���� type is distinct and
separate from the integral types, and a ���� value cannot be used in place of an integral value, and vice versa.

In the C and C++ languages, a zero integral value or a null pointer can be converted to the boolean value �����,
and a non-zero integral value or a non-null pointer can be converted to the boolean value
���. In C#, such
conversions are accomplished by explicitly comparing an integral value to zero or explicitly comparing an
object reference to ����.

4.1.8 Enumeration types

An enumeration type is a distinct type with named constants. Every enumeration type has an underlying type,
which must be ��
�, ���
�, ����
, �����
, ��
, ���
, ���� or �����. Enumeration types are defined
through enumeration declarations (§14.1).

4.2 Reference types
A reference type is a class type, an interface type, an array type, or a delegate type.

reference-type:
class-type
interface-type
array-type
delegate-type

C# LANGUAGE SPECIFICATION

86 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

class-type:
type-name
�����

�
����

interface-type:
type-name

array-type:
non-array-type rank-specifiers

non-array-type:
type

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

rank-specifier:
� dim-separatorsopt �

 dim-separators:

dim-separators

delegate-type:
type-name

A reference type value is a reference to an instance of the type, the latter known as an object. The special value
���� is compatible with all reference types and indicates the absence of an instance.

4.2.1 Class types

A class type defines a data structure that contains data members (constants and fields), function members
(methods, properties, events, indexers, operators, instance constructors, destructors and static constructors), and
nested types. Class types support inheritance, a mechanism whereby derived classes can extend and specialize
base classes. Instances of class types are created using object-creation-expressions (§7.5.10.1).

Class types are described in §10.

4.2.2 The object type

The �����
 class type is the ultimate base class of all other types. Every type in C# directly or indirectly
derives from the �����
 class type.

The �����
 keyword is simply an alias for the predefined ���
��	�����
 class.

4.2.3 The string type

The �
���� type is a sealed class type that inherits directly from �����
. Instances of the �
���� class
represent Unicode character strings.

Values of the �
���� type can be written as string literals (§2.4.4).

The �
���� keyword is simply an alias for the predefined ���
��	�
���� class.

4.2.4 Interface types

An interface defines a contract. A class or struct that implements an interface must adhere to its contract. An
interface may inherit from multiple base interfaces, and a class or struct may implement multiple interfaces.

Chapter 417 TypesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 87

Interface types are described in §13.

4.2.5 Array types

An array is a data structure that contains zero or more variables which are accessed through computed indices.
The variables contained in an array, also called the elements of the array, are all of the same type, and this type
is called the element type of the array.

Array types are described in §12.

4.2.6 Delegate types

A delegate is a data structure that refers to one or more methods, and for instance methods, it also refers to their
corresponding object instances.

The closest equivalent of a delegate in C or C++ is a function pointer, but whereas a function pointer can only
reference static functions, a delegate can reference both static and instance methods. In the latter case, the
delegate stores not only a reference to the method’s entry point, but also a reference to the object on which to
invoke the method.

Delegate types are described in §15.

4.3 Boxing and unboxing
Boxing and unboxing is a central concept in C#’s type system. It provides a bridge between value-types and
reference-types by permitting any value of a value-type to be converted to and from type �����
. Boxing and
unboxing enables a unified view of the type system wherein a value of any type can ultimately be treated as an
object.

4.3.1 Boxing conversions

A boxing conversion permits any value-type to be implicitly converted to the type �����
 or to any interface-
type implemented by the value-type. Boxing a value of a value-type consists of allocating an object instance and
copying the value-type value into that instance.

The actual process of boxing a value of a value-type is best explained by imagining the existence of a boxing
class for that type. For any value-type !, the boxing class behaves as if it were declared as follows:

������"�����"!#$��
%

!"�����&

������"!#$��'!"
("%
�����")"
&

*
*

Boxing of a value � of type ! now consists of executing the expression ���"!#$��'�(, and returning the
resulting instance as a value of type �����
. Thus, the statements

��
"�")"�+,&
�����
"���")"�&

conceptually correspond to

��
"�")"�+,&
�����
"���")"���"��
#$��'�(&

Boxing classes like !#$�� and ��
#$�� above don’t actually exist and the dynamic type of a boxed value isn’t
actually a class type. Instead, a boxed value of type ! has the dynamic type !, and a dynamic type check using
the �� operator can simply reference type !. For example,

C# LANGUAGE SPECIFICATION

88 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

��
"�")"�+,&
�����
"���")"�&
��"'���"��"��
("%

-������	.��
�'/$��"���
����"��"��
/(&
*

will output the string “$��"���
����"��"��
” on the console.

A boxing conversion implies making a copy of the value being boxed. This is different from a conversion of a
reference-type to type �����
, in which the value continues to reference the same instance and simply is
regarded as the less derived type �����
. For example, given the declaration

�
���
"0���

%

������"��
"� "�&

������"0���
'��
"� "��
"�("%

���	�")"�&

���	�")"�&

*
*

the following statements

0���
"�")"���"0���
'�
 "�
(&
�����
"���")"�&
�	�")"+
&
-������	.��
�'''0���
(���(�(&

will output the value 10 on the console because the implicit boxing operation that occurs in the assignment of �
to ��� causes the value of � to be copied. Had 0���
 been declared a ����� instead, the value 20 would be
output because � and ��� would reference the same instance.

4.3.2 Unboxing conversions

An unboxing conversion permits an explicit conversion from type �����
 to any value-type or from any
interface-type to any value-type that implements the interface-type. An unboxing operation consists of first
checking that the object instance is a boxed value of the given value-type, and then copying the value out of the
instance.

Referring to the imaginary boxing class described in the previous section, an unboxing conversion of an object
��� to a value-type ! consists of executing the expression ''!#$��(���(�����. Thus, the statements

�����
"���")"�+,&
��
"�")"'��
(���&

conceptually correspond to

�����
"���")"���"��
#$��'�+,(&
��
"�")"''��
#$��(���(�����&

For an unboxing conversion to a given value-type to succeed at run-time, the value of the source operand must
be a reference to an object that was previously created by boxing a value of that value-type. If the source
operand is ����, a ���
��	1���2�������������
��� is thrown; if the source operand is a reference to an
incompatible object, a ���
��	3������-��
�����
��� is thrown.

Chapter 517 VariablesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 89

5. Variables

Variables represent storage locations. Every variable has a type that determines what values can be stored in the
variable. C# is a type-safe language, and the C# compiler guarantees that values stored in variables are always of
the appropriate type. The value of a variable can be changed through assignment or through use of the 44 and
55 operators.

A variable must be definitely assigned (§5.3) before its value can be obtained.

As described in the following sections, variables are either initially assigned or initially unassigned. An initially
assigned variable has a well-defined initial value and is always considered definitely assigned. An initially
unassigned variable has no initial value. For an initially unassigned variable to be considered definitely assigned
at a certain location, an assignment to the variable must occur in every possible execution path leading to that
location.

5.1 Variable categories
C# defines seven categories of variables: static variables, instance variables, array elements, value parameters,
reference parameters, output parameters, and local variables. The sections that follow describe each of these
categories.

In the example

�����"6
%

������"�
�
��"��
"�&
��
"�&

����"7'��
��"� "��
"� "���"��
"� "��
"��
"�("%
��
"�")"�&
�")"�"4"�44&

*
*

� is a static variable, � is an instance variable, ��
� is an array element, � is a value parameter, � is a reference
parameter, � is an output parameter, and � is a local variable.

5.1.1 Static variables

A field declared with the �
�
�� modifier is called a static variable. A static variable comes into existence
before execution of the static constructor (§10.11) for its containing type, and ceases to exist when the
associated application domain ceases to exist.

The initial value of a static variable is the default value (§5.2) of the variable’s type.

For the purpose of definite assignment checking, a static variable is considered initially assigned.

5.1.2 Instance variables

A field declared without the �
�
�� modifier is called an instance variable.

C# LANGUAGE SPECIFICATION

90 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

5.1.2.1 Instance variables in classes

An instance variable of a class comes into existence when a new instance of that class is created, and ceases to
exist when there are no references to that instance and the instance’s destructor (if any) has executed.

The initial value of an instance variable of a class is the default value (§5.2) of the variable’s type.

For the purpose of definite assignment checking, an instance variable of a class is considered initially assigned.

5.1.2.2 Instance variables in structs

An instance variable of a struct has exactly the same lifetime as the struct variable to which it belongs. In other
words, when a variable of a struct type comes into existence or ceases to exist, so too do the instance variables
of the struct.

The initial assignment state of an instance variable of a struct is the same as that of the containing struct
variable. In other words, when a struct variable is considered initially assigned, so too are its instance variables,
and when a struct variable is considered initially unassigned, its instance variables are likewise unassigned.

5.1.3 Array elements

The elements of an array come into existence when an array instance is created, and cease to exist when there
are no references to that array instance.

The initial value of each of the elements of an array is the default value (§5.2) of the type of the array elements.

For the purpose of definite assignment checking, an array element is considered initially assigned.

5.1.4 Value parameters

A parameter declared without a ��� or ��
 modifier is a value parameter.

A value parameter comes into existence upon invocation of the function member (§7.4) to which the parameter
belongs, and is initialized with the value of the argument given in the invocation. A value parameter ceases to
exist upon return of the function member.

For the purpose of definite assignment checking, a value parameter is considered initially assigned.

5.1.5 Reference parameters

A parameter declared with a ��� modifier is a reference parameter.

A reference parameter does not create a new storage location. Instead, a reference parameter represents the same
storage location as the variable given as the argument in the function member invocation. Thus, the value of a
reference parameter is always the same as the underlying variable.

The following definite assignment rules apply to reference parameters. Note the different rules for output
parameters described in §5.1.6.

• A variable must be definitely assigned (§5.3) before it can be passed as a reference parameter in a function
member invocation.

• Within a function member, a reference parameter is considered initially assigned.

Within an instance method or instance accessor of a struct type, the
��� keyword behaves exactly as a
reference parameter of the struct type (§7.5.7).

5.1.6 Output parameters

A parameter declared with an ��
 modifier is an output parameter.

Chapter 517 VariablesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 91

An output parameter does not create a new storage location. Instead, an output parameter represents the same
storage location as the variable given as the argument in the function member invocation. Thus, the value of an
output parameter is always the same as the underlying variable.

The following definite assignment rules apply to output parameters. Note the different rules for reference
parameters described in §5.1.5.

• A variable need not be definitely assigned before it can be passed as an output parameter in a function
member invocation.

• Following the normal completion of a function member invocation, each variable that was passed as an
output parameter is considered assigned in that execution path.

• Within a function member, an output parameter is considered initially unassigned.

• Every output parameter of a function member must be definitely assigned (§5.3) before the function
member returns normally.

Within an instance constructor of a struct type, the
��� keyword behaves exactly as an output parameter of the
struct type (§7.5.7).

5.1.7 Local variables

A local variable is declared by a local-variable-declaration, which may occur in a block, a for-statement, a
switch-statement, or a using-statement.

The lifetime of a local variable is the portion of program execution during which storage is guaranteed to be
reserved for it. This lifetime extends from entry into the block, for-statement, switch-statement, or using-
statement with which it is associated, until execution of that block, for-statement, switch-statement, or using-
statement ends in any way. (Entering an enclosed block or calling a method suspends, but does not end,
execution of the current block, for-statement, switch-statement, or using-statement.) If the parent block, for-
statement, switch-statement, or using-statement is entered recursively, a new instance of the local variable is
created each time, and its local-variable-initializer, if any, is evaluated each time.

The actual lifetime of a local variable is implementation-dependent. For example, a compiler might statically
determine that a local variable in a block is only used for a small portion of that block. Using this analysis, the
compiler could generate code that results in the variable’s storage having a shorter lifetime than its containing
block.

A local variable is not automatically initialized and thus has no default value. For the purpose of definite
assignment checking, a local variable is considered initially unassigned. A local-variable-declaration may
include a local-variable-initializer, in which case the variable is considered definitely assigned in its entire
scope, except within the expression provided in the local-variable-initializer.

Within the scope of a local variable, it is a compile-time error to refer to the local variable in a textual position
that precedes its local-variable-declarator.

A local variable is also declared by a foreach-statement and by a specific-catch-clause for a try-statement. For a
foreach-statement, the local variable is an iteration variable. For a specific-catch-clause, the local variable is an
exception variable. A local variable declared by a foreach-statement or specific-catch-clause is considered
definitely assigned in its entire scope.

5.2 Default values
The following categories of variables are automatically initialized to their default values:

• Static variables.

C# LANGUAGE SPECIFICATION

92 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• Instance variables of class instances.

• Array elements.

The default value of a variable depends on the type of the variable and is determined as follows:

• For a variable of a value-type, the default value is the same as the value computed by the value-type’s
default constructor (§4.1.1).

• For a variable of a reference-type, the default value is ����.

Initialization to default values is typically done by having the memory manager or garbage collector initialize
memory to all-bits-zero before it is allocated for use. For this reason, it is typically convenient for an
implementation to use all-bits-zero to represent the null reference.

5.3 Definite assignment
At a given location in the executable code of a function member, a variable is said to be definitely assigned if
the compiler can prove, by static flow analysis, that the variable has been automatically initialized or has been
the target of at least one assignment. The rules of definite assignment are:

• An initially assigned variable (§5.3.1) is always considered definitely assigned.

• An initially unassigned variable (§5.3.2) is considered definitely assigned at a given location if all possible
execution paths leading to that location contain at least one of the following:

o A simple assignment (§7.13.1) in which the variable is the left operand.

o An invocation expression (§7.5.5) or object creation expression (§7.5.10.1) that passes the variable as an
output parameter.

o For a local variable, a local variable declaration (§8.5) that includes a variable initializer.

The definite assignment states of instance variables of a struct-type variable are tracked individually as well as
collectively. In additional to the rules above, the following rules apply to struct-type variables and their instance
variables:

• An instance variable is considered definitely assigned if its containing struct-type variable is considered
definitely assigned.

• A struct-type variable is considered definitely assigned if each of its instance variables is considered
definitely assigned.

Definite assignment is a requirement in the following contexts:

• A variable must be definitely assigned at each location where its value is obtained. This ensures that
undefined values never occur. The occurrence of a variable in an expression is considered to obtain the
value of the variable, except when

o the variable is the left operand of a simple assignment,

o the variable is passed as an output parameter, or

o the variable is a struct-type variable and occurs as the left operand of a member access.

• A variable must be definitely assigned at each location where it is passed as a reference parameter. This
ensures that the function member being invoked can consider the reference parameter initially assigned.

• All output parameters of a function member must be definitely assigned at each location where the function
member returns (through a ��
��� statement or through execution reaching the end of the function member
body). This ensures that function members do no return undefined values in output parameters, thus

Chapter 517 VariablesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 93

enabling the compiler to consider a function member invocation that takes a variable as an output parameter
equivalent to an assignment to the variable.

• The
��� variable of an instance constructor of a struct-type must be definitely assigned at each location
where the constructor returns.

5.3.1 Initially assigned variables

The following categories of variables are classified as initially assigned:

• Static variables.

• Instance variables of class instances.

• Instance variables of initially assigned struct variables.

• Array elements.

• Value parameters.

• Reference parameters.

• Variables declared in a ��
�� clause or a ������� statement.

5.3.2 Initially unassigned variables

The following categories of variables are classified as initially unassigned:

• Instance variables of initially unassigned struct variables.

• Output parameters, including the
��� variable of instance constructors for structs.

• Local variables, except those declared in a ��
�� clause or a ������� statement.

5.3.3 Precise rules for determining definite assignment

In order to determine that each used variable is definitely assigned, the compiler must use a process that is
equivalent to the one described in this section.

The compiler processes the body of each function member that has one or more initially unassigned variables.
For each initially unassigned variable v, the compiler determines a definite assignment state for v at each of the
following points in the function member:

• At the beginning of each statement

• At the end point (§8.1) of each statement

• On each arc which transfers control to another statement or to the end point of a statement

• At the beginning of each expression

• At the end of each expression

The definite assignment state of v can be either:

• Definitely assigned. This indicates that on all possible control flows to this point, v has been assigned a
value.

• Not definitely assigned. For the state of a variable at the end of an expression of type ����, the state of a
variable the isn’t definitely assigned may (but doesn’t necessarily) fall into one of the following sub-states:

C# LANGUAGE SPECIFICATION

94 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

o Definitely assigned after true expression. This state indicates that v is definitely assigned if the boolean
expression evaluated as true, but is not necessarily assigned if the boolean expression evaluated as false.

o Definitely assigned after false expression. This state indicates that v is definitely assigned if the boolean
expression evaluated as false, but is not necessarily assigned if the boolean expression evaluated as true.

The following rules govern how the state of a variable v is determined at each location.

5.3.3.1 General rules for statements

• v is not definitely assigned at the beginning of a function member body.

• v is definitely assigned at the beginning of any unreachable statement.

• The definite assignment state of v at the beginning of any other statement is determined by checking the
definite assignment state of v on all control flow transfers that target the beginning of that statement. If (and
only if) v is definitely assigned on all such control flow transfers, then v is definitely assigned at the
beginning of the statement. The set of possible control flow transfers is determined in the same way as for
checking statement reachability (§8.1).

• The definite assignment state of v at the end point of a block, ����8��, ������8��, ��, �����, ��, ���,
�������, ���8, �����, or ���
�� statement is determined by checking the definite assignment state of v
on all control flow transfers that target the end point of that statement. If v is definitely assigned on all such
control flow transfers, then v is definitely assigned at the end point of the statement. Otherwise; v is not
definitely assigned at the end point of the statement. The set of possible control flow transfers is determined
in the same way as for checking statement reachability (§8.1).

5.3.3.2 Block statements, checked, and unchecked statements

The definite assignment state of v on the control transfer to the first statement of the statement list in the block
(or to the end point of the block, if the statement list is empty) is the same as the definite assignment statement
of v before the block, ����8��, or ������8�� statement.

5.3.3.3 Expression statements

For an expression statement stmt that consists of the expression expr:

• v has the same definite assignment state at the beginning of expr as at the beginning of stmt.

• If v if definitely assigned at the end of expr, it is definitely assigned at the end point of stmt; otherwise; it is
not definitely assigned at the end point of stmt.

5.3.3.4 Declaration statements

• If stmt is a declaration statement without initializers, then v has the same definite assignment state at the end
point of stmt as at the beginning of stmt.

• If stmt is a declaration statement with initializers, then the definite assignment state for v is determined as if
stmt were a statement list, with one assignment statement for each declaration with an initializer (in the
order of declaration).

5.3.3.5 If statements

For an �� statement stmt of the form:

��"'expr("then-stmt"����"else-stmt

• v has the same definite assignment state at the beginning of expr as at the beginning of stmt.

Chapter 517 VariablesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 95

• If v is definitely assigned at the end of expr, then it is definitely assigned on the control flow transfer to
then-stmt and to either else-stmt or to the end-point of stmt if there is no else clause.

• If v has the state “definitely assigned after true expression” at the end of expr, then it is definitely assigned
on the control flow transfer to then-stmt, and not definitely assigned on the control flow transfer to either
else-stmt or to the end-point of stmt if there is no else clause.

• If v has the state “definitely assigned after false expression” at the end of expr, then it is definitely assigned
on the control flow transfer to else-stmt, and not definitely assigned on the control flow transfer to then-stmt.
It is definitely assigned at the end-point of stmt if and only if it is definitely assigned at the end-point of
then-stmt.

• Otherwise, v is considered not definitely assigned on the control flow transfer to either the then-stmt or else-
stmt, or to the end-point of stmt if there is no else clause.

5.3.3.6 Switch statements

In a ���
�� statement stmt with a controlling expression expr:

• The definite assignment state of v at the beginning of expr is the same as the state of v at the beginning of
stmt.

• The definite assignment state of v on the control flow transfer to a reachable switch block statement list is
the same as the definite assignment state of v at the end of expr.

5.3.3.7 While statements

For a ����� statement stmt of the form:

�����"'expr("while-body

• v has the same definite assignment state at the beginning of expr as at the beginning of stmt.

• If v is definitely assigned at the end of expr, then it is definitely assigned on the control flow transfer to
while-body and to the end point of stmt.

• If v has the state “definitely assigned after true expression” at the end of expr, then it is definitely assigned
on the control flow transfer to while-body, but not definitely assigned at the end-point of stmt.

• If v has the state “definitely assigned after false expression” at the end of expr, then it is definitely assigned
on the control flow transfer to the end point of stmt.

5.3.3.8 Do statements

For a �� statement stmt of the form:

��"do-body"�����"'expr(&

• v has the same definite assignment state on the control flow transfer from the beginning of stmt to do-body
as at the beginning of stmt.

• v has the same definite assignment state at the beginning of expr as at the end point of do-body.

• If v is definitely assigned at the end of expr, then it is definitely assigned on the end point of stmt.

• If v has the state “definitely assigned after false expression” at the end of expr, then it is definitely assigned
on the control flow transfer to the end point of stmt.

C# LANGUAGE SPECIFICATION

96 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

5.3.3.9 For statements

Definite assignment checking for a ��� statement of the form:

���"'for-initializer&"for-condition&"for-iterator("embedded-statement

is done as if the statement were written:

%
for-initializer&
�����"'for-condition("%

embedded-statement&
for-iterator&

*
*

If the for-condition is omitted from the ��� statement, then evaluation of definite assignment proceeds as if for-
condition were replaced with
��� in the above expansion.

5.3.3.10 Break, continue, and goto statements

The definite assignment state of v on the control flow transfer caused by a ����8, ���
����, or ��
�
statement is the same as the definite assignment state of v at the beginning of the statement.

5.3.3.11 Throw statements

For a statement stmt of the form

����"expr &

The definite assignment state of v at the beginning of expr is the same as the definite assignment state of v at the
beginning of stmt.

5.3.3.12 Return statements

For a statement stmt of the form

��
���"expr &

• The definite assignment state of v at the beginning of expr is the same as the definite assignment state of v at
the beginning of stmt.

• If v is an output parameter, then it must be definitely assigned either:

o after expr

o or at the end of the ������� block of a
��-������� or
��-��
��-������� that encloses the
��
��� statement.

5.3.3.13 Try-catch statements

For a statement stmt of the form:

��"try-block
��
��'9("catch-block-1
9
��
��'9("catch-block-n

• The definite assignment state of v at the beginning of try-block is the same as the definite assignment state
of v at the beginning of stmt.

Chapter 517 VariablesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 97

• The definite assignment state of v at the beginning of catch-block-i (for any i) is the same as the definite
assignment state of v at the beginning of stmt.

• The definite assignment state of v at the end-point of stmt is definitely assigned if (and only if) v is definitely
assigned at the end-point of try-block and every catch-block-i (for every i from 1 to n).

5.3.3.14 Try-finally statements

For a
�� statement stmt of the form:

��"try-block �������"finally-block

• The definite assignment state of v at the beginning of try-block is the same as the definite assignment state
of v at the beginning of stmt.

• The definite assignment state of v at the beginning of finally-block is the same as the definite assignment
state of v at the beginning of stmt.

• The definite assignment state of v at the end-point of stmt is definitely assigned if (and only if) either:

o v is definitely assigned at the end-point of try-block

o v is definitely assigned at the end-point of finally-block

If a control flow transfer (for example, a ��
� statement) is made that begins within try-block, and ends outside
of try-block, then v is also considered definitely assigned on that control flow transfer if v is definitely assigned
at the end-point of finally-block. (This is not an only if—if v is definitely assigned for another reason on this
control flow transfer, then it is still considered definitely assigned.)

5.3.3.15 Try-catch-finally statements

Definite assignment analysis for a
��-��
��-������� statement of the form:

��"try-block
��
��'9("catch-block-1
9
��
��'9("catch-block-n
�������"finally-block

is done as if the statement were a
��-������� statement enclosing a
��-��
�� statement:

��"%

��"try-block
��
��'9("catch-block-1
9
��
��'9("catch-block-n

*
�������"finally-block

The following example demonstrates how the different blocks of a
�� statement (§8.10) affect definite
assignment.

C# LANGUAGE SPECIFICATION

98 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

�����"6
%

�
�
��"����"7'("%
��
"� "�&

��"%

��
�":6$�:;
<<"���
���"�"���"�"������
���"��������
�")"�&
<<"�"������
���"��������

*

��
��"%
<<"���
���"�"���"�"������
���"��������
�")",&
<<"�"������
���"��������

*

�������"%
<<"���
���"�"���"�"������
���"��������
�")"=&
<<"�"������
���"��������

*
<<"�"���"�"������
���"��������

"":6$�:;
<<"�"������
���"��������

*
*

5.3.3.16 Foreach statements

For a ������� statement stmt of the form:

������� 'type identifier �� expr(embedded-statement

• The definite assignment state of v at the beginning of expr is the same as the state of v at the beginning of
stmt.

• The definite assignment state of v on the control flow transfer to embedded-statement or to the end point of
stmt is the same as the state of v at the end of expr.

5.3.3.17 Using statements

For a ����� statement stmt of the form:

�����"'resource-acquisition("embedded-statement

• The definite assignment state of v at the beginning of resource-acquisition is the same as the state of v at the
beginning of stmt.

• The definite assignment state of v on the control flow transfer to embedded-statement is the same as the state
of v at the end of resource-acquisition.

5.3.3.18 Lock statements

For a ���8 statement stmt of the form:

���8"'expr("embedded-statement

• The definite assignment state of v at the beginning of expr is the same as the state of v at the beginning of
stmt.

Chapter 517 VariablesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 99

• The definite assignment state of v on the control flow transfer to embedded-statement is the same as the state
of v at the end of expr.

5.3.3.19 General rules for simple expressions

The following rule applies to these kinds of expressions: literals (§7.5.1), simple names (§7.5.2), member access
expressions (§7.5.4), non-indexed base access expressions (§7.5.8), and
����� expressions (§7.5.11).

• The definite assignment state of v at the end of such an expression is the same as the definite assignment
state of v at the beginning of the expression.

5.3.3.20 General rules for express ions with embedded expressions

The following rules apply to these kinds of expressions: parenthesized expressions (§7.5.3), element access
expressions (§7.5.6), base access expressions with indexing (§7.5.8), increment and decrement
expressions(§7.5.9, §7.6.5), cast expressions (§7.6.6), unary 4, 5, >, ? expressions, binary 4, 5, ?, <, @, AA, BB,
A, A), B, B),)), C), ��, ��, D, E, F expressions (§7.7, §7.8, §7.9, §7.10), compound assignment expressions
(§7.13.2), ����8�� and ������8�� expressions (§7.5.12), array and delegate creation expressions (§7.5.10).

Each of these expressions has one or more sub-expressions that are unconditionally evaluated in a fixed order.
For example, the binary @"operator evaluates the left hand side of the operator, then the right hand side. An
indexing operation evaluates the indexed expression, and then evaluates each of the index expressions, in order
from left to right. For an expression expr, which has sub-expressions expr1, expr2, ..., exprn, evaluated in that
order:

• The definite assignment state of v at the beginning of expr1 is the same as the definite assignment state at the
beginning of expr.

• The definite assignment state of v at the beginning of expr i (i greater than one) is the same as the definite
assignment state at the end of expr i-1.

• The definite assignment state of v at the end of expr is the same as the definite assignment state at the end of
exprn.

5.3.3.21 Invocation expressions and object creation expressions

For an invocation expression expr of the form:

primary-expression 'arg1, arg2, …, argn(

or an object creation expression of the form:

��� type 'arg1, arg2, …, argn(

• For an invocation expression, the definite assignment state of v before primary-expression is the same as the
state of v before expr.

• For an invocation expression, the definite assignment state of v before arg1 is the same as the state of v after
primary-expression.

• For an object creation expression, the definite assignment state of v before arg1 is the same as the state of v
before expr.

• For each argument argi, the definite assignment state of v after argi is determined by the normal expression
rules, ignoring any ��� or ��
 modifiers.

• For each argument argi for any i greater than one, the definite assignment state of v before argi is the same
as the state of v after argi-1.

C# LANGUAGE SPECIFICATION

100 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• If the variable v is passed as an ��
 argument (i.e., an argument of the form “��
 v”) in any of the
arguments, then the state of v after expr is definitely assigned. Otherwise; the state of v after expr is the
same as the state of v after argn.

5.3.3.22 Simple assignment expressions

For an expression expr of the form w = expr-rhs:

• The definite assignment state of v before expr-rhs is the same as the definite assignment state of v before
expr.

• If w is the same variable as v, then the definite assignment state of v after expr is definitely assigned.
Otherwise, the definite assignment state of v after expr is the same as the definite assignment state of v after
expr-rhs.

5.3.3.23 && expressions

For an expression expr of the form expr-first DD expr-second:

• The definite assignment state of v before expr-first is the same as the definite assignment state of v before
expr.

• The definite assignment state of v before expr-second is definitely assigned if the state of v after expr-first is
either definitely assigned or “definitely assigned after true expression”. Otherwise, it is not definitely
assigned.

• The definite assignment statement of v after expr is determined by:

o If the state of v after expr-first is definitely assigned, then the state of v after expr is definitely assigned.

o Otherwise, if the state of v after expr-second is definitely assigned, and the state of v after expr-first is
“definitely assigned after false expression”, then the state of v after expr is definitely assigned.

o Otherwise, if the state of v after expr-second is definitely assigned or “definitely assigned after true
expression”, then the state of v after expr is “definitely assigned after true expression”.

o Otherwise, if the state of v after expr-first is “definitely assigned after false expression”, and the state of
v after expr-second is “definitely assigned after false expression”, then the state of v after expr is
“definitely assigned after false expression”.

o Otherwise, the state of v after expr is not definitely assigned.

In the example

�����"6
%

�
�
��"����"7'��
"� "��
"�("%
��
"�&
��"'�"B)"
"DD"'�")"�("B)"
("%

<<"�"������
���"��������
*
����"%

<<"�"��
"������
���"��������
*
<<"�"��
"������
���"��������

*
*

the variable � is considered definitely assigned in one of the embedded statements of an �� statement but not in
the other. In the �� statement in method 7, the variable � is definitely assigned in the first embedded statement
because execution of the expression '�")"�(always precedes execution of this embedded statement. In

Chapter 517 VariablesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 101

contrast, the variable � is not definitely assigned in the second embedded statement, since �"B)"
 might have
tested false, resulting in the variable �G� being unassigned.

5.3.3.24 || expressions

For an expression expr of the form expr-first EE expr-second:

• The definite assignment state of v before expr-first is the same as the definite assignment state of v before
expr.

• The definite assignment state of v before expr-second is definitely assigned if the state of v after expr-first is
either definitely assigned or “definitely assigned after false expression”. Otherwise, it is not definitely
assigned.

• The definite assignment statement of v after expr is determined by:

o If the state of v after expr-first is definitely assigned, then the state of v after expr is definitely assigned.

o Otherwise, if the state of v after expr-second is definitely assigned, and the state of v after expr-first is
“definitely assigned after true expression”, then the state of v after expr is definitely assigned.

o Otherwise, if the state of v after expr-second is definitely assigned or “definitely assigned after false
expression”, then the state of v after expr is “definitely assigned after false expression”.

o Otherwise, if the state of v after expr-first is “definitely assigned after true expression”, and the state of v
after expr-second is “definitely assigned after true expression”, then the state of v after expr is
“definitely assigned after true expression”.

o Otherwise, the state of v after expr is not definitely assigned.

In the example

�����"6
%

�
�
��"����"H'��
"� "��
"�("%
��
"�&
��"'�"B)"
"EE"'�")"�("B)"
("%

<<"�"��
"������
���"��������
*
����"%

<<"�"������
���"��������
*
<<"�"��
"������
���"��������

*
*

the variable � is considered definitely assigned in one of the embedded statements of an �� statement but not in
the other. In the �� statement in method H, the variable � is definitely assigned in the second embedded
statement because execution of the expression '�")"�(always precedes execution of this embedded statement.
In contrast, the variable � is not definitely assigned in the first embedded statement, since �"B)"
 might have
tested false, resulting in the variable �G� being unassigned.

5.3.3.25 ! expressions

For an expression expr of the form ! expr-operand:

• The definite assignment state of v before expr-operand is the same as the definite assignment state of v
before expr.

• The definite assignment state of v after expr is determined by:

C# LANGUAGE SPECIFICATION

102 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

o If the state of v after expr-operand is definitely assigned, then the state of v after expr is definitely
assigned.

o If the state of v after expr-operand is not definitely assigned, then the state of v after expr is not
definitely assigned.

o If the state of v after expr-operand is “definitely assigned after false expression”, then the state of v after
expr is “definitely assigned after true expression”.

o If the state of v after expr-operand is “definitely assigned after true expression”, then the state of v after
expr is “definitely assigned after false expression”.

5.3.3.26 ?: expressions

For an expression expr of the form expr-cond ? expr-true : expr-false:

• The definite assignment state of v before expr-cond is the same as the state of v before expr.

• The definite assignment state of v before expr-true is definitely assigned if and only if the state of v after
expr-cond is definitely assigned or “definitely assigned after true expression”.

• The definite assignment state of v before expr-false is definitely assigned if and only if the state of v after
expr-cond is definitely assigned or “definitely assigned after false expression”.

5.4 Variable references
A variable-reference is an expression that is classified as a variable. A variable-reference denotes a storage
location that can be accessed both to fetch the current value and to store a new value. In C and C++, a variable-
reference is known as an lvalue.

variable-reference:
expression

5.5 Atomicity of variable references
Reads and writes of the following data types shall be atomic: ����, ����, ��
�, ���
�, ����
, �����
,
���
, ��
, ����
, and reference types. In addition, reads and writes of enum types with an underlying type in
the previous list shall also be atomic. Reads and writes of other types, including ����, �����, ������, and
�������, as well as user-defined types, need not be atomic. Aside from the library functions designed for that
purpose, there is no guarantee of atomic read-modify-write, such as in the case of increment or decrement.

Chapter 617 ConversionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 103

6. Conversions

A conversion enables an expression of one type to be treated as another type. Conversions can be implicit or
explicit, and this determines whether an explicit cast is required. For instance, an the conversion from type ��

to type ���� is implicit, so expressions of type ��
 can implicitly be treated as type ����. The opposite
conversion, from type ���� to type ��
, is explicit and so an explicit cast is required.

��
"�")"�+,&
����"�")"�& <<"�������
"����������"����"��
"
�"����
��
"�")"'��
("�& <<"�������
"����������"����"����"
�"��

Some conversions are defined by the language. Programs may also define their own conversions (§6.4).

6.1 Implicit conversions
The following conversions are classified as implicit conversions:

• Identity conversions

• Implicit numeric conversions

• Implicit enumeration conversions.

• Implicit reference conversions

• Boxing conversions

• Implicit constant expression conversions

• User-defined implicit conversions

Implicit conversions can occur in a variety of situations, including function member invocations (§7.4.3), cast
expressions (§7.6.6), and assignments (§7.13).

The pre-defined implicit conversions always succeed and never cause exceptions to be thrown. Properly
designed user-defined implicit conversions should exhibit these characteristics as well.

6.1.1 Identity conversion

An identity conversion converts from any type to the same type. This conversion exists only such that an entity
that already has a required type can be said to be convertible to that type.

6.1.2 Implicit numeric conversions

The implicit numeric conversions are:

• From ���
� to ����
, ��
, ����, ����
, ������, or �������.

• From ��
� to ����
, �����
, ��
, ���
, ����, �����, ����
, ������, or �������.

• From ����
 to ��
, ����, ����
, ������, or �������.

• From �����
 to ��
, ���
, ����, �����, ����
, ������, or �������.

• From ��
 to ����, ����
, ������, or �������.

• From ���
 to ����, �����, ����
, ������, or �������.

C# LANGUAGE SPECIFICATION

104 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• From ���� to ����
, ������, or �������.

• From ����� to ����
, ������, or �������.

• From ���� to �����
, ��
, ���
, ����, �����, ����
, ������, or �������.

• From ����
 to ������.

Conversions from ��
, ���
, or ���� to ����
 and from ���� to ������ may cause a loss of precision, but
will never cause a loss of magnitude. The other implicit numeric conversions never lose any information.

There are no implicit conversions to the ���� type. This in particular means that values of the other integral
types do not automatically convert to the ���� type.

6.1.3 Implicit enumeration conversions

An implicit enumeration conversion permits the decimal-integer-literal
 to be converted to any enum-type.

6.1.4 Implicit reference conversions

The implicit reference conversions are:

• From any reference-type to �����
.

• From any class-type � to any class-type !, provided � is derived from !.

• From any class-type � to any interface-type !, provided � implements !.

• From any interface-type � to any interface-type !, provided � is derived from !.

• From an array-type � with an element type �� to an array-type ! with an element type !�, provided all of the
following are true:

o � and ! differ only in element type. (In other words, � and ! have the same number of dimensions.)

o Both �� and !� are reference-types.

o An implicit reference conversion exists from �� to !�.

• From any array-type to ���
��	6����.

• From any delegate-type to ���
��	I�����
�.

• From any array-type or delegate-type to ���
��	3-��������.

• From the null type to any reference-type.

The implicit reference conversions are those conversions between reference-types that can be proven to always
succeed, and therefore require no checks at run-time.

Reference conversions, implicit or explicit, never change the referential identity of the object being converted.
In other words, while a reference conversion may change the type of the reference, it never changes the type or
value of the object being referred to.

6.1.5 Boxing conversions

A boxing conversion permits any value-type to be implicitly converted to the type �����
,
���
��	J����!��� or to any interface-type implemented by the value-type. Boxing a value of a value-type
consists of allocating an object instance and copying the value-type value into that instance.

Boxing conversions are described further in §4.3.1.

Chapter 617 ConversionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 105

6.1.6 Implicit constant expression conversions

An implicit constant expression conversion permits the following conversions:

• A constant-expression (§7.15) of type ��
 can be converted to type ���
�, ��
�, ����
, �����
, ���
,
or �����, provided the value of the constant-expression is within the range of the destination type.

• A constant-expression of type ���� can be converted to type �����, provided the value of the constant-
expression is not negative.

6.1.7 User-defined implicit conversions

A user-defined implicit conversion consists of an optional standard implicit conversion, followed by execution
of a user-defined implicit conversion operator, followed by another optional standard implicit conversion. The
exact rules for evaluating user-defined conversions are described in §6.4.3.

6.2 Explicit conversions
The following conversions are classified as explicit conversions:

• All implicit conversions.

• Explicit numeric conversions.

• Explicit enumeration conversions.

• Explicit reference conversions.

• Explicit interface conversions.

• Unboxing conversions.

• User-defined explicit conversions.

Explicit conversions can occur in cast expressions (§7.6.6).

The set of explicit conversions includes all implicit conversions. This means that redundant cast expressions are
allowed.

The explicit conversions are conversions that cannot be proven to always succeed, conversions that are known
to possibly lose information, and conversions across domains of types sufficiently different to merit explicit
notation.

6.2.1 Explicit numeric conversions

The explicit numeric conversions are the conversions from a numeric-type to another numeric-type for which an
implicit numeric conversion (§6.1.2) does not already exist:

• From ���
� to ��
�, �����
, ���
, �����, or ����.

• From ��
� to ���
� and ����.

• From ����
 to ���
�, ��
�, �����
, ���
, �����, or ����.

• From �����
 to ���
�, ��
�, ����
, or ����.

• From ��
 to ���
�, ��
�, ����
, �����
, ���
, �����, or ����.

• From ���
 to ���
�, ��
�, ����
, �����
, ��
, or ����.

• From ���� to ���
�, ��
�, ����
, �����
, ��
, ���
, �����, or ����.

• From ����� to ���
�, ��
�, ����
, �����
, ��
, ���
, ����, or ����.

C# LANGUAGE SPECIFICATION

106 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• From ���� to ���
�, ��
�, or ����
.

• From ����
 to ���
�, ��
�, ����
, �����
, ��
, ���
, ����, �����, ����, or �������.

• From ������ to ���
�, ��
�, ����
, �����
, ��
, ���
, ����, �����, ����, ����
, or �������.

• From ������� to ���
�, ��
�, ����
, �����
, ��
, ���
, ����, �����, ����, ����
, or ������.

Because the explicit conversions include all implicit and explicit numeric conversions, it is always possible to
convert from any numeric-type to any other numeric-type using a cast expression (§7.6.6).

The explicit numeric conversions possibly lose information or possibly cause exceptions to be thrown. An
explicit numeric conversion is processed as follows:

• For a conversion from an integral type to another integral type, the processing depends on the overflow
checking context (§7.5.12) in which the conversion takes place:

o In a ����8�� context, the conversion succeeds if the value of the source operand is within the range of
the destination type, but throws an ���
��	�������������
��� if the value of the source operand is
outside the range of the destination type.

o In an ������8�� context, the conversion always succeeds, and proceeds as follows.

• If the source type is larger than the destination type, then the source value is truncated by discarding
its “extra” most significant bits. The result is then treated as a value of the destination type.

• If the source type is smaller than the destination type, then the source value is either sign-extended
or zero-extended so that it is the same size as the destination type. Sign-extension is used if the
source type is signed; zero-extension is used if the source type is unsigned. The result is then treated
as a value of the destination type.

• If the source type is the same size as the destination type, then the source value is treated as a value
of the destination type.

• For a conversion from ������� to an integral type, the source value is rounded towards zero to the nearest
integral value, and this integral value becomes the result of the conversion. If the resulting integral value is
outside the range of the destination type, a ���
��	�������������
��� is thrown.

• For a conversion from ����
 or ������ to an integral type, the processing depends on the overflow
checking context (§7.5.12) in which the conversion takes place:

o In a ����8�� context, the conversion proceeds as follows:

• If the value of the source operand is within the range of the destination type, then it is rounded
towards zero to the nearest integral value of the destination type, and this integral value is the result
of the conversion.

• Otherwise, a ���
��	�������������
��� is thrown.

o In an ������8�� context, the conversion always succeeds, and proceeds as follows.

• If the value of the source operand is within the range of the destination type, then it is rounded
towards zero to the nearest integral value of the destination type, and this integral value is the result
of the conversion.

• Otherwise, the result of the conversion is an unspecified value of the destination type.

• For a conversion from ������ to ����
, the ������ value is rounded to the nearest ����
 value. If the
������ value is too small to represent as a ����
, the result becomes positive zero or negative zero. If the

Chapter 617 ConversionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 107

������ value is too large to represent as a ����
, the result becomes positive infinity or negative infinity.
If the ������ value is NaN, the result is also NaN.

• For a conversion from ����
 or ������ to �������, the source value is converted to �������
representation and rounded to the nearest number after the 28th decimal place if required (§4.1.6). If the
source value is too small to represent as a �������, the result becomes zero. If the source value is NaN,
infinity, or too large to represent as a �������, a ���
��	"�������������
��� is thrown.

• For a conversion from ������� to ����
 or ������, the ������� value is rounded to the nearest ������
or ����
 value. While this conversion may lose precision, it never causes an exception to be thrown.

6.2.2 Explicit enumeration conversions

The explicit enumeration conversions are:

• From ���
�, ��
�, ����
, �����
, ��
, ���
, ����, �����, ����, ����
, ������, or ������� to any
enum-type.

• From any enum-type to ���
�, ��
�, ����
, �����
, ��
, ���
, ����, �����, ����, ����
, ������,
or �������.

• From any enum-type to any other enum-type.

An explicit enumeration conversion between two types is processed by treating any participating enum-type as
the underlying type of that enum-type, and then performing an implicit or explicit numeric conversion between
the resulting types. For example, given an enum-type � with and underlying type of ��
, a conversion from � to
��
� is processed as an explicit numeric conversion (§6.2.1) from ��
 to ��
�, and a conversion from ��
� to
� is processed as an implicit numeric conversion (§6.1.2) from ��
� to ��
.

6.2.3 Explicit reference conversions

The explicit reference conversions are:

• From �����
 to any reference-type.

• From any class-type � to any class-type !, provided � is a base class of !.

• From any class-type � to any interface-type !, provided � is not sealed and provided � does not implement
!.

• From any interface-type � to any class-type !, provided ! is not sealed or provided ! implements �.

• From any interface-type � to any interface-type !, provided � is not derived from !.

• From an array-type � with an element type �� to an array-type ! with an element type !�, provided all of the
following are true:

o � and ! differ only in element type. In other words, � and ! have the same number of dimensions.

o Both �� and !� are reference-types.

o An explicit reference conversion exists from �� to !�.

• From ���
��	6���� and the interfaces it implements to any array-type.

• From ���
��	I�����
� and the interfaces it implements to any delegate-type.

The explicit reference conversions are those conversions between reference-types that require run-time checks
to ensure they are correct.

C# LANGUAGE SPECIFICATION

108 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

For an explicit reference conversion to succeed at run-time, the value of the source operand must be ����, or
the actual type of the object referenced by the source operand must be a type that can be converted to the
destination type by an implicit reference conversion (§6.1.4). If an explicit reference conversion fails, a
���
��	3������-��
�����
��� is thrown.

Reference conversions, implicit or explicit, never change the referential identity of the object being converted.
In other words, while a reference conversion may change the type of a value, it never changes the value itself.

6.2.4 Unboxing conversions

An unboxing conversion permits an explicit conversion from type �����
 or ���
��	J����!��� to any
value-type or from any interface-type to any value-type that implements the interface-type. An unboxing
operation consists of first checking that the object instance is a boxed value of the given value-type, and then
copying the value out of the instance.

Unboxing conversions are described further in §4.3.2.

6.2.5 User-defined explicit conversions

A user-defined explicit conversion consists of an optional standard explicit conversion, followed by execution of
a user-defined implicit or explicit conversion operator, followed by another optional standard explicit
conversion. The exact rules for evaluating user-defined conversions are described in §6.4.4.

6.3 Standard conversions
The standard conversions are those pre-defined conversions that can occur as part of a user-defined conversion.

6.3.1 Standard implicit conversions

The following implicit conversions are classified as standard implicit conversions:

• Identity conversions (§6.1.1)

• Implicit numeric conversions (§6.1.2)

• Implicit reference conversions (§6.1.4)

• Boxing conversions (§6.1.5)

• Implicit constant expression conversions (§6.1.6)

The standard implicit conversions specifically exclude user-defined implicit conversions.

6.3.2 Standard explicit conversions

The standard explicit conversions are all standard implicit conversions plus the subset of the explicit
conversions for which an opposite standard implicit conversion exists. In other words, if a standard implicit
conversion exists from a type 6 to a type $, then a standard explicit conversion exists from type 6 to type $ and
from type $ to type 6.

6.4 User-defined conversions
C# allows the pre-defined implicit and explicit conversions to be augmented by user-defined conversions. User-
defined conversions are introduced by declaring conversion operators (§10.9.3) in class and struct types.

Chapter 617 ConversionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 109

6.4.1 Permitted user-defined conversions

C# permits only certain user-defined conversions to be declared. In particular, it is not possible to redefine an
already existing implicit or explicit conversion. A class or struct is permitted to declare a conversion from a
source type � to a target type ! only if all of the following are true:

• � and ! are different types.

• Either � or ! is the class or struct type in which the operator declaration takes place.

• Neither � nor ! is �����
 or an interface-type.

• ! is not a base class of �, and � is not a base class of !.

The restrictions that apply to user-defined conversions are discussed further in §10.9.3.

6.4.2 Evaluation of user-defined conversions

A user-defined conversion converts a value from its type, called the source type, to another type, called the
target type. Evaluation of a user-defined conversion centers on finding the most specific user-defined
conversion operator for the particular source and target types. This determination is broken into several steps:

• Finding the set of classes and structs from which user-defined conversion operators will be considered. This
set consists of the source type and its base classes and the target type and its base classes (with the implicit
assumptions that only classes and structs can declare user-defined operators, and that non-class types have
no base classes).

• From that set of types, determining which user-defined conversion operators are applicable. For a
conversion operator to be applicable, it must be possible to perform a standard conversion (§6.3) from the
source type to the operand type of the operator, and it must be possible to perform a standard conversion
from the result type of the operator to the target type.

• From the set of applicable user-defined operators, determining which operator is unambiguously the most
specific. In general terms, the most specific operator is the operator whose operand type is “closest” to the
source type and whose result type is “closest” to the target type. The exact rules for establishing the most
specific user-defined conversion operator are defined in the following sections.

Once a most specific user-defined conversion operator has been identified, the actual execution of the user-
defined conversion involves up to three steps:

• First, if required, performing a standard conversion from the source type to the operand type of the user-
defined conversion operator.

• Next, invoking the user-defined conversion operator to perform the conversion.

• Finally, if required, performing a standard conversion from the result type of the user-defined conversion
operator to the target type.

Evaluation of a user-defined conversion never involves more than one user-defined conversion operator. In
other words, a conversion from type � to type ! will never first execute a user-defined conversion from � to K
and then execute a user-defined conversion from K to !.

Exact definitions of evaluation of user-defined implicit or explicit conversions are given in the following
sections. The definitions make use of the following terms:

• If a standard implicit conversion (§6.3.1) exists from a type 6 to a type $, and if neither 6 nor $ are
interface-types, then 6 is said to be encompassed by $, and $ is said to encompass 6.

• The most encompassing type in a set of types is the one type that encompasses all other types in the set. If
no single type encompasses all other types, then the set has no most encompassing type. In more intuitive

C# LANGUAGE SPECIFICATION

110 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

terms, the most encompassing type is the “largest” type in the set—the one type to which each of the other
types can be implicitly converted.

• The most encompassed type in a set of types is the one type that is encompassed by all other types in the set.
If no single type is encompassed by all other types, then the set has no most encompassed type. In more
intuitive terms, the most encompassed type is the “smallest” type in the set—the one type that can be
implicitly converted to each of the other types.

6.4.3 User-defined implicit conversions

A user-defined implicit conversion from type � to type ! is processed as follows:

• Find the set of types, I, from which user-defined conversion operators will be considered. This set consists
of � (if � is a class or struct), the base classes of � (if � is a class), ! (if ! is a class or struct), and the base
classes of ! (if ! is a class).

• Find the set of applicable user-defined conversion operators, L. This set consists of the user-defined implicit
conversion operators declared by the classes or structs in I that convert from a type encompassing � to a
type encompassed by !. If L is empty, the conversion is undefined and a compile-time error occurs.

• Find the most specific source type, �K, of the operators in L:

o If any of the operators in L convert from �, then �K is �.

o Otherwise, �K is the most encompassed type in the combined set of source types of the operators in L. If
no most encompassed type can be found, then the conversion is ambiguous and a compile-time error
occurs.

• Find the most specific target type, !K, of the operators in L:

o If any of the operators in L convert to !, then !K is !.

o Otherwise, !K is the most encompassing type in the combined set of target types of the operators in L. If
no most encompassing type can be found, then the conversion is ambiguous and a compile-time error
occurs.

• If L contains exactly one user-defined conversion operator that converts from �K to !K, then this is the most
specific conversion operator. If no such operator exists, or if more than one such operator exists, then the
conversion is ambiguous and a compile-time error occurs. Otherwise, the user-defined conversion is
applied:

o If � is not �K, then a standard implicit conversion from � to �K is performed.

o The most specific user-defined conversion operator is invoked to convert from �K to !K.

o If !K is not !, then a standard implicit conversion from !K to ! is performed.

6.4.4 User-defined explicit conversions

A user-defined explicit conversion from type � to type ! is processed as follows:

• Find the set of types, I, from which user-defined conversion operators will be considered. This set consists
of � (if � is a class or struct), the base classes of � (if � is a class), ! (if ! is a class or struct), and the base
classes of ! (if ! is a class).

• Find the set of applicable user-defined conversion operators, L. This set consists of the user-defined implicit
or explicit conversion operators declared by the classes or structs in I that convert from a type
encompassing or encompassed by � to a type encompassing or encompassed by !. If L is empty, the
conversion is undefined and a compile-time error occurs.

Chapter 617 ConversionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 111

• Find the most specific source type, �K, of the operators in L:

o If any of the operators in L convert from �, then �K is �.

o Otherwise, if any of the operators in L convert from types that encompass �, then �K is the most
encompassed type in the combined set of source types of those operators. If no most encompassed type
can be found, then the conversion is ambiguous and a compile-time error occurs.

o Otherwise, �K is the most encompassing type in the combined set of source types of the operators in L. If
no most encompassing type can be found, then the conversion is ambiguous and a compile-time error
occurs.

• Find the most specific target type, !K, of the operators in L:

o If any of the operators in L convert to !, then !K is !.

o Otherwise, if any of the operators in L convert to types that are encompassed by !, then !K is the most
encompassing type in the combined set of source types of those operators. If no most encompassing
type can be found, then the conversion is ambiguous and a compile-time error occurs.

o Otherwise, !K is the most encompassed type in the combined set of target types of the operators in L. If
no most encompassed type can be found, then the conversion is ambiguous and a compile-time error
occurs.

• If L contains exactly one user-defined conversion operator that converts from �K to !K, then this is the most
specific conversion operator. If no such operator exists, or if more than one such operator exists, then the
conversion is ambiguous and a compile-time error occurs. Otherwise, the user-defined conversion is
applied:

o If � is not �K, then a standard explicit conversion from � to �K is performed.

o The most specific user-defined conversion operator is invoked to convert from �K to !K.

o If !K is not !, then a standard explicit conversion from !K to ! is performed.

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 113

7. Expressions

An expression is a sequence of operators and operands that specifies computation of a value, or that designates a
variable or constant. This chapter defines the syntax, order of evaluation of operands and operators, and
meaning of expressions.

7.1 Expression classificat ions
An expression is classified as one of the following:

• A value. Every value has an associated type.

• A variable. Every variable has an associated type, namely the declared type of the variable.

• A namespace. An expression with this classification can only appear as the left hand side of a member-
access (§7.5.4). In any other context, an expression classified as a namespace causes a compile-time error.

• A type. An expression with this classification can only appear as the left hand side of a member-access
(§7.5.4), or as an operand for the �� operator (§7.9.10), the �� operator (§7.9.9), or the
����� operator
(§7.5.11). In any other context, an expression classified as a type causes a compile-time error.

• A method group, which is a set of overloaded methods resulting from a member lookup (§7.3). A method
group may have an associated instance expression. When an instance method is invoked, the result of
evaluating the instance expression becomes the instance represented by
��� (§7.5.7). A method group is
only permitted in an invocation-expression (§7.5.5) or a delegate-creation-expression (§7.5.10.3). In any
other context, an expression classified as a method group causes a compile-time error.

• A property access. Every property access has an associated type, namely the type of the property.
Furthermore, a property access may have an associated instance expression. When an accessor (the ��
 or
��
 block) of an instance property access is invoked, the result of evaluating the instance expression
becomes the instance represented by
��� (§7.5.7).

• An event access. Every event access has an associated type, namely the type of the event. Furthermore, an
event access may have an associated instance expression. An event access may appear as the left hand
operand of the 4) and 5) operators (§7.13.3). In any other context, an expression classified as an event
access causes a compile-time error.

• An indexer access. Every indexer access has an associated type, namely the element type of the indexer.
Furthermore, an indexer access has an associated instance expression and an associated argument list. When
an accessor (the ��
 or ��
 block) of an indexer access is invoked, the result of evaluating the instance
expression becomes the instance represented by
��� (§7.5.7), and the result of evaluating the argument list
becomes the parameter list of the invocation.

• Nothing. This occurs when the expression is an invocation of a method with a return type of ����. An
expression classified as nothing is only valid in the context of a statement-expression (§8.6).

The final result of an expression is never a namespace, type, method group, or event access. Rather, as noted
above, these categories of expressions are intermediate constructs that are only permitted in certain contexts.

A property access or indexer access is always reclassified as a value by performing an invocation of the get-
accessor or the set-accessor. The particular accessor is determined by the context of the property or indexer

C# LANGUAGE SPECIFICATION

114 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

access: If the access is the target of an assignment, the set-accessor is invoked to assign a new value (§7.13.1).
Otherwise, the get-accessor is invoked to obtain the current value (§7.1.1).

7.1.1 Values of expressions

Most of the constructs that involve an expression ultimately require the expression to denote a value. In such
cases, if the actual expression denotes a namespace, a type, a method group, or nothing, a compile-time error
occurs. However, if the expression denotes a property access, an indexer access, or a variable, the value of the
property, indexer, or variable is implicitly substituted:

• The value of a variable is simply the value currently stored in the storage location identified by the variable.
A variable must be considered definitely assigned (§5.3) before its value can be obtained, or otherwise a
compile-time error occurs.

• The value of a property access expression is obtained by invoking the get-accessor of the property. If the
property has no get-accessor, a compile-time error occurs. Otherwise, a function member invocation
(§7.4.3) is performed, and the result of the invocation becomes the value of the property access expression.

• The value of an indexer access expression is obtained by invoking the get-accessor of the indexer. If the
indexer has no get-accessor, a compile-time error occurs. Otherwise, a function member invocation (§7.4.3)
is performed with the argument list associated with the indexer access expression, and the result of the
invocation becomes the value of the indexer access expression.

7.2 Operators
Expressions are constructed from operands and operators. The operators of an expression indicate which
operations to apply to the operands. Examples of operators include 4, 5, ?, <, and ���. Examples of operands
include literals, fields, local variables, and expressions.

There are three types of operators:

• Unary operators. The unary operators take one operand and use either prefix notation (such as M�) or postfix
notation (such as �44).

• Binary operators. The binary operators take two operands and all use infix notation (such as � 4 �).

• Ternary operator. Only one ternary operator, N;, exists. The ternary operator takes three operands and uses
infix notation (�N �; �).

The order of evaluation of operators in an expression is determined by the precedence and associativity of the
operators (§7.2.1).

Operands in an expression are evaluated from left to right. For example, in 7'�("4"H'�44("?"O'�(, method
7 is called using the old value of �, then method H is called with the old value of �, and, finally, method O is
called with the new value of �. This is separate from and unrelated to operator precedence.

Certain operators can be overloaded. Operator overloading permits user-defined operator implementations to be
specified for operations where one or both of the operands are of a user-defined class or struct type (§7.2.2).

7.2.1 Operator precedence and associativity

When an expression contains multiple operators, the precedence of the operators control the order in which the
individual operators are evaluated. For example, the expression � 4 � ? P is evaluated as � 4 '� ? P(because
the ? operator has higher precedence than the 4 operator. The precedence of an operator is established by the
definition of its associated grammar production. For example, an additive-expression consists of a sequence of
multiplicative-expressions separated by 4 or 5 operators, thus giving the 4 and 5 operators lower precedence
than the ?, <, and @ operators.

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 115

The following table summarizes all operators in order of precedence from highest to lowest:

Section Category Operators

7.5 Primary �	�""�'�(""����""�44""�55""���

�����""����8��""������8��

7.6 Unary 4""5""C"">""44�""55�""'!(�

7.7 Multiplicative ?""<""@

7.7 Additive 4""5

7.8 Shift AA""BB

7.9 Relational and
type testing

A""B""A)""B)""��""��

7.9 Equality))""C)

7.10 Logical AND D

7.10 Logical XOR F

7.10 Logical OR E

7.11 Conditional AND DD

7.11 Conditional OR EE

7.12 Conditional N;

7.13 Assignment)""?)""<)""@)""4)""5)""AA)""BB)""D)""F)""E)

When an operand occurs between two operators with the same precedence, the associativity of the operators
controls the order in which the operations are performed:

• Except for the assignment operators, all binary operators are left-associative, meaning that operations are
performed from left to right. For example, � 4 � 4 P is evaluated as '� 4 �(4 P.

• The assignment operators and the conditional operator (N;) are right-associative, meaning that operations
are performed from right to left. For example, �) �) P is evaluated as �) '�) P(.

Precedence and associativity can be controlled using parentheses. For example, � 4 � ? P first multiplies � by P
and then adds the result to �, but '� 4 �(? P first adds � and � and then multiplies the result by P.

7.2.2 Operator overloading

All unary and binary operators have predefined implementations that are automatically available in any
expression. In addition to the predefined implementations, user-defined implementations can be introduced by
including �����
�� declarations in classes and structs (§10.9). User-defined operator implementations always
take precedence over predefined operator implementations: Only when no applicable user-defined operator
implementations exist will the predefined operator implementations be considered.

The overloadable unary operators are:

4"""5"""C""">"""44"""55"""
���"""�����

Although
��� and ����� are not used explicitly in expressions, they are considered operators because they are
invoked in several expression contexts: boolean expressions (§7.16) and expressions involving the conditional
(§7.12), and conditional logical operators (§7.11).

C# LANGUAGE SPECIFICATION

116 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The overloadable binary operators are:

4"""5"""?"""<"""@"""D"""E"""F"""AA"""BB"""))"""C)"""B"""A"""B)"""A)

Only the operators listed above can be overloaded. In particular, it is not possible to overload member access,
method invocation, or the), DD, EE, N;, ����8��, ������8��, ���,
�����, ��, and i� operators.

When a binary operator is overloaded, the corresponding assignment operator (if any) is also implicitly
overloaded. For example, an overload of operator ? is also an overload of operator ?). This is described further
in §7.13. Note that the assignment operator itself ()) cannot be overloaded. An assignment always performs a
simple bit-wise copy of a value into a variable.

Cast operations, such as '!(�, are overloaded by providing user-defined conversions (§6.4).

Element access, such as ����, is not considered an overloadable operator. Instead, user-defined indexing is
supported through indexers (§10.8).

In expressions, operators are referenced using operator notation, and in declarations, operators are referenced
using functional notation. The following table shows the relationship between operator and functional notations
for unary and binary operators. In the first entry, op denotes any overloadable unary prefix operator. In the
second entry, op denotes the unary postfix 44 and 55 operators. In the third entry, op denotes any overloadable
binary operator.

Operator notation Functional notation

op � �����
�� op'�(

� op �����
�� op'�(

� op � �����
�� op'� �(

User-defined operator declarations always require at least one of the parameters to be of the class or struct type
that contains the operator declaration. Thus, it is not possible for a user-defined operator to have the same
signature as a predefined operator.

User-defined operator declarations cannot modify the syntax, precedence, or associativity of an operator. For
example, the < operator is always a binary operator, always has the precedence level specified in §7.2.1, and is
always left-associative.

While it is possible for a user-defined operator to perform any computation it pleases, implementations that
produce results other than those that are intuitively expected are strongly discouraged. For example, an
implementation of �����
��)) should compare the two operands for equality and return an appropriate result.

The descriptions of individual operators in §7.5 through §7.13 specify the predefined implementations of the
operators and any additional rules that apply to each operator. The descriptions make use of the terms unary
operator overload resolution, binary operator overload resolution, and numeric promotion, definitions of
which are found in the following sections.

7.2.3 Unary operator overload resolution

An operation of the form op � or � op, where op is an overloadable unary operator, and � is an expression of
type K, is processed as follows:

• The set of candidate user-defined operators provided by K for the operation �����
�� op'�(is determined
using the rules of §7.2.5.

• If the set is not empty, then this becomes the set of candidate operators for the operation. Otherwise, the
predefined unary �����
�� op implementations become the set of candidate operators for the operation.

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 117

The predefined implementations of a given operator are specified in the description of the operator (§7.5 and
§7.6).

• The overload resolution rules of §7.4.2 are applied to the set of candidate operators to select the best
operator with respect to the argument list '�(, and this operator becomes the result of the overload
resolution process. If overload resolution fails to select a single best operator, a compile-time error occurs.

7.2.4 Binary operator overload resolution

An operation of the form � op �, where op is an overloadable binary operator, � is an expression of type K, and
� is an expression of type Q, is processed as follows:

• The set of candidate user-defined operators provided by K and Q for the operation �����
�� op'� �(is
determined. The set consists of the union of the candidate operators provided by K and the candidate
operators provided by Q, each determined using the rules of §7.2.5. If K and Q are the same type, or if K and
Q are derived from a common base type, then shared candidate operators only occur in the combined set
once.

• If the set is not empty, then this becomes the set of candidate operators for the operation. Otherwise, the
predefined binary �����
�� op implementations become the set of candidate operators for the operation.
The predefined implementations of a given operator are specified in the description of the operator (§7.7
through §7.13).

• The overload resolution rules of §7.4.2 are applied to the set of candidate operators to select the best
operator with respect to the argument list '� �(, and this operator becomes the result of the overload
resolution process. If overload resolution fails to select a single best operator, a compile-time error occurs.

7.2.5 Candidate user-defined operators

Given a type ! and an operation �����
�� op'6(, where op is an overloadable operator and 6 is an argument
list, the set of candidate user-defined operators provided by ! for �����
�� op'6(is determined as follows:

• For all �����
�� op declarations in !, if at least one operator is applicable (§7.4.2.1) with respect to the
argument list 6, then the set of candidate operators consists of all applicable �����
�� op declarations in !.

• Otherwise, if ! is �����
, the set of candidate operators is empty.

• Otherwise, the set of candidate operators provided by ! is the set of candidate operators provided by the
direct base class of !.

7.2.6 Numeric promotions

Numeric promotion consists of automatically performing certain implicit conversions of the operands of the
predefined unary and binary numeric operators. Numeric promotion is not a distinct mechanism, but rather an
effect of applying overload resolution to the predefined operators. Numeric promotion specifically does not
affect evaluation of user-defined operators, although user-defined operators can be implemented to exhibit
similar effects.

As an example of numeric promotion, consider the predefined implementations of the binary ? operator:

��
"�����
��"?'��
"� "��
"�(&
���
"�����
��"?'���
"� "���
"�(&
����"�����
��"?'����"� "����"�(&
�����"�����
��"?'�����"� "�����"�(&
����
"�����
��"?'����
"� "����
"�(&
������"�����
��"?'������"� "������"�(&
�������"�����
��"?'�������"� "�������"�(&

C# LANGUAGE SPECIFICATION

118 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

When overload resolution rules (§7.4.2) are applied to this set of operators, the effect is to select the first of the
operators for which implicit conversions exist from the operand types. For example, for the operation � ? �,
where � is a ��
� and � is a ����
, overload resolution selects �����
�� ?'��
 ��
(as the best operator.
Thus, the effect is that � and � are converted to ��
, and the type of the result is ��
. Likewise, for the
operation � ? �, where � is an ��
 and � is a ������, overload resolution selects �����
�� ?'������
������(as the best operator.

7.2.6.1 Unary numeric promotions

Unary numeric promotion occurs for the operands of the predefined 4, M, and > unary operators. Unary numeric
promotion simply consists of converting operands of type ���
�, ��
�, ����
, �����
, or ���� to type ��
.
Additionally, for the unary M operator, unary numeric promotion converts operands of type ���
 to type ����.

7.2.6.2 Binary numeric promotions

Binary numeric promotion occurs for the operands of the predefined 4, M, ?, <, @, D, E, F,)), C), B, A, B), and
A) binary operators. Binary numeric promotion implicitly converts both operands to a common type which, in
case of the non-relational operators, also becomes the result type of the operation. Binary numeric promotion
consists of applying the following rules, in the order they appear here:

• If either operand is of type �������, the other operand is converted to type �������, or a compile-time
error occurs if the other operand is of type ����
 or ������.

• Otherwise, if either operand is of type ������, the other operand is converted to type ������.

• Otherwise, if either operand is of type ����
, the other operand is converted to type ����
.

• Otherwise, if either operand is of type �����, the other operand is converted to type �����, or a compile-
time error occurs if the other operand is of type ���
�, ����
, ��
, or ����.

• Otherwise, if either operand is of type ����, the other operand is converted to type ����.

• Otherwise, if either operand is of type ���
 and the other operand is of type ���
�, ����
, or ��
, both
operands are converted to type ����.

• Otherwise, if either operand is of type ���
, the other operand is converted to type ���
.

• Otherwise, both operands are converted to type ��
.

Note that the first rule disallows any operations that mix the ������� type with the ������ and ����
 types.
The rule follows from the fact that there are no implicit conversions between the ������� type and the ������
and ����
 types.

Also note that it is not possible for an operand to be of type ����� when the other operand is of a signed
integral type. The reason is that no integral type exists that can represent the full range of ����� as well as the
signed integral types.

In both of the above cases, a cast expression can be used to explicitly convert one operand to a type that is
compatible with the other operand.

In the example

�������"6��0�����
'�������"� "������"������
("%
��
���"�"?"'�	
"4"������
"<"�

	
(&

*

a compile-time error occurs because a ������� cannot be multiplied by a ������. The error is resolved by
explicitly converting the second operand to �������:

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 119

�������"6��0�����
'�������"� "������"������
("%
��
���"�"?"'�������('�	
"4"������
"<"�

	
(&

*

7.3 Member lookup
A member lookup is the process whereby the meaning of a name in the context of a type is determined. A
member lookup may occur as part of evaluating a simple-name (§7.5.2) or a member-access (§7.5.4) in an
expression.

A member lookup of a name 1 in a type ! is processed as follows:

• First, the set of all accessible (§3.5) members named 1 declared in ! and the base types (§7.3.1) of ! is
constructed. Declarations that include an �������� modifier are excluded from the set. If no members
named 1 exist and are accessible, then the lookup produces no match, and the following steps are not
evaluated.

• Next, members that are hidden by other members are removed from the set. For every member �	R in the
set, where � is the type in which the member R is declared, the following rules are applied:

o If R is a constant, field, property, event, type, or enumeration member, then all members declared in a
base type of � are removed from the set.

o If R is a method, then all non-method members declared in a base type of � are removed from the set,
and all methods with the same signature as R declared in a base type of � are removed from the set.

• Finally, having removed hidden members, the result of the lookup is determined:

o If the set consists of a single non-method member, then this member is the result of the lookup.

o Otherwise, if the set contains only methods, then this group of methods is the result of the lookup.

o Otherwise, the lookup is ambiguous, and a compile-time error occurs (this situation can only occur for a
member lookup in an interface that has multiple direct base interfaces).

For member lookups in types other than interfaces, and member lookups in interfaces that are strictly single-
inheritance (each interface in the inheritance chain has exactly zero or one direct base interface), the effect of the
lookup rules is simply that derived members hide base members with the same name or signature. Such single-
inheritance lookups are never ambiguous. The ambiguities that can possibly arise from member lookups in
multiple-inheritance interfaces are described in §13.2.5.

7.3.1 Base types

For purposes of member lookup, a type ! is considered to have the following base types:

• If ! is �����
, then ! has no base type.

• If ! is a value-type, the base type of ! is the class type �����
.

• If ! is a class-type, the base types of ! are the base classes of !, including the class type �����
.

• If ! is an interface-type, the base types of ! are the base interfaces of ! and the class type �����
.

• If ! is an array-type, the base types of ! are the class types ���
��	6���� and �����
.

• If ! is a delegate-type, the base types of ! are the class types ���
��	I�����
� and �����
.

7.4 Function members
Function members are members that contain executable statements. Function members are always members of
types and cannot be members of namespaces. C# defines the following categories of function members:

C# LANGUAGE SPECIFICATION

120 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• Methods

• Properties

• Events

• Indexers

• User-defined operators

• Instance constructors

• Static constructors

• Destructors

Except for static constructors and destructors (which cannot be invoked explicitly), the statements contained in
function members are executed through function member invocations. The actual syntax for writing a function
member invocation depends on the particular function member category.

The argument list (§7.4.1) of a function member invocation provides actual values or variable references for the
parameters of the function member.

Invocations of methods, indexers, operators and instance constructors employ overload resolution to determine
which of a candidate set of function members to invoke. This process is described in §7.4.2.

Once a particular function member has been identified at compile-time, possibly through overload resolution,
the actual run-time process of invoking the function member is described in §7.4.3.

The following table summarizes the processing that takes place in constructs involving the six categories of
function members that can be explicitly invoked. In the table, �, �, �, and ����� indicate expressions classified
as variables or values, ! indicates an expression classified as a type, 7 is the simple name of a method, and 0 is
the simple name of a property.

Construct Example Description

7'� �(Overload resolution is applied to select the best method 7 in the
containing class or struct. The method is invoked with the
argument list '� �(. If the method is not �
�
��, the instance
expression is
���.

!	7'� �(Overload resolution is applied to select the best method 7 in the
class or struct !. A compile-time error occurs if the method is
not �
�
��. The method is invoked with the argument list '�
�(.

Method
invocation

�	7'� �(Overload resolution is applied to select the best method F in the
class, struct, or interface given by the type of �. A compile-time
error occurs if the method is �
�
��. The method is invoked
with the instance expression � and the argument list '� �(.

Property
access

0 The ��
 accessor of the property 0 in the containing class or
struct is invoked. A compile-time error occurs if 0 is write-
only. If 0 is not �
�
��, the instance expression is
���.

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 121

Construct Example Description

0) ����� The ��
 accessor of the property 0 in the containing class or
struct is invoked with the argument list '�����(. A compile-
time error occurs if 0 is read-only. If 0 is not �
�
��, the
instance expression is
���.

!	0 The ��
 accessor of the property 0 in the class or struct ! is
invoked. A compile-time error occurs if 0 is not �
�
�� or if 0
is write-only.

!	0) ����� The ��
 accessor of the property 0 in the class or struct ! is
invoked with the argument list '�����(. A compile-time error
occurs if 0 is not �
�
�� or if 0 is read-only.

�	0 The ��
 accessor of the property 0 in the class, struct, or
interface given by the type of � is invoked with the instance
expression �. A compile-time error occurs if 0 is �
�
�� or if
0 is write-only.

�	0) ����� The ��
 accessor of the property 0 in the class, struct, or
interface given by the type of � is invoked with the instance
expression � and the argument list '�����(. A compile-time
error occurs if 0 is �
�
�� or if 0 is read-only.

�"4)"����� The ��� accessor of the event � in the containing class or struct
is invoked. If � is not static, the instance expression is
���.

�"5)"����� The ������ accessor of the event � in the containing class or
struct is invoked. If � is not static, the instance expression is

���.

!	�"4)"����� The ��� accessor of the event � in the class or struct ! is
invoked. A compile-time error occurs if � is not static.

!	�"5)"����� The remove accessor of the event � in the class or struct ! is
invoked. A compile-time error occurs if � is not static.

�	�"4)"����� The ��� accessor of the event � in the class, struct, or interface
given by the type of � is invoked with the instance expression
�. A compile-time error occurs if � is static.

Event access

�	�"5)"����� The ������ accessor of the event � in the class, struct, or
interface given by the type of � is invoked with the instance
expression �. A compile-time error occurs if � is static.

Indexer
access

��� �� Overload resolution is applied to select the best indexer in the
class, struct, or interface given by the type of e. The ��

accessor of the indexer is invoked with the instance expression
� and the argument list '� �(. A compile-time error occurs if
the indexer is write-only.

C# LANGUAGE SPECIFICATION

122 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Construct Example Description

��� ��) ����� Overload resolution is applied to select the best indexer in the
class, struct, or interface given by the type of �. The ��

accessor of the indexer is invoked with the instance expression
� and the argument list '� � �����(. A compile-time error
occurs if the indexer is read-only.

5� Overload resolution is applied to select the best unary operator
in the class or struct given by the type of �. The selected
operator is invoked with the argument list '�(.

Operator
invocation

� 4 � Overload resolution is applied to select the best binary operator
in the classes or structs given by the types of x and y. The
selected operator is invoked with the argument list '� �(.

Constructor
invocation

��� !'� �(Overload resolution is applied to select the best constructor in
the class or struct !. The constructor is invoked with the
argument list '� �(.

7.4.1 Argument lists

Every function member invocation includes an argument list which provides actual values or variable references
for the parameters of the function member. The syntax for specifying the argument list of a function member
invocation depends on the function member category:

• For methods, instance constructors, and delegates, the arguments are specified as an argument-list, as
described below.

• For properties, the argument list is empty when invoking the ��
 accessor, and consists of the expression
specified as the right operand of the assignment operator when invoking the ��
 accessor.

• For events, the argument list consists of the expression specified as the right operand of the 4) or 5)
operator.

• For indexers, the argument list consists of the expressions specified between the square brackets in the
indexer access. When invoking the ��
 accessor, the argument list additionally includes the expression
specified as the right operand of the assignment operator.

• For user-defined operators, the argument list consists of the single operand of the unary operator or the two
operands of the binary operator.

The arguments properties (§10.6), events (§10.7), indexers (§10.8), and user-defined operators (§10.9) are
always passed as value parameters (§10.5.1.1). Reference and output parameters are not supported for these
categories of function members.

The arguments of a method, instance constructor, or delegate invocation are specified as an argument-list:

argument-list:
argument
argument-list argument

argument:
expression
��� variable-reference
��
 variable-reference

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 123

An argument-list consists of one or more arguments, separated by commas. Each argument can take one of the
following forms:

• An expression, indicating that the argument is passed as a value parameter (§10.5.1.1).

• The keyword ��� followed by a variable-reference (§5.3.3), indicating that the argument is passed as a
reference parameter (§10.5.1.2). A variable must be definitely assigned (§5.3) before it can be passed as a
reference parameter. A volatile field (§10.4.3) cannot be passed as a reference parameter.

• The keyword ��
 followed by a variable-reference (§5.3.3), indicating that the argument is passed as an
output parameter (§10.5.1.3). A variable is considered definitely assigned (§5.3) following a function
member invocation in which the variable is passed as an output parameter. A volatile field (§10.4.3) cannot
be passed as an output parameter.

During the run-time processing of a function member invocation (§7.4.3), the expressions or variable references
of an argument list are evaluated in order, from left to right, as follows:

• For a value parameter, the argument expression is evaluated and an implicit conversion (§6.1) to the
corresponding parameter type is performed. The resulting value becomes the initial value of the value
parameter in the function member invocation.

• For a reference or output parameter, the variable reference is evaluated and the resulting storage location
becomes the storage location represented by the parameter in the function member invocation. If the
variable reference given as a reference or output parameter is an array element of a reference-type, a run-
time check is performed to ensure that the element type of the array is identical to the type of the parameter.
If this check fails, a ���
��	6����!���R����
�������
��� is thrown.

Methods, indexers, and instance constructors may declare their right-most parameter to be a parameter array
(§10.5.1.4). Such function members are invoked either in their normal form or in their expanded form depending
on which is applicable (§7.4.2.1):

• When a function member with a parameter array is invoked in its normal form, the argument given for the
parameter array must be a single expression of a type that is implicitly convertible (§6.1) to the parameter
array type. In this case, the parameter array acts precisely like a value parameter.

• When a function member with a parameter array is invoked in its expanded form, the invocation must
specify zero or more arguments for the parameter array, where each argument is an expression of a type that
is implicitly convertible (§6.1) to the element type of the parameter array. In this case, the invocation creates
an instance of the parameter array type with a length corresponding to the number of arguments, initializes
the elements of the array instance with the given argument values, and uses the newly created array instance
as the actual argument.

The expressions of an argument list are always evaluated in the order they are written. Thus, the example

�����"!��

%

�
�
��"����"7'��
"� "��
"� "��
"P("%
���
��	-������	.��
�:���'/�")"%
* "�")"%�* "P")"%+*/ "� "� "P(&

*

�
�
��"����"R���'("%
��
"�")"
&
7'�44 "�44 "�44(&

*
*

produces the output

�")"
 "�")"� "P")"+

C# LANGUAGE SPECIFICATION

124 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The array co-variance rules (§12.5) permit a value of an array type 6�� to be a reference to an instance of an
array type $��, provided an implicit reference conversion exists from $ to 6. Because of these rules, when an
array element of a reference-type is passed as a reference or output parameter, a run-time check is required to
ensure that the actual element type of the array is identical to that of the parameter. In the example

�����"!��

%

�
�
��"����"7'���"�����
"�("%			*

�
�
��"����"R���'("%
�����
��"�")"���"�����
��
�&
�����
��"�")"���"�
������
�&
7'���"��
�(& <<"�8
7'���"����(& <<"6����!���R����
�������
���

*
*

the second invocation of 7 causes a ���
��	6����!���R����
�������
��� to be thrown because the
actual element type of � is �
���� and not �����
.

When a function member with a parameter array is invoked in its expanded form, the invocation is processed
exactly as if an array creation expression with an array initializer (§7.5.10.2) was inserted around the expanded
parameters. For example, given the declaration

����"7'��
"� "��
"� "������"�����
��"����(&

the following invocations of the expanded form of the method

7'�
 "+
(&
7'�
 "+
 ",
 "S
(&
7'�
 "+
 "� "/�����/ ",	
(&

correspond exactly to

7'�
 "+
 "���"�����
��"%*(&
7'�
 "+
 "���"�����
��"%,
 "S
*(&
7'�
 "+
 "���"�����
��"%� "/�����/ ",	
*(&

Note in particular that an empty array is created when there are zero arguments given for the parameter array.

7.4.2 Overload resolution

Overload resolution is a compile-time mechanism for selecting the best function member to invoke given an
argument list and a set of candidate function members. Overload resolution selects the function member to
invoke in the following distinct contexts within C#:

• Invocation of a method named in an invocation-expression (§7.5.5).

• Invocation of an instance constructor named in an object-creation-expression (§7.5.10.1).

• Invocation of an indexer accessor through an element-access (§7.5.6).

• Invocation of a predefined or user-defined operator referenced in an expression (§7.2.3 and §7.2.4).

Each of these contexts defines the set of candidate function members and the list of arguments in its own unique
way, as described in detail in the sections listed above. For example, the set of candidates for a method
invocation does not include methods marked �������� (§7.3), and methods in a base class are not candidates if
any method in a derived class is applicable (§7.5.5.1).

Once the candidate function members and the argument list have been identified, the selection of the best
function member is the same in all cases:

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 125

• Given the set of applicable candidate function members, the best function member in that set is located. If
the set contains only one function member, then that function member is the best function member.
Otherwise, the best function member is the one function member that is better than all other function
members with respect to the given argument list, provided that each function member is compared to all
other function members using the rules in §7.4.2.2. If there is not exactly one function member that is better
than all other function members, then the function member invocation is ambiguous and a compile-time
error occurs.

The following sections define the exact meanings of the terms applicable function member and better function
member.

7.4.2.1 Applicable function member

A function member is said to be an applicable function member with respect to an argument list 6 when all of
the following are true:

• The number of arguments in 6 is identical to the number of parameters in the function member declaration.

• For each argument in 6, the parameter passing mode of the argument (i.e., value, ���, or ��
) is identical to
the parameter passing mode of the corresponding parameter, and

o for a value parameter or a parameter array, an implicit conversion (§6.1) exists from the type of the
argument to the type of the corresponding parameter, or

o for a ��� or ��
 parameter, the type of the argument is identical to the type of the corresponding
parameter.

For a function member that includes a parameter array, if the function member is applicable by the above rules,
it is said to be applicable in its normal form. If a function member that includes a parameter array is not
applicable in its normal form, the function member may instead be applicable in its expanded form:

• The expanded form is constructed by replacing the parameter array in the function member declaration with
zero or more value parameters of the element type of the parameter array such that the number of arguments
in the argument list 6 matches the total number of parameters. If 6 has fewer arguments than the number of
fixed parameters in the function member declaration, the expanded form of the function member cannot be
constructed and is thus not applicable.

• If the class, struct, or interface in which the function member is declared already contains another applicable
function member with the same signature as the expanded form, the expanded form is not applicable.

• Otherwise, the expanded form is applicable if for each argument in 6 the parameter passing mode of the
argument is identical to the parameter passing mode of the corresponding parameter, and

o for a fixed value parameter or a value parameter created by the expansion, an implicit conversion (§6.1)
exists from the type of the argument to the type of the corresponding parameter, or

o for a ��� or ��
 parameter, the type of the argument is identical to the type of the corresponding
parameter.

7.4.2.2 Better function member

Given an argument list 6 with a set of argument types 6�, 6+, ..., 61 and two applicable function members R0 and
RT with parameter types 0�, 0+, ..., 01 and T�, T+, ..., T1, R0 is defined to be a better function member than RT if

• for each argument, the implicit conversion from 6K to 0K is not worse than the implicit conversion from 6K to
TK, and

• for at least one argument, the conversion from 6K to 0K is better than the conversion from 6K to TK.

C# LANGUAGE SPECIFICATION

126 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

When performing this evaluation, if R0 or RT is applicable in its expanded form, then 0K or TK refers to a
parameter in the expanded form of the parameter list.

7.4.2.3 Better conversion

Given an implicit conversion -� that converts from a type � to a type !�, and an implicit conversion -+ that
converts from a type � to a type !+, the better conversion of the two conversions is determined as follows:

• If !� and !+ are the same type, neither conversion is better.

• If � is !�, -� is the better conversion.

• If � is !+, -+ is the better conversion.

• If an implicit conversion from !� to !+ exists, and no implicit conversion from !+ to !� exists, -� is the better
conversion.

• If an implicit conversion from !+ to !� exists, and no implicit conversion from !� to !+ exists, -+ is the better
conversion.

• If !� is ���
� and !+ is ��
�, �����
, ���
, or �����, -� is the better conversion.

• If !+ is ���
� and !� is ��
�, �����
, ���
, or �����, -+ is the better conversion.

• If !� is ����
 and !+ is �����
, ���
, or �����, -� is the better conversion.

• If !+ is ����
 and !� is �����
, ���
, or �����, -+ is the better conversion.

• If !� is ��
 and !+ is ���
, or �����, -� is the better conversion.

• If !+ is ��
 and !� is ���
, or �����, -+ is the better conversion.

• If !� is ���� and !+ is �����, -� is the better conversion.

• If !+ is ���� and !� is �����, -+ is the better conversion.

• Otherwise, neither conversion is better.

If an implicit conversion -� is defined by these rules to be a better conversion than an implicit conversion -+,
then it is also the case that -+ is a worse conversion than -�.

7.4.3 Function member invocation

This section describes the process that takes place at run-time to invoke a particular function member. It is
assumed that a compile-time process has already determined the particular member to invoke, possibly by
applying overload resolution to a set of candidate function members.

For purposes of describing the invocation process, function members are divided into two categories:

• Static function members. These are instance constructors, static methods, static property accessors, and user-
defined operators. Static function members are always non-virtual.

• Instance function members. These are instance methods, instance property accessors, and indexer accessors.
Instance function members are either non-virtual or virtual, and are always invoked on a particular instance.
The instance is computed by an instance expression, and it becomes accessible within the function member
as
��� (§7.5.7).

The run-time processing of a function member invocation consists of the following steps, where R is the
function member and, if R is an instance member, � is the instance expression:

• If R is a static function member:

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 127

o The argument list is evaluated as described in §7.4.1.

o R is invoked.

• If R is an instance function member declared in a value-type:

o � is evaluated. If this evaluation causes an exception, then no further steps are executed.

o If � is not classified as a variable, then a temporary local variable of �’s type is created and the value of
� is assigned to that variable. � is then reclassified as a reference to that temporary local variable. The
temporary variable is accessible as
��� within R, but not in any other way. Thus, only when � is a true
variable is it possible for the caller to observe the changes that R makes to
���.

o The argument list is evaluated as described in §7.4.1.

o R is invoked. The variable referenced by � becomes the variable referenced by
���.

• If R is an instance function member declared in a reference-type:

o � is evaluated. If this evaluation causes an exception, then no further steps are executed.

o The argument list is evaluated as described in §7.4.1.

o If the type of � is a value-type, a boxing conversion (§4.3.1) is performed to convert � to type �����
,
and � is considered to be of type �����
 in the following steps.

o The value of � is checked to be valid. If the value of � is ����, a
���
��	1���2�������������
��� is thrown and no further steps are executed.

o The function member implementation to invoke is determined:

• If the compile-time type of E is an interface, the function member to invoke is the implementation
of M provided by the run-time type of the instance referenced by E. This function member is
determined by applying the interface mapping rules (§13.4.2) to determine the implementation of M
provided by the run-time type of the instance referenced by E.

• Otherwise, if M is a virtual function member, the function member to invoke is the implementation
of M provided by the run-time type of the instance referenced by E. This function member is
determined by applying the rules for determining the most derived implementation (§10.5.3) of M
with respect to the run-time type of the instance referenced by E.

• Otherwise, M is a non-virtual function member, and the function member to invoke is R itself.

o The function member implementation determined in the step above is invoked. The object referenced by
� becomes the object referenced by
���.

7.4.3.1 Invocations on boxed instances

A function member implemented in a value-type can be invoked through a boxed instance of that value-type in
the following situations:

• When the function member is an �������� of a method inherited from type �����
 and is invoked
through an instance expression of type �����
.

• When the function member is an implementation of an interface function member and is invoked through an
instance expression of an interface-type.

• When the function member is invoked through a delegate.

In these situations, the boxed instance is considered to contain a variable of the value-type, and this variable
becomes the variable referenced by
��� within the function member invocation. This in particular means that

C# LANGUAGE SPECIFICATION

128 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

when a function member is invoked on a boxed instance, it is possible for the function member to modify the
value contained in the boxed instance.

7.5 Primary expressions
Primary expressions include the simplest forms of expressions.

primary-expression:
primary-no-array-creation-expression
array-creation-expression

primary-no-array-creation-expression:
literal
simple-name
parenthesized-expression
member-access
invocation-expression
element-access
this-access
base-access
post-increment-expression
post-decrement-expression
object-creation-expression
delegate-creation-expression
 typeof-expression
sizeof-expression
checked-expression
unchecked-expression

Primary expressions are divided between array-creation-expressions and primary-no-array-creation-
expressions. Treating array-creation-expression in this way, rather than listing it along with the other simple
expression forms, enables the grammar to disallow potentially confusing code such as

�����
"�")"���"��
�,����&

which would otherwise be interpreted as

�����
"�")"'���"��
�,�(���&

7.5.1 Literals

A primary-expression that consists of a literal (§2.4.4) is classified as a value.

7.5.2 Simple names

A simple-name consists of a single identifier.

simple-name:
identifier

A simple-name is evaluated and classified as follows:

• If the simple-name appears within a block and if the block contains a local variable or parameter with the
given name, then the simple-name refers to that local variable or parameter and is classified as a variable.

• Otherwise, for each type !, starting with the immediately enclosing class, struct, or enumeration declaration
and continuing with each enclosing outer class or struct declaration (if any), if a member lookup of the
simple-name in ! produces a match:

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 129

o If ! is the immediately enclosing class or struct type and the lookup identifies one or more methods, the
result is a method group with an associated instance expression of
���.

o If ! is the immediately enclosing class or struct type, if the lookup identifies an instance member, and if
the reference occurs within the block of an instance method, an instance accessor, or an instance
constructor, the result is the same as a member access (§7.5.4) of the form
���	�, where � is the
simple-name.

o Otherwise, the result is the same as a member access (§7.5.4) of the form !	�, where � is the simple-
name. In this case, it is a compile-time error for the simple-name to refer to an instance member.

• Otherwise, starting with the namespace in which the simple-name occurs, continuing with each enclosing
namespace (if any), and ending with the global namespace, the following steps are evaluated until an entity
is located:

o If the namespace contains a namespace member with the given name, then the simple-name refers to
that member and, depending on the member, is classified as a namespace or a type.

o Otherwise, if the namespace has a corresponding namespace declaration enclosing the location where
the simple-name occurs, then:

• If the namespace declaration contains a using-alias-directive that associates the given name with an
imported namespace or type, then the simple-name refers to that namespace or type.

• Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain exactly one type with the given name, then the simple-name refers to that type.

• Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain more than one type with the given name, then the simple-name is ambiguous
and a compile-time error occurs.

• Otherwise, the name given by the simple-name is undefined and a compile-time error occurs.

7.5.2.1 Invariant meaning in blocks

For each occurrence of a given identifier as a simple-name in an expression, every other occurrence of the same
identifier as a simple-name in an expression within the immediately enclosing block (§8.2) or switch-block
(§8.7.2) must refer to the same entity. This rule ensures that the meaning of a name in the context of an
expression is always the same within a block.

The example

�����"!��

%

������"�&

����"7'����"�("%
�")"�	
&
��"'�("%

��
"�")"�&
*

*
*

results in a compile-time error because � refers to different entities within the outer block (the extent of which
includes the nested block in the �� statement). In contrast, the example

�����"!��

%

������"�&

C# LANGUAGE SPECIFICATION

130 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

����"7'����"�("%
��"'�("%

�")"�	
&
*
����"%

��
"�")"�&
*

*
*

is permitted because the name � is never used in the outer block.

Note that the rule of invariant meaning applies only to simple names. It is perfectly valid for the same identifier
to have one meaning as a simple name and another meaning as right operand of a member access (§7.5.4). For
example:

�
���
"0���

%

��
"� "�&

������"0���
'��
"� "��
"�("%

���	�")"�&

���	�")"�&

*
*

The example above illustrates a common pattern of using the names of fields as parameter names in an instance
constructor. In the example, the simple names � and � refer to the parameters, but that does not prevent the
member access expressions
���	� and
���	� from accessing the fields.

7.5.3 Parenthesized expressions

A parenthesized-expression consists of an expression enclosed in parentheses.

parenthesized-expression:
' expression (

A parenthesized-expression is evaluated by evaluating the expression within the parentheses. If the expression
within the parentheses denotes a namespace, type, or method group, a compile-time error occurs. Otherwise, the
result of the parenthesized-expression is the result of the evaluation of the contained expression.

7.5.4 Member access

A member-access consists of a primary-expression or a predefined-type, followed by a “	” token, followed by
an identifier.

member-access:
primary-expression 	 identifier
predefined-type 	 identifier

predefined-type: one of
���� ��
� ���� ������� ������ ����
 ��
 ����

�����
 ���
� ����
 �
���� ���
 ����� �����

A member-access of the form �	3, where � is a primary-expression or a predefined-type and 3 is an identifier,
is evaluated and classified as follows:

• If � is a namespace and 3 is the name of an accessible member of that namespace, then the result is that
member and, depending on the member, is classified as a namespace or a type.

• If � is a predefined-type or a primary-expression classified as a type, and a member lookup (§7.3) of 3 in �
produces a match, then �	3 is evaluated and classified as follows:

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 131

o If 3 identifies a type, then the result is that type.

o If 3 identifies one or more methods, then the result is a method group with no associated instance
expression.

o If 3 identifies a �
�
�� property, then the result is a property access with no associated instance
expression.

o If 3 identifies a �
�
�� field:

• If the field is �������� and the reference occurs outside the static constructor of the class or struct
in which the field is declared, then the result is a value, namely the value of the static field 3 in �.

• Otherwise, the result is a variable, namely the static field 3 in �.

o If 3 identifies a �
�
�� event:

• If the reference occurs within the class or struct in which the event is declared, and the event was
declared without event-accessor-declarations (§10.7), then �	3 is processed exactly as if 3 was a
static field.

• Otherwise, the result is an event access with no associated instance expression.

o If 3 identifies a constant, then the result is a value, namely the value of that constant.

o If 3 identifies an enumeration member, then the result is a value, namely the value of that enumeration
member.

o Otherwise, �	3 is an invalid member reference, and a compile-time error occurs.

• If � is a property access, indexer access, variable, or value, the type of which is !, and a member lookup
(§7.3) of 3 in ! produces a match, then �	3 is evaluated and classified as follows:

o First, if � is a property or indexer access, then the value of the property or indexer access is obtained
(§7.1.1) and � is reclassified as a value.

o If 3 identifies one or more methods, then the result is a method group with an associated instance
expression of �.

o If 3 identifies an instance property, then the result is a property access with an associated instance
expression of �.

o If ! is a class-type and 3 identifies an instance field of that class-type:

• If the value of � is ����, then a ���
��	1���2�������������
��� is thrown.

• Otherwise, if the field is �������� and the reference occurs outside an instance constructor of the
class in which the field is declared, then the result is a value, namely the value of the field 3 in the
object referenced by �.

• Otherwise, the result is a variable, namely the field 3 in the object referenced by �.

o If ! is a struct-type and 3 identifies an instance field of that struct-type:

• If � is a value, or if the field is �������� and the reference occurs outside an instance constructor
of the struct in which the field is declared, then the result is a value, namely the value of the field 3
in the struct instance given by �.

• Otherwise, the result is a variable, namely the field 3 in the struct instance given by �.

o If 3 identifies an instance event:

C# LANGUAGE SPECIFICATION

132 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• If the reference occurs within the class or struct in which the event is declared, and the event was
declared without event-accessor-declarations (§10.7), then �	3 is processed exactly as if 3 was an
instance field.

• Otherwise, the result is an event access with an associated instance expression of �.

• Otherwise, �	3 is an invalid member reference, and a compile-time error occurs.

7.5.4.1 Identical simple names and type names

In a member access of the form �	3, if � is a single identifier, and if the meaning of � as a simple-name (§7.5.2)
is a constant, field, property, local variable, or parameter with the same type as the meaning of � as a type-name
(§3.8), then both possible meanings of � are permitted. The two possible meanings of �	3 are never ambiguous,
since 3 must necessarily be a member of the type � in both cases. In other words, the rule simply permits access
to the static members and nested types of � where a compile-time error would otherwise have occurred. For
example:

�
���
"-����
%

������"�
�
��"��������"-����".��
�")"���"-����'			(&
������"�
�
��"��������"-����"$���8")"���"-����'			(&

������"-����"-��������
'("%			*
*

�����"6
%

������"-����"-����& <<"7����"-����"��"
���"-����

����"7'("%
-����")"-����	$���8&" <<"2���������"-����	$���8"�
�
��"������
-����")"-����	-��������
'(& <<"3���8��"-��������
'("��"-����"�����

*

�
�
��"����"H'("%
-����"�")"-����	.��
�& <<"2���������"-����	.��
�"�
�
��"������

*
*

Within the 6 class, those occurrences of the -���� identifier that reference the -���� type are underlined, and
those that reference the -���� field are not underlined.

7.5.5 Invocation expressions

An invocation-expression is used to invoke a method.

invocation-expression:
primary-expression ' argument-listopt (

The primary-expression of an invocation-expression must be a method group or a value of a delegate-type. If the
primary-expression is a method group, the invocation-expression is a method invocation (§7.5.5.1). If the
primary-expression is a value of a delegate-type, the invocation-expression is a delegate invocation (§7.5.5.2). If
the primary-expression is neither a method group nor a value of a delegate-type, a compile-time error occurs.

The optional argument-list (§7.4.1) provides values or variable references for the parameters of the method.

The result of evaluating an invocation-expression is classified as follows:

• If the invocation-expression invokes a method or delegate that returns ����, the result is nothing. An
expression that is classified as nothing cannot be an operand of any operator, and is permitted only in the
context of a statement-expression (§8.6).

• Otherwise, the result is a value of the type returned by the method or delegate.

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 133

7.5.5.1 Method invocations

For a method invocation, the primary-expression of the invocation-expression must be a method group. The
method group identifies the one method to invoke or the set of overloaded methods from which to choose a
specific method to invoke. In the latter case, determination of the specific method to invoke is based on the
context provided by the types of the arguments in the argument-list.

The compile-time processing of a method invocation of the form R'6(, where R is a method group and 6 is an
optional argument-list, consists of the following steps:

• The set of candidate methods for the method invocation is constructed. Starting with the set of methods
associated with R, which were found by a previous member lookup (§7.3), the set is reduced to those
methods that are applicable with respect to the argument list 6. The set reduction consists of applying the
following rules to each method !	1 in the set, where ! is the type in which the method 1 is declared:

o If 1 is not applicable with respect to 6 (§7.4.2.1), then 1 is removed from the set.

o If 1 is applicable with respect to 6 (§7.4.2.1), then all methods declared in a base type of ! are removed
from the set.

• If the resulting set of candidate methods is empty, then no applicable methods exist, and a compile-time
error occurs. If the candidate methods are not all declared in the same type, the method invocation is
ambiguous, and a compile-time error occurs (this latter situation can only occur for an invocation of a
method in an interface that has multiple direct base interfaces, as described in §13.2.5).

• The best method of the set of candidate methods is identified using the overload resolution rules of §7.4.2. If
a single best method cannot be identified, the method invocation is ambiguous, and a compile-time error
occurs.

• Given a best method, the invocation of the method is validated in the context of the method group: If the
best method is a static method, the method group must have resulted from a simple-name or a member-
access through a type. If the best method is an instance method, the method group must have resulted from a
simple-name, a member-access through a variable or value, or a base-access. If neither requirement is
satisfied, a compile-time error occurs.

Once a method has been selected and validated at compile-time by the above steps, the actual run-time
invocation is processed according to the rules of function member invocation described in §7.4.3.

The intuitive effect of the resolution rules described above is as follows: To locate the particular method
invoked by a method invocation, start with the type indicated by the method invocation and proceed up the
inheritance chain until at least one applicable, accessible, non-override method declaration is found. Then
perform overload resolution on the set of applicable, accessible, non-override methods declared in that type and
invoke the method thus selected.

7.5.5.2 Delegate invocations

For a delegate invocation, the primary-expression of the invocation-expression must be a value of a delegate-
type. Furthermore, considering the delegate-type to be a function member with the same parameter list as the
delegate-type, the delegate-type must be applicable (§7.4.2.1) with respect to the argument-list of the
invocation-expression.

The run-time processing of a delegate invocation of the form I'6(, where I is a primary-expression of a
delegate-type and 6 is an optional argument-list, consists of the following steps:

• I is evaluated. If this evaluation causes an exception, no further steps are executed.

• The value of I is checked to be valid. If the value of I is ����, a ���
��	1���2�������������
��� is
thrown and no further steps are executed.

C# LANGUAGE SPECIFICATION

134 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• Otherwise, I is a reference to a delegate instance. A function member invocation (§7.4.3) is performed on
the method referenced by the delegate. If the method is an instance method, the instance of the invocation
becomes the instance referenced by the delegate.

7.5.6 Element access

An element-access consists of a primary-no-array-creation-expression, followed by a “�“ token, followed by an
expression-list, followed by a “�” token. The expression-list consists of one or more expressions, separated by
commas.

element-access:
primary-no-array-creation-expression � expression-list �

expression-list:
expression
expression-list expression

If the primary-no-array-creation-expression of an element-access is a value of an array-type, the element-access
is an array access (§7.5.6.1). Otherwise, the primary-no-array-creation-expression must be a variable or value
of a class, struct, or interface type that has one or more indexer members, in which case the element-access is an
indexer access (§7.5.6.2).

7.5.6.1 Array access

For an array access, the primary-no-array-creation-expression of the element-access must be a value of an
array-type. The number of expressions in the expression-list must be the same as the rank of the array-type, and
each expression must be of type ��
, ���
, ����, �����, or of a type that can be implicitly converted to one or
more of these types.

The result of evaluating an array access is a variable of the element type of the array, namely the array element
selected by the value(s) of the expression(s) in the expression-list.

The run-time processing of an array access of the form 0�6�, where 0 is a primary-no-array-creation-
expression of an array-type and 6 is an expression-list, consists of the following steps:

• 0 is evaluated. If this evaluation causes an exception, no further steps are executed.

• The index expressions of the expression-list are evaluated in order, from left to right. Following evaluation
of each index expression, an implicit conversion (§6.1) to one of the following types is performed: ��
,
���
, ����, �����. The first type in this list for which an implicit conversion exists is chosen. For
instance, if the index expression is of type ����
 then an implicit conversion to ��
 is performed, since
implicit conversions from ����
 to ��
 and from ����
 to ���� are possible. If evaluation of an index
expression or the subsequent implicit conversion causes an exception, then no further index expressions are
evaluated and no further steps are executed.

• The value of 0 is checked to be valid. If the value of 0 is ����, a ���
��	1���2�������������
��� is
thrown and no further steps are executed.

• The value of each expression in the expression-list is checked against the actual bounds of each dimension
of the array instance referenced by 0. If one or more values are out of range, a
���
��	3������
��2���������
��� is thrown and no further steps are executed.

• The location of the array element given by the index expression(s) is computed, and this location becomes
the result of the array access.

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 135

7.5.6.2 Indexer access

For an indexer access, the primary-no-array-creation-expression of the element-access must be a variable or
value of a class, struct, or interface type, and this type must implement one or more indexers that are applicable
with respect to the expression-list of the element-access.

The compile-time processing of an indexer access of the form 0�6�, where 0 is a primary-no-array-creation-
expression of a class, struct, or interface type !, and 6 is an expression-list, consists of the following steps:

• The set of indexers provided by ! is constructed. The set consists of all indexers declared in ! or a base type
of ! that are not �������� declarations and are accessible in the current context (§3.5).

• The set is reduced to those indexers that are applicable and not hidden by other indexers. The following
rules are applied to each indexer �	3 in the set, where � is the type in which the indexer 3 is declared:

o If 3 is not applicable with respect to 6 (§7.4.2.1), then 3 is removed from the set.

o If 3 is applicable with respect to 6 (§7.4.2.1), then all indexers declared in a base type of � are removed
from the set.

• If the resulting set of candidate indexers is empty, then no applicable indexers exist, and a compile-time
error occurs. If the candidate indexers are not all declared in the same type, the indexer access is ambiguous,
and a compile-time error occurs (this latter situation can only occur for an indexer access on an instance of
an interface that has multiple direct base interfaces).

• The best indexer of the set of candidate indexers is identified using the overload resolution rules of §7.4.2. If
a single best indexer cannot be identified, the indexer access is ambiguous, and a compile-time error occurs.

• The index expressions of the expression-list are evaluated in order, from left to right. The result of
processing the indexer access is an expression classified as an indexer access. The indexer access expression
references the indexer determined in the step above, and has an associated instance expression of 0 and an
associated argument list of 6.

Depending on the context in which it is used, an indexer access causes invocation of either the get-accessor or
the set-accessor of the indexer. If the indexer access is the target of an assignment, the set-accessor is invoked
to assign a new value (§7.13.1). In all other cases, the get-accessor is invoked to obtain the current value
(§7.1.1).

7.5.7 This access

A this-access consists of the reserved word
���.

this-access:

���

A this-access is permitted only in the block of an instance method, an instance accessor, or an instance
constructor. It has one of the following meanings:

• When
��� is used in a primary-expression within an instance method or instance accessor of a class, it is
classified as a value. The type of the value is the class within which the usage occurs, and the value is a
reference to the object for which the method or accessor was invoked.

• When
��� is used in a primary-expression within an instance method or instance accessor of a struct, it is
classified as a variable. The type of the variable is the struct within which the usage occurs, and the variable
represents the struct for which the method or accessor was invoked. The
��� variable of an instance
method of a struct behaves exactly the same as a ��� parameter of the struct type.

C# LANGUAGE SPECIFICATION

136 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• When
��� is used in a primary-expression within an instance constructor of a class, it is classified as a
value. The type of the value is the class within which the usage occurs, and the value is a reference to the
object being constructed.

• When
��� is used in a primary-expression within an instance constructor of a struct, it is classified as a
variable. The type of the variable is the struct within which the usage occurs, and the variable represents the
struct being constructed. The
��� variable of an instance constructor of a struct behaves exactly the same
as an ��
 parameter of the struct type—this in particular means that the variable must be definitely assigned
in every execution path of the instance constructor.

Use of
��� in a primary-expression in a context other than the ones listed above is a compile-time error. In
particular, it is not possible to refer to
��� in a static method, a static property accessor, or in a variable-
initializer of a field declaration.

7.5.8 Base access

A base-access consists of the reserved word ���� followed by either a “	” token and an identifier or an
expression-list enclosed in square brackets:

base-access:
���� 	 identifier
���� � expression-list �

A base-access is used to access base class members that are hidden by similarly named members in the current
class or struct. A base-access is permitted only in the block of an instance method, an instance accessor, or an
instance constructor. When ����	3 occurs in a class or struct, 3 must denote a member of the base class of that
class or struct. Likewise, when ������� occurs in a class, an applicable indexer must exist in the base class.

At compile-time, base-access expressions of the form ����	3 and ������� are evaluated exactly as if they
were written ''$(
���(3 and ''$(
���(���, where $ is the base class of the class or struct in which the
construct occurs. Thus, ����	3 and ������� correspond to
���	3 and
������, except
��� is viewed as
an instance of the base class.

When a base-access references a virtual function member (a method, property, or indexer), the determination of
which function member to invoke at run-time (§7.4.3) is changed. The function member that is invoked is
determined by finding the most derived implementation (§10.5.3) of the function member with respect to $
(instead of with respect to the run-time type of
���, as would be usual in a non-base access). Thus, within an
�������� of a ���
��� function member, a base-access can be used to invoke the inherited implementation of
the function member. If the function member referenced by a base-access is abstract, a compile-time error
occurs.

7.5.9 Postfix increment and decrement operators

post-increment-expression:
primary-expression 44

post-decrement-expression:
primary-expression 55

The operand of a postfix increment or decrement operation must be an expression classified as a variable, a
property access, or an indexer access. The result of the operation is a value of the same type as the operand.

If the operand of a postfix increment or decrement operation is a property or indexer access, the property or
indexer must have both a ��
 and a ��
 accessor. If this is not the case, a compile-time error occurs.

Unary operator overload resolution (§7.2.3) is applied to select a specific operator implementation. Predefined
44 and 55 operators exist for the following types: ���
�, ��
�, ����
, �����
, ��
, ���
, ����, �����,

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 137

����, ����
, ������, �������, and any enum type. The predefined 44 operators return the value produced
by adding 1 to the operand, and the predefined 55 operators return the value produced by subtracting 1 from the
operand.

The run-time processing of a postfix increment or decrement operation of the form �44 or �55 consists of the
following steps:

• If � is classified as a variable:

o � is evaluated to produce the variable.

o The value of � is saved.

o The selected operator is invoked with the saved value of � as its argument.

o The value returned by the operator is stored in the location given by the evaluation of �.

o The saved value of � becomes the result of the operation.

• If � is classified as a property or indexer access:

o The instance expression (if � is not �
�
��) and the argument list (if � is an indexer access) associated
with � are evaluated, and the results are used in the subsequent ��
 and ��
 accessor invocations.

o The ��
 accessor of � is invoked and the returned value is saved.

o The selected operator is invoked with the saved value of � as its argument.

o The ��
 accessor of � is invoked with the value returned by the operator as its ����� argument.

o The saved value of � becomes the result of the operation.

The 44 and 55 operators also support prefix notation, as described in §7.6.5. The result of �44 or �55 is the
value of � before the operation, whereas the result of 44� or 55� is the value of � after the operation. In either
case, � itself has the same value after the operation.

An �����
�� 44 or �����
�� 55 implementation can be invoked using either postfix or prefix notation. It is
not possible to have separate operator implementations for the two notations.

7.5.10 new operator

The ��� operator is used to create new instances of types.

There are three forms of ��� expressions:

• Object creation expressions are used to create new instances of class types and value types.

• Array creation expressions are used to create new instances of array types.

• Delegate creation expressions are used to create new instances of delegate types.

The ��� operator implies creation of an instance of a type, but does not necessarily imply dynamic allocation of
memory. In particular, instances of value types require no additional memory beyond the variables in which they
reside, and no dynamic allocations occur when ��� is used to create instances of value types.

7.5.10.1 Object creation expressions

An object-creation-expression is used to create a new instance of a class-type or a value-type.

object-creation-expression:
��� type ' argument-listopt (

C# LANGUAGE SPECIFICATION

138 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The type of an object-creation-expression must be a class-type or a value-type. The type cannot be an ���
���

class-type.

The optional argument-list (§7.4.1) is permitted only if the type is a class-type or a struct-type.

The compile-time processing of an object-creation-expression of the form ��� !'6(, where ! is a class-type or
a value-type and 6 is an optional argument-list, consists of the following steps:

• If ! is a value-type and 6 is not present:

o The object-creation-expression is a default constructor invocation. The result of the object-creation-
expression is a value of type !, namely the default value for ! as defined in §4.1.1.

• Otherwise, if ! is a class-type or a struct-type:

o If ! is an ���
���
 class-type, a compile-time error occurs.

o The instance constructor to invoke is determined using the overload resolution rules of §7.4.2. The set
of candidate instance constructors consists of all accessible instance constructors declared in ! which
are applicable with respect to 6 (§7.4.2.1). If the set is empty, or if a single best constructor cannot be
identified, a compile-time error occurs.

o The result of the object-creation-expression is a value of type !, namely the value produced by invoking
the instance constructor determined in the step above.

• Otherwise, the object-creation-expression is invalid, and a compile-time error occurs.

The run-time processing of an object-creation-expression of the form ��� !'6(, where ! is class-type or a
struct-type and 6 is an optional argument-list, consists of the following steps:

• If ! is a class-type:

o A new instance of class ! is allocated. If there is not enough memory available to allocate the new
instance, a ���
��	��
��R����������
��� is thrown and no further steps are executed.

o All fields of the new instance are initialized to their default values (§5.2).

o The instance constructor is invoked according to the rules of function member invocation (§7.4.3). A
reference to the newly allocated instance is automatically passed to the instance constructor and the
instance can be accessed from within the instance constructor as
���.

• If ! is a struct-type:

o An instance of type ! is created by allocating a temporary local variable. Since an instance constructor
of a struct-type is required to definitely assign a value to each field of the instance being created, no
initialization of the temporary variable is necessary.

o The instance constructor is invoked according to the rules of function member invocation (§7.4.3). A
reference to the newly allocated instance is automatically passed to the instance constructor and the
instance can be accessed from within the instance constructor as
���.

7.5.10.2 Array creation expressions

An array-creation-expression is used to create a new instance of an array-type.

array-creation-expression:
��� non-array-type � expression-list � rank-specifiersopt array-initializeropt

��� array-type array-initializer

An array creation expression of the first form allocates an array instance of the type that results from deleting
each of the individual expressions from the expression list. For example, the array creation expression ���

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 139

��
��
 +
� produces an array instance of type ��
� �, and the array creation expression ��� ��
��
�� �
produces an array of type ��
��� �. Each expression in the expression list must be of type ��
, ���
, ����,
or �����, or of a type that can be implicitly converted to one or more of these types. The value of each
expression determines the length of the corresponding dimension in the newly allocated array instance. Since the
length of an array dimension must be nonnegative, it is a compile-time error to specify a constant-expression
length that evaluates to a negative value.

Except in an unsafe context (§A.1), the layout of arrays is unspecified.

If an array creation expression of the first form includes an array initializer, each expression in the expression
list must be a constant and the rank and dimension lengths specified by the expression list must match those of
the array initializer.

In an array creation expression of the second form, the rank of the specified array type must match that of the
array initializer. The individual dimension lengths are inferred from the number of elements in each of the
corresponding nesting levels of the array initializer. Thus, the expression

���"��
� �"%%
 "�* "%+ ",* "%S "=**

exactly corresponds to

���"��
�, "+�"%%
 "�* "%+ ",* "%S "=**

Array initializers are described further in §12.6.

The result of evaluating an array creation expression is classified as a value, namely a reference to the newly
allocated array instance. The run-time processing of an array creation expression consists of the following steps:

• The dimension length expressions of the expression-list are evaluated in order, from left to right. Following
evaluation of each expression, an implicit conversion (§6.1) to one of the following types is performed: ��
,
���
, ����, �����. The first type in this list for which an implicit conversion exists is chosen. If
evaluation of an expression or the subsequent implicit conversion causes an exception, then no further
expressions are evaluated and no further steps are executed.

• The computed values for the dimension lengths are validated as follows. If one or more of the values are
less than zero, a ���
��	�������������
��� is thrown and no further steps are executed.

• An array instance with the given dimension lengths is allocated. If there is not enough memory available to
allocate the new instance, a ���
��	��
��R����������
��� is thrown and no further steps are
executed.

• All elements of the new array instance are initialized to their default values (§5.2).

• If the array creation expression contains an array initializer, then each expression in the array initializer is
evaluated and assigned to its corresponding array element. The evaluations and assignments are performed
in the order the expressions are written in the array initializer—in other words, elements are initialized in
increasing index order, with the rightmost dimension increasing first. If evaluation of a given expression or
the subsequent assignment to the corresponding array element causes an exception, then no further elements
are initialized (and the remaining elements will thus have their default values).

An array creation expression permits instantiation of an array with elements of an array type, but the elements of
such an array must be manually initialized. For example, the statement

��
����"�")"���"��
��

���&

creates a single-dimensional array with 100 elements of type ��
��. The initial value of each element is ����.
It is not possible for the same array creation expression to also instantiate the sub-arrays, and the statement

��
����"�")"���"��
��

��=�& <<"�����

results in a compile-time error. Instantiation of the sub-arrays must instead be performed manually, as in

C# LANGUAGE SPECIFICATION

140 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

��
����"�")"���"��
��

���&
���"'��
"�")"
&"�"A"�

&"�44("����")"���"��
�=�&

When an array of arrays has a “rectangular” shape, that is when the sub-arrays are all of the same length, it is
more efficient to use a multi-dimensional array. In the example above, instantiation of the array of arrays creates
101 objects—one outer array and 100 sub-arrays. In contrast,

��
� �")"���"��
��

 "=�&

creates only a single object, a two-dimensional array, and accomplishes the allocation in a single statement.

7.5.10.3 Delegate creation express ions

A delegate-creation-expression is used to create a new instance of a delegate-type.

delegate-creation-expression:
��� delegate-type ' expression (

The argument of a delegate creation expression must be a method group (7.1) or a value of a delegate-type. If
the argument is a method group, it identifies the method and, for an instance method, the object for which to
create a delegate. If the argument is a value of a delegate-type, it identifies a delegate instance of which to create
a copy.

The compile-time processing of a delegate-creation-expression of the form ��� I'�(, where I is a delegate-
type and � is an expression, consists of the following steps:

• If � is a method group:

o The set of methods identified by � must include exactly one method that is compatible (§15.1) with I,
and this method becomes the one to which the newly created delegate refers. If no matching method
exists, or if more than one matching method exists, a compile-time error occurs. If the selected method
is an instance method, the instance expression associated with � determines the target object of the
delegate.

o As in a method invocation, the selected method must be compatible with the context of the method
group: If the method is a static method, the method group must have resulted from a simple-name or a
member-access through a type. If the method is an instance method, the method group must have
resulted from a simple-name or a member-access through a variable or value. If the selected method
does not match the context of the method group, a compile-time error occurs.

o The result is a value of type I, namely a newly created delegate that refers to the selected method and
target object.

• Otherwise, if � is a value of a delegate-type:

o I and � must be compatible (§15.1); otherwise, a compile-time error occurs.

o The result is a value of type I, namely a newly created delegate that refers to the same invocation list as
�.

• Otherwise, the delegate creation expression is invalid, and a compile-time error occurs.

The run-time processing of a delegate-creation-expression of the form ��� I'�(, where I is a delegate-type
and � is an expression, consists of the following steps:

• If � is a method group:

o If the method selected at compile-time is a static method, the target object of the delegate is ����.
Otherwise, the selected method is an instance method, and the target object of the delegate is determined
from the instance expression associated with �:

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 141

• The instance expression is evaluated. If this evaluation causes an exception, no further steps are
executed.

• If the instance expression is of a reference-type, the value computed by the instance expression
becomes the target object. If the target object is ����, a ���
��	1���2�������������
��� is
thrown and no further steps are executed.

• If the instance expression is of a value-type, a boxing operation (§4.3.1) is performed to convert the
value to an object, and this object becomes the target object.

o A new instance of the delegate type I is allocated. If there is not enough memory available to allocate
the new instance, a ���
��	��
��R����������
��� is thrown and no further steps are executed.

o The new delegate instance is initialized with a reference to the method that was determined at compile-
time and a reference to the target object computed above.

• If � is a value of a delegate-type:

o � is evaluated. If this evaluation causes an exception, no further steps are executed.

o If the value of � is ����, a ���
��	1���2�������������
��� is thrown and no further steps are
executed.

o A new instance of the delegate type I is allocated. If there is not enough memory available to allocate
the new instance, a ���
��	��
��R����������
��� is thrown and no further steps are executed.

o The new delegate instance is initialized with references to the same invocation list as the delegate
instance given by �.

The method and object to which a delegate refers are determined when the delegate is instantiated and then
remain constant for the entire lifetime of the delegate. In other words, it is not possible to change the target
method or object of a delegate once it has been created. (When two delegates are combined or one is removed
from another, a new delegate results; no existing delegate has its content changed.)

It is not possible to create a delegate that refers to a property, indexer, user-defined operator, instance
constructor, destructor, or static constructor.

As described above, when a delegate is created from a method group, the formal parameter list and return type
of the delegate determine which of the overloaded methods to select. In the example

������
�"������"I�����7���'������"�(&

�����"6
%

I�����7���"�")"���"I�����7���'�U����(&

�
�
��"����
"�U����'����
"�("%
��
���"�"?"�&

*

�
�
��"������"�U����'������"�("%
��
���"�"?"�&

*
*

the 6	� field is initialized with a delegate that refers to the second �U���� method because that method exactly
matches the formal parameter list and return type of I�����7���. Had the second �U���� method not been
present, a compile-time error would have occurred.

7.5.11 The typeof operator

The
����� operator is used to obtain the ���
��	!��� object for a type.

C# LANGUAGE SPECIFICATION

142 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

typeof-expression:

����� ' type (

����� ' ���� (

The first form of typeof-expression consists of a
����� keyword followed by a parenthesized type. The result
of an expression of this form is the ���
��	!��� object for the indicated type. There is only one
���
��	!��� object for any given type.

The second form of typeof-expression consists of a
����� keyword followed by a parenthesized ����
keyword. The result of this form is a ���
��	!��� object that represents the lack of a type. The type object
returned is distinct from the type object returned for any type. This special type object is useful in class libraries
that allow reflection onto methods in the language, where those methods wish to have a way to represent the
return type of any method, including void methods, with an instance of ���
��	!���.

The example

�����"���
��&

�����"!��

%

�
�
��"����"R���'("%
!�����"
")"%

�����'��
(

�����'���
��	3�
,+(

�����'�
����(

�����'��������(

�����'����(

*&
���"'��
"�")"
&"�"A"
	:���
�&"�44("%

-������	.��
�:���'
���	7���1���(&
*

*
*

produces the following output:

���
��	3�
,+
���
��	3�
,+
���
��	�
����
���
��	I�������
���
��	J���

Note that ��
 and ���
��	3�
,+ are the same type.

7.5.12 The checked and unchecked operators

The ����8�� and ������8�� operators are used to control the overflow checking context for integral-type
arithmetic operations and conversions.

checked-expression:
����8�� ' expression (

unchecked-expression:
������8�� ' expression (

The ����8�� operator evaluates the contained expression in a checked context, and the ������8�� operator
evaluates the contained expression in an unchecked context. A checked-expression or unchecked-expression
corresponds exactly to a parenthesized-expression (§7.5.3), except that the contained expression is evaluated in
the given overflow checking context.

The overflow checking context can also be controlled through the ����8�� and ������8�� statements (§8.11).

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 143

The following operations are affected by the overflow checking context established by the ����8�� and
������8�� operators and statements:

• The predefined 44 and 55 unary operators (§7.5.9 and §7.6.5), when the operand is of an integral type.

• The predefined 5 unary operator (§7.6.2), when the operand is of an integral type.

• The predefined 4, 5, ?, and < binary operators (§7.7), when both operands are of integral types.

• Explicit numeric conversions (§6.2.1) from one integral type to another integral type, and from ����
 or
������ to an integral type.

When one of the above operations produce a result that is too large to represent in the destination type, the
context in which the operation is performed controls the resulting behavior:

• In a ����8�� context, if the operation is a constant expression (§7.15), a compile-time error occurs.
Otherwise, when the operation is performed at run-time, a ���
��	�������������
��� is thrown.

• In an ������8�� context, the result is truncated by discarding any high-order bits that do not fit in the
destination type.

For non-constant expressions (expressions that are evaluated at run-time) that are not enclosed by any ����8��
or ������8�� operators or statements, the default overflow checking context is ������8�� unless external
factors (such as compiler switches and execution environment configuration) call for ����8�� evaluation.

For constant expressions (expressions that can be fully evaluated at compile-time), the default overflow
checking context is always ����8��. Unless a constant expression is explicitly placed in an ������8��
context, overflows that occur during the compile-time evaluation of the expression always cause compile-time
errors.

In the example

�����"!��

%

�
�
��"��������"��
"�")"�

&
�
�
��"��������"��
"�")"�

&

�
�
��"��
"7'("%
��
���"����8��'�"?"�(& <<"!�����"�������������
���

*

�
�
��"��
"H'("%
��
���"������8��'�"?"�(& <<"2�
����"5V+V,VWWXY

*

�
�
��"��
"O'("%
��
���"�"?"�& <<"I������"��"������

*
*

no compile-time errors are reported since neither of the expressions can be evaluated at compile-time. At run-
time, the 7'(method throws a ���
��	�������������
���, and the H'(method returns –727379968 (the
lower 32 bits of the out-of-range result). The behavior of the O'(method depends on the default overflow
checking context for the compilation, but it is either the same as 7'(or the same as H'(.

In the example

�����"!��

%

����
"��
"�")"�

&
����
"��
"�")"�

&

C# LANGUAGE SPECIFICATION

144 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

�
�
��"��
"7'("%
��
���"����8��'�"?"�(& <<"-������"����� "��������

*

�
�
��"��
"H'("%
��
���"������8��'�"?"�(& <<"2�
����"5V+V,VWWXY

*

�
�
��"��
"O'("%
��
���"�"?"�& <<"-������"����� "��������

*
*

the overflows that occur when evaluating the constant expressions in 7'(and O'(cause compile-time errors to
be reported because the expressions are evaluated in a ����8�� context. An overflow also occurs when
evaluating the constant expression in H'(, but since the evaluation takes place in an ������8�� context, the
overflow is not reported.

The ����8�� and ������8�� operators only affect the overflow checking context for those operations that are
textually contained within the “'” and “(” tokens. The operators have no effect on function members that are
invoked as a result of evaluating the contained expression. In the example

�����"!��

%

�
�
��"��
"R��
����'��
"� "��
"�("%
��
���"�"?"�&

*

�
�
��"��
"7'("%
��
���"����8��'R��
����'�

 "�

((&

*
*

the use of ����8�� in 7 does not affect the evaluation of � ? � in R��
����'(, so � ? � is evaluated in the
default overflow checking context.

The ������8�� operator is convenient when writing constants of the signed integral types in hexadecimal
notation. For example:

�����"!��

%

������"����
"��
"6��$�
�")"������8��''��
(
�77777777(&

������"����
"��
"O���$�
")"������8��''��
(
�Y

(&
*

Both of the hexadecimal constants above are of type ���
. Because the constants are outside the ��
 range,
without the ������8�� operator, the casts to ��
 would produce compile-time errors.

The ����8�� and ������8�� operators and statements allow programmers to control certain aspects of some
numeric calculations. However, the behavior of some numeric operators depends on their operands’ data types.
For example, multiplying two decimals always results in an exception on overflow even within an explicitly
������8�� construct. Similarly, multiplying two floats never results in an exception on overflow even within
an explicitly ����8�� construct. In addition, other operators are never affected by the mode of checking,
whether default or explicit. As a service to programmers, it is recommended that the compiler issue a warning
when there is an arithmetic expression within an explicitly ����8�� or ������8�� context (by operator or
statement), that cannot possibly be affected by the specified mode of checking. Since such a warning is not
required, the compiler has flexibility in determining the circumstances that merit the issuance of such warnings.

7.6 Unary operators
The 4, 5, C, >, ?, 44, 55, and cast operators are called the unary operators.

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 145

unary-expression:
primary-expression
4 unary-expression
5 unary-expression
C unary-expression
> unary-expression
? unary-expression
pre-increment-expression
pre-decrement-expression
cast-expression

7.6.1 Unary plus operator

For an operation of the form 4�, unary operator overload resolution (§7.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the type
of the result is the return type of the operator. The predefined unary plus operators are:

��
"�����
��"4'��
"�(&
���
"�����
��"4'���
"�(&
����"�����
��"4'����"�(&
�����"�����
��"4'�����"�(&
����
"�����
��"4'����
"�(&
������"�����
��"4'������"�(&
�������"�����
��"4'�������"�(&

For each of these operators, the result is simply the value of the operand.

7.6.2 Unary minus operator

For an operation of the form M�, unary operator overload resolution (§7.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the type
of the result is the return type of the operator. The predefined negation operators are:

• Integer negation:

��
"�����
��"M'��
"�(&
����"�����
��"M'����"�(&

The result is computed by subtracting � from zero. In a ����8�� context, if the value of � is the maximum
negative ��
 or ����, a ���
��	�������������
��� is thrown. In an ������8�� context, if the value
of � is the maximum negative ��
 or ����, the result is that same value and the overflow is not reported.

If the operand of the negation operator is of type ���
, it is converted to type ����, and the type of the
result is ����. An exception is the rule that permits the ��
 value �����������	
��31) to be written as a
decimal integer literal (§2.4.4.2).

If the operand of the negation operator is of type �����, a compile-time error occurs. An exception is the
rule that permits the ���� value ������������
���
���	
��63) to be written as decimal integer literal
(§2.4.4.2).

• Floating-point negation:

����
"�����
��"M'����
"�(&
������"�����
��"M'������"�(&

The result is the value of � with its sign inverted. If � is NaN, the result is also NaN.

• Decimal negation:

�������"�����
��"M'�������"�(&

C# LANGUAGE SPECIFICATION

146 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The result is computed by subtracting � from zero. Decimal negation is equivalent to using the unary minus
operator of type ���
��	I������.

7.6.3 Logical negation operator

For an operation of the form C�, unary operator overload resolution (§7.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the type
of the result is the return type of the operator. Only one predefined logical negation operator exists:

����"�����
��"C'����"�(&

This operator computes the logical negation of the operand: If the operand is
���, the result is �����. If the
operand is �����, the result is
���.

7.6.4 Bitwise complement operator

For an operation of the form >�, unary operator overload resolution (§7.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the type
of the result is the return type of the operator. The predefined bitwise complement operators are:

��
"�����
��">'��
"�(&
���
"�����
��">'���
"�(&
����"�����
��">'����"�(&
�����"�����
��">'�����"�(&

For each of these operators, the result of the operation is the bitwise complement of �.

Every enumeration type � implicitly provides the following bitwise complement operator:

�"�����
��">'�"�(&

The result of evaluating ~�, where � is an expression of an enumeration type � with an underlying type L, is
exactly the same as evaluating (E)'>'L(�(.

7.6.5 Prefix increment and decrement operators

pre-increment-expression:
44 unary-expression

pre-decrement-expression:
55 unary-expression

The operand of a prefix increment or decrement operation must be an expression classified as a variable, a
property access, or an indexer access. The result of the operation is a value of the same type as the operand.

If the operand of a prefix increment or decrement operation is a property or indexer access, the property or
indexer must have both a ��
 and a ��
 accessor. If this is not the case, a compile-time error occurs.

Unary operator overload resolution (§7.2.3) is applied to select a specific operator implementation. Predefined
44 and 55 operators exist for the following types: ���
�, ��
�, ����
, �����
, ��
, ���
, ����, �����,
����, ����
, ������, �������, and any enum type. The predefined 44 operators return the value produced
by adding 1 to the operand, and the predefined 55 operators return the value produced by subtracting 1 from the
operand.

The run-time processing of a prefix increment or decrement operation of the form 44� or 55� consists of the
following steps:

• If � is classified as a variable:

o � is evaluated to produce the variable.

o The selected operator is invoked with the value of � as its argument.

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 147

o The value returned by the operator is stored in the location given by the evaluation of �.

o The value returned by the operator becomes the result of the operation.

• If � is classified as a property or indexer access:

o The instance expression (if � is not �
�
��) and the argument list (if � is an indexer access) associated
with � are evaluated, and the results are used in the subsequent ��
 and ��
 accessor invocations.

o The ��
 accessor of � is invoked.

o The selected operator is invoked with the value returned by the ��
 accessor as its argument.

o The ��
 accessor of � is invoked with the value returned by the operator as its ����� argument.

o The value returned by the operator becomes the result of the operation.

The 44 and 55 operators also support postfix notation, as described in §7.5.9. The result of �44 or �55 is the
value of � before the operation, whereas the result of 44� or 55� is the value of � after the operation. In either
case, � itself has the same value after the operation.

An �����
�� 44 or �����
�� 55 implementation can be invoked using either postfix or prefix notation. It is
not possible to have separate operator implementations for the two notations.

7.6.6 Cast expressions

A cast-expression is used to explicitly convert an expression to a given type.

cast-expression:
' type (unary-expression

A cast-expression of the form '!(�, where ! is a type and � is a unary-expression, performs an explicit
conversion (§6.2) of the value of � to type !. If no explicit conversion exists from the type of � to !, a compile-
time error occurs. Otherwise, the result is the value produced by the explicit conversion. The result is always
classified as a value, even if � denotes a variable.

The grammar for a cast-expression leads to certain syntactic ambiguities. For example, the expression '�(M�
could either be interpreted as a cast-expression (a cast of M� to type �) or as an additive-expression combined
with a parenthesized-expression (which computes the value � M �(.

To resolve cast-expression ambiguities, the following rule exists: A sequence of one or more tokens (§2.4)
enclosed in parentheses is considered the start of a cast-expression only if at least one of the following are true:

• The sequence of tokens is correct grammar for a type, but not for an expression.

• The sequence of tokens is correct grammar for a type, and the token immediately following the closing
parentheses is the token “>”, the token “C”, the token “'”, an identifier (§2.4.1), a literal (§2.4.4), or any
keyword (§2.4.3) except �� and ��.

The term “correct grammar” above means only that the sequence of tokens must conform to the particular
grammatical production. It specifically does not consider the actual meaning of any constituent identifiers. For
example, if � and � are identifiers, then �	� is correct grammar for a type, even if �	� doesn’t actually denote a
type.

From the disambiguation rule it follows that, if � and � are identifiers, '�(�, '�('�(, and '�('5�(are cast-
expressions, but '�(5� is not, even if � identifies a type. However, if � is a keyword that identifies a predefined
type (such as ��
), then all four forms are cast-expressions (because such a keyword could not possibly be an
expression by itself).

C# LANGUAGE SPECIFICATION

148 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

7.7 Arithmetic operators
The ?, <, @, 4, and M operators are called the arithmetic operators.

multiplicative-expression:
unary-expression
multiplicative-expression ? unary-expression
multiplicative-expression < unary-expression
multiplicative-expression @ unary-expression

additive-expression:
multiplicative-expression
additive-expression 4 multiplicative-expression
additive-expression M multiplicative-expression

7.7.1 Multiplication operator

For an operation of the form � ? �, binary operator overload resolution (§7.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result is the return type of the operator.

The predefined multiplication operators are listed below. The operators all compute the product of � and �.

• Integer multiplication:

��
"�����
��"?'��
"� "��
"�(&
���
"�����
��"?'���
"� "���
"�(&
����"�����
��"?'����"� "����"�(&
�����"�����
��"?'�����"� "�����"�(&

In a ����8�� context, if the product is outside the range of the result type, a
���
��	�������������
��� is thrown. In an ������8�� context, overflows are not reported and any
significant high-order bits outside the range of the result type are discarded.

• Floating-point multiplication:

����
"�����
��"?'����
"� "����
"�(&
������"�����
��"?'������"� "������"�(&

The product is computed according to the rules of IEEE 754 arithmetic. The following table lists the results
of all possible combinations of nonzero finite values, zeros, infinities, and NaN’s. In the table, � and � are
positive finite values. P is the result of � ? �. If the result is too large for the destination type, P is infinity. If
the result is too small for the destination type, P is zero.

4� M� 4
 M
 4Z MZ 1�1

4� 4P MP 4
 M
 4Z MZ 1�1

M� MP 4P M
 4
 MZ 4Z 1�1

4
 4
 M
 4
 M
 1�1 1�1 1�1

M
 M
 4
 M
 4
 1�1 1�1 1�1

4Z 4Z MZ 1�1 1�1 4Z MZ 1�1

MZ MZ 4Z 1�1 1�1 MZ 4Z 1�1

1�1 1�1 1�1 1�1 1�1 1�1 1�1 1�1

• Decimal multiplication:

�������"�����
��"?'�������"� "�������"�(&

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 149

If the resulting value is too large to represent in the ������� format, a ���
��	�������������
��� is
thrown. If the result value is too small to represent in the ������� format, the result is zero. Decimal
multiplication is equivalent to using the multiplication operator of type ���
��	I������.

7.7.2 Division operator

For an operation of the form � < �, binary operator overload resolution (§7.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result is the return type of the operator.

The predefined division operators are listed below. The operators all compute the quotient of � and �.

• Integer division:

��
"�����
��"<'��
"� "��
"�(&
���
"�����
��"<'���
"� "���
"�(&
����"�����
��"<'����"� "����"�(&
�����"�����
��"<'�����"� "�����"�(&

If the value of the right operand is zero, a ���
��	I�����$�[��������
��� is thrown.

The division rounds the result towards zero, and the absolute value of the result is the largest possible
integer that is less than the absolute value of the quotient of the two operands. The result is zero or positive
when the two operands have the same sign and zero or negative when the two operands have opposite signs.

If the left operand is the maximum negative ��
 or ���� value and the right operand is M�, an overflow
occurs and a ���
��	�������������
��� is thrown.

• Floating-point division:

����
"�����
��"<'����
"� "����
"�(&
������"�����
��"<'������"� "������"�(&

The quotient is computed according to the rules of IEEE 754 arithmetic. The following table lists the results
of all possible combinations of nonzero finite values, zeros, infinities, and NaN’s. In the table, � and � are
positive finite values. P is the result of � < �. If the result is too large for the destination type, P is infinity. If
the result is too small for the destination type, P is zero.

4� M� 4
 M
 4Z MZ 1�1

4� 4P MP 4Z MZ 4
 M
 1�1

M� MP 4P MZ 4Z M
 4
 1�1

4
 4
 M
 1�1 1�1 4
 M
 1�1

M
 M
 4
 1�1 1�1 M
 4
 1�1

4Z 4Z MZ 4Z MZ 1�1 1�1 1�1

MZ MZ 4Z MZ 4Z 1�1 1�1 1�1

1�1 1�1 1�1 1�1 1�1 1�1 1�1 1�1

• Decimal division:

�������"�����
��"<'�������"� "�������"�(&

If the value of the right operand is zero, a ���
��	I�����$�[��������
��� is thrown. If the resulting
value is too large to represent in the ������� format, a ���
��	�������������
��� is thrown. If the
result value is too small to represent in the ������� format, the result is zero. Decimal division is
equivalent to using the division operator of type ���
��	I������.

C# LANGUAGE SPECIFICATION

150 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

7.7.3 Remainder operator

For an operation of the form � @ �, binary operator overload resolution (§7.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result is the return type of the operator.

The predefined remainder operators are listed below. The operators all compute the remainder of the division
between � and �.

• Integer remainder:

��
"�����
��"@'��
"� "��
"�(&
���
"�����
��"@'���
"� "���
"�(&
����"�����
��"@'����"� "����"�(&
�����"�����
��"@'�����"� "�����"�(&

The result of � @ � is the value produced by � M '� < �(? �. If � is zero, a
���
��	I�����$�[��������
��� is thrown. The remainder operator never causes an overflow.

• Floating-point remainder:

����
"�����
��"@'����
"� "����
"�(&
������"�����
��"@'������"� "������"�(&

The following table lists the results of all possible combinations of nonzero finite values, zeros, infinities,
and NaN’s. In the table, � and � are positive finite values. P is the result of � @ � and is computed as � M � ?
�, where � is the largest possible integer that is less than or equal to � < �. This method of computing the
remainder is analogous to that used for integer operands, but differs from the IEEE 754 definition (in which
� is the integer closest to � < �).

4� M� 4
 M
 4Z MZ 1�1

4� 4P 4P 1�1 1�1 � � 1�1

M� MP MP 1�1 1�1 M� M� 1�1

4
 4
 4
 1�1 1�1 4
 4
 1�1

M
 M
 M
 1�1 1�1 M
 M
 1�1

4Z 1�1 1�1 1�1 1�1 1�1 1�1 1�1

MZ 1�1 1�1 1�1 1�1 1�1 1�1 1�1

1�1 1�1 1�1 1�1 1�1 1�1 1�1 1�1

• Decimal remainder:

�������"�����
��"@'�������"� "�������"�(&

If the value of the right operand is zero, a ���
��	I�����$�[��������
��� is thrown. If the resulting
value is too large to represent in the ������� format, a ���
��	�������������
��� is thrown. If the
result value is too small to represent in the ������� format, the result is zero. Decimal remainder is
equivalent to using the remainder operator of type I������.

7.7.4 Addition operator

For an operation of the form � 4 �, binary operator overload resolution (§7.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result is the return type of the operator.

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 151

The predefined addition operators are listed below. For numeric and enumeration types, the predefined addition
operators compute the sum of the two operands. When one or both operands are of type string, the predefined
addition operators concatenate the string representation of the operands.

• Integer addition:

��
"�����
��"4'��
"� "��
"�(&
���
"�����
��"4'���
"� "���
"�(&
����"�����
��"4'����"� "����"�(&
�����"�����
��"4'�����"� "�����"�(&

In a ����8�� context, if the sum is outside the range of the result type, a ���
��	�������������
���
is thrown. In an ������8�� context, overflows are not reported and any significant high-order bits outside
the range of the result type are discarded.

• Floating-point addition:

����
"�����
��"4'����
"� "����
"�(&
������"�����
��"4'������"� "������"�(&

The sum is computed according to the rules of IEEE 754 arithmetic. The following table lists the results of
all possible combinations of nonzero finite values, zeros, infinities, and NaN’s. In the table, � and � are
nonzero finite values, and P is the result of � 4 �. If � and � have the same magnitude but opposite signs, P
is positive zero. If � 4 � is too large to represent in the destination type, P is an infinity with the same sign as
� 4 �. If � 4 � is too small to represent in the destination type, P is a zero with the same sign as � 4 �.

� 4
 M
 4Z MZ 1�1

� P � � 4Z MZ 1�1

4
 � 4
 4
 4Z MZ 1�1

M
 � 4
 M
 4Z MZ 1�1

4Z 4Z 4Z 4Z 4Z 1�1 1�1

MZ MZ MZ MZ 1�1 MZ 1�1

1�1 1�1 1�1 1�1 1�1 1�1 1�1

• Decimal addition:

�������"�����
��"4'�������"� "�������"�(&

If the resulting value is too large to represent in the ������� format, a ���
��	�������������
��� is
thrown. Decimal addition is equivalent to using the addition operator of type ���
��	I������.

• Enumeration addition. Every enumeration type implicitly provides the following predefined operators,
where � is the enum type, and L is the underlying type of �:

�"�����
��"4'�"� "L"�(&
�"�����
��"4'L"� "�"�(&

The operators are evaluated exactly as '�(''L(� 4 'L(�(.

• String concatenation:

�
����"�����
��"4'�
����"� "�
����"�(&
�
����"�����
��"4'�
����"� "�����
"�(&
�
����"�����
��"4'�����
"� "�
����"�(&

The binary 4 operator performs string concatenation when one or both operands are of type �
����. If an
operand of string concatenation is ����, an empty string is substituted. Otherwise, any non-string argument

C# LANGUAGE SPECIFICATION

152 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

is converted to its string representation by invoking the virtual !��
����'(method inherited from type
�����
. If !��
���� returns ����, an empty string is substituted.

The example

�����"���
��&

�����"!��

%

�
�
��"����"R���'("%
�
����"�")"����&
-������	.��
�:���'/�")"B/"4"�"4"/A/(&"<<"��������"�")"BA
��
"�")"�&
-������	.��
�:���'/�")"/"4"�(& ""<<"��������"�")"�
����
"�")"�	+,

�4�=7&
-������	.��
�:���'/�")"/"4"�(& ""<<"��������"�")"�	+,�4�=
�������"�")"+	W

�&
-������	.��
�:���'/�")"/"4"�(& ""<<"��������"�")"+	W

*
*

produces the output:

�")"BA
�")"�
�")"�	+,��=
�")"+	W

The result of the string concatenation operator is a string that consists of the characters of the left operand
followed by the characters of the right operand. The string concatenation operator never returns a ����
value. A ���
��	��
��R����������
��� may be thrown if there is not enough memory available to
allocate the resulting string.

• Delegate combination. Every delegate type implicitly provides the following predefined operator, where I is
the delegate type:

I"�����
��"4'I"� "I"�(&

The binary 4 operator performs delegate combination when both operands are of some delegate type I. (If
the operands have different delegate types, a compile-time error occurs.) If the first operand is ����, the
result of the operation is the value of the second operand (even if that operand is also ����). Otherwise, if
the second operand is ����, then the result of the operation is the value of the first operand. Otherwise, the
result of the operation is a new delegate instance that, when invoked, invokes the first operand and then
invokes the second operand.

7.7.5 Subtraction operator

For an operation of the form � M �, binary operator overload resolution (§7.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result is the return type of the operator.

The predefined subtraction operators are listed below. The operators all subtract � from �.

• Integer subtraction:

��
"�����
��"M'��
"� "��
"�(&
���
"�����
��"M'���
"� "���
"�(&
����"�����
��"M'����"� "����"�(&
�����"�����
��"M'�����"� "�����"�(&

In a ����8�� context, if the difference is outside the range of the result type, a
���
��	�������������
��� is thrown. In an ������8�� context, overflows are not reported and any
significant high-order bits outside the range of the result type are discarded.

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 153

• Floating-point subtraction:

����
"�����
��"M'����
"� "����
"�(&
������"�����
��"M'������"� "������"�(&

The difference is computed according to the rules of IEEE 754 arithmetic. The following table lists the
results of all possible combinations of nonzero finite values, zeros, infinities, and NaN’s. In the table, � and
� are nonzero finite values, and P is the result of � M �. If � and � are equal, P is positive zero. If � M � is too
large to represent in the destination type, P is an infinity with the same sign as � M �. If � M � is too small to
represent in the destination type, P is a zero with the same sign as � M �.

� 4
 M
 4Z MZ 1�1

� P � � MZ 4Z 1�1

4
 M� 4
 4
 MZ 4Z 1�1

M
 M� M
 4
 MZ 4Z 1�1

4Z 4Z 4Z 4Z 1�1 4Z 1�1

MZ MZ MZ MZ MZ 1�1 1�1

1�1 1�1 1�1 1�1 1�1 1�1 1�1

• Decimal subtraction:

�������"�����
��"M'�������"� "�������"�(&

If the resulting value is too large to represent in the ������� format, a ���
��	�������������
��� is
thrown. Decimal subtraction is equivalent to using the subtraction operator of type ���
��	I������.

• Enumeration subtraction. Every enumeration type implicitly provides the following predefined operator,
where � is the enum type, and L is the underlying type of �:

L"�����
��"M'�"� "�"�(&

This operator is evaluated exactly as 'L(''L(� M 'L(�(. In other words, the operator computes the
difference between the ordinal values of � and �, and the type of the result is the underlying type of the
enumeration.

�"�����
��"M'�"� "L"�(&

This operator is evaluated exactly as '�(''L(� M �(. In other words, the operator subtracts a value from
the underlying type of the enumeration, yielding a value of the enumeration.

• Delegate removal. Every delegate type implicitly provides the following predefined operator, where I is the
delegate type:

I"�����
��"M'I"� "I"�(&

The binary 5 operator performs delegate removal when both operands are of a delegate type I. (If the
operands have different delegate types, a compile-time error occurs.) If the first operand is ����, the result
of the operation is ����. Otherwise, if the second operand is ����, then the result of the operation is the
value of the first operand. Otherwise, both operands represent invocation lists (§15.1) having one or more
entries, and the result is a new invocation list consisting of the first operand’s list with the second operand’s
entries removed from it, provided the second operand’s list is a proper contiguous subset of the first’s.(For
determining subset equality, corresponding entries are compared as for the delegate equality operator.)
Otherwise, the result is the value of the left operand. Neither of the operands’ lists is changed in the process.
If the second operand’s list matches multiple subsets of contiguous entries in the first operand’s list, the
right-most matching subset of contiguous entries is removed. If removal results in an empty list, the result is
����.

C# LANGUAGE SPECIFICATION

154 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The example

������
�"����"I'��
"�(&

�����"-
%

������"�
�
��"����"R�'��
"�("%"<?"9"?<"*
������"�
�
��"����"R+'��
"�("%"<?"9"?<"*

*

�����"!��

%

�
�
��"����"R���'("%
I"���")"���"I'-	R�(&
I"��+")"���"I'-	R+(&
I"��,")"���"4"��+"4"��+"4"���& <<"R�"4"R+"4"R+"4"R�
��,"5)"���& <<")B"R�"4"R+"4"R+

��,")"���"4"��+"4"��+"4"���& <<"R�"4"R+"4"R+"4"R�
��,"5)"���"4"��+& <<")B"R+"4"R�

��,")"���"4"��+"4"��+"4"���& <<"R�"4"R+"4"R+"4"R�
��,"5)"��+"4"��+& <<")B"R�"4"R�

��,")"���"4"��+"4"��+"4"���& <<"R�"4"R+"4"R+"4"R�
��,"5)"��+"4"���& <<")B"R�"4"R+

��,")"���"4"��+"4"��+"4"���& <<"R�"4"R+"4"R+"4"R�
��,"5)"���"4"���& <<")B"R�"4"R+"4"R+"4"R�

*
*

shows a variety of delegate subtractions.

7.8 Shift operators
The AA and BB operators are used to perform bit shifting operations.

shift-expression:
additive-expression
shift-expression AA additive-expression
shift-expression BB additive-expression

For an operation of the form � AA ����
 or � BB ����
, binary operator overload resolution (§7.2.4) is applied
to select a specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

When declaring an overloaded shift operator, the type of the first operand must always be the class or struct
containing the operator declaration, and the type of the second operand must always be ��
.

The predefined shift operators are listed below.

• Shift left:

��
"�����
��"AA'��
"� "��
"����
(&
���
"�����
��"AA'���
"� "��
"����
(&
����"�����
��"AA'����"� "��
"����
(&
�����"�����
��"AA'�����"� "��
"����
(&

The AA operator shifts � left by a number of bits computed as described below.

The high-order bits outside the range of the result type of � are discarded, the remaining bits are shifted left,
and the low-order empty bit positions are set to zero.

• Shift right:

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 155

��
"�����
��"BB'��
"� "��
"����
(&
���
"�����
��"BB'���
"� "��
"����
(&
����"�����
��"BB'����"� "��
"����
(&
�����"�����
��"BB'�����"� "��
"����
(&

The BB operator shifts � right by a number of bits computed as described below.

When � is of type ��
 or ����, the low-order bits of � are discarded, the remaining bits are shifted right,
and the high-order empty bit positions are set to zero if � is non-negative and set to one if � is negative.

When � is of type ���
 or �����, the low-order bits of � are discarded, the remaining bits are shifted right,
and the high-order empty bit positions are set to zero.

For the predefined operators, the number of bits to shift is computed as follows:

• When the type of � is ��
 or ���
, the shift count is given by the low-order five bits of ����
. In other
words, the shift count is computed from ����
 D
��7.

• When the type of � is ���� or �����, the shift count is given by the low-order six bits of ����
. In other
words, the shift count is computed from ����
 D
�,7.

If the resulting shift count is zero, the shift operators simply return the value of �.

Shift operations never cause overflows and produce the same results in ����8�� and ������8�� contexts.

When the left operand of the BB operator is of a signed integral type, the operator performs an arithmetic shift
right wherein the value of the most significant bit (the sign bit) of the operand is propagated to the high-order
empty bit positions. When the left operand of the BB operator is of an unsigned integral type, the operator
performs a logical shift right wherein high-order empty bit positions are always set to zero. To perform the
opposite operation of that inferred from the operand type, explicit casts can be used. For example, if � is a
variable of type ��
, the operation ������8��''��
(''���
(� BB �((performs a logical shift right of �.

7.9 Relational and type testing operators
The)), C), A, B, A), B), �� and �� operators are called the relational and type testing operators.

relational-expression:
shift-expression
relational-expression A shift-expression
relational-expression B shift-expression
relational-expression A) shift-expression
relational-expression B) shift-expression
relational-expression �� type
relational-expression �� type

equality-expression:
relational-expression
equality-expression)) relational-expression
equality-expression C) relational-expression

The �� operator is described in §7.9.9 and the �� operator is described in §7.9.10.

The)), C), A, B, A) and B) operators are comparison operators. For an operation of the form � op �, where op
is a comparison operator, overload resolution (§7.2.4) is applied to select a specific operator implementation.
The operands are converted to the parameter types of the selected operator, and the type of the result is the
return type of the operator.

The predefined comparison operators are described in the following sections. All predefined comparison
operators return a result of type ����, as described in the following table.

C# LANGUAGE SPECIFICATION

156 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Operation Result

�)) �
��� if � is equal to �, ����� otherwise

� C) �
��� if � is not equal to �, ����� otherwise

� A �
��� if � is less than �, ����� otherwise

� B �
��� if � is greater than �, ����� otherwise

� A) �
��� if � is less than or equal to �, ����� otherwise

� B) �
��� if � is greater than or equal to �, ����� otherwise

7.9.1 Integer comparison operators

The predefined integer comparison operators are:

����"�����
��"))'��
"� "��
"�(&
����"�����
��"))'���
"� "���
"�(&
����"�����
��"))'����"� "����"�(&
����"�����
��"))'�����"� "�����"�(&

����"�����
��"C)'��
"� "��
"�(&
����"�����
��"C)'���
"� "���
"�(&
����"�����
��"C)'����"� "����"�(&
����"�����
��"C)'�����"� "�����"�(&

����"�����
��"A'��
"� "��
"�(&
����"�����
��"A'���
"� "���
"�(&
����"�����
��"A'����"� "����"�(&
����"�����
��"A'�����"� "�����"�(&

����"�����
��"B'��
"� "��
"�(&
����"�����
��"B'���
"� "���
"�(&
����"�����
��"B'����"� "����"�(&
����"�����
��"B'�����"� "�����"�(&

����"�����
��"A)'��
"� "��
"�(&
����"�����
��"A)'���
"� "���
"�(&
����"�����
��"A)'����"� "����"�(&
����"�����
��"A)'�����"� "�����"�(&

����"�����
��"B)'��
"� "��
"�(&
����"�����
��"B)'���
"� "���
"�(&
����"�����
��"B)'����"� "����"�(&
����"�����
��"B)'�����"� "�����"�(&

Each of these operators compares the numeric values of the two integer operands and returns a ���� value that
indicates whether the particular relation is
��� or �����.

7.9.2 Floating-point comparison operators

The predefined floating-point comparison operators are:

����"�����
��"))'����
"� "����
"�(&
����"�����
��"))'������"� "������"�(&

����"�����
��"C)'����
"� "����
"�(&
����"�����
��"C)'������"� "������"�(&

����"�����
��"A'����
"� "����
"�(&
����"�����
��"A'������"� "������"�(&

����"�����
��"B'����
"� "����
"�(&
����"�����
��"B'������"� "������"�(&

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 157

����"�����
��"A)'����
"� "����
"�(&
����"�����
��"A)'������"� "������"�(&

����"�����
��"B)'����
"� "����
"�(&
����"�����
��"B)'������"� "������"�(&

The operators compare the operands according to the rules of the IEEE 754 standard:

• If either operand is NaN, the result is ����� for all operators except C), for which the result is
���. For
any two operands, � C) � always produces the same result as C'�)) �(. However, when one or both
operands are NaN, the A, B, A), and B) operators do not produce the same results as the logical negation of
the opposite operator. For example, if either of � and � is NaN, then � A � is �����, but C'� B) �(is
���.

• When neither operand is NaN, the operators compare the values of the two floating-point operands with
respect to the ordering

MZ"A"M���"A"			"A"M���"A"M
	
"))"4
	
"A"4���"A"			"A"4���"A"4Z

where ��� and ��� are the smallest and largest positive finite values that can be represented in the given
floating-point format. Notable effects of this ordering are:

o Negative and positive zeros are considered equal.

o A negative infinity is considered less than all other values, but equal to another negative infinity.

o A positive infinity is considered greater than all other values, but equal to another positive infinity.

7.9.3 Decimal comparison operators

The predefined decimal comparison operators are:

����"�����
��"))'�������"� "�������"�(&

����"�����
��"C)'�������"� "�������"�(&

����"�����
��"A'�������"� "�������"�(&

����"�����
��"B'�������"� "�������"�(&

����"�����
��"A)'�������"� "�������"�(&

����"�����
��"B)'�������"� "�������"�(&

Each of these operators compare the numeric values of the two decimal operands and return a ���� value that
indicates whether the particular relation is
��� or �����. Each decimal comparison is equivalent to using the
corresponding relational or equality operator of type ���
��	I������.

7.9.4 Boolean equality operators

The predefined boolean equality operators are:

����"�����
��"))'����"� "����"�(&

����"�����
��"C)'����"� "����"�(&

The result of)) is
��� if both � and � are
��� or if both � and � are �����. Otherwise, the result is �����.

The result of C) is ����� if both � and � are
��� or if both � and � are �����. Otherwise, the result is
���.
When the operands are of type ����, the C) operator produces the same result as the F operator.

7.9.5 Enumeration comparison operators

Every enumeration type implicitly provides the following predefined comparison operators:

����"�����
��"))'�"� "�"�(&

����"�����
��"C)'�"� "�"�(&

C# LANGUAGE SPECIFICATION

158 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

����"�����
��"A'�"� "�"�(&

����"�����
��"B'�"� "�"�(&

����"�����
��"A)'�"� "�"�(&

����"�����
��"B)'�"� "�"�(&

The result of evaluating � op �, where � and � are expressions of an enumeration type � with an underlying type
L, and op is one of the comparison operators, is exactly the same as evaluating ''L(�(op ''L(�(. In other
words, the enumeration type comparison operators simply compare the underlying integral values of the two
operands.

7.9.6 Reference type equality operators

The predefined reference type equality operators are:

����"�����
��"))'�����
"� "�����
"�(&

����"�����
��"C)'�����
"� "�����
"�(&

The operators return the result of comparing the two references for equality or non-equality.

Since the predefined reference type equality operators accept operands of type �����
, they apply to all types
that do not declare applicable �����
��)) and �����
�� C) members. Conversely, any applicable user-
defined equality operators effectively hide the predefined reference type equality operators.

The predefined reference type equality operators require the operands to be reference-type values or the value
����. Furthermore, they require that a standard implicit conversion (§6.3.1) exists from the type of either
operand to the type of the other operand. Unless both of these conditions are true, a compile-time error occurs.
Notable implications of these rules are:

• It is a compile-time error to use the predefined reference type equality operators to compare two references
that are known to be different at compile-time. For example, if the compile-time types of the operands are
two class types 6 and $, and if neither 6 nor $ derives from the other, then it would be impossible for the
two operands to reference the same object. Thus, the operation is considered a compile-time error.

• The predefined reference type equality operators do not permit value type operands to be compared.
Therefore, unless a struct type declares its own equality operators, it is not possible to compare values of
that struct type.

• The predefined reference type equality operators never cause boxing operations to occur for their operands.
It would be meaningless to perform such boxing operations, since references to the newly allocated boxed
instances would necessarily differ from all other references.

For an operation of the form �)) � or � C) �, if any applicable �����
��)) or �����
�� C) exists, the
operator overload resolution (§7.2.4) rules will select that operator instead of the predefined reference type
equality operator. However, it is always possible to select the predefined reference type equality operator by
explicitly casting one or both of the operands to type �����
. The example

�����"���
��&

�����"!��

%

�
�
��"����"R���'("%
�
����"�")"/!��
/&
�
����"
")"�
����	-���'�(&
-������	.��
�:���'�"))"
(&
-������	.��
�:���''�����
(�"))"
(&
-������	.��
�:���'�"))"'�����
(
(&
-������	.��
�:���''�����
(�"))"'�����
(
(&

*
*

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 159

produces the output

!���
7����
7����
7����

The � and
 variables refer to two distinct �
���� instances containing the same characters. The first
comparison outputs !��� because the predefined string equality operator (§7.9.7) is selected when both
operands are of type �
����. The remaining comparisons all output 7���� because the predefined reference
type equality operator is selected when one or both of the operands are of type �����
.

Note that the above technique is not meaningful for value types. The example

�����"!��

%

�
�
��"����"R���'("%
��
"�")"�+,&
��
"�")"�+,&
���
��	-������	.��
�:���''�����
(�"))"'�����
(�(&

*
*

outputs 7���� because the casts create references to two separate instances of boxed ��
 values.

7.9.7 String equality operators

The predefined string equality operators are:

����"�����
��"))'�
����"� "�
����"�(&

����"�����
��"C)'�
����"� "�
����"�(&

Two �
���� values are considered equal when one of the following is true:

• Both values are ����.

• Both values are non-null references to string instances that have identical lengths and identical characters in
each character position.

The string equality operators compare string values rather than string references. When two separate string
instances contain the exact same sequence of characters, the values of the strings are equal, but the references
are different. As described in §7.9.6, the reference type equality operators can be used to compare string
references instead of string values.

7.9.8 Delegate equality opera tors

Every delegate type implicitly provides the following predefined comparison operators:

����"�����
��"))'���
��	I�����
�"� "���
��	I�����
�"�(&

����"�����
��"C)'���
��	I�����
�"� "���
��	I�����
�"�(&

Two delegate instances are considered equal as follows:

• If either of the delegate instances is ����, they are equal if and only if both are ����.

• If either of the delegate instances has an invocation list (§15.1) containing one entry, they are equal if and
only if the other also has an invocation list containing one entry, and either:

• both refer to the same static method, or

• both refer to the same non-static method on the same target object.

C# LANGUAGE SPECIFICATION

160 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• If either of the delegate instances has an invocation list containing two or more entries, those instances are
equal if and only if their invocation lists are the same length, and each entry in one’s invocation list is equal
to the corresponding entry, in order, in the other’s invocation list.

Note that delegates of different types can be considered equal by the above definition, as long as they have the
same return type and parameter types.

7.9.9 The is operator

The �� operator is used to dynamically check if the run-time type of an object is compatible with a given type.
The result of the operation � �� !, where � is an expression and ! is a type, is a boolean value indicating
whether � can successfully be converted to type ! by a reference conversion, a boxing conversion, or an
unboxing conversion. The operation is evaluated as follows:

• If the compile-time type of � is the same as !, or if an implicit reference conversion (§6.1.4) or boxing
conversion (§6.1.5) exists from the compile-time type of � to !:

o If � is of a reference type, the result of the operation is equivalent to evaluating � C) ����.

o If � is of a value type, the result of the operation is
���.

• Otherwise, if an explicit reference conversion (§6.2.3) or unboxing conversion (§6.2.4) exists from the
compile-time type of � to !, a dynamic type check is performed:

o If the value of � is ����, the result is �����.

o Otherwise, let 2 be the run-time type of the instance referenced by �. If 2 and ! are the same type, if 2 is
a reference type and an implicit reference conversion from 2 to ! exists, or if 2 is a value type and ! is
an interface type that is implemented by 2, the result is
���.

o Otherwise, the result is �����.

• Otherwise, no reference or boxing conversion of � to type ! is possible, and the result of the operation is
false.

Note that the �� operator only considers reference conversions, boxing conversions, and unboxing conversions.
Other conversions, such as user defined conversions, are not considered by the �� operator.

7.9.10 The as operator

The �� operator is used to explicitly convert a value to a given reference type using a reference conversion or a
boxing conversion. Unlike a cast expression (§7.6.6), the �� operator never throws an exception. Instead, if the
indicated conversion is not possible, the resulting value is ����.

In an operation of the form � �� !, � must be an expression and ! must be a reference type. The type of the
result is !, and the result is always classified as a value. The operation is evaluated as follows:

• If the compile-time type of � is the same as !, the result is simply the value of �.

• Otherwise, if an implicit reference conversion (§6.1.4) or boxing conversion (§6.1.5) exists from the
compile-time type of e to !, this conversion is performed and becomes the result of the operation.

• Otherwise, if an explicit reference conversion (§6.2.3) exists from the compile-time type of e to T, a
dynamic type check is performed:

o If the value of e is ����, the result is the value ���� with the compile-time type !.

o Otherwise, let 2 be the run-time type of the instance referenced by �. If 2 and ! are the same type, if 2 is
a reference type and an implicit reference conversion from 2 to ! exists, or if 2 is a value type and ! is

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 161

an interface type that is implemented by 2, the result is the reference given by � with the compile-time
type !.

o Otherwise, the result is the value ���� with the compile-time type !.

• Otherwise, the indicated conversion is never possible, and a compile-time error occurs.

Note that the �� operator only performs reference conversions and boxing conversions. Other conversions, such
as user defined conversions, are not possible with the �� operator and should instead be performed using cast
expressions.

7.10 Logical operators
The D, F, and E operators are called the logical operators.

and-expression:
equality-expression
and-expression D equality-expression

exclusive-or-expression:
and-expression
exclusive-or-expression F and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression E exclusive-or-expression

For an operation of the form � op �, where op is one of the logical operators, overload resolution (§7.2.4) is
applied to select a specific operator implementation. The operands are converted to the parameter types of the
selected operator, and the type of the result is the return type of the operator.

The predefined logical operators are described in the following sections.

7.10.1 Integer logical operators

The predefined integer logical operators are:

��
"�����
��"D'��
"� "��
"�(&
���
"�����
��"D'���
"� "���
"�(&
����"�����
��"D'����"� "����"�(&
�����"�����
��"D'�����"� "�����"�(&

��
"�����
��"E'��
"� "��
"�(&
���
"�����
��"E'���
"� "���
"�(&
����"�����
��"E'����"� "����"�(&
�����"�����
��"E'�����"� "�����"�(&

��
"�����
��"F'��
"� "��
"�(&
���
"�����
��"F'���
"� "���
"�(&
����"�����
��"F'����"� "����"�(&
�����"�����
��"F'�����"� "�����"�(&

The D operator computes the bitwise logical 61I of the two operands, the E operator computes the bitwise
logical �2 of the two operands, and the F operator computes the bitwise logical exclusive �2 of the two
operands. No overflows are possible from these operations.

7.10.2 Enumeration logical operators

Every enumeration type � implicitly provides the following predefined logical operators:

C# LANGUAGE SPECIFICATION

162 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

�"�����
��"D'�"� "�"�(&
�"�����
��"E'�"� "�"�(&
�"�����
��"F'�"� "�"�(&

The result of evaluating � op �, where � and � are expressions of an enumeration type � with an underlying type
L, and op is one of the logical operators, is exactly the same as evaluating (E)''L(� op 'L(�(. In other words,
the enumeration type logical operators simply perform the logical operation on the underlying type of the two
operands.

7.10.3 Boolean logical operators

The predefined boolean logical operators are:

����"�����
��"D'����"� "����"�(&

����"�����
��"E'����"� "����"�(&

����"�����
��"F'����"� "����"�(&

The result of � D � is
��� if both � and � are
���. Otherwise, the result is �����.

The result of � E � is
��� if either � or � is
���. Otherwise, the result is �����.

The result of � F � is
��� if � is
��� and � is �����, or � is ����� and � is
���. Otherwise, the result is
�����. When the operands are of type ����, the F operator computes the same result as the C) operator.

7.11 Conditional logical operators
The DD and EE operators are called the conditional logical operators. They are also called the “short-circuiting”
logical operators.

conditional-and-expression:
inclusive-or-expression
conditional-and-expression DD inclusive-or-expression

conditional-or-expression:
conditional-and-expression
conditional-or-expression EE conditional-and-expression

The DD and EE operators are conditional versions of the D and E operators:

• The operation � DD � corresponds to the operation � D �, except that � is evaluated only if � is
���.

• The operation � EE � corresponds to the operation � E �, except that � is evaluated only if � is �����.

An operation of the form � DD � or � EE � is processed by applying overload resolution (§7.2.4) as if the
operation was written � D � or � E �. Then,

• If overload resolution fails to find a single best operator, or if overload resolution selects one of the
predefined integer logical operators, a compile-time error occurs.

• Otherwise, if the selected operator is one of the predefined boolean logical operators (§7.10.2), the operation
is processed as described in §7.11.1.

• Otherwise, the selected operator is a user-defined operator, and the operation is processed as described in
§7.11.2.

It is not possible to directly overload the conditional logical operators. However, because the conditional logical
operators are evaluated in terms of the regular logical operators, overloads of the regular logical operators are,
with certain restrictions, also considered overloads of the conditional logical operators. This is described further
in §7.11.2.

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 163

7.11.1 Boolean conditional logical operators

When the operands of DD or EE are of type ����, or when the operands are of types that do not define an
applicable �����
�� D or �����
�� E, but do define implicit conversions to ����, the operation is processed
as follows:

• The operation � DD � is evaluated as �N �: �����. In other words, � is first evaluated and converted to type
����. Then, if � is
���, � is evaluated and converted to type ����, and this becomes the result of the
operation. Otherwise, the result of the operation is �����.

• The operation � EE � is evaluated as �N
���: �. In other words, � is first evaluated and converted to type
����. Then, if � is
���, the result of the operation is
���. Otherwise, � is evaluated and converted to
type ����, and this becomes the result of the operation.

7.11.2 User-defined conditional logical operators

When the operands of DD or EE are of types that declare an applicable user-defined �����
�� D or �����
��
E, both of the following must be true, where ! is the type in which the selected operator is declared:

• The return type and the type of each parameter of the selected operator must be !. In other words, the
operator must compute the logical 61I or the logical �2 of two operands of type !, and must return a result
of type !.

• ! must contain declarations of �����
��
��� and �����
�� �����.

A compile-time error occurs if either of these requirements is not satisfied. Otherwise, the DD or EE operation is
evaluated by combining the user-defined �����
��
��� or �����
�� ����� with the selected user-defined
operator:

• The operation � DD � is evaluated as !	�����'�(N �; !	D'� �(, where !	�����'�(is an invocation of
the �����
�� ����� declared in !, and !	D'� �(is an invocation of the selected �����
�� D. In other
words, � is first evaluated and �����
�� ����� is invoked on the result to determine if � is definitely
false. Then, if � is definitely false, the result of the operation is the value previously computed for �.
Otherwise, � is evaluated, and the selected �����
�� D is invoked on the value previously computed for �
and the value computed for � to produce the result of the operation.

• The operation � EE � is evaluated as !	
���'�(N �; !	E'� �(, where !	
���'�(is an invocation of
the �����
��
��� declared in !, and !	E'� �(is an invocation of the selected �����
�� E. In other
words, � is first evaluated and �����
��
��� is invoked on the result to determine if � is definitely true.
Then, if � is definitely true, the result of the operation is the value previously computed for �. Otherwise, �
is evaluated, and the selected �����
�� E is invoked on the value previously computed for � and the value
computed for � to produce the result of the operation.

In either of these operations, the expression given by � is only evaluated once, and the expression given by � is
either not evaluated or evaluated exactly once.

For an example of a type that implements �����
��
��� and �����
�� �����, see §11.4.2.

7.12 Conditional operator
The N; operator is called the conditional operator. It is at times also called the ternary operator.

conditional-expression:
conditional-or-expression
conditional-or-expression N expression ; expression

C# LANGUAGE SPECIFICATION

164 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

A conditional expression of the form �N �; � first evaluates the condition �. Then, if � is
���, � is evaluated
and becomes the result of the operation. Otherwise, � is evaluated and becomes the result of the operation. A
conditional expression never evaluates both � and �.

The conditional operator is right-associative, meaning that operations are grouped from right to left. For
example, an expression of the form �N �; �N �; � is evaluated as �N �; '�N �; �(.

The first operand of the N; operator must be an expression of a type that can be implicitly converted to ����, or
an expression of a type that implements �����
��
���. If neither requirement is satisfied, a compile-time
error occurs.

The second and third operands of the N; operator control the type of the conditional expression. Let K and Q be
the types of the second and third operands. Then,

• If K and Q are the same type, then this is the type of the conditional expression.

• Otherwise, if an implicit conversion (§6.1) exists from K to Q, but not from Q to K, then Q is the type of the
conditional expression.

• Otherwise, if an implicit conversion (§6.1) exists from Q to K, but not from K to Q, then K is the type of the
conditional expression.

• Otherwise, no expression type can be determined, and a compile-time error occurs.

The run-time processing of a conditional expression of the form �N �; � consists of the following steps:

• First, � is evaluated, and the ���� value of � is determined:

o If an implicit conversion from the type of � to ���� exists, then this implicit conversion is performed to
produce a ���� value.

o Otherwise, the �����
��
��� defined by the type of � is invoked to produce a ���� value.

• If the ���� value produced by the step above is
���, then � is evaluated and converted to the type of the
conditional expression, and this becomes the result of the conditional expression.

• Otherwise, � is evaluated and converted to the type of the conditional expression, and this becomes the
result of the conditional expression.

7.13 Assignment operators
The assignment operators assign a new value to a variable, a property, an event, or an indexer element.

assignment:
unary-expression assignment-operator expression

assignment-operator: one of
)"""4)"""5)"""?)"""<)"""@)"""D)"""E)"""F)"""AA)"""BB)

The left operand of an assignment must be an expression classified as a variable, a property access, an indexer
access, or an event access.

The) operator is called the simple assignment operator. It assigns the value of the right operand to the variable,
property, or indexer element given by the left operand. The left operand of the simple assignment operator may
not be an event access (except as described in §10.7.1). The simple assignment operator is described in §7.13.1.

The operators formed by prefixing a binary operator with an) character are called the compound assignment
operators. These operators perform the indicated operation on the two operands, and then assign the resulting
value to the variable, property, or indexer element given by the left operand. The compound assignment
operators are described in §7.13.2.

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 165

The 4) and 5)"operators with an event access expression as the left operand are called the event assignment
operators. No other assignment operator is valid with an event access as the left operand. The event assignment
operators are described in §7.13.3.

The assignment operators are right-associative, meaning that operations are grouped from right to left. For
example, an expression of the form �) �) � is evaluated as �) (�) �(.

7.13.1 Simple assignment

The) operator is called the simple assignment operator. In a simple assignment, the right operand must be an
expression of a type that is implicitly convertible to the type of the left operand. The operation assigns the value
of the right operand to the variable, property, or indexer element given by the left operand.

The result of a simple assignment expression is the value assigned to the left operand. The result has the same
type as the left operand and is always classified as a value.

If the left operand is a property or indexer access, the property or indexer must have a ��
 accessor. If this is not
the case, a compile-time error occurs.

The run-time processing of a simple assignment of the form �) � consists of the following steps:

• If x is classified as a variable:

o � is evaluated to produce the variable.

o � is evaluated and, if required, converted to the type of � through an implicit conversion (§6.1).

o If the variable given by � is an array element of a reference-type, a run-time check is performed to
ensure that the value computed for � is compatible with the array instance of which � is an element. The
check succeeds if � is ����, or if an implicit reference conversion (§6.1.4) exists from the actual type of
the instance referenced by � to the actual element type of the array instance containing �. Otherwise, a
���
��	6����!���R����
�������
��� is thrown.

o The value resulting from the evaluation and conversion of � is stored into the location given by the
evaluation of �.

• If x is classified as a property or indexer access:

o The instance expression (if � is not �
�
��) and the argument list (if � is an indexer access) associated
with � are evaluated, and the results are used in the subsequent ��
 accessor invocation.

o � is evaluated and, if required, converted to the type of � through an implicit conversion (§6.1).

o The ��
 accessor of � is invoked with the value computed for � as its ����� argument.

The array co-variance rules (§12.5) permit a value of an array type 6�� to be a reference to an instance of an
array type $��, provided an implicit reference conversion exists from $ to 6. Because of these rules, assignment
to an array element of a reference-type requires a run-time check to ensure that the value being assigned is
compatible with the array instance. In the example

�
������"��")"���"�
������
�&
�����
��"��")"��&

���
�")"����& <<"�8
�����")"/O����/& <<"�8
���+�")"���"6����:��
'(& <<"6����!���R����
�������
���

the last assignment causes a ���
��	6����!���R����
�������
��� to be thrown because an instance of
6����:��
 cannot be stored in an element of a �
������.

C# LANGUAGE SPECIFICATION

166 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

When a property or indexer declared in a struct-type is the target of an assignment, the instance expression
associated with the property or indexer access must be classified as a variable. If the instance expression is
classified as a value, a compile-time error occurs. Because of §7.5.4, the same rule also applies to fields.

Given the declarations:

�
���
"0���

%

��
"� "�&

������"0���
'��
"� "��
"�("%

���	�")"�&

���	�")"�&

*

������"��
"K"%
��
"%"��
���"�&"*
��
"%"�")"�����&"*

*

������"��
"Q"%
��
"%"��
���"�&"*
��
"%"�")"�����&"*

*
*

�
���
"2��
�����
%

0���
"� "�&

������"2��
�����'0���
"� "0���
"�("%

���	�")"�&

���	�")"�&

*

������"0���
"6"%
��
"%"��
���"�&"*
��
"%"�")"�����&"*

*

������"0���
"$"%
��
"%"��
���"�&"*
��
"%"�")"�����&"*

*
*

in the example

0���
"�")"���"0���
'(&
�	K")"�

&
�	Q")"�

&
2��
�����"�")"���"2��
�����'(&
�	6")"���"0���
'�
 "�
(&
�	$")"�&

the assignments to �	K, �	Q, �	6, and �	$ are permitted because � and � are variables. However, in the
example

2��
�����"�")"���"2��
�����'(&
�	6	K")"�
&
�	6	Q")"�
&
�	$	K")"�

&
�	$	Q")"�

&

the assignments are all invalid, since �	6 and �	$ are not variables.

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 167

7.13.2 Compound assignment

An operation of the form � op) � is processed by applying binary operator overload resolution (§7.2.4) as if the
operation was written � op �. Then,

• If the return type of the selected operator is implicitly convertible to the type of �, the operation is evaluated
as �) � op �, except that � is evaluated only once.

• Otherwise, if the selected operator is a predefined operator, if the return type of the selected operator is
explicitly convertible to the type of �, and if � is implicitly convertible to the type of �, then the operation is
evaluated as �) '!('� op �(, where ! is the type of �, except that � is evaluated only once.

• Otherwise, the compound assignment is invalid, and a compile-time error occurs.

The term “evaluated only once” means that in the evaluation of � op �, the results of any constituent expressions
of � are temporarily saved and then reused when performing the assignment to �. For example, in the
assignment 6'(�$'(� +) -'(, where 6 is a method returning ��
��, and $ and - are methods returning ��
,
the methods are invoked only once, in the order 6, $, -.

When the left operand of a compound assignment is a property access or indexer access, the property or indexer
must have both a ��
 accessor and a ��
 accessor. If this is not the case, a compile-time error occurs.

The second rule above permits � op) � to be evaluated as �) '!('� op �(in certain contexts. The rule exists
such that the predefined operators can be used as compound operators when the left operand is of type ���
�,
��
�, ����
, �����
, or ����. Even when both arguments are of one of those types, the predefined operators
produce a result of type ��
, as described in §7.2.6.2. Thus, without a cast it would not be possible to assign the
result to the left operand.

The intuitive effect of the rule for predefined operators is simply that � op) � is permitted if both of � op � and
�) � are permitted. In the example

��
�"�")"
&
����"��")"G\
G&
��
"�")"
&

�"4)"�& <<"�8
�"4)"�

& <<"����� "�")"�

"��
"�����

��
�"4)"�& <<"����� "�")"�"��
"�����

��
�"4)"'��
�(�& <<"�8

��"4)"�& <<"����� "��")"�"��
"�����

��
��"4)"'����(�& <<"�8

the intuitive reason for each error is that a corresponding simple assignment would also have been an error.

7.13.3 Event assignment

If the left operand of a 4) or 5)"operator is classified as an event access, then the expression is evaluated as
follows:

• The instance expression, if any, of the event access is evaluated.

• The right operand of the 4) or 5) operator is evaluated, and, if required, converted to the type of the left
operand through an implicit conversion (§6.1).

• An event accessor of the event is invoked, with argument list consisting of the right operand, after
evaluation and, if necessary, conversion. If the operator was 4), the ��� accessor is invoked; if the operator
was 5), the ������ accessor is invoked.

An event assignment expression does not yield a value. Thus, an event assignment expression is valid only in
the context of a statement-expression (§8.6).

C# LANGUAGE SPECIFICATION

168 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

7.14 Expression
An expression is either a conditional-expression or an assignment.

expression:
conditional-expression
assignment

7.15 Constant expressions
A constant-expression is an expression that can be fully evaluated at compile-time.

constant-expression:
expression

The type of a constant expression can be one of the following: ���
�, ��
�, ����
, �����
, ��
, ���
,
����, �����, ����, ����
, ������, �������, ����, �
����, any enumeration type, or the null type. The
following constructs are permitted in constant expressions:

• Literals (including the ���� literal).

• References to ����
 members of class and struct types.

• References to members of enumeration types.

• Parenthesized sub-expressions, which are themselves constant expressions.

• Cast expressions, provided the target type is one of the types listed above.

• The predefined 4, M, C, and > unary operators.

• The predefined 4, M, ?, <, @, AA, BB, D, E, F, DD, EE,)), C), A, B, A), and B) binary operators, provided
each operand is of a type listed above.

• The N; conditional operator.

Whenever an expression is of one of the types listed above and contains only the constructs listed above, the
expression is evaluated at compile-time. This is true even if the expression is a sub-expression of a larger
expression that contains non-constant constructs.

The compile-time evaluation of constant expressions uses the same rules as run-time evaluation of non-constant
expressions, except that where run-time evaluation would have thrown an exception, compile-time evaluation
causes a compile-time error to occur.

Unless a constant expression is explicitly placed in an ������8�� context, overflows that occur in integral-type
arithmetic operations and conversions during the compile-time evaluation of the expression always cause
compile-time errors (§7.5.12).

Constant expressions occur in the contexts listed below. In these contexts, a compile-time error occurs if an
expression cannot be fully evaluated at compile-time.

• Constant declarations (§10.3).

• Enumeration member declarations (§14.3).

• ���� labels of a ���
�� statement (§8.7.2).

• ��
� ���� statements (§8.9.3).

• Dimension lengths in an array creation expression (§7.5.10.2) that includes an initializer.

• Attributes (§17).

Chapter 717 ExpressionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 169

An implicit constant expression conversion (§6.1.6) permits a constant expression of type ��
 to be converted
to ���
�, ��
�, ����
, �����
, ���
, or �����, provided the value of the constant expression is within the
range of the destination type.

7.16 Boolean expressions
A boolean-expression is an expression that yields a result of type ����.

boolean-expression:
expression

The controlling conditional expression of an if-statement (§8.7.1), while-statement (§8.8.1), do-statement
(§8.8.2), or for-statement (§8.8.3) is a boolean-expression. The controlling conditional expression of the N;
operator (§7.12) follows the same rules as a boolean-expression, but for reasons of operator precedence is
classified as a conditional-or-expression.

A boolean-expression is required to be of a type that can be implicitly converted to ���� or of a type that
implements �����
��
���. If neither requirement is satisfied, a compile-time error occurs.

When a boolean expression is of a type that cannot be implicitly converted to ���� but does implement
�����
��
���, then following evaluation of the expression, the �����
��
��� implementation provided by
that type is invoked to produce a ���� value.

The I$$��� struct type in §11.4.2 provides an example of a type that implements �����
��
��� and
�����
��"�����.

Chapter 817 StatementsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 171

8. Statements

C# provides a variety of statements. Most of these statements will be familiar to developers who have
programmed in C and C++.

statement:
labeled-statement
declaration-statement
embedded-statement

embedded-statement:
block
empty-statement
expression-statement
selection-statement
iteration-statement
jump-statement
try-statement
checked-statement
unchecked-statement
lock-statement
using-statement

The embedded-statement nonterminal is used for statements that appear within other statements. The use of
embedded-statement rather than statement excludes the use of declaration statements and labeled statements in
these contexts. For example, the code

����"7'����"�("%
��"'�(

��
"�")"SS&
*

results in a compile-time error because an �� statement requires an embedded-statement rather than a statement
for its if branch. If this code were permitted, then the variable � would be declared, but it could never be used.

8.1 End points and reachability
Every statement has an end point. In intuitive terms, the end point of a statement is the location that
immediately follows the statement. The execution rules for composite statements (statements that contain
embedded statements) specify the action that is taken when control reaches the end point of an embedded
statement. For example, when control reaches the end point of a statement in a block, control is transferred to
the next statement in the block.

If a statement can possibly be reached by execution, the statement is said to be reachable. Conversely, if there is
no possibility that a statement will be executed, the statement is said to be unreachable.

In the example

C# LANGUAGE SPECIFICATION

172 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

����"7'("%
-������	.��
�:���'/���������/(&
��
�":����&
-������	.��
�:���'/�����������/(&
:����;
-������	.��
�:���'/���������/(&

*

the second invocation of -������	.��
�:��� is unreachable because there is no possibility that the statement
will be executed.

A warning is reported if the compiler determines that a statement is unreachable. It is specifically not an error
for a statement to be unreachable.

To determine whether a particular statement or end point is reachable, the compiler performs flow analysis
according to the reachability rules defined for each statement. The flow analysis takes into account the values of
constant expressions (§7.15) that control the behavior of statements, but the possible values of non-constant
expressions are not considered. In other words, for purposes of control flow analysis, a non-constant expression
of a given type is considered to have any possible value of that type.

In the example

����"7'("%
����
"��
"�")"�&
��"'�"))"+("-������	.��
�:���'/�����������/(&

*

the boolean expression of the �� statement is a constant expression because both operands of the)) operator are
constants. As the constant expression is evaluated at compile-time, producing the value �����, the
-������	.��
�:��� invocation is considered unreachable. However, if � is changed to be a local variable

����"7'("%
��
"�")"�&
��"'�"))"+("-������	.��
�:���'/���������/(&

*

the -������	.��
�:��� invocation is considered reachable, even though it will in reality never be executed.

The block of a function member is always considered reachable. By successively evaluating the reachability
rules of each statement in a block, the reachability of any given statement can be determined.

In the example

����"7'��
"�("%
-������	.��
�:���'/�
��
/(&
��"'�"A"
("-������	.��
�:���'/����
���/(&

*

the reachability of the second -������	.��
�:��� is determined as follows:

• The first -������	.��
�:��� expression statement is reachable because the block of the 7 method is
reachable.

• The end point of the first -������	.��
�:��� expression statement is reachable because that statement is
reachable.

• The �� statement is reachable because the end point of the first -������	.��
�:��� expression statement
is reachable.

• The second -������	.��
�:��� expression statement is reachable because the boolean expression of the
�� statement does not have the constant value �����.

There are two situations in which it is a compile-time error for the end point of a statement to be reachable:

Chapter 817 StatementsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 173

• Because the ���
�� statement does not permit a switch section to “fall through” to the next switch section,
it is a compile-time error for the end point of the statement list of a switch section to be reachable. If this
error occurs, it is typically an indication that a ����8 statement is missing.

• It is a compile-time error for the end point of the block of a function member that computes a value to be
reachable. If this error occurs, it is typically an indication that a ��
��� statement is missing.

8.2 Blocks
A block permits multiple statements to be written in contexts where a single statement is allowed.

block:
% statement-listopt *

A block consists of an optional statement-list (§8.2.1), enclosed in braces. If the statement list is omitted, the
block is said to be empty.

A block may contain declaration statements (§8.5). The scope of a local variable or constant declared in a block
is the block.

Within a block, the meaning of a name used in an expression context must always be the same (§7.5.2.1).

A block is executed as follows:

• If the block is empty, control is transferred to the end point of the block.

• If the block is not empty, control is transferred to the statement list. When and if control reaches the end
point of the statement list, control is transferred to the end point of the block.

The statement list of a block is reachable if the block itself is reachable.

The end point of a block is reachable if the block is empty or if the end point of the statement list is reachable.

8.2.1 Statement lists

A statement list consists of one or more statements written in sequence. Statement lists occur in blocks (§8.2)
and in switch-blocks (§8.7.2).

statement-list:
statement
statement-list statement

A statement list is executed by transferring control to the first statement. When and if control reaches the end
point of a statement, control is transferred to the next statement. When and if control reaches the end point of the
last statement, control is transferred to the end point of the statement list.

A statement in a statement list is reachable if at least one of the following is true:

• The statement is the first statement and the statement list itself is reachable.

• The end point of the preceding statement is reachable.

• The statement is a labeled statement and the label is referenced by a reachable ��
� statement.

The end point of a statement list is reachable if the end point of the last statement in the list is reachable.

8.3 The empty statement
An empty-statement does nothing.

C# LANGUAGE SPECIFICATION

174 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

empty-statement:
&

An empty statement is used when there are no operations to perform in a context where a statement is required.

Execution of an empty statement simply transfers control to the end point of the statement. Thus, the end point
of an empty statement is reachable if the empty statement is reachable.

An empty statement can be used when writing a ����� statement with a null body:

����"0������R������'("%			*

����"0������R�������'("%
�����"'0������R������'((

&
*

Also, an empty statement can be used to declare a label just before the closing “*” of a block:

����"7'("%
			

��"'����("��
�"���
&
			

���
;"&
*

8.4 Labeled statements
A labeled-statement permits a statement to be prefixed by a label. Labeled statements are permitted in blocks,
but are not permitted as embedded statements.

labeled-statement:
identifier ; statement

A labeled statement declares a label with the name given by the identifier. The scope of a label is the block in
which the label is declared, including any nested blocks. It is a compile-time error for two labels with the same
name to have overlapping scopes.

A label can be referenced from ��
� statements (§8.9.3) within the scope of the label. This means that ��
�
statements can transfer control within blocks and out of blocks, but never into blocks.

Labels have their own declaration space and do not interfere with other identifiers. The example

��
"7'��
"�("%
��"'�"B)"
("��
�"�&
�")"5�&
�;"��
���"�&

*

is valid and uses the name � as both a parameter and a label.

Execution of a labeled statement corresponds exactly to execution of the statement following the label.

In addition to the reachability provided by normal flow of control, a labeled statement is reachable if the label is
referenced by a reachable ��
� statement. (Exception: If a ��
� statement is inside a
�� that includes a
������� block, and the labeled statement is outside the
��, and the end point of the ������� block is
unreachable, then the labeled statement is not reachable from that ��
� statement.)

8.5 Declaration statements
A declaration-statement declares a local variable or constant. Declaration statements are permitted in blocks, but
are not permitted as embedded statements.

Chapter 817 StatementsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 175

declaration-statement:
local-variable-declaration &
local-constant-declaration &

8.5.1 Local variable declarations

A local-variable-declaration declares one or more local variables.

local-variable-declaration:
type local- variable-declarators

local-variable-declarators:
local-variable-declarator
local-variable-declarators local-variable-declarator

local-variable-declarator:
identifier
identifier = local-variable-initializer

local-variable-initializer:
expression
array-initializer

The type of a local-variable-declaration specifies the type of the variables introduced by the declaration. The
type is followed by a list of local-variable-declarators, each of which introduces a new variable. A local-
variable-declarator consists of an identifier that names the variable, optionally followed by an “)” token and a
local-variable-initializer that gives the initial value of the variable.

The value of a local variable is obtained in an expression using a simple-name (§7.5.2), and the value of a local
variable is modified using an assignment (§7.13). A local variable must be definitely assigned (§5.3) at each
location where its value is obtained.

The scope of a local variable declared in a local-variable-declaration is the block in which the declaration
occurs. It is a compile-time error to refer to a local variable in a textual position that precedes the local-variable-
declarator of the local variable. Within the scope of a local variable, it is a compile-time error to declare another
local variable or constant with the same name.

A local variable declaration that declares multiple variables is equivalent to multiple declarations of single
variables with the same type. Furthermore, a variable initializer in a local variable declaration corresponds
exactly to an assignment statement that is inserted immediately after the declaration.

The example

����"7'("%
��
"�")"� "� "P")"�"?"+&

*

corresponds exactly to

����"7'("%
��
"�&"�")"�&
��
"�&
��
"P&"P")"�"?"+&

*

8.5.2 Local constant declarations

A local-constant-declaration declares one or more local constants.

local-constant-declaration:
����
 type constant-declarators

C# LANGUAGE SPECIFICATION

176 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

constant-declarators:
constant-declarator
constant-declarators constant-declarator

constant-declarator:
identifier = constant-expression

The type of a local-constant-declaration specifies the type of the constants introduced by the declaration. The
type is followed by a list of constant-declarators, each of which introduces a new constant. A constant-
declarator consists of an identifier that names the constant, followed by an “)” token, followed by a constant-
expression (§7.15) that gives the value of the constant.

The type and constant-expression of a local constant declaration must follow the same rules as those of a
constant member declaration (§10.3).

The value of a local constant is obtained in an expression using a simple-name (§7.5.2).

The scope of a local constant is the block in which the declaration occurs. It is a compile-time error to refer to a
local constant in a textual position that precedes its constant-declarator. Within the scope of a local constant, it
is a compile-time error to declare another local variable or constant with the same name.

A local constant declaration that declares multiple constants is equivalent to multiple declarations of single
constants with the same type.

8.6 Expression statements
An expression-statement evaluates a given expression. The value computed by the expression, if any, is
discarded.

expression-statement:
statement-expression &

statement-expression:
invocation-expression
object-creation-expression
assignment
post-increment-expression
post-decrement-expression
pre-increment-expression
pre-decrement-expression

Not all expressions are permitted as statement-expressions. In particular, expressions such as � 4 � and �)) �
that merely compute a value (which will be discarded), are not permitted as statement-expressions.

Execution of an expression-statement evaluates the contained statement-expression and then transfers control to
the end point of the expression-statement. The end point of an expression-statement is reachable if that
expression-statement is reachable.

8.7 Selection statements
Selection statements select one of a number of possible statements for execution based on the value of an
expression.

selection-statement:
if-statement
switch-statement

Chapter 817 StatementsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 177

8.7.1 The if statement

The �� statement selects a statement for execution based on the value of a boolean expression.

if-statement:
�� ' boolean-expression (embedded-statement
�� ' boolean-expression (embedded-statement ���� embedded-statement

boolean-expression:
expression

An ���� part is associated with the lexically nearest preceding �� statement that is allowed by the syntax. Thus,
an �� statement of the form

��"'�("��"'�("7'(&"����"H'(&

is equivalent to

��"'�("%
��"'�("%

7'(&
*
����"%

H'(&
*

*

An �� statement is executed as follows:

• The boolean-expression (§7.16) is evaluated.

• If the boolean expression yields
���, control is transferred to the first embedded statement. When and if
control reaches the end point of that statement, control is transferred to the end point of the �� statement.

• If the boolean expression yields ����� and if an ���� part is present, control is transferred to the second
embedded statement. When and if control reaches the end point of that statement, control is transferred to
the end point of the �� statement.

• If the boolean expression yields ����� and if an ���� part is not present, control is transferred to the end
point of the �� statement.

The first embedded statement of an �� statement is reachable if the �� statement is reachable and the boolean
expression does not have the constant value �����.

The second embedded statement of an �� statement, if present, is reachable if the �� statement is reachable and
the boolean expression does not have the constant value
���.

The end point of an �� statement is reachable if the end point of at least one of its embedded statements is
reachable. In addition, the end point of an �� statement with no ���� part is reachable if the �� statement is
reachable and the boolean expression does not have the constant value
���.

8.7.2 The switch statement

The switch statement selects for execution a statement list having an associated switch label that corresponds to
the value of the switch expression.

switch-statement:
���
�� ' expression (switch-block

switch-block:
% switch-sectionsopt *

C# LANGUAGE SPECIFICATION

178 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

switch-sections:
switch-section
switch-sections switch-section

switch-section:
switch-labels statement-list

switch-labels:
switch-label
switch-labels switch-label

switch-label:
���� constant-expression ;
������
 ;

A switch-statement consists of the keyword ���
��, followed by a parenthesized expression (called the switch
expression), followed by a switch-block. The switch-block consists of zero or more switch-sections, enclosed in
braces. Each switch-section consists of one or more switch-labels followed by a statement-list (§8.2.1).

The governing type of a ���
�� statement is established by the switch expression. If the type of the switch
expression is ���
�, ��
�, ����
, �����
, ��
, ���
, ����, �����, ����, �
����, or an enum-type, then
that is the governing type of the ���
�� statement. Otherwise, exactly one user-defined implicit conversion
(§6.4) must exist from the type of the switch expression to one of the following possible governing types:
���
�, ��
�, ����
, �����
, ��
, ���
, ����, �����, ����, �
����. If no such implicit conversion exists,
or if more than one such implicit conversion exists, a compile-time error occurs.

The constant expression of each ���� label must denote a value of a type that is implicitly convertible (§6.1) to
the governing type of the ���
�� statement. A compile-time error occurs if two or more ���� labels in the
same ���
�� statement specify the same constant value.

There can be at most one ������
 label in a switch statement.

A ���
�� statement is executed as follows:

• The switch expression is evaluated and converted to the governing type.

• If one of the constants specified in a ���� label in the same ���
�� statement is equal to the value of the
switch expression, control is transferred to the statement list following the matched ���� label.

• If none of the constants specified in ���� labels in the same ���
�� statement, is equal to the value of the
switch expression, and if a ������
 label is present, control is transferred to the statement list following the
������
 label.

• If none of the constants specified in ���� labels in the same ���
�� statement, is equal to the value of the
switch expression, and if no ������
 label is present, control is transferred to the end point of the ���
��
statement.

If the end point of the statement list of a switch section is reachable, a compile-time error occurs. This is known
as the “no fall through” rule. The example

Chapter 817 StatementsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 179

���
��"'�("%
����"
;

-���[���'(&
����8&

����"�;
-������'(&
����8&

������
;
-����
����'(&
����8&

*

is valid because no switch section has a reachable end point. Unlike C and C++, execution of a switch section is
not permitted to “fall through” to the next switch section, and the example

���
��"'�("%
����"
;

-���[���'(&
����"�;

-���[��������'(&
������
;

-���6��'(&
*

results in a compile-time error. When execution of a switch section is to be followed by execution of another
switch section, an explicit ��
� ���� or ��
� ������
 statement must be used:

���
��"'�("%
����"
;

-���[���'(&
��
�"����"�&

����"�;
-���[��������'(&
��
�"������
&

������
;
-���6��'(&
����8&

*

Multiple labels are permitted in a switch-section. The example

���
��"'�("%
����"
;

-���[���'(&
����8&

����"�;
-������'(&
����8&

����"+;
������
;

-���!��'(&
����8&

*

is valid. The example does not violate the “no fall through” rule because the labels ����"+; and ������
; are
part of the same switch-section.

The “no fall through” rule prevents a common class of bugs that occur in C and C++ when ����8 statements
are accidentally omitted. Also, because of this rule, the switch sections of a ���
�� statement can be arbitrarily
rearranged without affecting the behavior of the statement. For example, the sections of the ���
�� statement
above can be reversed without affecting the behavior of the statement:

C# LANGUAGE SPECIFICATION

180 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

���
��"'�("%
������
;

-���6��'(&
����8&

����"�;
-���[��������'(&
��
�"������
&

����"
;
-���[���'(&
��
�"����"�&

*

The statement list of a switch section typically ends in a ����8, ��
� ����, or ��
� ������
 statement, but
any construct that renders the end point of the statement list unreachable is permitted. For example, a �����
statement controlled by the boolean expression
��� is known to never reach its end point. Likewise, a
����
or ��
��� statement always transfers control elsewhere and never reaches its end point. Thus, the following
example is valid:

���
��"'�("%
����"
;

�����"'
���("7'(&
����"�;

����"���"6������
�����
���'(&
����"+;

��
���&
*

The governing type of a ���
�� statement may be the type �
����. For example:

����"I�-������'�
����"�������("%
���
��"'�������	!�:����'(("%
����"/���/;

I�2��'(&
����8&

����"/����/;
I�����'(&
����8&

����"/U��
/;
I�T��
'(&
����8&

������
;
3������-������'�������(&
����8&

*
*

Like the string equality operators (§7.9.7), the ���
�� statement is case sensitive and will execute a given
switch section only if the switch expression string exactly matches a ���� label constant.

When the governing type of a ���
�� statement is �
����, the value ���� is permitted as a case label
constant.

The statement-lists of a switch-block may contain declaration statements (§8.5). The scope of a local variable or
constant declared in a switch block is the switch block.

Within a switch block, the meaning of a name used in an expression context must always be the same (§7.5.2.1).

The statement list of a given switch section is reachable if the ���
�� statement is reachable and at least one of
the following is true:

• The switch expression is a non-constant value.

• The switch expression is a constant value that matches a ���� label in the switch section.

Chapter 817 StatementsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 181

• The switch expression is a constant value that doesn’t match any ���� label, and the switch section contains
the ������
 label.

• A switch label of the switch section is referenced by a reachable ��
� ���� or ��
� ������
 statement.

The end point of a ���
�� statement is reachable if at least one of the following is true:

• The ���
�� statement contains a reachable ����8 statement that exits the ���
�� statement.

• The ���
�� statement is reachable, the switch expression is a non-constant value, and no ������
 label is
present.

• The ���
�� statement is reachable, the switch expression is a constant value that doesn’t match any ����
label, and no ������
 label is present.

8.8 Iteration statements
Iteration statements repeatedly execute an embedded statement.

iteration-statement:
while-statement
do-statement
for-statement
foreach-statement

8.8.1 The while statement

The ����� statement conditionally executes an embedded statement zero or more times.

while-statement:
����� ' boolean-expression (embedded-statement

A ����� statement is executed as follows:

• The boolean-expression (§7.16) is evaluated.

• If the boolean expression yields
���, control is transferred to the embedded statement. When and if control
reaches the end point of the embedded statement (possibly from execution of a ���
���� statement),
control is transferred to the beginning of the ����� statement.

• If the boolean expression yields �����, control is transferred to the end point of the ����� statement.

Within the embedded statement of a ����� statement, a ����8 statement (§8.9.1) may be used to transfer
control to the end point of the ����� statement (thus ending iteration of the embedded statement), and a
���
���� statement (§8.9.2) may be used to transfer control to the end point of the embedded statement (thus
performing another iteration of the ����� statement).

The embedded statement of a ����� statement is reachable if the ����� statement is reachable and the boolean
expression does not have the constant value �����.

The end point of a ����� statement is reachable if at least one of the following is true:

• The ����� statement contains a reachable ����8 statement that exits the ����� statement.

• The ����� statement is reachable and the boolean expression does not have the constant value
���.

8.8.2 The do statement

The �� statement conditionally executes an embedded statement one or more times.

C# LANGUAGE SPECIFICATION

182 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

do-statement:
�� embedded-statement ����� ' boolean-expression (&

A �� statement is executed as follows:

• Control is transferred to the embedded statement.

• When and if control reaches the end point of the embedded statement (possibly from execution of a
���
���� statement), the boolean-expression (§7.16) is evaluated. If the boolean expression yields
���,
control is transferred to the beginning of the �� statement. Otherwise, control is transferred to the end point
of the �� statement.

Within the embedded statement of a �� statement, a ����8 statement (§8.9.1) may be used to transfer control to
the end point of the �� statement (thus ending iteration of the embedded statement), and a ���
���� statement
(§8.9.2) may be used to transfer control to the end point of the embedded statement (thus performing another
iteration of the �� statement).

The embedded statement of a �� statement is reachable if the �� statement is reachable.

The end point of a �� statement is reachable if at least one of the following is true:

• The �� statement contains a reachable ����8 statement that exits the �� statement.

• The end point of the embedded statement is reachable and the boolean expression does not have the constant
value
���.

8.8.3 The for statement

The ��� statement evaluates a sequence of initialization expressions and then, while a condition is true,
repeatedly executes an embedded statement and evaluates a sequence of iteration expressions.

for-statement:
��� ' for-initializeropt & for-conditionopt & for-iteratoropt (embedded-statement

for-initializer:
local-variable-declaration
statement-expression-list

for-condition:
boolean-expression

for-iterator:
statement-expression-list

statement-expression-list:
statement-expression
statement-expression-list statement-expression

The for-initializer, if present, consists of either a local-variable-declaration (§8.5.1) or a list of statement-
expressions (§8.6) separated by commas. The scope of a local variable declared by a for-initializer starts at the
local-variable-declarator for the variable and extends to the end of the embedded statement. The scope includes
the for-condition and the for-iterator.

The for-condition, if present, must be a boolean-expression (§7.16).

The for-iterator, if present, consists of a list of statement-expressions (§8.6) separated by commas.

A for statement is executed as follows:

• If a for-initializer is present, the variable initializers or statement expressions are executed in the order they
are written. This step is only performed once.

Chapter 817 StatementsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 183

• If a for-condition is present, it is evaluated.

• If the for-condition is not present or if the evaluation yields
���, control is transferred to the embedded
statement. When and if control reaches the end point of the embedded statement (possibly from execution of
a ���
���� statement), the expressions of the for-iterator, if any, are evaluated in sequence, and then
another iteration is performed, starting with evaluation of the for-condition in the step above.

• If the for-condition is present and the evaluation yields �����, control is transferred to the end point of the
��� statement.

Within the embedded statement of a ��� statement, a ����8 statement (§8.9.1) may be used to transfer control
to the end point of the ��� statement (thus ending iteration of the embedded statement), and a ���
����
statement (§8.9.2) may be used to transfer control to the end point of the embedded statement (thus executing
another iteration of the ��� statement).

The embedded statement of a ��� statement is reachable if one of the following is true:

• The ��� statement is reachable and no for-condition is present.

• The ��� statement is reachable and a for-condition is present and does not have the constant value �����.

The end point of a ��� statement is reachable if at least one of the following is true:

• The ��� statement contains a reachable ����8 statement that exits the ��� statement.

• The ��� statement is reachable and a for-condition is present and does not have the constant value
���.

8.8.4 The foreach statement

The ������� statement enumerates the elements of a collection, executing an embedded statement for each
element of the collection.

foreach-statement:
������� ' type identifier �� expression (embedded-statement

The type and identifier of a ������� statement declare the iteration variable of the statement. The iteration
variable corresponds to a read-only local variable with a scope that extends over the embedded statement.
During execution of a ������� statement, the iteration variable represents the collection element for which an
iteration is currently being performed. A compile-time error occurs if the embedded statement attempts to
modifythe iteration variable (via assignment or the 44 and 55 operators) or pass the iteration variable as a ���
or ��
 parameter.

The type of the expression of a ������� statement must be a collection type (as defined below), and an explicit
conversion (§6.2) must exist from the element type of the collection to the type of the iteration variable.

A type - is said to be a collection type if it implements the ���
��	3���������� interface or implements the
collection pattern by meeting all of the following criteria:

• - contains a ������ instance method with the signature H�
�������
��'(that returns a struct-type,
class-type, or interface-type, which is called � in the following text.

• � contains a ������ instance method with the signature R���1��
'(and the return type ����.

• � contains a ������ instance property named -�����
 that permits reading the current value. The type of
this property is said to be the element type of the collection type.

The ���
��	6���� type (§12.1.1) is a collection type, and since all array types derive from ���
��	6����,
any array type expression is permitted in a ������� statement. The order in which ������� traverses the
elements of an array is defined as follows. The elements of single-dimensional arrays are traversed in increasing
index order, starting with index
 and ending with index :���
�"M"�. The elements of multi-dimensional

C# LANGUAGE SPECIFICATION

184 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

arrays elements are traversed such that the indices of the rightmost dimension are increased first, then the next
left dimension, and so on to the left.

A ������� statement is executed as follows:

• The collection expression is evaluated to produce an instance of the collection type. This instance is referred
to as � in the following. If � is of a reference-type and has the value ����, a
���
��	1���2�������������
��� is thrown.

• If the collection type - implements the collection pattern defined above and � implements the
���
��	3I��������� interface then:

o An enumerator instance is obtained by evaluating the method invocation �	H�
�������
��'(. The
returned enumerator is stored in a temporary local variable, in the following referred to as �������
��.
It is not possible for the embedded statement to access this temporary variable. If �������
�� is of a
reference-type and has the value ����, a ���
��	1���2�������������
��� is thrown.

o A try-statement (§8.10) consisting of a
�� block followed by a ������� block is executed:

• The
�� block consists of the execution of the core iteration steps, as described below.

• The ������� block disposes the enumerator by converting �������
�� to
���
��	3I��������� and calling the I������ method. Because � implements
��
���	3I���������, the conversion is guaranteed to succeed.

• Otherwise, if the collection type - implements the collection pattern defined above and � does not
implement the ���
��	3I��������� interface then:

o An enumerator instance is obtained by evaluating the method invocation �	H�
�������
��'(. The
returned enumerator is stored in a temporary local variable, in the following referred to as �������
��.
It is not possible for the embedded statement to access this temporary variable. If �������
�� is of a
reference-type and has the value ����, a ���
��	1���2�������������
��� is thrown.

o The core execution steps are executed, as described below.

• Otherwise, C implements ���
��	3����������, and statement execution proceeds as follows:

o An enumerable instance is obtained by casting � to the ���
��	3���������� interface. The returned
instance is stored in a temporary local variable, in the following referred to as ����������. It is not
possible for the embedded statement to access this temporary variable.

o An enumerator instance is obtained by evaluating the method invocation
����������	H�
�������
��'(. The returned enumerator is stored in a temporary local variable, in
the following referred to as �������
��. It is not possible for the embedded statement to access this
temporary variable. If �������
�� has the value ����, a ���
��	1���2�������������
��� is
thrown.

o A try-statement (§8.10) consisting of a
�� block followed by a ������� block is executed:

• The
�� block consists of the execution of the core iteration steps, as described below.

• The ������� block consists of the following steps:

o Evaluate the expression '�������
��"��"���
��	3I���������(and store the result in a
temporary local variable, in the following referred to as ����������.

o If ���������� is non-null then call its I������ method.

The embedded statement of a ������� statement is reachable if the ������� statement is reachable. Likewise,
the end point of a ������� statement is reachable if the ������� statement is reachable.

Chapter 817 StatementsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 185

The core iteration steps, which are referred to above, are as follows:

• The enumerator is advanced to the next element by evaluating the method invocation
�������
��	R���1��
'(.

• If the value returned by �������
��	R���1��
'(is
���, the following steps are performed:

o The current enumerator value is obtained by evaluating the property access �������
��	-�����
,
and the value is converted to the type of the iteration variable by an explicit conversion (§6.2). The
resulting value is stored in the iteration variable such that it can be accessed in the embedded statement.

o Control is transferred to the embedded statement. When and if control reaches the end point of the
embedded statement (possibly from execution of a ���
���� statement), another ������� iteration is
performed, starting with the step above that advances the enumerator.

• If the value returned by �	R���1��
'(is �����, control is transferred to the end point of the �������
statement.

The following example prints out each value in a two-dimensional array, in element order:

�����"!��

%

�
�
��"����"R���'("%
������� �"������")"% %�	+ "+	, ",	S "S	=*

%=	X "X	V "V	Y "Y	W*"*&

�������"'������"������
J����"��"������(
-������	.��
�'/%
*"/ "������
J����(&

-������	.��
�:���'(&
*

*

The output is:

�	+"+	,",	S"S	="=	X"X	V"V	Y"Y	W

8.9 Jump statements
Jump statements unconditionally transfer control.

jump-statement:
break-statement
continue-statement
goto-statement
return-statement
throw-statement

The location to which a jump statement transfers control is called the target of the jump statement.

When a jump statement occurs within a block, and when the target of the jump statement is outside that block,
the jump statement is said to exit the block. While a jump statement may transfer control out of a block, it can
never transfer control into a block.

Execution of jump statements is complicated by the presence of intervening
�� statements. In the absence of
such
�� statements, a jump statement unconditionally transfers control from the jump statement to its target. In
the presence of such intervening
�� statements, execution is more complex. If the jump statement exits one or
more
�� blocks with associated ������� blocks, control is initially transferred to the ������� block of the
innermost
�� statement. When and if control reaches the end point of a ������� block, control is transferred
to the ������� block of the next enclosing
�� statement. This process is repeated until the ������� blocks of
all intervening
�� statements have been executed.

C# LANGUAGE SPECIFICATION

186 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

In the example

�����"!��

%

�
�
��"����"R���'("%
�����"'
���("%

��"%

��"%

-������	.��
�:���'/$�����"����8/(&
����8&

*
�������"%

-������	.��
�:���'/3�������
"�������"����8/(&
*

*
�������"%

-������	.��
�:���'/��
�����
"�������"����8/(&
*

*
-������	.��
�:���'/6�
��"����8/(&

*
*

the finally blocks associated with two try statements are executed before control is transferred to the target of the
jump statement.

The example produces the output:

$�����"����8
3�������
"�������"����8
��
�����
"�������"����8
6�
��"����8

8.9.1 The break statement

The ����8 statement exits the nearest enclosing ���
��, �����, ��, ���, or ������� statement.

break-statement:
����8 &

The target of a ����8 statement is the end point of the nearest enclosing ���
��, �����, ��, ���, or �������
statement. If a ����8 statement is not enclosed by a ���
��, �����, ��, ���, or ������� statement, a
compile-time error occurs.

When multiple ���
��, �����, ��, ���, or ������� statements are nested within each other, a ����8
statement applies only to the innermost statement. To transfer control across multiple nesting levels, a ��
�
statement (§8.9.3) must be used.

A ����8 statement cannot exit a ������� block (§8.10). When a ����8 statement occurs within a �������
block, the target of the ����8 statement must be within the same ������� block. Otherwise, a compile-time
error occurs.

A ����8 statement is executed as follows:

• If the ����8 statement exits one or more
�� blocks with associated ������� blocks, control is initially
transferred to the ������� block of the innermost
�� statement. When and if control reaches the end point
of a ������� block, control is transferred to the ������� block of the next enclosing
�� statement. This
process is repeated until the ������� blocks of all intervening
�� statements have been executed.

• Control is transferred to the target of the ����8 statement.

Because a ����8 statement unconditionally transfers control elsewhere, the end point of a ����8 statement is
never reachable.

Chapter 817 StatementsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 187

8.9.2 The continue statement

The ���
���� statement starts a new iteration of the nearest enclosing �����, ��, ���, or ������� statement.

continue-statement:
���
���� &

The target of a ���
���� statement is the end point of the embedded statement of the nearest enclosing �����,
��, ���, or ������� statement. If a ���
���� statement is not enclosed by a �����, ��, ���, or �������
statement, a compile-time error occurs.

When multiple �����, ��, ���, or ������� statements are nested within each other, a ���
���� statement
applies only to the innermost statement. To transfer control across multiple nesting levels, a ��
� statement
(§8.9.3) must be used.

A ���
���� statement cannot exit a ������� block (§8.10). When a ���
���� statement occurs within a
������� block, the target of the ���
���� statement must be within the same ������� block. Otherwise a
compile-time error occurs.

A ���
���� statement is executed as follows:

• If the ���
���� statement exits one or more
�� blocks with associated ������� blocks, control is
initially transferred to the ������� block of the innermost
�� statement. When and if control reaches the
end point of a ������� block, control is transferred to the ������� block of the next enclosing
��
statement. This process is repeated until the ������� blocks of all intervening
�� statements have been
executed.

• Control is transferred to the target of the ���
���� statement.

Because a ���
���� statement unconditionally transfers control elsewhere, the end point of a ���
����
statement is never reachable.

8.9.3 The goto statement

The ��
� statement transfers control to a statement that is marked by a label.

goto-statement:
��
� identifier &
��
� ���� constant-expression ;
��
� ������
 &

The target of a ��
� identifier statement is the labeled statement with the given label. If a label with the given
name does not exist in the current function member, or if the ��
� statement is not within the scope of the label,
a compile-time error occurs. This rule permits the use of a ��
� statement to transfer control out of a nested
scope, but not into a nested scope. In the example

�����"!��

%

�
�
��"����"R���'�
������"����("%
�
����� �"
����")"% %/���/ "/����/ "/�����/*

%/R�����/ "/.��������/ "/7�����/*"*&

�������"'�
����"�
�"��"����("%
��
"��� "����&
���"'���")"
&"���"A)"�&"44���("%

���"'����")"
&"����"A)"+&"44����("%
��"'�
�"))"
�������� �����("%

" ��
�"����&
*

*
*

C# LANGUAGE SPECIFICATION

188 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

-������	.��
�:���'/%
*"��
"�����/ "�
�(&
���
����&

����;
-������	.��
�:���'/7����"%
*"�
"�%�*��%+*�/ "�
� "��� "����(&

*

*

}a ��
� statement is used to transfer control out of a nested scope.

The target of a ��
�"���� statement is the statement list in the immediately enclosing switch statement
(§8.7.2) which contains a ���� label with the given constant value. If the ��
� ���� statement is not enclosed
by a ���
�� statement, if the constant-expression is not implicitly convertible (§6.1) to the governing type of
the nearest enclosing ���
�� statement, or if the nearest enclosing ���
�� statement does not contain a ����
label with the given constant value, a compile-time error occurs.

The target of a ��
�"������
 statement is the statement list in the immediately enclosing switch statement
(§8.7.2) which contains a default label. If the ��
� ������
 statement is not enclosed by a ���
�� statement,
or if the nearest enclosing ���
�� statement does not contain a ������
 label, a compile-time error occurs.

A ��
� statement cannot exit a ������� block (§8.10). When a ��
� statement occurs within a �������
block, the target of the ��
� statement must be within the same ������� block, or otherwise a compile-time
error occurs.

A ��
� statement is executed as follows:

• If the ��
� statement exits one or more
�� blocks with associated ������� blocks, control is initially
transferred to the ������� block of the innermost
�� statement. When and if control reaches the end point
of a ������� block, control is transferred to the ������� block of the next enclosing
�� statement. This
process is repeated until the ������� blocks of all intervening
�� statements have been executed.

• Control is transferred to the target of the ��
� statement.

Because a ��
� statement unconditionally transfers control elsewhere, the end point of a ��
� statement is
never reachable.

8.9.4 The return statement

The ��
��� statement returns control to the caller of the function member in which the ��
��� statement
appears.

return-statement:
��
��� expressionopt &

A ��
��� statement with no expression can be used only in a function member that does not compute a value,
that is, a method with the return type ����, the ��
 accessor of a property or indexer, the ��� and ������
accessors of an event, an instance constructor, a destructor or a static constructor.

A ��
��� statement with an expression can be used only in a function member that computes a value, that is, a
method with a non-void return type, the ��
 accessor of a property or indexer, or a user-defined operator. An
implicit conversion (§6.1) must exist from the type of the expression to the return type of the containing
function member.

It is a compile-time error for a ��
��� statement to appear in a ������� block (§8.10).

A ��
��� statement is executed as follows:

• If the ��
��� statement specifies an expression, the expression is evaluated and the resulting value is
converted to the return type of the containing function member by an implicit conversion. The result of the
conversion becomes the value returned to the caller.

Chapter 817 StatementsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 189

• If the ��
��� statement is enclosed by one or more
�� blocks with associated ������� blocks, control is
initially transferred to the ������� block of the innermost
�� statement. When and if control reaches the
end point of a ������� block, control is transferred to the ������� block of the next enclosing
��
statement. This process is repeated until the ������� blocks of all enclosing
�� statements have been
executed.

• Control is returned to the caller of the containing function member.

Because a ��
��� statement unconditionally transfers control elsewhere, the end point of a ��
��� statement
is never reachable.

8.9.5 The throw statement

The
���� statement throws an exception.

throw-statement:

���� expressionopt &

A
���� statement with an expression throws the value produced by evaluating the expression. The expression
must denote a value of the class type ���
��	�����
��� or of a class type that derives from
���
��	�����
���. If evaluation of the expression produces ����, a ���
��	1���2�������������
���
is thrown instead.

A
���� statement with no expression can be used only in a ��
�� block, in which case it re-throws the
exception that is currently being handled by the ��
�� block.

Because a
���� statement unconditionally transfers control elsewhere, the end point of a
���� statement is
never reachable.

When an exception is thrown, control is transferred to the first ��
�� clause in an enclosing
�� statement that
can handle the exception. The process that takes place from the point of the exception being thrown to the point
of transferring control to a suitable exception handler is known as exception propagation. Propagation of an
exception consists of repeatedly evaluating the following steps until a ��
�� clause that matches the exception
is found. In this description, the throw point is initially the location at which the exception is thrown.

• In the current function member, each
�� statement that encloses the throw point is examined. For each
statement �, starting with the innermost
�� statement and ending with the outermost
�� statement, the
following steps are evaluated:

o If the
�� block of � encloses the throw point and if S has one or more ��
�� clauses, the ��
��
clauses are examined in order of appearance to locate a suitable handler for the exception. The first
��
�� clause that specifies the exception type or a base type of the exception type is considered a
match. A general ��
�� clause (§8.10) is considered a match for any exception type. If a matching
��
�� clause is located, the exception propagation is completed by transferring control to the block of
that ��
�� clause.

o Otherwise, if the
�� block or a ��
�� block of � encloses the throw point and if � has a �������
block, control is transferred to the ������� block. If the ������� block throws another exception,
processing of the current exception is terminated. Otherwise, when control reaches the end point of the
������� block, processing of the current exception is continued.

• If an exception handler was not located in the current function member invocation, the function member
invocation is terminated. The steps above are then repeated for the caller of the function member with a
throw point corresponding to the statement from which the function member was invoked.

C# LANGUAGE SPECIFICATION

190 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• If the exception processing terminates all function member invocations in the current thread, indicating that
the thread has no handler for the exception, then the thread is itself terminated. The impact of such
termination is implementation-defined.

8.10 The try statement
The
�� statement provides a mechanism for catching exceptions that occur during execution of a block. The

�� statement furthermore provides the ability to specify a block of code that is always executed when control
leaves the
�� statement.

try-statement:

�� block catch-clauses

�� block finally-clause

�� block catch-clauses finally-clause

catch-clauses:
specific-catch-clauses general-catch-clauseopt

specific-catch-clausesopt general-catch-clause

specific-catch-clauses:
specific-catch-clause
specific-catch-clauses specific-catch-clause

specific-catch-clause:
��
�� ' class-type identifieropt (block

general-catch-clause:
��
�� block

finally-clause:
������� block

There are three possible forms of
�� statements:

• A
�� block followed by one or more ��
�� blocks.

• A
�� block followed by a ������� block.

• A
�� block followed by one or more ��
�� blocks followed by a ������� block.

When a ��
�� clause specifies a class-type, the type must be ���
��	�����
��� or a type that derives from
���
��	�����
���.

When a ��
�� clause specifies both a class-type and an identifier, an exception variable of the given name and
type is declared. The exception variable corresponds to a local variable with a scope that extends over the
��
�� block. During execution of the ��
�� block, the exception variable represents the exception currently
being handled. For the purpose of definite assignment checking, the exception variable is considered definitely
assigned in its entire scope.

Unless a ��
�� clause includes an exception variable name, it is impossible to access the exception object in the
��
�� block.

A ��
�� clause that specifies neither an exception type nor an exception variable name is called a general
��
�� clause. A
�� statement can only have one general ��
�� clause, and if one is present it must be the last
��
�� clause.

Though the
���� statement is restricted to throwing exceptions of type ���
��	�����
��� or a type that
derives from ���
��	�����
���, other languages are not bound by this rule, and so may throw exceptions of

Chapter 817 StatementsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 191

other types. A general catch clause can be used to catch such exceptions, and a
���� statement with no
expression can be used to re-throw them.

In order to locate a handler for an exception, ��
�� clauses are examined in lexical order. A compile-time error
occurs if a ��
�� clause specifies a type that is the same as or derived from a type that was specified in an
earlier ��
�� clause for the same
��. Without this restriction it would be possible to write unreachable ��
��
clauses.

Within a ��
�� block, a
���� statement (§8.9.5) with no expression can be used to re-throw the exception that
was caught by the ��
�� block. Assignments to an exception variable do not alter the exception that is re-
thrown.

In the example

�����"!��

%

�
�
��"����"7'("%

��"%

H'(&
*
��
��"'�����
���"�("%

-������	.��
�:���'/�����
���"��"7;"/"4"�	R������(&
�")"���"�����
���'/7/(&

����& <<"��5
����

*
*

�
�
��"����"H'("%

����"���"�����
���'/H/(&

*

�
�
��"����"R���'("%

��"%

7'(&
*
��
��"'�����
���"�("%

-������	.��
�:���'/�����
���"��"R���;"/"4"�	R������(&
*

*
*

the method 7 catches an exception, writes some diagnostic information to the console, alters the exception
variable, and re-throws the exception. The exception that is re-thrown is the original exception, so the output
produced is:

�����
���"��"7;"H
�����
���"��"R���;"H

If the first catch block had thrown � instead of rethrowing the current exception, the output produced is would
be as follows:

�����
���"��"7;"H
�����
���"��"R���;"7

It is a compile-time error for a ����8, ���
����, or ��
� statement to transfer control out of a �������
block. When a ����8, ���
����, or ��
� statement occurs in a ������� block, the target of the statement
must be within the same ������� block, or otherwise a compile-time error occurs.

It is a compile-time error for a ��
��� statement to occur in a ������� block.

A
�� statement is executed as follows:

• Control is transferred to the
�� block.

C# LANGUAGE SPECIFICATION

192 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• When and if control reaches the end point of the
�� block:

o If the
�� statement has a ������� block, the ������� block is executed.

o Control is transferred to the end point of the
�� statement.

• If an exception is propagated to the
�� statement during execution of the
�� block:

o The ��
�� clauses, if any, are examined in order of appearance to locate a suitable handler for the
exception. The first ��
�� clause that specifies the exception type or a base type of the exception type
is considered a match. A general ��
�� clause is considered a match for any exception type. If a
matching ��
�� clause is located:

• If the matching ��
�� clause declares an exception variable, the exception object is assigned to the
exception variable.

• Control is transferred to the matching ��
�� block.

• When and if control reaches the end point of the ��
�� block:

o If the
�� statement has a ������� block, the ������� block is executed.

o Control is transferred to the end point of the
�� statement.

• If an exception is propagated to the
�� statement during execution of the ��
�� block:

o If the
�� statement has a ������� block, the ������� block is executed.

o The exception is propagated to the next enclosing
�� statement.

o If the
�� statement has no ��
�� clauses or if no ��
�� clause matches the exception:

• If the
�� statement has a ������� block, the ������� block is executed.

• The exception is propagated to the next enclosing
�� statement.

The statements of a ������� block are always executed when control leaves a
�� statement. This is true
whether the control transfer occurs as a result of normal execution, as a result of executing a ����8, ���
����,
��
�, or ��
��� statement, or as a result of propagating an exception out of the
�� statement.

If an exception is thrown during execution of a ������� block, the exception is propagated to the next
enclosing
�� statement. If another exception was in the process of being propagated, that exception is lost. The
process of propagating an exception is discussed further in the description of the
���� statement (§8.9.5).

The
�� block of a
�� statement is reachable if the
�� statement is reachable.

A ��
�� block of a
�� statement is reachable if the
�� statement is reachable.

The ������� block of a
�� statement is reachable if the
�� statement is reachable.

The end point of a
�� statement is reachable if both of the following are true:

• The end point of the
�� block is reachable or the end point of at least one ��
�� block is reachable.

• If a ������� block is present, the end point of the ������� block is reachable.

8.11 The checked and unchecked statements
The ����8�� and ������8�� statements are used to control the overflow checking context for integral-type
arithmetic operations and conversions.

checked-statement:
����8�� block

Chapter 817 StatementsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 193

unchecked-statement:
������8�� block

The ����8�� statement causes all expressions in the block to be evaluated in a checked context, and the
������8�� statement causes all expressions in the block to be evaluated in an unchecked context.

The ����8�� and ������8�� statements are precisely equivalent to the ����8�� and ������8�� operators
(§7.5.12), except that they operate on blocks instead of expressions.

8.12 The lock statement
The ���8 statement obtains the mutual-exclusion lock for a given object, executes a statement, and then
releases the lock.

lock-statement:
���8 ' expression (embedded-statement

The expression of a ���8 statement must denote a value of a reference-type. An implicit boxing conversion
(§6.1.5) is never performed for the expression of a ���8 statement, and thus it is a compile-time error for the
expression to denote a value of a value-type.

A ���8 statement of the form

���8"'�("			

where � is an expression of a reference-type, is precisely equivalent to

���
��	!��������	R���
��	��
��'�(&

��"%

			
*
�������"%

���
��	!��������	R���
��	���
'�(&
*

except that � is only evaluated once.

The ���
��	!��� object of a class can conveniently be used as the mutual-exclusion lock for static methods of
the class. For example:

�����"-����
%

������"�
�
��"����"6��'�����
"�("%
���8"'
�����'-����(("%

			
*

*

������"�
�
��"����"2�����'�����
"�("%
���8"'
�����'-����(("%

			
*

*
*

8.13 The using statement
The ����� statement obtains one or more resources, executes a statement, and then disposes of the resource.

using-statement:
����� ' resource-acquisition (embedded-statement

C# LANGUAGE SPECIFICATION

194 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

resource-acquisition:
local-variable-declaration
expression

A resource is a class or struct that implements ���
��	3I���������, which includes a single parameterless
method named I������. Code that is using a resource can call I������ to indicate that the resource is no
longer needed. If I������ is not called, then automatic disposal eventually occurs as a consequence of garbage
collection.

If the form of resource-acquisition is local-variable-declaration then the type of the local-variable-declaration
must be ���
��	3I��������� or a type that can be implicitly converted to ���
��	3I���������. If the
form of resource-acquisition is expression then this expression must be ���
��	3I��������� or a type that
can be implicitly converted to ���
��	3I���������.

Local variables declared in a resource-acquisition are read-only, and must include an initializer. A compile-time
error occurs if the embedded statement attempts to modify these local variables (via assignment or the 44 and
55 operators) or pass them as ��� or ��
 parameters.

A ����� statement is translated into three parts: acquisition, usage, and disposal. Usage of the resource is
implicitly enclosed in a
�� statement that includes a ������� clause. This ������� clause disposes of the
resource. If a ���� resource is acquired, then no call to I������ is made, and no exception is thrown.

For example, a ����� statement of the form

�����"'2"��")"���"2'(("%
��	7'(&

*

is precisely equivalent to

2"��")"���"2'(&

��"%

��	7'(&
*
�������"%

��"'��"C)"����("''3I���������(��(I������'(&
*

A resource-acquisition may acquire multiple resources of a given type. This is equivalent to nested �����
statements. For example, a using statement of the form

�����"'2"��")"���"2'("�+")"���"2'(("%
��	7'(&
�+	7'(&

*

is precisely equivalent to:

�����"'2"��")"���"2'((
�����"'2"�+")"���"2'(("%

��	7'(&
�+	7'(&

*

which is, by expansion, precisely equivalent to:

Chapter 817 StatementsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 195

2"��")"���"2'(&

��"%

2"�+")"���"2'(&

��"%

��	7'(&
�+	7'(&

*
�������"%

��"'�+"C)"����("''3I���������(�+(I������'(&
*

*
�������"%

��"'��"C)"����("''3I���������(��(I������'(&
*

Chapter 917 NamespacesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 197

9. Namespaces

C# programs are organized using namespaces. Namespaces are used both as an “internal” organization system
for a program, and as an “external” organization system—a way of presenting program elements that are
exposed to other programs.

Using directives (§9.3) are provided to facilitate the use of namespaces.

9.1 Compilation units
A compilation-unit defines the overall structure of a source file. A compilation unit consists of zero or more
using-directives followed by zero or more global-attributes followed by zero or more namespace-member-
declarations.

compilation-unit:
using-directivesopt global-attributesopt namespace-member-declarationsopt

A C# program consists of one or more compilation units, each contained in a separate source file. When a C#
program is compiled, all of the compilation units are processed together. Thus, compilation units can depend on
each other, possibly in a circular fashion.

The using-directives of a compilation unit affect the global-attributes and namespace-member-declarations of
that compilation unit, but have no effect on other compilation units.

The global-attributes (§17) of a compilation unit permit the specification of attributes for the target assembly
and module. Assemblies and modules act as physical containers for types. An assembly may consist of several
physically separate modules.

The namespace-member-declarations of each compilation unit of a program contribute members to a single
declaration space called the global namespace. For example:

File 6	��:

�����"6"%*

File $	��:

�����"$"%*

The two compilation units contribute to the single global namespace, in this case declaring two classes with the
fully qualified names 6 and $. Because the two compilation units contribute to the same declaration space, it
would have been an error if each contained a declaration of a member with the same name.

9.2 Namespace declarations
A namespace-declaration consists of the keyword ���������, followed by a namespace name and body,
optionally followed by a semicolon.

namespace-declaration:
��������� qualified-identifier namespace-body &opt

qualified-identifier:
identifier
qualified-identifier 	 identifier

C# LANGUAGE SPECIFICATION

198 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

namespace-body:
% using-directivesopt namespace-member-declarationsopt *

A namespace-declaration may occur as a top-level declaration in a compilation-unit or as a member declaration
within another namespace-declaration. When a namespace-declaration occurs as a top-level declaration in a
compilation-unit, the namespace becomes a member of the global namespace. When a namespace-declaration
occurs within another namespace-declaration, the inner namespace becomes a member of the outer namespace.
In either case, the name of a namespace must be unique within the containing namespace.

Namespaces are implicitly ������ and the declaration of a namespace cannot include any access modifiers.

Within a namespace-body, the optional using-directives import the names of other namespaces and types,
allowing them to be referenced directly instead of through qualified names. The optional namespace-member-
declarations contribute members to the declaration space of the namespace. Note that all using-directives must
appear before any member declarations.

The qualified-identifier of a namespace-declaration may be a single identifier or a sequence of identifiers
separated by “	” tokens. The latter form permits a program to define a nested namespace without lexically
nesting several namespace declarations. For example,

���������"1�	1+
%

�����"6"%*

�����"$"%*
*

is semantically equivalent to

���������"1�
%

���������"1+
%

�����"6"%*

�����"$"%*
*

*

Namespaces are open-ended, and two namespace declarations with the same fully qualified name contribute to
the same declaration space (§3.3). In the example

���������"1�	1+
%

�����"6"%*
*

���������"1�	1+
%

�����"$"%*
*

the two namespace declarations above contribute to the same declaration space, in this case declaring two
classes with the fully qualified names 1�	1+	6 and 1�	1+	$. Because the two declarations contribute to the
same declaration space, it would have been an error if each contained a declaration of a member with the same
name.

9.3 Using directives
Using directives facilitate the use of namespaces and types defined in other namespaces. Using directives impact
the name resolution process of namespace-or-type-names (§3.8) and simple-names (§7.5.2), but unlike

Chapter 917 NamespacesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 199

declarations, using directives do not contribute new members to the underlying declaration spaces of the
compilation units or namespaces within which they are used.

using-directives:
using-directive
using-directives using-directive

using-directive:
using-alias-directive
using-namespace-directive

A using-alias-directive (§9.3.1) introduces an alias for a namespace or type.

A using-namespace-directive (§9.3.2) imports the type members of a namespace.

The scope of a using-directive extends over the namespace-member-declarations of its immediately containing
compilation unit or namespace body. The scope of a using-directive specifically does not include its peer using-
directives. Thus, peer using-directives do not affect each other, and the order in which they are written is
insignificant.

9.3.1 Using alias directives

A using-alias-directive introduces an identifier that serves as an alias for a namespace or type within the
immediately enclosing compilation unit or namespace body.

using-alias-directive:
����� identifier) namespace-or-type-name &

Within member declarations in a compilation unit or namespace body that contains a using-alias-directive, the
identifier introduced by the using-alias-directive can be used to reference the given namespace or type. For
example:

���������"1�	1+
%

�����"6"%*
*

���������"1,
%

�����"6")"1�	1+	6&

�����"$;"6"%*
*

Above, within member declarations in the 1, namespace, 6 is an alias for 1�	1+	6, and thus class 1,	$
derives from class 1�	1+	6. The same effect can be obtained by creating an alias 2 for 1�	1+ and then
referencing 2	6:

���������"1,
%

�����"2")"1�	1+&

�����"$;"2	6"%*
*

The identifier of a using-alias-directive must be unique within the declaration space of the compilation unit or
namespace that immediately contains the using-alias-directive. For example:

���������"1,
%

�����"6"%*
*

C# LANGUAGE SPECIFICATION

200 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

���������"1,
%

�����"6")"1�	1+	6& <<"����� "6"�������"����
�
*

Above, 1, already contains a member 6, so it is a compile-time error for a using-alias-directive to use that
identifier. Likewise, it is a compile-time error for two or more using-alias-directives in the same compilation
unit or namespace body to declare aliases by the same name.

A using-alias-directive makes an alias available within a particular compilation unit or namespace body, but it
does not contribute any new members to the underlying declaration space. In other words, a using-alias-
directive is not transitive but rather affects only the compilation unit or namespace body in which it occurs. In
the example

���������"1,
%

�����"2")"1�	1+&
*

���������"1,
%

�����"$;"2	6"%* <<"����� "2"��8����
*

the scope of the using-alias-directive that introduces 2 only extends to member declarations in the namespace
body in which it is contained, so 2 is unknown in the second namespace declaration. However, placing the
using-alias-directive in the containing compilation unit causes the alias to become available within both
namespace declarations:

�����"2")"1�	1+&

���������"1,
%

�����"$;"2	6"%*
*

���������"1,
%

�����"-;"2	6"%*
*

Just like regular members, names introduced by using-alias-directives are hidden by similarly named members
in nested scopes. In the example

�����"2")"1�	1+&

���������"1,
%

�����"2"%*

�����"$;"2	6"%* <<"����� "2"���"��"������"6
*

the reference to 2	6 in the declaration of $ causes a compile-time error because 2 refers to 1,	2, not 1�	1+.

The order in which using-alias-directives are written has no significance, and resolution of the namespace-or-
type-name referenced by a using-alias-directive is neither affected by the using-alias-directive itself nor by other
using-directives in the immediately containing compilation unit or namespace body. In other words, the
namespace-or-type-name of a using-alias-directive is resolved as if the immediately containing compilation unit
or namespace body had no using-directives. In the example

���������"1�	1+"%*

���������"1,
%

�����"2�")"1�& <<"�]

Chapter 917 NamespacesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 201

�����"2+")"1�	1+& <<"�]

�����"2,")"2�	1+& <<"����� "2�"��8����
*

the last using-alias-directive results in a compile-time error because it is not affected by the first using-alias-
directive.

A using-alias-directive can create an alias for any namespace or type, including the namespace within which it
appears and any namespace or type nested within that namespace.

Accessing a namespace or type through an alias yields exactly the same result as accessing the namespace or
type through its declared name. For example, given

���������"1�	1+
%

�����"6"%*
*

���������"1,
%

�����"2�")"1�&
�����"2+")"1�	1+&

�����"$
%

1�	1+	6"�& <<"������"
�"1�	1+	6
2�	1+	6"�& <<"������"
�"1�	1+	6
2+	6"�& <<"������"
�"1�	1+	6

*
*

the names 1�	1+	6, 2�	1+	6, and 2+	6 are equivalent and all refer to the class whose fully qualified name is
1�	1+	6.

9.3.2 Using namespace directives

A using-namespace-directive imports the types contained in a namespace into the immediately enclosing
compilation unit or namespace body, enabling the identifier of each type to be used without qualification.

using-namespace-directive:
����� namespace-name &

Within member declarations in a compilation unit or namespace body that contains a using-namespace-
directive, the types contained in the given namespace can be referenced directly. For example:

���������"1�	1+
%

�����"6"%*
*

���������"1,
%

�����"1�	1+&

�����"$;"6"%*
*

Above, within member declarations in the 1, namespace, the type members of 1�	1+ are directly available, and
thus class 1,	$ derives from class 1�	1+	6.

A using-namespace-directive imports the types contained in the given namespace, but specifically does not
import nested namespaces. In the example

C# LANGUAGE SPECIFICATION

202 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

���������"1�	1+
%

�����"6"%*
*

���������"1,
%

�����"1�&

�����"$;"1+	6"%* <<"����� "1+"��8����
*

the using-namespace-directive imports the types contained in 1�, but not the namespaces nested in 1�. Thus, the
reference to 1+	6 in the declaration of $ results in a compile-time error because no members named 1+ are in
scope.

Unlike a using-alias-directive, a using-namespace-directive may import types whose identifiers are already
defined within the enclosing compilation unit or namespace body. In effect, names imported by a using-
namespace-directive are hidden by similarly named members in the enclosing compilation unit or namespace
body. For example:

���������"1�	1+
%

�����"6"%*

�����"$"%*
*

���������"1,
%

�����"1�	1+&

�����"6"%*
*

Here, within member declarations in the 1, namespace, 6 refers to 1,	6 rather than 1�	1+	6.

When more than one namespace imported by using-namespace-directives in the same compilation unit or
namespace body contain types by the same name, references to that name are considered ambiguous. In the
example

���������"1�
%

�����"6"%*
*

���������"1+
%

�����"6"%*
*

���������"1,
%

�����"1�&

�����"1+&

�����"$;"6"%* <<"����� "6"��"���������
*

both 1� and 1+ contain a member 6, and because 1, imports both, referencing 6 in 1, is a compile-time error.
In this situation, the conflict can be resolved either through qualification of references to 6, or by introducing a
using-alias-directive that picks a particular 6. For example:

���������"1,
%

�����"1�&

Chapter 917 NamespacesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 203

�����"1+&

�����"6")"1�	6&

�����"$;"6"%* <<"6"�����"1�	6
*

Like a using-alias-directive, a using-namespace-directive does not contribute any new members to the
underlying declaration space of the compilation unit or namespace, but rather affects only the compilation unit
or namespace body in which it appears.

The namespace-name referenced by a using-namespace-directive is resolved in the same way as the namespace-
or-type-name referenced by a using-alias-directive. Thus, using-namespace-directives in the same compilation
unit or namespace body do not affect each other and can be written in any order.

9.4 Namespace members
A namespace-member-declaration is either a namespace-declaration (§9.2) or a type-declaration (§9.5).

namespace-member-declarations:
namespace-member-declaration
namespace-member-declarations namespace-member-declaration

namespace-member-declaration:
namespace-declaration
type-declaration

A compilation unit or a namespace body can contain namespace-member-declarations, and such declarations
contribute new members to the underlying declaration space of the containing compilation unit or namespace
body.

9.5 Type declarations
A type-declaration is a class-declaration (§10.1), a struct-declaration (§11.1), an interface-declaration (§13.1),
an enum-declaration (§14.1), or a delegate-declaration (§15.1).

type-declaration:
class-declaration
struct-declaration
interface-declaration
enum-declaration
delegate-declaration

A type-declaration can occur as a top-level declaration in a compilation unit or as a member declaration within a
namespace, class, or struct.

When a type declaration for a type ! occurs as a top-level declaration in a compilation unit, the fully qualified
name of the newly declared type is simply !. When a type declaration for a type ! occurs within a namespace,
class, or struct, the fully qualified name of the newly declared type is 1	!, where 1 is the fully qualified name of
the containing namespace, class, or struct.

A type declared within a class or struct is called a nested type (§10.2.6).

The permitted access modifiers and the default access for a type declaration depend on the context in which the
declaration takes place (§3.5.1):

• Types declared in compilation units or namespaces can have ������ or ��
����� access. The default is
��
����� access.

C# LANGUAGE SPECIFICATION

204 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• Types declared in classes can have ������, ���
��
�� ��
�����, ���
��
��, ��
�����, or �����
�
access. The default is �����
� access.

• Types declared in structs can have ������, ��
�����, or �����
� access. The default is �����
� access.

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 205

10. Classes

A class is a data structure that may contain data members (constants and fields), function members (methods,
properties, events, indexers, operators, instance constructors, destructors and static constructors), and nested
types. Class types support inheritance, a mechanism whereby a derived class can extend and specialize a base
class.

10.1 Class declarations
A class-declaration is a type-declaration (§9.5) that declares a new class.

class-declaration:
attributesopt class-modifiersopt ����� identifier class-baseopt class-body &opt

A class-declaration consists of an optional set of attributes (§17), followed by an optional set of class-modifiers
(§10.1.1), followed by the keyword ����� and an identifier that names the class, followed by an optional class-
base specification (§10.1.2), followed by a class-body (§10.1.3), optionally followed by a semicolon.

10.1.1 Class modifiers

A class-declaration may optionally include a sequence of class modifiers:

class-modifiers:
class-modifier
class-modifiers class-modifier

class-modifier:
���

������

���
��
��

��
�����

�����
�

���
���

������

It is a compile-time error for the same modifier to appear multiple times in a class declaration.

The ��� modifier is permitted on nested classes. It specifies that the class hides an inherited member by the
same name, as described in §10.2.2. It is a compile-time error for the ��� modifier to appear on a class
declaration that is not a nested class declaration.

The ������, ���
��
��, ��
�����, and �����
� modifiers control the accessibility of the class. Depending
on the context in which the class declaration occurs, some of these modifiers may not be permitted (§3.5.1).

The ���
���
 and ������ modifiers are discussed in the following sections.

10.1.1.1 Abstract classes

The ���
���
 modifier is used to indicate that a class is incomplete and that it is intended to be used only as a
base class. An abstract class differs from a non-abstract class is the following ways:

• An abstract class cannot be instantiated directly, and it is a compile-time error to use the ��� operator on an
abstract class. While it is possible to have variables and values whose compile-time types are abstract, such

C# LANGUAGE SPECIFICATION

206 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

variables and values will necessarily either be ���� or contain references to instances of non-abstract
classes derived from the abstract types.

• An abstract class is permitted (but not required) to contain abstract members.

• An abstract class cannot be sealed.

When a non-abstract class is derived from an abstract class, the non-abstract class must include actual
implementations of all inherited abstract members. Such implementations are provided by overriding the
abstract members. In the example

���
���
"�����"6
%

������"���
���
"����"7'(&
*

���
���
"�����"$;"6
%

������"����"H'("%*
*

�����"-;"$
%

������"��������"����"7'("%
<<"��
���"��������
�
���"��"7

*
*

the abstract class 6 introduces an abstract method 7. Class $ introduces an additional method H, but since it
doesn’t provide an implementation of 7, $ must also be declared abstract. Class - overrides 7 and provides an
actual implementation. Since there are no abstract members in -, - is permitted (but not required) to be non-
abstract.

10.1.1.2 Sealed classes

The ������ modifier is used to prevent derivation from a class. A compile-time error occurs if a sealed class is
specified as the base class of another class.

A sealed class cannot also be an abstract class.

The ������ modifier is primarily used to prevent unintended derivation, but it also enables certain run-time
optimizations. In particular, because a sealed class is known to never have any derived classes, it is possible to
transform virtual function member invocations on sealed class instances into non-virtual invocations.

10.1.2 Class base specification

A class declaration may include a class-base specification, which defines the direct base class of the class and
the interfaces (13) implemented by the class.

class-base:
; class-type
; interface-type-list
; class-type interface-type-list

interface-type-list:
interface-type
interface-type-list interface-type

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 207

10.1.2.1 Base classes

When a class-type is included in the class-base, it specifies the direct base class of the class being declared. If a
class declaration has no class-base, or if the class-base lists only interface types, the direct base class is assumed
to be �����
. A class inherits members from its direct base class, as described in §10.2.1.

In the example

�����"6"%*

�����"$;"6"%*

class 6 is said to be the direct base class of $, and $ is said to be derived from 6. Since 6 does not explicitly
specify a direct base class, its direct base class is implicitly �����
.

The direct base class of a class type must be at least as accessible as the class type itself (§3.5.4). For example, it
is a compile-time error for a ������ class to derive from a �����
� or ��
����� class.

The direct base class of a class type must not be any of the following types: ���
��	6����,
���
��	I�����
�, ���
��	����, or ���
��	J����!���.

The base classes of a class are the direct base class and its base classes. In other words, the set of base classes is
the transitive closure of the direct base class relationship. Referring to the example above, the base classes of $
are 6 and �����
.

Except for class �����
, every class has exactly one direct base class. The �����
 class has no direct base
class and is the ultimate base class of all other classes.

When a class $ derives from a class 6, it is a compile-time error for 6 to depend on $. A class directly depends
on its direct base class (if any) and directly depends on the class within which it is immediately nested (if any).
Given this definition, the complete set of classes upon which a class depends is the transitive closure of the
directly depends on relationship.

The example

�����"6;"$"%*

�����"$;"-"%*

�����"-;"6"%*

results in a compile-time error because the classes circularly depend on themselves. Likewise, the example

�����"6;"$	-"%*

�����"$;"6
%

������"�����"-"%*
*

results in a compile-time error because 6 depends on $	- (its direct base class), which depends on $ (its
immediately enclosing class), which circularly depends on 6.

Note that a class does not depend on the classes that are nested within it. In the example

�����"6
%

�����"$;"6"%*
*

$ depends on 6 (because 6 is both its direct base class and its immediately enclosing class), but 6 does not
depend on $ (since $ is neither a base class nor an enclosing class of 6). Thus, the example is valid.

It is not possible to derive from a ������ class. The example

������"�����"6"%*

C# LANGUAGE SPECIFICATION

208 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

�����"$;"6"%* <<"����� "�����
"������"����"�"������"�����

produces a compile-time error because class $ attempts to derive from the ������ class 6.

10.1.2.2 Interface implementations

A class-base specification may include a list of interface types, in which case the class is said to implement the
given interface types. Interface implementations are discussed further in §13.4.

10.1.3 Class body

The class-body of a class defines the members of the class.

class-body:
% class-member-declarationsopt *

10.2 Class members
The members of a class consist of the members introduced by its class-member-declarations and the members
inherited from the direct base class.

class-member-declarations:
class-member-declaration
class-member-declarations class-member-declaration

class-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
destructor-declaration
static-constructor-declaration
type-declaration

The members of a class are divided into the following categories:

• Constants, which represent constant values associated with the class (§10.3).

• Fields, which are the variables of the class (§10.4).

• Methods, which implement the computations and actions that can be performed by the class (§10.5).

• Properties, which define named characteristics associated with reading and writing those characteristics
(§10.6).

• Events, which define notifications that can be generated by the class (§10.7).

• Indexers, which permit instances of the class to be indexed in the same way as arrays (§10.8).

• Operators, which define the expression operators that can be applied to instances of the class (§10.9).

• Instance constructors, which implement the actions required to initialize instances of the class (§10.10)

• Destructors, which implement the actions to be performed before instances of the class are permanently
discarded (§10.12).

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 209

• Static constructors, which implement the actions required to initialize the class itself (§10.11).

• Types, which represent the types that are local to the class (§9.5).

Members that can contain executable code are collectively known as the function members of the class (7.4).
The function members of a class are the methods, properties, events, indexers, operators, instance constructors,
destructors, and static constructors of that class.

A class-declaration creates a new declaration space (§3.3), and the class-member-declarations immediately
contained by the class-declaration introduce new members into this declaration space. The following rules
apply to class-member-declarations:

• Instance constructors, destructors and static constructors must have the same name as the immediately
enclosing class. All other members must have names that differ from the name of the immediately enclosing
class.

• The name of a constant, field, property, event, or type must differ from the names of all other members
declared in the same class.

• The name of a method must differ from the names of all other non-methods declared in the same class. In
addition, the signature (§3.6) of a method must differ from the signatures of all other methods declared in
the same class.

• The signature of an instance constructor must differ from the signatures of all other instance constructors
declared in the same class.

• The signature of an indexer must differ from the signatures of all other indexers declared in the same class.

• The signature of an operator must differ from the signatures of all other operators declared in the same class.

The inherited members of a class (§10.2.1) are not part of the declaration space of a class. Thus, a derived class
is allowed to declare a member with the same name or signature as an inherited member (which in effect hides
the inherited member).

10.2.1 Inheritance

A class inherits the members of its direct base class. Inheritance means that a class implicitly contains all
members of its direct base class, except for the instance constructors, destructors and static constructors of the
base class. Some important aspects of inheritance are:

• Inheritance is transitive. If - is derived from $, and $ is derived from 6, then - inherits the members
declared in $ as well as the members declared in 6.

• A derived class extends its direct base class. A derived class can add new members to those it inherits, but it
cannot remove the definition of an inherited member.

• Instance constructors, destructors, and static constructors are not inherited, but all other members are,
regardless of their declared accessibility (§3.5). However, depending on their declared accessibility,
inherited members might not be accessible in a derived class.

• A derived class can hide (§3.7.1.2) inherited members by declaring new members with the same name or
signature. Note however that hiding an inherited member does not remove the member—it merely makes
the member inaccessible in the derived class.

• An instance of a class contains a set of all instance fields declared in the class and its base classes, and an
implicit conversion (§6.1.4) exists from a derived class type to any of its base class types. Thus, a reference
to an instance of some derived class can be treated as a reference to an instance of any of its base classes.

C# LANGUAGE SPECIFICATION

210 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• A class can declare virtual methods, properties, and indexers, and derived classes can override the
implementation of these function members. This enables classes to exhibit polymorphic behavior wherein
the actions performed by a function member invocation varies depending on the run-time type of the
instance through which the function member is invoked.

10.2.2 The new modifier

A class-member-declaration is permitted to declare a member with the same name or signature as an inherited
member. When this occurs, the derived class member is said to hide the base class member. Hiding an inherited
member is not considered an error, but it does cause the compiler to issue a warning. To suppress the warning,
the declaration of the derived class member can include a ��� modifier to indicate that the derived member is
intended to hide the base member. This topic is discussed further in §3.7.1.2.

If a ��� modifier is included in a declaration that doesn’t hide an inherited member, a warning is issued. This
warning is suppressed by removing the ��� modifier.

10.2.3 Access modifiers

A class-member-declaration can have any one of the five possible kinds of declared accessibility (§3.5.1):
������, ���
��
�� ��
�����, ���
��
��, ��
�����, or �����
�. Except for the ���
��
�� ��
�����
combination, it is a compile-time error to specify more than one access modifier. When a class-member-
declaration does not include any access modifiers, �����
� is assumed.

10.2.4 Constituent types

Types that are used in the declaration of a member are called the constituent types of the member. Possible
constituent types are the type of a constant, field, property, event, or indexer, the return type of a method or
operator, and the parameter types of a method, indexer, operator, or instance constructor. The constituent types
of a member must be at least as accessible as the member itself (§3.5.4).

10.2.5 Static and instance members

Members of a class are either static members or instance members. Generally speaking, it is useful to think of
static members as belonging to classes and instance members as belonging to objects (instances of classes).

When a field, method, property, event, operator, or constructor declaration includes a �
�
�� modifier, it
declares a static member. In addition, a constant or type declaration implicitly declares a static member. Static
members have the following characteristics:

• When a static member is referenced in a member-access (§7.5.4) of the form �	R, � must denote a type that
has a member R. It is a compile-time error for � to denote an instance.

• A static field identifies exactly one storage location. No matter how many instances of a class are created,
there is only ever one copy of a static field.

• A static function member does not operate on a specific instance, and it is a compile-time error to refer to

��� in such a function member.

When a field, method, property, event, indexer, constructor, or destructor declaration does not include a �
�
��
modifier, it declares an instance member. (An instance member is sometimes called a non-static member.)
Instance members have the following characteristics:

• When an instance member is referenced in a member-access (§7.5.4) of the form �	R, � must denote an
instance of a type that has a member R. It is a compile-time error for � to denote a type.

• Every instance of a class contains a separate set of all instance fields of the class.

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 211

• An instance function member operates on a given instance of the class, and this instance can be accessed as

��� (§7.5.7).

The following example illustrates the rules for accessing static and instance members:

�����"!��

%

��
"�&
�
�
��"��
"�&

����"7'("%
�")"�& <<"�8 "����"��"
���	�")"�
�")"�& <<"�8 "����"��"!��
	�")"�

*

�
�
��"����"H'("%
�")"�& <<"����� "�����
"������"
���	�
�")"�& <<"�8 "����"��"!��
	�")"�

*

�
�
��"����"R���'("%
!��
"
")"���"!��
'(&

	�")"�& <<"�8

	�")"�& <<"����� "�����
"������"�
�
��"������"
������"���
����
!��
	�")"�& <<"����� "�����
"������"���
����"������"
������"
���
!��
	�")"�& <<"�8

*
*

The 7 method shows that in an instance function member, a simple-name (§7.5.2) can be used to access both
instance members and static members. The H method shows that in a static function member, it is a compile-
time error to access an instance member through a simple-name. The R��� method shows that in a member-
access (§7.5.4), instance members must be accessed through instances, and static members must be accessed
through types.

10.2.6 Nested types

A type declared within a class or struct is called a nested type. A type that is declared within a compilation unit
or namespace is called a non-nested type.

In the example

�����"6
%

�����"$
%

�
�
��"����"7'("%
-������	.��
�:���'/6	$	7/(&

*
*

*

class $ is a nested type because it is declared within class 6, and class 6 is a non-nested type because it is
declared within a compilation unit.

10.2.6.1 Fully qualified name

The fully qualified name (§3.8.1) for a nested type is �	1 where � is the fully qualified name of the type in
which 1 is declared.

C# LANGUAGE SPECIFICATION

212 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

10.2.6.2 Declared accessibility

Non-nested types can have ������ or ��
����� declared accessibility and default to ��
����� declared
accessibility. Nested types can have these forms of declared accessibility plus one or more additional forms of
declared accessibility, depending on whether the containing type is a class or struct:

• A nested type that is declared in a class can have any of the five forms of declared accessibility (������,
���
��
��"��
�����, ���
��
��, ��
�����, or �����
�) and, like other class members, defaults to
�����
� declared accessibility.

• A nested type that is declared in a struct can have any of three forms of declared accessibility (������,
��
�����, or �����
�) and, like other struct members, defaults to �����
� declared accessibility.

The example

������"�����":��

%

<<"0����
�"��
�"�
���
���
�����
�"�����"1���
%

������"�����
"I�
�&
������"1���"1��
&

������"1���'�����
"��
� "1���"���
("%

���	I�
�")"��
�&

���	1��
")"���
&

*
*

�����
�"1���"����
")"����&
�����
�"1���"���
")"����&

<<"0�����"��
������

������"����"6��!�7���
'�����
"�("%			*

������"����"6��!�$��8'�����
"�("%			*

������"�����
"2�����7���7���
'("%			*

������"�����
"6��!�7���
'("%			*

������"��
"-���
"%"��
"%			*"*

*

declares a private nested class 1���.

10.2.6.3 Hiding

A nested type may hide (§3.7.1) a base member. The ��� modifier is permitted on nested type declarations so
that hiding can be expressed explicitly. The example

�����"$���
%

������"�
�
��"����"R'("%
-������	.��
�:���'/-	R/(&

*
*

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 213

�����"I������;"$���
%

���"������"�����"R
%

������"�
�
��"����"7'("%
-������	.��
�:���'/I������	R	7/(&

*
*

*

�����"!��

%

�
�
��"����"R���'("%
I������	R	7'(&

*
*

shows a nested class R that hides the method R defined in $���.

10.2.6.4 this access

A nested type and its containing type do not have a special relationship with regard to this-access (§7.5.7).
Specifically,
��� within a nested type cannot be used to refer to instance members of the containing type. In
cases where a nested type needs access to the instance members of its containing type, access can be provided
by providing the
��� for the instance of the containing type as a constructor argument for the nested type. In
the example

�����"-
%

��
"�")"�+,&

������"����"7'("%
1��
��"�")"���"1��
��'
���(&
�	H'(&

*

������"�����"1��
��"%
-"
���#�&

������"1��
��'-"�("%

���#�")"�&

*

������"����"H'("%
-������	.��
�:���'
���#�	�(&

*
*

*

�����"!��
"%
�
�
��"����"R���'("%

-"�")"���"-'(&
�	7'(&

*
*

shows this technique. A - instance creates an instance of 1��
�� and passes its own this to 1��
��’s
constructor in order to provide subsequent access to -’s instance members.

10.2.6.5 Access to private and pro tected members of the containing type

A nested type has access to all of the members that are accessible to its containing type, including members of
the containing type that have �����
� and ���
��
�� declared accessibility. The example

C# LANGUAGE SPECIFICATION

214 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

�����"-
%

�����
�"�
�
��"����"7'("%
-������	.��
�:���'/-	7/(&

*

������"�����"1��
��
%

������"�
�
��"����"H'("%
7'(&

*
*

*

�����"!��

%

�
�
��"����"R���'("%
-	1��
��	H'(&

*
*

shows a class - that contains a nested class 1��
��. Within 1��
��, the method H calls the static method 7
defined in -, and 7 has private declared accessibility.

A nested type also may access protected members defined in a base type of its containing type. In the example

�����"$���
%

���
��
��"����"7'("%
-������	.��
�:���'/$���	7/(&

*
*

�����"I������;"$���
%

������"�����"1��
��
%

������"����"H'("%
I������"�")"���"I������'(&
�	7'(& <<"�8

*
*

*

�����"!��

%

�
�
��"����"R���'("%
I������	1��
��"�")"���"I������	1��
��'(&
�	H'(&

*
*

the nested class I������	1��
�� accesses the protected method 7 defined in I������’s base class, $���, by
calling through an instance of I������.

10.2.7 Reserved member names

To facilitate the underlying C# runtime implementation, for each source member declaration that is a property,
event, or indexer, the implementation must reserve two method signatures based on the kind of the member
declaration, its name, and its type. It is a compile-time error for a program to declare a member whose signature
matches one of these reserved signatures, even if the underlying runtime implementation does not make use of
these reservations.

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 215

The reserved names do not introduce declarations, thus they do not participate in member lookup. However, a
declaration’s associated reserved method signatures do participate in inheritance (§10.2.1), and can be hidden
with the new modifier (§10.2.2).

The reservation of these names serves three purposes:

• To allow the underlying implementation to use an ordinary identifier as a method name for get or set access
to the C# language feature.

• To allow other languages to interoperate using an ordinary identifier as a method name for get or set access
to the C# language feature.

• To help ensure that the source accepted by one conforming compiler is accepted by another, by making the
specifics of reserved member names consistent across all C# implementations.

The declaration of a destructor (§10.12) also causes a signature to be reserved (§10.2.7.4).

10.2.7.1 Member names reserved for properties

For a property 0 (§10.6) of type !, the following signatures are reserved:

!"��
#0'(&
����"��
#0'!"�����(&

Both signatures are reserved, even if the property is read-only or write-only.

In the example

�����"6"%
������"��
"0"%

��
"%"��
���"�+,&"*
*

*

�����"$;"6"%
���"������"��
"��
#0'("%

��
���"S=X&
*

���"������"����"��
#0'��
"�����("%
*

*

�����"!��

%

�
�
��"����"R���'("%
$"�")"���"$'(&
6"�")"�&

-������	.��
�:���'�	0(&
-������	.��
�:���'�	0(&
-������	.��
�:���'�	��
#0'((&

*
*

a class 6 defines a read-only property 0, thus reserving signatures for ��
#0 and ��
#0 methods. A class $
derives from 6 and hides both of these reserved signatures. The example produces the output:

�+,
�+,
S=X

10.2.7.2 Member names reserved for events

For an event � (§10.7) of delegate type !, the following signatures are reserved:

C# LANGUAGE SPECIFICATION

216 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

����"���#�'!"�������(&
����"������#�'!"�������(&

10.2.7.3 Member names reserved for indexers

For an indexer (§10.8) of type ! with parameter-list :, the following signatures are reserved:

!"��
#3
��':(&
����"��
#3
��': "!"�����(&

Both signatures are reserved, even if the indexer is read-only or write-only.

10.2.7.4 Member names reserved for destructors

For a class containing a destructor (§10.12), the following signature is reserved:

����"7�����P�'(&

10.3 Constants
A constant is a class member that represents a constant value: a value that can be computed at compile-time. A
constant-declaration introduces one or more constants of a given type.

constant-declaration:
attributesopt constant-modifiersopt ����
 type constant-declarators &

constant-modifiers:
constant-modifier
constant-modifiers constant-modifier

constant-modifier:
���

������

���
��
��

��
�����

�����
�

constant-declarators:
constant-declarator
constant-declarators constant-declarator

constant-declarator:
identifier = constant-expression

A constant-declaration may include a set of attributes (§17), a ��� modifier (§10.2.2), and a valid combination
of the four access modifiers (§10.2.3). The attributes and modifiers apply to all of the members declared by the
constant-declaration. Even though constants are considered static members, a constant-declaration neither
requires nor allows a �
�
�� modifier. It is a compile-time error for the same modifier to appear multiple times
in a constant declaration.

The type of a constant-declaration specifies the type of the members introduced by the declaration. The type is
followed by a list of constant-declarators, each of which introduces a new member. A constant-declarator
consists of an identifier that names the member, followed by an “)” token, followed by a constant-expression
(§7.15) that gives the value of the member.

The type specified in a constant declaration must be ���
�, ��
�, ����
, �����
, ��
, ���
, ����, �����,
����, ����
, ������, �������, ����, �
����, an enum-type, or a reference-type. Each constant-expression
must yield a value of the target type or of a type that can be converted to the target type by an implicit
conversion (§6.1).

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 217

The type of a constant must be at least as accessible as the constant itself (§3.5.4).

The value of a constant is obtained in an expression using a simple-name (§7.5.2) or a member-access (§7.5.4).

A constant can itself participate in a constant-expression. Thus, a constant may be used in any construct that
requires a constant-expression. Examples of such constructs include ���� labels, ��
� ���� statements, ����
member declarations, attributes, and other constant declarations.

As described in §7.15, a constant-expression is an expression that can be fully evaluated at compile-time. Since
the only way to create a non-null value of a reference-type other than �
���� is to apply the ��� operator, and
since the ��� operator is not permitted in a constant-expression, the only possible value for constants of
reference-types other than �
���� is ����.

When a symbolic name for a constant value is desired, but when the type of the value is not permitted in a
constant declaration, or when the value cannot be computed at compile-time by a constant-expression, a
�������� field (§10.4.2) may be used instead.

A constant declaration that declares multiple constants is equivalent to multiple declarations of single constants
with the same attributes, modifiers, and type. For example

�����"6
%

������"����
"������"K")"�	
 "Q")"+	
 "[")",	
&
*

is equivalent to

�����"6
%

������"����
"������"K")"�	
&
������"����
"������"Q")"+	
&
������"����
"������"[")",	
&

*

Constants are permitted to depend on other constants within the same program as long as the dependencies are
not of a circular nature. The compiler automatically arranges to evaluate the constant declarations in the
appropriate order. In the example

�����"6
%

������"����
"��
"K")"$	["4"�&
������"����
"��
"Q")"�
&

*

�����"$
%

������"����
"��
"[")"6	Q"4"�&
*

the compiler first evaluates 6	Q, then evaluates $	[, and finally evaluates 6	K, producing the values �
, ��,
and �+. Constant declarations may depend on constants from other programs, but such dependencies are only
possible in one direction. Referring to the example above, if 6 and $ were declared in separate programs, it
would be possible for 6	K to depend on $	[, but $	[could then not simultaneously depend on 6	Q.

10.4 Fields
A field is a member that represents a variable associated with an object or class. A field-declaration introduces
one or more fields of a given type.

field-declaration:
attributesopt field-modifiersopt type variable-declarators &

C# LANGUAGE SPECIFICATION

218 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

field-modifiers:
field-modifier
field-modifiers field-modifier

field-modifier:
���

������

���
��
��

��
�����

�����
�

�
�
��

��������

����
���

variable-declarators:
variable-declarator
variable-declarators variable-declarator

variable-declarator:
identifier
identifier = variable-initializer

variable-initializer:
expression
array-initializer

A field-declaration may include a set of attributes (§17), a ��� modifier (§10.2.2), a valid combination of the
four access modifiers (§10.2.3), a �
�
�� modifier (§10.4.1). In addition, a field-declaration may include a
�������� modifier (§10.4.2) or a ����
��� modifier (§10.4.3) but not both. The attributes and modifiers
apply to all of the members declared by the field-declaration. It is a compile-time error for the same modifier to
appear multiple times in a field declaration.

The type of a field-declaration specifies the type of the members introduced by the declaration. The type is
followed by a list of variable-declarators, each of which introduces a new member. A variable-declarator
consists of an identifier that names the member, optionally followed by an “)” token and a variable-initializer
(§10.4.5) that gives the initial value of the member.

The type of a field must be at least as accessible as the field itself (§3.5.4).

The value of a field is obtained in an expression using a simple-name (§7.5.2) or a member-access (§7.5.4). The
value of a non-readonly field is modified using an assignment (§7.13). The value of a non-readonly field can be
both obtained and modified using postfix increment and decrement operators (§7.5.9) and prefix increment and
decrement operators (§7.6.5).

A field declaration that declares multiple fields is equivalent to multiple declarations of single fields with the
same attributes, modifiers, and type. For example

�����"6
%

������"�
�
��"��
"K")"� "Q "[")"�

&
*

is equivalent to

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 219

�����"6
%

������"�
�
��"��
"K")"�&
������"�
�
��"��
"Q&
������"�
�
��"��
"[")"�

&

*

10.4.1 Static and instance fields

When a field declaration includes a �
�
�� modifier, the fields introduced by the declaration are static fields.
When no �
�
�� modifier is present, the fields introduced by the declaration are instance fields. Static fields
and instance fields are two of the several kinds of variables (§5) supported by C#, and at times they are referred
to as static variables and instance variables, respectively.

A static field is not part of a specific instance; instead, it identifies exactly one storage location. No matter how
many instances of a class are created, there is only ever one copy of a static field for the associated application
domain.

An instance field belongs to an instance. Every instance of a class contains a separate set of all instance fields of
the class.

When a field is referenced in a member-access (§7.5.4) of the form �	R, if R is a static field, � must denote a
type that has a field R, and if R is an instance field, E must denote an instance of a type that has a field R.

The differences between static and instance members are discussed further in §10.2.5.

10.4.2 Readonly fields

When a field-declaration includes a �������� modifier, the fields introduced by the declaration are readonly
fields. Direct assignments to readonly fields can only occur as part of the declaration or in an instance
constructor (for readonly non-static fields) or static constructor (for readonly static fields) in the same class. (A
readonly field can be assigned multiple times in these contexts.) Specifically, direct assignments to a ��������
field are permitted only in the following contexts:

• In the variable-declarator that introduces the field (by including a variable-initializer in the declaration).

• For an instance field, in the instance constructors of the class that contains the field declaration, or for a
static field, in the static constructor of the class the that contains the field declaration. These are also the
only contexts in which it is valid to pass a �������� field as an ��
 or ��� parameter.

Attempting to assign to a �������� field or pass it as an ��
 or ��� parameter in any other context results in a
compile-time error.

10.4.2.1 Using static readonly fields for constants

A �
�
�� �������� field is useful when a symbolic name for a constant value is desired, but when the type of
the value is not permitted in a ����
 declaration, or when the value cannot be computed at compile-time. In the
example

������"�����"-����
%

������"�
�
��"��������"-����"$���8")"���"-����'
 "
 "
(&
������"�
�
��"��������"-����".��
�")"���"-����'+== "+== "+==(&
������"�
�
��"��������"-����"2��")"���"-����'+== "
 "
(&
������"�
�
��"��������"-����"H����")"���"-����'
 "+== "
(&
������"�
�
��"��������"-����"$���")"���"-����'
 "
 "+==(&

�����
�"��
�"��� "����� "����&

C# LANGUAGE SPECIFICATION

220 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

������"-����'��
�"� "��
�"� "��
�"�("%
���")"�&
�����")"�&
����")"�&

*
*

the $���8, .��
�, 2��, H����, and $��� members cannot be declared as ����
 members because their
values cannot be computed at compile-time. However, declaring them as �
�
�� �������� fields instead has
much the same effect.

10.4.2.2 Versioning of constants and static readonly fields

Constants and readonly fields have different binary versioning semantics. When an expression references a
constant, the value of the constant is obtained at compile-time, but when an expression references a readonly
field, the value of the field is not obtained until run-time. Consider an application that consists of two separate
programs:

�����"���
��&

���������"0�������
%

������"�����"L
���
%

������"�
�
��"��������"��
"K")"�&
*

*

���������"0������+
%

�����"!��

%

�
�
��"����"R���'("%
-������	.��
�:���'0�������	L
���	K(&

*
*

*

The 0������� and 0������+ namespaces denote two programs that are compiled separately. Because
0�������	L
���	K is declared as a static readonly field, the value output by the -������	.��
�:���
statement is not known at compile-time, but rather is obtained at run-time. Thus, if the value of K is changed and
0������� is recompiled, the -������	.��
�:��� statement will output the new value even if 0������+
isn’t recompiled. However, had K been a constant, the value of K would have been obtained at the time
0������+ was compiled, and would remain unaffected by changes in 0������� until 0������+ is
recompiled.

10.4.3 Volatile fields

When a field-declaration includes a ����
��� modifier, the fields introduced by the declaration are volatile
fields.

For non-volatile fields, optimization techniques that reorder instructions can lead to unexpected and
unpredictable results in multi-threaded programs that access fields without synchronization such as that
provided by the lock-statement (§8.12). These optimizations can be performed by the compiler, by the runtime
system, or by hardware. For volatile fields, such reordering optimizations are restricted:

• A read of a volatile field is called a volatile read. A volatile read has “acquire semantics”: a volatile read is
guaranteed to occur prior to any references to memory that occur after it in the instruction sequence.

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 221

• A write of a volatile field is called a volatile write. A volatile write has “release semantics”: a volatile write
is guaranteed to happen after any memory references prior to the write instruction in the instruction
sequence.

These restrictions ensure that all threads will observe volatile writes performed by any other thread in the order
they were performed. A conforming implementation is not required to provide a single total ordering of volatile
writes as seen from all threads of execution. The type of a volatile field must be one of the following:

• A reference-type.

• The type ��
�, ���
�, ����
, �����
, ��
, ���
, ����, ����
, or ����.

• An enum-type with an enum base type of ��
�, ���
�, ����
, �����
, ��
, or ���
.

The example

�����"���
��	!��������&

�����"!��

%

������"�
�
��"��
"�����
&
������"�
�
��"����
���"����"��������&

�
�
��"����"!�����+'("%
�����
")"�S,&
��������")"
���&

*

�
�
��"����"R���'("%
��������")"�����&

<<"2��"!�����+'("��"�"���"
�����
���"!�����'���"!������
��
'!�����+((�
��
'(&

<<".��
"���"!�����+"
�"������"
��
"�
"���"�"�����
"��"��

���
<<"��������"
�"
���	
���"'&&("%

��"'��������("%
-������	.��
�:���'/�����
")"%
*/ "�����
(&
��
���&

*
*

*
*

yields the result:

�����
")"�S,

In this example, the method R��� starts a new thread running the method !�����+. The method stores a value
into a non-volatile field �����
, then stores
��� in the volatile field ��������. The main thread waits for the
field �������� to be set to
���, then reads the field �����
. Since �����
 has been declared ����
���, the
main thread must read the value �S, from the field �����
. If the field �������� had not been declared
����
���, then it would be permissible for the store to �����
 be visible to the main thread after the store to
��������, and hence for the main thread to read the value
 from the field �����
. Declaring �������� as a
����
��� field prevents such inconsistencies.

10.4.4 Field initialization

The initial value of a field, whether it be a static field or an instance field, is the default value (§5.2) of the
field’s type. It is not possible to observe the value of a field before this default initialization has occurred, and a
field is thus never “uninitialized”. The example

�����"���
��&

C# LANGUAGE SPECIFICATION

222 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

�����"!��

%

�
�
��"����"�&
��
"�&

�
�
��"����"R���'("%
!��
"
")"���"!��
'(&
-������	.��
�:���'/�")"%
* "�")"%�*/ "� "
	�(&

*
*

produces the output

�")"7���� "�")"

because � and � are both automatically initialized to default values.

10.4.5 Variable initializers

Field declarations may include variable-initializers. For static fields, variable initializers correspond to
assignment statements that are executed during class initialization. For instance fields, variable initializers
correspond to assignment statements that are executed when an instance of the class is created.

The example

�����"���
��&

�����"!��

%

�
�
��"������"�")"R�
�	�U�
'+	
(&
��
"�")"�

&
�
����"�")"/O����/&

�
�
��"����"R���'("%
!��
"�")"���"!��
'(&
-������	.��
�:���'/�")"%
* "�")"%�* "�")"%+*/ "� "�	� "�	�(&

*
*

produces the output

�")"�	S�S+�,=X+,V,� "�")"�

 "�")"O����

because an assignment to � occurs when static field initializers execute and assignments to � and � occur when
the instance field initializers execute.

The default value initialization described in §10.4.4 occurs for all fields, including fields that have variable
initializers. Thus, when a class is initialized, all of its static fields are first initialized to their default values, and
then the static field initializers are executed in textual order. Likewise, when an instance of a class is created, all
of its instance fields are first initialized to their default values, and then the instance field initializers are
executed in textual order.

It is possible for static fields with variable initializers to be observed in their default value state. However, this is
strongly discouraged as a matter of style. The example

�����"���
��&

�����"!��

%

�
�
��"��
"�")"�"4"�&
�
�
��"��
"�")"�"4"�&

�
�
��"����"R���'("%
-������	.��
�:���'/�")"%
* "�")"%�*/ "� "�(&

*
*

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 223

exhibits this behavior. Despite the circular definitions of a and b, the program is valid. It results in the output

�")"� "�")"+

because the static fields � and � are initialized to
 (the default value for ��
) before their initializers are
executed. When the initializer for � runs, the value of � is zero, and so � is initialized to �. When the initializer
for � runs, the value of � is already �, and so � is initialized to +.

10.4.5.1 Static field initialization

The static field variable initializers of a class correspond to a sequence of assignments that are executed in the
textual order in which they appear in the class declaration. If a static constructor (§10.11) exists in the class,
execution of the static field initializers occurs immediately prior to executing that static constructor. Otherwise,
the static field initializers are executed at an implementation-dependent time prior to the first use of a static field
of that class. The example

�����"���
��&
�����"!��

%

�
�
��"����"R���'("%
-������	.��
�:���'/%
"%�/ "$	Q "6	K(&

*
������"�
�
��"��
"�'�
����"�("%

-������	.��
�:���'�(&
��
���"�&

*
*

�����"6
%

������"�
�
��"��
"K")"!��
	�'/3��
"6/(&
*

�����"$
%

������"�
�
��"��
"Q")"!��
	�'/3��
"$/(&
*

might produce either the output:

3��
"6
3��
"$
�"�

or the output:

3��
"$
3��
"6
�"�

because the execution of K's initializer and Q's initializer could occur in either order; they are only constrained to
occur before the references to those fields. However, in the example:

�����"���
��&
�����"!��
"%

�
�
��"����"R���'("%
-������	.��
�:���'/%
"%�/ "$	Q "6	K(&

*
������"�
�
��"��
"�'�
����"�("%

-������	.��
�:���'�(&
��
���"�&

*
*

C# LANGUAGE SPECIFICATION

224 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

�����"6
%

�
�
��"6'("%*
������"�
�
��"��
"K")"!��
	�'/3��
"6/(&

*

�����"$
%

�
�
��"$'("%*
������"�
�
��"��
"Q")"!��
	�'/3��
"$/(&

*

the output must be:

3��
"$
3��
"6
�"�

because the rules for when static constructors execute provide that $'s static constructor (and hence $'s static
field initializers) must run before 6's static constructor and field initializers.]

10.4.5.2 Instance field initialization

The instance field variable initializers of a class correspond to a sequence of assignments that are executed
immediately upon entry to any one of the instance constructors (§10.10.1) of the class. The variable initializers
are executed in the textual order in which they appear in the class declaration. The class instance creation and
initialization process is described further in §10.10.

A variable initializer for an instance field cannot reference the instance being created. Thus, it is a compile-time
error to reference
��� in a variable initializer, as it is a compile-time error for a variable initializer to reference
any instance member through a simple-name. In the example

�����"6
%

��
"�")"�&
��
"�")"�"4"�& <<"����� "���������"
�"���
����"������"��"
���

*

the variable initializer for � results in a compile-time error because it references a member of the instance being
created.

10.5 Methods
A method is a member that implements a computation or action that can be performed by an object or class.
Methods are declared using method-declarations:

method-declaration:
method-header method-body

method-header:
attributesopt method-modifiersopt return-type member-name ' formal-parameter-listopt (

method-modifiers:
method-modifier
method-modifiers method-modifier

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 225

method-modifier:
���

������

���
��
��

��
�����

�����
�

�
�
��

���
���

������

��������

���
���

��
���

return-type:
type
����

member-name:
identifier
interface-type 	 identifier

method-body:
block
&

A method-declaration may include a set of attributes (§17) and a valid combination of the four access modifiers
(§10.2.3), the ��� (§10.2.2), �
�
�� (§10.5.2), ���
��� (§10.5.3), �������� (§10.5.4), ������ (§10.5.5),
���
���
 (§10.5.6), and ��
��� (§10.5.7) modifiers.

A declaration has a valid combination of modifiers if all of the following are true:

• The declaration includes a valid combination of access modifiers (§10.2.3).

• The declaration does not include the same modifier multiple times.

• The declaration includes at most one of the following modifiers: �
�
��, ���
���, and ��������.

• The declaration includes at most one of the following modifiers: ��� and ��������.

• If the declaration includes the ���
���
 modifier, then the declaration does not include any of the
following modifiers: �
�
��, ���
���, or ��
���.

• If the declaration includes the �����
� modifier, then the declaration does not include any of the following
modifiers: ���
���, ��������, or ���
���
.

• If the declaration includes the ������ modifier, then the declaration also includes the �������� modifier.

The return-type of a method declaration specifies the type of the value computed and returned by the method.
The return-type is ���� if the method does not return a value.

The member-name specifies the name of the method. Unless the method is an explicit interface member
implementation (§13.4.1), the member-name is simply an identifier. For an explicit interface member
implementation, the member-name consists of an interface-type followed by a “	” and an identifier.

The optional formal-parameter-list specifies the parameters of the method (§10.5.1).

The return-type and each of the types referenced in the formal-parameter-list of a method must be at least as
accessible as the method itself (§3.5.4).

C# LANGUAGE SPECIFICATION

226 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

For ���
���
 and ��
��� methods, the method-body consists simply of a semicolon. For all other methods,
the method-body consists of a block which specifies the statements to execute when the method is invoked.

The name and the formal parameter list of a method define the signature (§3.6) of the method. Specifically, the
signature of a method consists of its name and the number, modifiers, and types of its formal parameters. The
return type is not part of a method’s signature, nor are the names of the formal parameters.

The name of a method must differ from the names of all other non-methods declared in the same class. In
addition, the signature of a method must differ from the signatures of all other methods declared in the same
class.

10.5.1 Method parameters

The parameters of a method, if any, are declared by the method’s formal-parameter-list.

formal-parameter-list:
fixed-parameters
fixed-parameters parameter-array
parameter-array

fixed-parameters:
fixed-parameter
fixed-parameters fixed-parameter

fixed-parameter:
attributesopt parameter-modifieropt type identifier

parameter-modifier:
���

��

parameter-array:
attributesopt ������ array-type identifier

The formal parameter list consists of one or more comma-separated parameters of which only the last may be a
parameter-array.

A fixed-parameter consists of an optional set of attributes (§17), an optional ��� or ��
 modifier, a type, and an
identifier. Each fixed-parameter declares a parameter of the given type with the given name.

A parameter-array consists of an optional set of attributes (§17), a ������ modifier, an array-type, and an
identifier. A parameter array declares a single parameter of the given array type with the given name. The array-
type of a parameter array must be a single-dimensional array type (§12.1). In a method invocation, a parameter
array permits either a single argument of the given array type to be specified, or it permits zero or more
arguments of the array element type to be specified. Parameter arrays are further described in §10.5.1.4.

A method declaration creates a separate declaration space for parameters and local variables. Names are
introduced into this declaration space by the formal parameter list of the method and by local variable
declarations in the block of the method. All names in the declaration space of a method must be unique. Thus, it
is a compile-time error for a parameter or local variable to have the same name as another parameter or local
variable.

A method invocation (§7.5.5.1) creates a copy, specific to that invocation, of the formal parameters and local
variables of the method, and the argument list of the invocation assigns values or variable references to the
newly created formal parameters. Within the block of a method, formal parameters can be referenced by their
identifiers in simple-name expressions (§7.5.2).

There are four kinds of formal parameters:

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 227

• Value parameters, which are declared without any modifiers.

• Reference parameters, which are declared with the ��� modifier.

• Output parameters, which are declared with the ��
 modifier.

• Parameter arrays, which are declared with the ������ modifier.

As described in §3.6, the ��� and ��
 modifiers are part of a method’s signature, but the ������ modifier is
not.

10.5.1.1 Value parameters

A parameter declared with no modifiers is a value parameter. A value parameter corresponds to a local variable
that gets its initial value from the corresponding argument supplied in the method invocation.

When a formal parameter is a value parameter, the corresponding argument in a method invocation must be an
expression of a type that is implicitly convertible (§6.1) to the formal parameter type.

A method is permitted to assign new values to a value parameter. Such assignments only affect the local storage
location represented by the value parameter—they have no effect on the actual argument given in the method
invocation.

10.5.1.2 Reference parameters

A parameter declared with a ��� modifier is a reference parameter. Unlike a value parameter, a reference
parameter does not create a new storage location. Instead, a reference parameter represents the same storage
location as the variable given as the argument in the method invocation.

When a formal parameter is a reference parameter, the corresponding argument in a method invocation must
consist of the keyword ��� followed by a variable-reference (§5.3.3) of the same type as the formal parameter.
A variable must be definitely assigned before it can be passed as a reference parameter.

Within a method, a reference parameter is always considered definitely assigned.

The example

�����"���
��&

�����"!��

%

�
�
��"����"����'���"��
"� "���"��
"�("%
��
"
���")"�&
�")"�&
�")"
���&

*

�
�
��"����"R���'("%
��
"�")"� "�")"+&
����'���"� "���"�(&
-������	.��
�:���'/�")"%
* "�")"%�*/ "� "�(&

*
*

produces the output

�")"+ "�")"�

For the invocation of ���� in R���, � represents � and � represents �. Thus, the invocation has the effect of
swapping the values of � and �.

In a method that takes reference parameters it is possible for multiple names to represent the same storage
location. In the example

C# LANGUAGE SPECIFICATION

228 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

�����"6
%

�
����"�&

����"7'���"�
����"� "���"�
����"�("%
�")"/���/&
�")"/!��/&
�")"/!����/&

*

����"H'("%
7'���"� "���"�(&

*
*

the invocation of 7 in H passes a reference to � for both � and �. Thus, for that invocation, the names �, �, and �
all refer to the same storage location, and the three assignments all modify the instance field �.

10.5.1.3 Output parameters

A parameter declared with an ��
 modifier is an output parameter. Similar to a reference parameter, an output
parameter does not create a new storage location. Instead, an output parameter represents the same storage
location as the variable given as the argument in the method invocation.

When a formal parameter is an output parameter, the corresponding argument in a method invocation must
consist of the keyword ��
 followed by a variable-reference (§5.3.3) of the same type as the formal parameter.
A variable need not be definitely assigned before it can be passed as an output parameter, but following an
invocation where a variable was passed as an output parameter, the variable is considered definitely assigned.

Within a method, just like a local variable, an output parameter is initially considered unassigned and must be
definitely assigned before its value is used.

Every output parameter of a method must be definitely assigned before the method returns.

Output parameters are typically used in methods that produce multiple return values. For example:

�����"���
��&

�����"!��

%

�
�
��"����"����
0�
�'�
����"��
� "��
"�
����"��� "��
"�
����"����("%
��
"�")"��
�	:���
�&
�����"'�"B"
("%

����"��")"��
���"M"��&
��"'��"))"G\\G"EE"��"))"G<G"EE"��"))"G;G("����8&
�55&

*
���")"��
�	����
����'
 "�(&
����")"��
�	����
����'�(&

*

�
�
��"����"R���'("%
�
����"��� "����&
����
0�
�'/�;\\.������\\���
��\\�����	
�
/ "��
"��� "��
"����(&
-������	.��
�:���'���(&
-������	.��
�:���'����(&

*
*

The example produces the output:

�;\.������\���
��\
�����	
�

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 229

Note that the ��� and ���� variables can be unassigned before they are passed to ����
0�
�, and that they are
considered definitely assigned following the call.

10.5.1.4 Parameter arrays

A parameter declared with a ������ modifier is a parameter array. If a formal parameter list includes a
parameter array, it must be the right-most parameter in the list and it must be of a single-dimensional array type.
For example, the types �
������ and �
�������� can be used as the type of a parameter array, but the type
�
����� � can not. It is not possible to combine the ������ modifier with the ��� and ��
 modifiers.

A parameter array permits arguments to be specified in one of two ways in a method invocation:

• The argument given for a parameter array can be a single expression of a type that is implicitly convertible
(§6.1) to the parameter array type. In this case, the parameter array acts precisely like a value parameter.

• Alternatively, the invocation can specify zero or more arguments for the parameter array, where each
argument is an expression of a type that is implicitly convertible (§6.1) to the element type of the parameter
array. In this case, the invocation creates an instance of the parameter array type with a length corresponding
to the number of arguments, initializes the elements of the array instance with the given argument values,
and uses the newly created array instance as the actual argument.

Except for allowing a variable number of arguments in an invocation, a parameter array is precisely equivalent
to a value parameter (§10.5.1.1) of the same type.

The example

�����"���
��&

�����"!��

%

�
�
��"����"7'������"��
��"����("%
-������	.��
�'/6����"���
����"%
*"������
�;/ "����	:���
�(&
�������"'��
"�"��"����(

-������	.��
�'/"%
*/ "�(&
-������	.��
�:���'(&

*

�
�
��"����"R���'("%
��
��"���")"%� "+ ",*&
7'���(&
7'�
 "+
 ",
 "S
(&
7'(&

*
*

produces the output

6����"���
����","������
�;"�"+",
6����"���
����"S"������
�;"�
"+
",
"S

6����"���
����"
"������
�;

The first invocation of 7 simply passes the array � as a value parameter. The second invocation of 7
automatically creates a four-element ��
�� with the given element values and passes that array instance as a
value parameter. Likewise, the third invocation of 7 creates a zero-element ��
�� and passes that instance as a
value parameter. The second and third invocations are precisely equivalent to writing:

7'���"��
��"%�
 "+
 ",
 "S
*(&
7'���"��
��"%*(&

When performing overload resolution, a method with a parameter array may be applicable either in its normal
form or in its expanded form (§7.4.2.1). The expanded form of a method is available only if the normal form of

C# LANGUAGE SPECIFICATION

230 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

the method is not applicable and only if a method with the same signature as the expanded form is not already
declared in the same type.

The example

�����"���
��&

�����"!��

%

�
�
��"����"7'������"�����
��"�("%
-������	.��
�:���'/7'�����
��(/(&

*

�
�
��"����"7'("%
-������	.��
�:���'/7'(/(&

*

�
�
��"����"7'�����
"�
 "�����
"��("%
-������	.��
�:���'/7'�����
 �����
(/(&

*

�
�
��"����"R���'("%
7'(&
7'�(&
7'� "+(&
7'� "+ ",(&
7'� "+ ", "S(&

*
*

produces the output

7'(&
7'�����
��(&
7'�����
 �����
(&
7'�����
��(&
7'�����
��(&

In the example, two of the possible expanded forms of the method with a parameter array are already included in
the class as regular methods. These expanded forms are therefore not considered when performing overload
resolution, and the first and third method invocations thus select the regular methods. When a class declares a
method with a parameter array, it is not uncommon to also include some of the expanded forms as regular
methods. By doing so it is possible to avoid the allocation of an array instance that occurs when an expanded
form of a method with a parameter array is invoked.

When the type of a parameter array is �����
��, a potential ambiguity arises between the normal form of the
method and the expended form for a single �����
 parameter. The reason for the ambiguity is that an
�����
�� is itself implicitly convertible to type �����
. The ambiguity presents no problem, however, since it
can be resolved by inserting a cast if needed.

The example

�����"���
��&

�����"!��

%

�
�
��"����"7'������"�����
��"����("%
�������"'�����
"�"��"�("%

-������	.��
�'�	H�
!���'(7���1���(&
-������	.��
�'/"/(&

*
-������	.��
�:���'(&

*

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 231

�
�
��"����"R���'("%
�����
��"�")"%� "/O����/ "�+,	S=X*&
�����
"�")"�&
7'�(&
7''�����
(�(&
7'�(&
7''�����
��(�(&

*
*

produces the output

���
��	3�
,+"���
��	�
����"���
��	I�����
���
��	�����
��
���
��	�����
��
���
��	3�
,+"���
��	�
����"���
��	I�����

In the first and last invocations of 7, the normal form of 7 is applicable because an implicit conversion exists
from the argument type to the parameter type (both are of type �����
��). Thus, overload resolution selects the
normal form of 7, and the argument is passed as a regular value parameter. In the second and third invocations,
the normal form of 7 is not applicable because no implicit conversion exists from the argument type to the
parameter type (type �����
 cannot be implicitly converted to type �����
��). However, the expanded form
of 7 is applicable, so it is selected by overload resolution. As a result, a one-element �����
�� is created by the
invocation, and the single element of the array is initialized with the given argument value (which itself is a
reference to an �����
��).

10.5.2 Static and instance methods

When a method declaration includes a �
�
�� modifier, the method is said to be a static method. When no
�
�
�� modifier is present, the method is said to be an instance method.

A static method does not operate on a specific instance, and it is a compile-time error to refer to
��� in a static
method.

An instance method operates on a given instance of a class, and this instance can be accessed as
��� (§7.5.7).

When a method is referenced in a member-access (§7.5.4) of the form �	R, if R is a static method, � must
denote a type that has a method R, and if R is an instance method, � must denote an instance of a type that has a
method R.

The differences between static and instance members are further discussed in §10.2.5.

10.5.3 Virtual methods

When an instance method declaration includes a ���
��� modifier, the method is said to be a virtual method.
When no ���
��� modifier is present, the method is said to be a non-virtual method.

The implementation of a non-virtual method is invariant: The implementation is the same whether the method is
invoked on an instance of the class in which it is declared or an instance of a derived class. In contrast, the
implementation of a virtual method can be superseded by derived classes. The process of superseding the
implementation of an inherited virtual method is known as overriding the method (§10.5.4).

In a virtual method invocation, the run-time type of the instance for which the invocation takes place determines
the actual method implementation to invoke. In a non-virtual method invocation, the compile-time type of the
instance is the determining factor. In precise terms, when a method named 1 is invoked with an argument list 6
on an instance with a compile-time type - and a run-time type 2 (where 2 is either - or a class derived from -),
the invocation is processed as follows:

• First, overload resolution is applied to -, 1, and 6, to select a specific method R from the set of methods
declared in and inherited by -. This is described in §7.5.5.1.

C# LANGUAGE SPECIFICATION

232 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• Then, if R is a non-virtual method, R is invoked.

• Otherwise, R is a virtual method, and the most derived implementation of R with respect to 2 is invoked.

For every virtual method declared in or inherited by a class, there exists a most derived implementation of the
method with respect to that class. The most derived implementation of a virtual method R with respect to a class
2 is determined as follows:

• If 2 contains the introducing ���
��� declaration of R, then this is the most derived implementation of R.

• Otherwise, if 2 contains an �������� of R, then this is the most derived implementation of R.

• Otherwise, the most derived implementation of R is the same as that of the direct base class of 2.

The following example illustrates the differences between virtual and non-virtual methods:

�����"���
��&

�����"6
%

������"����"7'("%"-������	.��
�:���'/6	7/(&"*

������"���
���"����"H'("%"-������	.��
�:���'/6	H/(&"*
*

�����"$;"6
%

���"������"����"7'("%"-������	.��
�:���'/$	7/(&"*

������"��������"����"H'("%"-������	.��
�:���'/$	H/(&"*
*

�����"!��

%

�
�
��"����"R���'("%
$"�")"���"$'(&
6"�")"�&
�	7'(&
�	7'(&
�	H'(&
�	H'(&

*
*

In the example, 6 introduces a non-virtual method 7 and a virtual method H. The class $ introduces a new non-
virtual method 7, thus hiding the inherited 7, and also overrides the inherited method H. The example produces
the output:

6	7
$	7
$	H
$	H

Notice that the statement �	H'(invokes $	H, not 6	H. This is because the run-time type of the instance (which
is $), not the compile-time type of the instance (which is 6), determines the actual method implementation to
invoke.

Because methods are allowed to hide inherited methods, it is possible for a class to contain several virtual
methods with the same signature. This does not present an ambiguity problem, since all but the most derived
method are hidden. In the example

�����"���
��&

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 233

�����"6
%

������"���
���"����"7'("%"-������	.��
�:���'/6	7/(&"*
*

�����"$;"6
%

������"��������"����"7'("%"-������	.��
�:���'/$	7/(&"*
*

�����"-;"$
%

���"������"���
���"����"7'("%"-������	.��
�:���'/-	7/(&"*
*

�����"I;"-
%

������"��������"����"7'("%"-������	.��
�:���'/I	7/(&"*
*

�����"!��

%

�
�
��"����"R���'("%
I"�")"���"I'(&
6"�")"�&
$"�")"�&
-"�")"�&
�	7'(&
�	7'(&
�	7'(&
�	7'(&

*
*

the - and I classes contain two virtual methods with the same signature: The one introduced by 6 and the one
introduced by -. The method introduced by - hides the method inherited from 6. Thus, the override declaration
in I overrides the method introduced by -, and it is not possible for I to override the method introduced by 6.
The example produces the output:

$	7
$	7
I	7
I	7

Note that it is possible to invoke the hidden virtual method by accessing an instance of I through a less derived
type in which the method is not hidden.

10.5.4 Override methods

When an instance method declaration includes an �������� modifier, the method is said to be an override
method. An override method overrides an inherited virtual method with the same signature. Whereas a virtual
method declaration introduces a new method, an override method declaration specializes an existing inherited
virtual method by providing a new implementation of the method.

The method overridden by an �������� declaration is known as the overridden base method. For an override
method R declared in a class -, the overridden base method is determined by examining each base class of -,
starting with the direct base class of - and continuing with each successive direct base class, until an accessible
method with the same signature as R is located. For the purposes of locating the overridden base method, a
method is considered accessible if it is ������, if it is ���
��
��, if it is ���
��
��"��
�����, or if it is
��
����� and declared in the same program as -.

A compile-time error occurs unless all of the following are true for an override declaration:

C# LANGUAGE SPECIFICATION

234 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• An overridden base method can be located as described above.

• The overridden base method is a virtual, abstract, or override method. In other words, the overridden base
method cannot be static or non-virtual.

• The overridden base method is not a sealed method.

• The override declaration and the overridden base method have the same declared accessibility. In other
words, an override declaration cannot change the accessibility of the virtual method.

An override declaration can access the overridden base method using a base-access (§7.5.8). In the example

�����"6
%

��
"�&

������"���
���"����"0���
7�����'("%
-������	.��
�:���'/�")"%
*/ "�(&

*
*

�����"$;"6
%

��
"�&

������"��������"����"0���
7�����'("%
����	0���
7�����'(&
-������	.��
�:���'/�")"%
*/ "�(&

*
*

the ����	0���
7�����'(invocation in $ invokes the 0���
7����� method declared in 6. A base-access
disables the virtual invocation mechanism and simply treats the base method as a non-virtual method. Had the
invocation in $ been written ''6(
���(0���
7�����'(, it would recursively invoke the 0���
7�����
method declared in $, not the one declared in 6, since 0���
7����� is virtual and the run-time type of
''6(
���(is $.

Only by including an �������� modifier can a method override another method. In all other cases, a method
with the same signature as an inherited method simply hides the inherited method. In the example

�����"6
%

������"���
���"����"7'("%*
*

�����"$;"6
%

������"���
���"����"7'("%* <<".������ "������"������
��"7'(
*

the 7 method in $ does not include an �������� modifier and therefore does not override the 7 method in 6.
Rather, the 7 method in $ hides the method in 6, and a warning is reported because the declaration does not
include a ��� modifier.

In the example

�����"6
%

������"���
���"����"7'("%*
*

�����"$;"6
%

���"�����
�"����"7'("%* <<"O����"6	7"��
���"$
*

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 235

�����"-;"$
%

������"��������"����"7'("%* <<"�8 "���������"6	7
*

the 7 method in $ hides the virtual 7 method inherited from 6. Since the new 7 in $ has private access, its scope
only includes the class body of $ and does not extend to -. Therefore, the declaration of 7 in - is permitted to
override the 7 inherited from 6.

10.5.5 Sealed methods

When an instance method declaration includes a ������ modifier, the method is said to be a sealed method. A
sealed method overrides an inherited virtual method with the same signature.

An override method can also be marked with the ������ modifier. Use of this modifier prevents a derived class
from further overriding the method.

The example

�����"���
��&

�����"6
%

������"���
���"����"7'("%
-������	.��
�:���'/6	7/(&

*

������"���
���"����"H'("%
-������	.��
�:���'/6	H/(&

*
*

�����"$;"6
%

������"��������"������"����"7'("%
-������	.��
�:���'/$	7/(&

*

��������"������"����"H'("%
-������	.��
�:���'/$	H/(&

*
*

�����"-;"$
%

��������"������"����"H'("%
-������	.��
�:���'/-	H/(&

*
*

the class $ provides two override methods: an 7 method that has the ������ modifier and a H method that does
not. $’s use of the sealed �������� prevents - from further overriding 7.

10.5.6 Abstract methods

When an instance method declaration includes an ���
���
 modifier, the method is said to be an abstract
method. Although an abstract method is implicitly also a virtual method, it cannot have the ���
��� modifier.

An abstract method declaration introduces a new virtual method but does not provide an implementation of the
method. Instead, non-abstract derived classes are required to provide their own implementation by overriding
the method. Because an abstract method provides no actual implementation, the method-body of an abstract
method simply consists of a semicolon.

Abstract method declarations are only permitted in abstract classes (§10.1.1.1).

C# LANGUAGE SPECIFICATION

236 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

In the example

������"���
���
"�����"�����
%

������"���
���
"����"0���
'H�������"� "2��
�����"�(&
*

������"�����"�������;"�����
%

������"��������"����"0���
'H�������"� "2��
�����"�("%
�	I����������'�(&

*
*

������"�����"$��;"�����
%

������"��������"����"0���
'H�������"� "2��
�����"�("%
�	I���2��
'�(&

*
*

the ����� class defines the abstract notion of a geometrical shape object that can paint itself. The 0���

method is abstract because there is no meaningful default implementation. The ������� and $�� classes are
concrete ����� implementations. Because these classes are non-abstract, they are required to override the
0���
 method and provide an actual implementation.

It is a compile-time error for a base-access (§7.5.8) to reference an abstract method. In the example

���
���
"�����"6
%

������"���
���
"����"7'(&
*

�����"$;"6
%

������"��������"����"7'("%
����	7'(& <<"����� "����	7"��"���
���

*
*

a compile-time error is reported for the ����	7'(invocation because it references an abstract method.

An abstract method declaration is permitted to override a virtual method. This allows an abstract class to force
re-implementation of the method in derived classes, and makes the original implementation of the method
unavailable. In the example

�����"���
��&

�����"6
%

������"���
���"����"7'("%
-������	.��
�:���'/6	7/(&

*
*

���
���
"�����"$;"6
%

������"���
���
"��������"����"7'(&
*

�����"-;"$
%

������"��������"����"7'("%
-������	.��
�:���'/-	7/(&

*
*

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 237

class 6 declares a virtual method, class $ overrides this method with an abstract method, and class - overrides
the abstract method to provide its own implementation.

10.5.7 External methods

When a method declaration includes an ��
��� modifier, the method is said to be an external method. External
methods are implemented externally, using a language other than C#. Because an external method declaration
provides no actual implementation, the method-body of an external method simply consists of a semicolon.

The ��
��� modifier is typically used in conjunction with a I��3����
 attribute (§17.5.1), allowing external
methods to be implemented by DLLs (Dynamic Link Libraries). The execution environment may support other
mechanisms whereby implementations of external methods can be provided.

When an external method includes a I��3����
 attribute, the method declaration must also include a �
�
��
modifier. This example demonstrates the use of the ��
��� modifier and the I��3����
 attribute:

�����"���
��	!��
&
�����"���
��	������
�	0����������&
�����"���
��	2��
���	3�
������������&

�����"0�
�
%

�I��3����
'/8�����,+/ "��
:��
�����)
���(�
�
�
��"��
���"����"-���
�I����
���'�
����"���� "������
�6

����
�"��(&

�I��3����
'/8�����,+/ "��
:��
�����)
���(�
�
�
��"��
���"����"2�����I����
���'�
����"����(&

�I��3����
'/8�����,+/ "��
:��
�����)
���(�
�
�
��"��
���"��
"H�
-�����
I����
���'��
"�����P� "�
����$������"���(&

�I��3����
'/8�����,+/ "��
:��
�����)
���(�
�
�
��"��
���"����"��
-�����
I����
���'�
����"����(&

*

10.5.8 Method body

The method-body of a method declaration consists of either a block or a semicolon.

Abstract and external method declarations do not provide a method implementation, so their method bodies
simply consist of a semicolon. For any other method, the method body is a block (§8.2) that contains the
statements to execute when the method is invoked.

When the return type of a method is ����, ��
��� statements (§8.9.4) in the method body are not permitted to
specify an expression. If execution of the method body of a void method completes normally (that is, control
flows off the end of the method body), the method simply returns to its caller.

When the return type of a method is not ����, each ��
��� statement in the method body must specify an
expression of a type that is implicitly convertible to the return type. The endpoint of the method body of a value-
returning method must not be reachable. In other words, in a value-returning method, control is not permitted to
flow off the end of the method body.

In the example

�����"6
%

������"��
"7'("%* <<"����� "��
���"�����"��U�����

������"��
"H'("%
��
���"�&

*

C# LANGUAGE SPECIFICATION

238 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

������"��
"O'����"�("%
��"'�("%

��
���"�&
*
����"%

��
���"
&
*

*
*

the value-returning 7 method results in a compile-time error because control can flow off the end of the method
body. The H and O methods are correct because all possible execution paths end in a return statement that
specifies a return value.

10.5.9 Method overloading

The method overload resolution rules are described in §7.4.2.

10.6 Properties
A property is a member that provides access to a characteristic of an object or a class. Examples of properties
include the length of a string, the size of a font, the caption of a window, the name of a customer, and so on.
Properties are a natural extension of fields—both are named members with associated types, and the syntax for
accessing fields and properties is the same. However, unlike fields, properties do not denote storage locations.
Instead, properties have accessors that specify the statements to be executed when their values are read or
written. Properties thus provide a mechanism for associating actions with the reading and writing of an object’s
attributes; furthermore, they permit such attributes to be computed.

Properties are declared using property-declarations:

property-declaration:
attributesopt property-modifiersopt type member-name % accessor-declarations *

property-modifiers:
property-modifier
property-modifiers property-modifier

property-modifier:
���

������

���
��
��

��
�����

�����
�

�
�
��

���
���

������

��������

���
���

��
���

member-name:
identifier
interface-type 	 identifier

A property-declaration may include a set of attributes (§17) and a valid combination of the four access
modifiers (§10.2.3), the ��� (§10.2.2), �
�
�� (§10.5.2), ���
��� (§10.5.3), �������� (§10.5.4), ������
(§10.5.5), ���
���
 (§10.5.6), and ��
��� (§10.5.7) modifiers.

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 239

Property declarations are subject to the same rules as method declarations (§10.5) with regard to valid
combinations of modifiers.

The type of a property declaration specifies the type of the property introduced by the declaration, and the
member-name specifies the name of the property. Unless the property is an explicit interface member
implementation, the member-name is simply an identifier. For an explicit interface member implementation
(§13.4.1), the member-name consists of an interface-type followed by a “	” and an identifier.

The type of a property must be at least as accessible as the property itself (§3.5.4).

The accessor-declarations, which must be enclosed in “%” and “*” tokens, declare the accessors (§10.6.2) of the
property. The accessors specify the executable statements associated with reading and writing the property.

Even though the syntax for accessing a property is the same as that for a field, a property is not classified as a
variable. Thus, it is not possible to pass a property as a ��� or ��
 argument.

When a property declaration includes an ��
��� modifier, the property is said to be an external property.
Because an external property declaration provides no actual implementation, each of its accessor-declarations
consists of a semicolon.

10.6.1 Static and instance properties

When a property declaration includes a �
�
�� modifier, the property is said to be a static property. When no
�
�
�� modifier is present, the property is said to be an instance property.

A static property is not associated with a specific instance, and it is a compile-time error to refer to
��� in the
accessors of a static property.

An instance property is associated with a given instance of a class, and this instance can be accessed as
���
(§7.5.7) in the accessors of the property.

When a property is referenced in a member-access (§7.5.4) of the form �	R, if R is a static property, � must
denote a type that has a property R, and if R is an instance property, E must denote an instance that has a
property R.

The differences between static and instance members are further discussed in §10.2.5.

10.6.2 Accessors

The accessor-declarations of a property specify the executable statements associated with reading and writing
the property.

accessor-declarations:
get-accessor-declaration set-accessor-declarationopt

set-accessor-declaration get-accessor-declarationopt

get-accessor-declaration:
attributesopt ��
 accessor-body

set-accessor-declaration:
attributesopt ��
 accessor-body

accessor-body:
block
&

The accessor declarations consist of a get-accessor-declaration, a set-accessor-declaration, or both. Each
accessor declaration consists of the token ��
 or ��
 followed by an accessor-body. For ���
���
 and
��
��� properties, the accessor-body for each accessor specified is simply a semicolon. For other properties,

C# LANGUAGE SPECIFICATION

240 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

the accessor-body for each accessor specified is a block which contains the statements to be executed when the
corresponding accessor is invoked.

A ��
 accessor corresponds to a parameterless method with a return value of the property type. Except as the
target of an assignment, when a property is referenced in an expression, the ��
 accessor of the property is
invoked to compute the value of the property (§7.1.1). The body of a ��
 accessor must conform to the rules for
value-returning methods described in §10.5.8. In particular, all ��
��� statements in the body of a ��
 accessor
must specify an expression that is implicitly convertible to the property type. Furthermore, the endpoint of a ��

accessor must not be reachable.

A ��
 accessor corresponds to a method with a single value parameter of the property type and a ���� return
type. The implicit parameter of a ��
 accessor is always named �����. When a property is referenced as the
target of an assignment (§7.13), or as the operand of 44 or 55 (§7.5.9,§7.6.5), the ��
 accessor is invoked with
an argument (whose value is that of the right-hand side of the assignment or the operand of the 44 or 55
operator) that provides the new value (§7.13.1). The body of a ��
 accessor must conform to the rules for ����
methods described in §10.5.8. In particular, ��
��� statements in the ��
 accessor body are not permitted to
specify an expression. Since a ��
 accessor implicitly has a parameter named �����, it is a compile-time error
for a local variable declaration in a ��
 accessor to have that name.

Based on the presence or absence of the ��
 and ��
 accessors, a property is classified as follows:

• A property that includes both a ��
 accessor and a ��
 accessor is said to be a read-write property.

• A property that has only a ��
 accessor is said to be a read-only property. It is a compile-time error for a
read-only property to be the target of an assignment.

• A property that has only a ��
 accessor is said to be a write-only property. Except as the target of an
assignment, it is a compile-time error to reference a write-only property in an expression.

In the example

������"�����"$�

��;"-��
���
%

�����
�"�
����"���
���&

������"�
����"-��
���"%
��
"%

��
���"���
���&
*
��
"%

��"'���
���"C)"�����("%
���
���")"�����&
2�����
'(&

*
*

*

������"��������"����"0���
'H�������"� "2��
�����"�("%
<<"0���
���"����"����"����

*
*

the $�

�� control declares a public -��
��� property. The ��
 accessor of the -��
��� property returns the
string stored in the private ���
��� field. The ��
 accessor checks if the new value is different from the
current value, and if so, it stores the new value and repaints the control. Properties often follow the pattern
shown above: The ��
 accessor simply returns a value stored in a private field, and the ��
 accessor modifies
the private field and then performs any additional actions required to fully update the state of the object.

Given the $�

�� class above, the following is an example of use of the -��
��� property:

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 241

$�

��"�8$�

��")"���"$�

��'(&
�8$�

��	-��
���")"/�]/& <<"3���8��"��
"��������
�
����"�")"�8$�

��	-��
���& <<"3���8��"��
"��������

Here, the ��
 accessor is invoked by assigning a value to the property, and the ��
 accessor is invoked by
referencing the property in an expression.

The ��
 and ��
 accessors of a property are not distinct members, and it is not possible to declare the accessors
of a property separately. As such, it is not possible for the two accessors of a read-write property to have
different accessibility. The example

�����"6
%

�����
�"�
����"����&

������"�
����"1���"% <<"����� "�������
�"������"����
��
"%"��
���"����&"*

*

������"�
����"1���"% <<"����� "�������
�"������"����
��
"%"����")"�����&"*

*
*

does not declare a single read-write property. Rather, it declares two properties with the same name, one read-
only and one write-only. Since two members declared in the same class cannot have the same name, the
example causes a compile-time error to occur.

When a derived class declares a property by the same name as an inherited property, the derived property hides
the inherited property with respect to both reading and writing. In the example

�����"6
%

������"��
"0"%
��
"%			*

*
*

�����"$;"6
%

���"������"��
"0"%
��
"%			*

*
*

the 0 property in $ hides the 0 property in 6 with respect to both reading and writing. Thus, in the statements

$"�")"���"$'(&
�	0")"�& <<"����� "$	0"��"����5����
''6(�(0")"�& <<"�8 "���������"
�"6	0

the assignment to �	0 causes a compile-time error because the read-only 0 property in $ hides the write-only 0
property in 6. Note, however, that a cast can be used to access the hidden 0 property.

Unlike public fields, properties provide a separation between an object’s internal state and its public interface.
Consider the example:

�����":����
%

�����
�"��
"� "�&
�����
�"�
����"���
���&

C# LANGUAGE SPECIFICATION

242 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

������":����'��
"� "��
"� "�
����"���
���("%

���	�")"�&

���	�")"�&

���	���
���")"���
���&

*

������"��
"K"%
��
"%"��
���"�&"*

*

������"��
"Q"%
��
"%"��
���"�&"*

*

������"0���
":���
���"%
��
"%"��
���"���"0���
'� "�(&"*

*

������"�
����"-��
���"%
��
"%"��
���"���
���&"*

*
*

Here, the :���� class uses two ��
 fields, � and �, to store its location. The location is publicly exposed both
as an K and a Q property and as a :���
��� property of type 0���
. If, in a future version of :����, it
becomes more convenient to store the location as a 0���
 internally, the change can be made without affecting
the public interface of the class:

�����":����
%

�����
�"0���
"����
���&
�����
�"�
����"���
���&

������":����'��
"� "��
"� "�
����"���
���("%

���	����
���")"���"0���
'� "�(&

���	���
���")"���
���&

*

������"��
"K"%
��
"%"��
���"����
���	�&"*

*

������"��
"Q"%
��
"%"��
���"����
���	�&"*

*

������"0���
":���
���"%
��
"%"��
���"����
���&"*

*

������"�
����"-��
���"%
��
"%"��
���"���
���&"*

*
*

Had � and � instead been ������ �������� fields, it would have been impossible to make such a change to
the :���� class.

Exposing state through properties is not necessarily any less efficient than exposing fields directly. In particular,
when a property is non-virtual and contains only a small amount of code, the execution environment may
replace calls to accessors with the actual code of the accessors. This process is known as inlining, and it makes
property access as efficient as field access, yet preserves the increased flexibility of properties.

Since invoking a ��
 accessor is conceptually equivalent to reading the value of a field, it is considered bad
programming style for ��
 accessors to have observable side-effects. In the example

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 243

�����"-���
��
%

�����
�"��
"���
&

������"��
"1��
"%
��
"%"��
���"���
44&"*

*
*

the value of the 1��
 property depends on the number of times the property has previously been accessed. Thus,
accessing the property produces an observable side-effect, and the property should be implemented as a method
instead.

The “no side-effects” convention for ��
 accessors doesn’t mean that ��
 accessors should always be written to
simply return values stored in fields. Indeed, ��
 accessors often compute the value of a property by accessing
multiple fields or invoking methods. However, a properly designed ��
 accessor performs no actions that cause
observable changes in the state of the object.

Properties can be used to delay initialization of a resource until the moment it is first referenced. For example:

�����"���
��	3�&

������"�����"-������
%

�����
�"�
�
��"!��
2�����"������&
�����
�"�
�
��"!��
.��
��"���
��&
�����
�"�
�
��"!��
.��
��"�����&

������"�
�
��"!��
2�����"3�"%
��
"%

��"'������"))"����("%
������")"���"�
����2�����'-������	�����
������3���
'((&

*
��
���"������&

*
*

������"�
�
��"!��
.��
��"��
"%
��
"%

��"'���
��"))"����("%
���
��")"���"�
����.��
��'-������	�����
��������
��
'((&

*
��
���"���
��&

*
*

������"�
�
��"!��
.��
��"�����"%
��
"%

��"'�����"))"����("%
�����")"���"�
����.��
��'-������	�����
�����������'((&

*
��
���"�����&

*
*

*

The -������ class contains three properties, 3�, ��
, and �����, that represent the standard input, output, and
error devices, respectively. By exposing these members as properties, the -������ class can delay their
initialization until they are actually used. For example, upon first referencing the ��
 property, as in

-������	��
	.��
�:���'/����� "�����/(&

the underlying !��
.��
�� for the output device is created. But if the application makes no reference to the 3�
and ����� properties, then no objects are created for those devices.

C# LANGUAGE SPECIFICATION

244 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

10.6.3 Virtual, sealed, override, and abstract accessors

A ���
��� property declaration specifies that the accessors of the property are virtual. The ���
��� modifier
applies to both accessors of a read-write property—it is not possible for only one accessor of a read-write
property to be virtual.

An ���
���
 property declaration specifies that the accessors of the property are virtual, but does not provide
an actual implementation of the accessors. Instead, non-abstract derived classes are required to provide their
own implementation for the accessors by overriding the property. Because an accessor for an abstract property
declaration provides no actual implementation, its accessor-body simply consists of a semicolon.

A property declaration that includes both the ���
���
 and �������� modifiers specifies that the property is
abstract and overrides a base property. The accessors of such a property are also abstract.

Abstract property declarations are only permitted in abstract classes (§10.1.1.1).The accessors of an inherited
virtual property can be overridden in a derived class by including a property declaration that specifies an
�������� directive. This is known as an overriding property declaration. An overriding property declaration
does not declare a new property. Instead, it simply specializes the implementations of the accessors of an
existing virtual property.

An overriding property declaration must specify the exact same accessibility modifiers, type, and name as the
inherited property. If the inherited property has only a single accessor (i.e., if the inherited property is read-only
or write-only), the overriding property must include only that accessor. If the inherited property includes both
accessors (i.e., if the inherited property is read-write), the overriding property can include either a single
accessor or both accessors.

An overriding property declaration may include the ������ modifier. Use of this modifier prevents a derived
class from further overriding the property. The accessors of a sealed property are also sealed.

Except for differences in declaration and invocation syntax, virtual, sealed, override, and abstract accessors
behave exactly like virtual, sealed, override and abstract methods. Specifically, the rules described in §10.5.3,
§10.5.4, §10.5.5, and §10.5.6 apply as if accessors were methods of a corresponding form:

• A ��
 accessor corresponds to a parameterless method with a return value of the property type and the same
modifiers as the containing property.

• A ��
 accessor corresponds to a method with a single value parameter of the property type, a ���� return
type, and the same modifiers as the containing property.

In the example

���
���
"�����"6
%

��
"�&

������"���
���"��
"K"%
��
"%"��
���"
&"*

*

������"���
���"��
"Q"%
��
"%"��
���"�&"*
��
"%"�")"�����&"*

*

������"���
���
"��
"["%"��
&"��
&"*
*

K is a virtual read-only property, Q is a virtual read-write property, and [is an abstract read-write property.
Because [is abstract, the containing class 6 must also be declared abstract.

A class that derives from 6 is show below:

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 245

�����"$;"6
%

��
"P&

������"��������"��
"K"%
��
"%"��
���"����	K"4"�&"*

*

������"��������"��
"Q"%
��
"%"����	Q")"�����"A"
N"
;"�����&"*

*

������"��������"��
"["%
��
"%"��
���"P&"*
��
"%"P")"�����&"*

*
*

Here, the declarations of K, Q, and [are overriding property declarations. Each property declaration exactly
matches the accessibility modifiers, type, and name of the corresponding inherited property. The ��
 accessor
of K and the ��
 accessor of Q use the ���� keyword to access the inherited accessors. The declaration of [
overrides both abstract accessors—thus, there are no outstanding abstract function members in $, and $ is
permitted to be a non-abstract class.

10.7 Events
An event is a member that enables an object or class to provide notifications. Clients can attach executable code
for events by supplying event handlers.

Events are declared using event-declarations:

event-declaration:
attributesopt event-modifiersopt ����
 type variable-declarators &
attributesopt event-modifiersopt ����
 type member-name % event-accessor-declarations *

event-modifiers:
event-modifier
event-modifiers event-modifier

event-modifier:
���

������

���
��
��

��
�����

�����
�

�
�
��

���
���

������

��������

���
���

��
���

event-accessor-declarations:
add-accessor-declaration remove-accessor-declaration
remove-accessor-declaration add-accessor-declaration

add-accessor-declaration:
attributesopt ��� block

C# LANGUAGE SPECIFICATION

246 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

remove-accessor-declaration:
attributesopt ������ block

An event-declaration may include a set of attributes (§17) and a valid combination of the four access modifiers
(§10.2.3), the ��� (§10.2.2), �
�
�� (§10.5.2), ���
��� (§10.5.3), �������� (§10.5.4), ������ (§10.5.5),
���
���
 (§10.5.6), and ��
��� (§10.5.7) modifiers.

Event declarations are subject to the same rules as method declarations (§10.5) with regard to valid
combinations of modifiers.

An event declaration may include event-accessor-declarations. However, if it does not, for non-extern, non-
abstract events, the compiler shall supply them automatically (§10.7.1); for extern events, the accessors are
provided externally.

An event declaration that omits event-accessor-declarations defines one or more events—one for each of the
variable-declarators. The attributes and modifiers apply to all of the members declared by such an event-
declaration.

It is a compile-time error for an event-declaration to include both the ���
���
 modifier and event-accessor-
declarations.

When an event declaration includes an ��
��� modifier, the event is said to be an external event. Because an
external event declaration provides no actual implementation, it is a compile-time error for it to include both the
��
��� modifier and event-accessor-declarations.

The type of an event declaration must be a delegate-type (§4.2), and that delegate-type must be at least as
accessible as the event itself (§3.5.4).

An event can be used as the left hand operand of the 4) and 5) operators (§7.13.3). These operators are used to
attach or remove event handlers to or from an event, and the access modifiers of the event control the contexts in
which such operations are permitted.

Since 4) and 5) are the only operations that are permitted on an event outside the type that declares the event,
external code can add and remove handlers for an event, but cannot in any other way obtain or modify the
underlying list of event handlers.

In an operation of the form � 4) � or � 5) �, when � is an event and the reference takes place outside the type
that contains the declaration of �, the result of the operation has type ���� (as opposed to the type of �). This
rule prohibits external code from indirectly examining the underlying delegate of an event.

The following example shows how event handlers are attached to instances of the $�

�� class:

������"������
�"����"����
O������'�����
"������ "����
6���"�(&

������"�����"$�

��;"-��
���
%

������"����
"����
O������"-���8&
*

������"�����":����I�����;"7���
%

$�

��"�8$�

��&
$�

��"-�����$�

��&

������":����I�����'("%
�8$�

��")"���"$�

��'			(&
�8$�

��	-���8"4)"���"����
O������'�8$�

��-���8(&
-�����$�

��")"���"$�

��'			(&
-�����$�

��	-���8"4)"���"����
O������'-�����$�

��-���8(&

*

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 247

����"�8$�

��-���8'�����
"������ "����
6���"�("%
<<"O�����"�8$�

��	-���8"����

*

����"-�����$�

��-���8'�����
"������ "����
6���"�("%
<<"O�����"-�����$�

��	-���8"����

*
*

Here, the instance constructor for :����I����� creates two $�

�� instances and attaches event handlers to
the -���8 events.

10.7.1 Field-like events

Within the program text of the class or struct that contains the declaration of an event, certain events can be used
like fields. To be used in this way, an event must not be ���
���
 or ��
���, and must not explicitly include
event-accessor-declarations. Such an event can be used in any context that permits a field. The field contains a
delegate (§15) which refers to the list of event handlers that have been added to the event. If no event handlers
have been added, the field contains ����.

In the example

������"������
�"����"����
O������'�����
"������ "����
6���"�(&

������"�����"$�

��;"-��
���
%

������"����
"����
O������"-���8&

���
��
��"����"��-���8'����
6���"�("%
��"'-���8"C)"����("-���8'
��� "�(&

*

������"����"2���
'("%
-���8")"����&

*
*

-���8 is used as a field within the $�

�� class. As the example demonstrates, the field can be examined,
modified, and used in delegate invocation expressions. The ��-���8 method in the $�

�� class “raises” the
-���8 event. The notion of raising an event is precisely equivalent to invoking the delegate represented by the
event—thus, there are no special language constructs for raising events. Note that the delegate invocation is
preceded by a check that ensures the delegate is non-null.

Outside the declaration of the $�

�� class, the -���8 member can only be used on the left-hand side of the 4)
and M)"operators, as in

�	-���8"4)"���"����
O������'9(&

which appends a delegate to the invocation list of the -���8 event, and

�	-���8"M)"���"����
O������'9(&

which removes a delegate from the invocation list of the -���8 event.

When compiling a field-like event, the compiler automatically creates storage to hold the delegate, and creates
accessors for the event that add or remove event handlers to the delegate field. In order to be thread-safe, the
addition or removal operations are done while holding the lock (§8.12) on the containing object for an instance
event, or the type object (§7.5.11) for a static event.

Thus, an instance event declaration of the form:

�����"K"%
������"����
"I"��&

*

C# LANGUAGE SPECIFICATION

248 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

could be compiled to something equivalent to:

�����"K"%
�����
�"I"##��&""<<"�����"
�"����"
��"������
�

������"����
"I"��"%
���"%

���8'
���("%"##��")"##��"4"�����&"*
*

������"%
���8'
���("%"##��")"##��"5"�����&"*

*
*

*

Within the class K, references to �� are compiled to reference the hidden field ##�� instead. The name “##��”
is arbitrary; the hidden field could have any name or no name at all.

Similarly, a static event declaration of the form:

�����"K"%
������"�
�
��"����
"I"��&

*

could be compiled to something equivalent to:

�����"K"%
�����
�"�
�
��"I"##��&""<<"�����"
�"����"
��"������
�

������"�
�
��"����
"I"��"%
���"%

���8'
�����'K(("%"##��")"##��"4"�����&"*
*

������"%
���8'
�����'K(("%"##��")"##��"5"�����&"*

*
*

*

10.7.2 Event accessors

Event declarations typically omit event-accessor-declarations, as in the $�

�� example above. whereOne
situation for doing so involves the case in which the storage cost of one field per event is not acceptable. In such
cases, a class can include event-accessor-declarations and use a private mechanism for storing the list of event
handlers.

The event-accessor-declarations of an event specify the executable statements associated with adding and
removing event handlers.

The accessor declarations consist of an add-accessor-declaration and a remove-accessor-declaration. Each
accessor declaration consists of the token ��� or ������ followed by a block. The block associated with an
add-accessor-declaration specifies the statements to execute when an event handler is added, and the block
associated with a remove-accessor-declaration specifies the statements to execute when an event handler is
removed.

Each add-accessor-declaration and remove-accessor-declaration corresponds to a method with a single value
parameter of the event type and a ���� return type. The implicit parameter of an event accessor is named
�����. When an event is used in an event assignment, the appropriate event accessor is used. If the assignment
operator is 4) then the add accessor is used, and if the assignment operator is 5) then the remove accessor is
used. In either case, the right hand operand of the assignment operator is used as the argument to the event
accessor. The block of an add-accessor-declaration or a remove-accessor-declaration must conform to the rules

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 249

for ���� methods described in §10.5.8. In particular, ��
��� statements in such a block are not permitted to
specify an expression.

Since an event accessor implicitly has a parameter named �����, it is a compile-time error for a local variable
declared in an event accessor to have that name.

In the example

�����"-��
���;"-�������

%

<<"L��U��"8���"���"����
�
�
�
��"��������"�����
"�����I�������
]��")"���"�����
'(&
�
�
��"��������"�����
"�����L�����
]��")"���"�����
'(&

<<"2�
���"����
"�������"�������
��"��
�"8��
���
��
��"������
�"H�
����
O������'�����
"8��("%			*

<<"6��"����
"�������"�������
��"��
�"8��
���
��
��"����"6������
O������'�����
"8�� "I�����
�"�������("%			*

<<"2�����"����
"�������"�������
��"��
�"8��
���
��
��"����"2���������
O������'�����
"8�� "I�����
�"�������("%			*

<<"R����I���"����

������"����
"R��������
O������"R����I���"%

���"%"6������
O������'�����I�������
]�� "�����(&"*
������"%"2���������
O������'�����I�������
]�� "�����(&"*

*

<<"R����L�"����

������"����
"R��������
O������"R����L�"%

���"%"6������
O������'�����L�����
]�� "�����(&"*
������"%"2���������
O������'�����L�����
]�� "�����(&"*

*

<<"3���8�"
��"R����L�"����

���
��
��"����"��R����L�'R��������
6���"����("%

R��������
O������"�������&
�������")"'R��������
O������(H�
����
O������'�����L�����
]��(&
��"'�������"C)"����(

�������'
��� "����(&
*

*

the -��
��� class implements an internal storage mechanism for events. The 6������
O������ method
associates a delegate value with a key, the H�
����
O������ method returns the delegate currently associated
with a key, and the 2���������
O������ method removes a delegate as an event handler for the specified
event. Presumably, the underlying storage mechanism is designed such that there is no cost for associating a
���� delegate value with a key, and thus unhandled events consume no storage.

10.7.3 Static and instance events

When an event declaration includes a �
�
�� modifier, the event is said to be a static event. When no �
�
��
modifier is present, the event is said to be an instance event.

A static event is not associated with a specific instance, and it is a compile-time error to refer to
��� in the
accessors of a static event.

An instance event is associated with a given instance of a class, and this instance can be accessed as
���
(§7.5.7) in the accessors of the event.

When an event is referenced in a member-access (§7.5.4) of the form �	R, if R is a static event, � must denote a
type, and if R is an instance event, E must denote an instance.

The differences between static and instance members are discussed further in §10.2.5.

C# LANGUAGE SPECIFICATION

250 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

10.7.4 Virtual, sealed, override, and abstract accessors

A ���
��� event declaration specifies that the accessors of the event are virtual. The ���
��� modifier applies
to both accessors of an event.

An ���
���
 event declaration specifies that the accessors of the event are virtual, but does not provide an
actual implementation of the accessors. Instead, non-abstract derived classes are required to provide their own
implementation for the accessors by overriding the event. Because an accessor for an abstract event declaration
provides no actual implementation, its accessor-body simply consists of a semicolon.

An event declaration that includes both the ���
���
 and �������� modifiers specifies that the event is
abstract and overrides a base event. The accessors of such an event are also abstract.

Abstract event declarations are only permitted in abstract classes (§10.1.1.1).

The accessors of an inherited virtual event can be overridden in a derived class by including an event declaration
that specifies an �������� modifier. This is known as an overriding event declaration. An overriding event
declaration does not declare a new event. Instead, it simply specializes the implementations of the accessors of
an existing virtual event.

An overriding event declaration must specify the exact same accessibility modifiers, type, and name as the
overridden event.

An overriding event declaration may include the ������ modifier. Use of this modifier prevents a derived class
from further overriding the event. The accessors of a sealed event are also sealed.

It is a compile-time error for an overriding event declaration to include a ��� modifier.

Except for differences in declaration and invocation syntax, virtual, sealed, override, and abstract accessors
behave exactly like virtual, sealed, override and abstract methods. Specifically, the rules described in §10.5.3,
§10.5.4, §10.5.5, and §10.5.6 apply as if accessors were methods of a corresponding form. Each accessor
corresponds to a method with a single value parameter of the event type, a ���� return type, and the same
modifiers as the containing event.

10.8 Indexers
An indexer is a member that enables an object to be indexed in the same way as an array. Indexers are declared
using indexer-declarations:

indexer-declaration:
attributesopt indexer-modifiersopt indexer-declarator % accessor-declarations *

indexer-modifiers:
indexer-modifier
indexer-modifiers indexer-modifier

indexer-modifier:
���

������

���
��
��

��
�����

�����
�

���
���

������

��������

���
���

��
���

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 251

indexer-declarator:
type
��� � formal-parameter-list �
type interface-type 	
��� � formal-parameter-list �

An indexer-declaration may include a set of attributes (§17) and a valid combination of the four access
modifiers (§10.2.3), the ��� (§10.2.2), ���
��� (§10.5.3), �������� (§10.5.4), ������ (§10.5.5), ���
���

(§10.5.6), and ��
��� (§10.5.7) modifiers.

Indexer declarations are subject to the same rules as method declarations (§10.5) with regard to valid
combinations of modifiers, with the one exception being that the static modifier is not permitted on an indexer
declaration.

The type of an indexer declaration specifies the element type of the indexer introduced by the declaration.
Unless the indexer is an explicit interface member implementation, the type is followed by the keyword
���.
For an explicit interface member implementation, the type is followed by an interface-type, a “	”, and the
keyword
���. Unlike other members, indexers do not have user-defined names.

The formal-parameter-list specifies the parameters of the indexer. The formal parameter list of an indexer
corresponds to that of a method (§10.5.1), except that at least one parameter must be specified, and that the ���
and ��
 parameter modifiers are not permitted.

The type of an indexer and each of the types referenced in the formal-parameter-list must be at least as
accessible as the indexer itself (§3.5.4).

The accessor-declarations (§10.6.2) which must be enclosed in “%” and “*” tokens, declare the accessors of the
indexer. The accessors specify the executable statements associated with reading and writing indexer elements.

Even though the syntax for accessing an indexer element is the same as that for an array element, an indexer
element is not classified as a variable. Thus, it is not possible to pass an indexer element as a ��� or ��

argument.

The formal parameter list of an indexer defines the signature (§3.6) of the indexer. Specifically, the signature of
an indexer consists of the number and types of its formal parameters. The element type and names of the formal
parameters are not part of an indexer’s signature.

The signature of an indexer must differ from the signatures of all other indexers declared in the same class.

Indexers and properties are very similar in concept, but differ in the following ways:

• A property is identified by its name, whereas an indexer is identified by its signature.

• A property is accessed through a simple-name (§7.5.2) or a member-access (§7.5.4), whereas an indexer
element is accessed through an element-access (§7.5.6.2).

• A property can be a �
�
�� member, whereas an indexer is always an instance member.

• A ��
 accessor of a property corresponds to a method with no parameters, whereas a ��
 accessor of an
indexer corresponds to a method with the same formal parameter list as the indexer.

• A ��
 accessor of a property corresponds to a method with a single parameter named �����, whereas a
��
 accessor of an indexer corresponds to a method with the same formal parameter list as the indexer, plus
an additional parameter named �����.

• It is a compile-time error for an indexer accessor to declare a local variable with the same name as an
indexer parameter.

• In an overriding property declaration, the inherited property is accessed using the syntax ����	0, where 0
is the property name. In an overriding indexer declaration, the inherited indexer is accessed using the syntax
�������, where � is a comma separated list of expressions.

C# LANGUAGE SPECIFICATION

252 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Aside from these differences, all rules defined in §10.6.2 and §10.6.3 apply to indexer accessors as well as to
property accessors.

When an indexer declaration includes an ��
��� modifier, the indexer is said to be an external indexer.
Because an external indexer declaration provides no actual implementation, each of its accessor-declarations
consists of a semicolon.

The example below declares a $�
6���� class that implements an indexer for accessing the individual bits in
the bit array.

�����"���
��&

�����"$�
6����
%

��
��"��
�&
��
"����
�&

������"$�
6����'��
"����
�("%
��"'����
�"A"
("
����"���"6������
�����
���'(&
��
�")"���"��
�''����
�"5"�("BB"=("4"��&

���	����
�")"����
�&

*

������"��
":���
�"%
��
"%"��
���"����
�&"*

*

������"����"
������
"������"%
��
"%

��"'�����"A"
"EE"�����"B)"����
�("%

����"���"3������
��2���������
���'(&

*
��
���"'��
�������"BB"=�"D"�"AA"�����("C)"
&

*
��
"%

��"'�����"A"
"EE"�����"B)"����
�("%

����"���"3������
��2���������
���'(&

*
��"'�����("%

��
�������"BB"=�"E)"�"AA"�����&
*
����"%

��
�������"BB"=�"D)">'�"AA"�����(&
*

*
*

*

An instance of the $�
6���� class consumes substantially less memory than a corresponding ������ (since
each value of the former occupies only one bit instead of the latter’s one byte), but it permits the same
operations as a ������.

The following -���
0����� class uses a $�
6���� and the classical “sieve” algorithm to compute the number
of primes between 1 and a given maximum:

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 253

�����"-���
0�����
%

�
�
��"��
"-���
'��
"���("%
$�
6����"�����")"���"$�
6����'���"4"�(&
��
"����
")"�&
���"'��
"�")"+&"�"A)"���&"�44("%

��"'C��������("%
���"'��
"�")"�"?"+&"�"A)"���&"�"4)"�("��������")"
���&
����
44&

*
*
��
���"����
&

*

�
�
��"����"R���'�
������"����("%
��
"���")"��
	0����'�����
�(&
��
"����
")"-���
'���(&
-������	.��
�:���'/7����"%
*"������"��
����"�"���"%�*/ "����
 "���(&

*
*

Note that the syntax for accessing elements of the $�
6���� is precisely the same as for a ������.

The following example shows a 26 by 10 grid class that has an indexer with two parameters. The first parameter
is required to be an upper- or lowercase letter in the range A–Z, and the second is required to be an integer in the
range 0–9.

�����"H���
%

����
"��
"1��2���")"+X&
����
"��
"1��-���")"�
&

��
� �"�����")"���"��
�1��2��� "1��-����&

������"��
"
��������"� "��
"�����"%
��
"%

�")"-���	!�L����'�(&
��"'�"A"G6G"EE"�"B"G[G(

����"���"6������
�����
���'(&
��"'����"A"
"EE"����"B)"1��-���(

����"���"3������
��2���������
���'(&
��
���"�������"5"G6G "�����&

*

��
"%
�")"-���	!�L����'�(&
��"'�"A"G6G"EE"�"B"G[G(

����"���"6������
�����
���'(&
��"'����"A"
"EE"����"B)"1��-���(

����"���"3������
��2���������
���'(&
�������"5"G6G "�����")"�����&

*
*

*

10.8.1 Indexer overloading

The indexer overload resolution rules are described in §7.4.2.

10.9 Operators
An operator is a member that defines the meaning of an expression operator that can be applied to instances of
the class. Operators are declared using operator-declarations:

C# LANGUAGE SPECIFICATION

254 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

operator-declaration:
attributesopt operator-modifiers operator-declarator operator-body

operator-modifiers:
operator-modifier
operator-modifiers operator-modifier

operator-modifier:
������

�
�
��

��
���

operator-declarator:
unary-operator-declarator
binary-operator-declarator
conversion-operator-declarator

unary-operator-declarator:
type �����
�� overloadable-unary-operator ' type identifier (

overloadable-unary-operator: one of
4"""5"""C""">"""44"""55"""
���"""�����

binary-operator-declarator:
type �����
�� overloadable-binary-operator ' type identifier type identifier (

overloadable-binary-operator: one of
4"""5"""?"""<"""@"""D"""E"""F"""AA"""BB"""))"""C)"""B"""A"""B)"""A)

conversion-operator-declarator:
�������
 �����
�� type ' type identifier (
�������
 �����
�� type ' type identifier (

operator-body:
block
&

There are three categories of overloadable operators: Unary operators (§10.9.1), binary operators (§10.9.2), and
conversion operators (§10.9.3).

When an operator declaration includes an ��
��� modifier, the operator is said to be an external operator.
Because an external operator provides no actual implementation, its operator-body consists of a semi-colon. For
all other operators, the operator-body consists of a block, which specifies the statements to execute when the
operator is invoked. The block of an operator must conform to the rules for value-returning methods described in
§10.5.8.

The following rules apply to all operator declarations:

• An operator declaration must include both a ������ and a �
�
�� modifier.

• The parameter(s) of an operator must be value parameters. It is a compile-time error for an operator
declaration to specify ��� or ��
 parameters.

• The signature of an operator (§10.9.1, §10.9.2, §10.9.3) must differ from the signatures of all other operators
declared in the same class.

• All types referenced in an operator declaration must be at least as accessible as the operator itself (§3.5.4).

• It is a compile-time error for the same modifier to appear multiple times in an operator declaration.

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 255

Each operator category imposes additional restrictions, as described in the following sections.

Like other members, operators declared in a base class are inherited by derived classes. Because operator
declarations always require the class or struct in which the operator is declared to participate in the signature of
the operator, it is not possible for an operator declared in a derived class to hide an operator declared in a base
class. Thus, the ��� modifier is never required, and therefore never permitted, in an operator declaration.

Additional information on unary and binary operators can be found in §7.2.

Additional information on conversion operators can be found in §6.4.

10.9.1 Unary operators

The following rules apply to unary operator declarations, where ! denotes the class or struct type that contains
the operator declaration:

• A unary 4, 5, C, or > operator must take a single parameter of type ! and can return any type.

• A unary 44 or 55 operator must take a single parameter of type ! and must return type !.

• A unary
��� or ����� operator must take a single parameter of type ! and must return type ����.

The signature of a unary operator consists of the operator token (4, 5, C, >, 44, 55,
���, or �����) and the
type of the single formal parameter. The return type is not part of a unary operator’s signature, nor is the name
of the formal parameter.

The
��� and ����� unary operators require pair-wise declaration. A compile-time error occurs if a class
declares one of these operators without also declaring the other. The
��� and ����� operators are described
further in §7.16.

The following example shows an implementation and subsequent usage of operator++ for an integer vector
class:

�����"3�
J��
��
%

������"��
":���
�"%"			"* <<"����5����"������
�

������"��
"
������
"������"%"			"* <<"����5���
�"�������

������"3�
J��
��'��
"���
��:���
�("%"			"*

������"�
�
��"3�
J��
��"�����
��44'3�
J��
��"��("%
3�
J��
��"
���")"���"3�
J��
��'��	:���
�(&
���"'��
"�")"
&"�"A"��	:���
�&"44�(

������")"�����"4"�&
��
���"
���&

*
*

�����"!��

%

������"�
�
��"����"R���'("%
3�
J��
��"���")"���"3�
J��
��'S(& <<"���
��"��"S�

3�
J��
��"��+&

��+")"���44& <<"��+"���
����"S�
 "���"���
����"S��
��+")"44���& <<"��+"���
����"S�+ "���"���
����"S�+

*

Note that the operator returns the value produced by adding 1 to the operand, just like the postfix increment and
decrement operators (§7.5.9), and the prefix increment and decrement operators (§7.6.5). Unlike in C++, this
method need not, and, in fact, must not, modify the value of its operand directly.

C# LANGUAGE SPECIFICATION

256 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

10.9.2 Binary operators

A binary operator must take two parameters, at least one of which must have the class or struct type in which the
operator is declared. A binary operator can return any type.

The signature of a binary operator consists of the operator token (4, 5, ?, <, @, D, E, F, AA, BB,)), C), B, A, B),
or A)) and the types of the two formal parameters. The return type and names of the formal parameters are not
part of a binary operator’s signature.

Certain binary operators require pair-wise declaration. For every declaration of either operator of a pair, there
must be a matching declaration of the other operator of the pair. Two operator declarations match when they
have the same return type and the same type for each parameter. The following operators require pair-wise
declaration:

• �����
��)) and �����
�� C)

• �����
�� B and �����
�� A

• �����
�� B) and �����
�� A)

10.9.3 Conversion operators

A conversion operator declaration introduces a user-defined conversion (§6.4) which augments the pre-defined
implicit and explicit conversions.

A conversion operator declaration that includes the �������
 keyword introduces a user-defined implicit
conversion. Implicit conversions can occur in a variety of situations, including function member invocations,
cast expressions, and assignments. This is described further in §6.1.

A conversion operator declaration that includes the �������
 keyword introduces a user-defined explicit
conversion. Explicit conversions can occur in cast expressions, and are described further in §6.2.

A conversion operator converts from a source type, indicated by the parameter type of the conversion operator,
to a target type, indicated by the return type of the conversion operator. A class or struct is permitted to declare a
conversion from a source type � to a target type ! provided all of the following are true:

• � and ! are different types.

• Either � or ! is the class or struct type in which the operator declaration takes place.

• Neither � nor ! is �����
"or an interface-type.

• ! is not a base class of �, and � is not a base class of !.

From the second rule it follows that a conversion operator must convert either to or from the class or struct type
in which the operator is declared. For example, it is possible for a class or struct type - to define a conversion
from - to ��
 and from ��
 to -, but not from ��
 to ����.

It is not possible to redefine a pre-defined conversion. Thus, conversion operators are not allowed to convert
from or to �����
 because implicit and explicit conversions already exist between �����
 and all other types.
Likewise, neither the source nor the target types of a conversion can be a base type of the other, since a
conversion would then already exist.

User-defined conversions are not allowed to convert from or to interface-types. This restriction in particular
ensures that no user-defined transformations occur when converting to an interface-type, and that a conversion
to an interface-type succeeds only if the object being converted actually implements the specified interface-type.

The signature of a conversion operator consists of the source type and the target type. (Note that this is the only
form of member for which the return type participates in the signature.) The �������
 or �������

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 257

classification of a conversion operator is not part of the operator’s signature. Thus, a class or struct cannot
declare both an �������
 and an �������
 conversion operator with the same source and target types.

In general, user-defined implicit conversions should be designed to never throw exceptions and never lose
information. If a user-defined conversion can give rise to exceptions (for example, because the source argument
is out of range) or loss of information (such as discarding high-order bits), then that conversion should be
defined as an explicit conversion.

In the example

�����"���
��&

������"�
���
"I���

%

��
�"�����&

������"I���
'��
�"�����("%
��"'�����"A"
"EE"�����"B"W("
����"���"6������
�����
���'(&

���	�����")"�����&

*

������"�
�
��"�������
"�����
��"��
�'I���
"�("%
��
���"�	�����&

*

������"�
�
��"�������
"�����
��"I���
'��
�"�("%
��
���"���"I���
'�(&

*
*

the conversion from I���
 to ��
� is implicit because it never throws exceptions or loses information, but the
conversion from ��
� to I���
 is explicit since I���
 can only represent a subset of the possible values of a
��
�.

10.10 Instance constructors
An instance constructor is a member that implements the actions required to initialize an instance of a class.
Instance constructors are declared using constructor-declarations:

constructor-declaration:
attributesopt constructor-modifiersopt constructor-declarator constructor-body

constructor-modifiers:
constructor-modifier
constructor-modifiers constructor-modifier

constructor-modifier:
������

���
��
��

��
�����

�����
�

��
���

constructor-declarator:
identifier ' formal-parameter-listopt (constructor-initializeropt

constructor-initializer:
; ���� ' argument-listopt (
;
��� ' argument-listopt (

C# LANGUAGE SPECIFICATION

258 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

constructor-body:
block
&

A constructor-declaration may include a set of attributes (§17), a valid combination of the four access modifiers
(§10.2.3), and an ��
��� (§10.5.7) modifier. A constructor declaration is not permitted to include the same
modifier multiple times.

The identifier of a constructor-declarator must name the class in which the constructor is declared. If any other
name is specified, a compile-time error occurs.

The optional formal-parameter-list of an instance constructor is subject to the same rules as the formal-
parameter-list of a method (§10.5). The formal parameter list defines the signature (§3.6) of an instance
constructor and governs the process whereby overload resolution (§7.4.2) selects a particular instance
constructor in an invocation.

Each of the types referenced in the formal-parameter-list of an instance constructor must be at least as
accessible as the constructor itself (§3.5.4).

The optional constructor-initializer specifies another instance constructor to invoke before executing the
statements given in the constructor-body of this instance constructor. This is described further in §10.10.1.

When a constructor declaration includes an ��
��� modifier, the constructor is said to be an external
constructor. Because an external constructor declaration provides no actual implementation, its constructor-
body consists of a semicolon. For all other constructors, the constructor-body consists of a block which specifies
the statements to initialize a new instance of the class. This corresponds exactly to the block of an instance
method with a ���� return type (§10.5.8).

Instance constructors are not inherited. Thus, a class has no instance constructors other than those actually
declared in the class. If a class contains no instance constructor declarations, a default instance constructor is
automatically provided (§10.10.4).

Instance constructors are invoked by object-creation-expressions (§7.5.10.1) and through constructor-
initializers.

10.10.1 Constructor initializers

All instance constructors (except those for class �����
) implicitly include an invocation of another instance
constructor immediately before the constructor-body. The constructor to implicitly invoke is determined by the
constructor-initializer:

• A instance constructor initializer of the form ����'argument-listopt(causes an instance constructor from
the direct base class to be invoked. The constructor is selected using the argument-list and overload
resolution rules of §7.4.2. The set of candidate instance constructors consists of all accessible instance
constructors declared in the direct base class. If the set is empty, or if a single best instance constructor
cannot be identified, a compile-time error occurs.

• An instance constructor initializer of the form
���'argument-listopt(causes an instance constructor from
the class itself to be invoked. The constructor is selected using the argument-list and overload resolution
rules of §7.4.2. The set of candidate instance constructors consists of all accessible instance constructors
declared in the class itself. If the set is empty, or if a single best instance constructor cannot be identified, a
compile-time error occurs. If an instance constructor declaration includes a constructor initializer that
invokes the constructor itself, a compile-time error occurs.

If an instance constructor has no instance constructor initializer, an instance constructor initializer of the form
����'(is implicitly provided. Thus, an instance constructor declaration of the form

-'			("%			*

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 259

is equivalent to

-'			(;"����'("%			*

The scope of the parameters given by the formal-parameter-list of an instance constructor declaration includes
the instance constructor initializer of that declaration. Thus, an instance constructor initializer is permitted to
access the parameters of the instance constructor. For example:

�����"6
%

������"6'��
"� "��
"�("%*
*

�����"$;"6
%

������"$'��
"� "��
"�(;"����'�"4"� "�"5"�("%*
*

An instance constructor initializer cannot access the instance being created. Therefore it is a compile-time error
to reference
��� in an argument expression of the instance constructor initializer, as it is a compile-time error
for an argument expression to reference any instance member through a simple-name.

10.10.2 Instance variable initiali zers

When an instance constructor has no instance constructor initializer, or when it has an instance constructor
initializer of the form ����'			(, it implicitly performs the initializations specified by the variable-initializers
of the instance fields declared in the class. This corresponds to a sequence of assignments that are executed
immediately upon entry to the instance constructor and before the implicit invocation of the direct base class
instance constructor. The variable initializers are executed in the textual order in which they appear in the class
declaration.

10.10.3 Constructor execution

Variable initializers are transformed into assignment statements, and these assignment statements are executed
before the invocation of the base class instance constructor. This ordering ensures that all instance fields are
initialized by their variable initializers before any statements that have access to that instance are executed.

In the example

�����"���
��&

�����"6
%

������"6'("%
0���
7�����'(&

*

������"���
���"����"0���
7�����'("%*

*

�����"$;"6
%

��
"�")"�&
��
"�&

������"$'("%
�")"5�&

*

������"��������"����"0���
7�����'("%
-������	.��
�:���'/�")"%
* "�")"%�*/ "� "�(&

*
*

C# LANGUAGE SPECIFICATION

260 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

�����"!
%

�
�
��"����"R���'("%
$"�")"���"$'(&

*
*

the following output is produced:

�")"� "�")"

The value of � is 1 because the variable initializer is executed before the base class instance constructor is
invoked. However, the value of � is 0 (the default value of an ��
) because the assignment to � is not executed
until after the base class constructor returns.

It is useful to think of instance variable initializers and constructor initializers as statements that are
automatically inserted before the constructor-body of an instance constructor. The example

�����"���
��&
�����"���
��	-�����
����&

�����"6
%

��
"�")"� "�")"5� "����
&

������"6'("%
����
")"
&

*

������"6'��
"�("%
����
")"�&

*
*

�����"$;"6
%

������"�U�
+")"R�
�	�U�
'+	
(&
6����:��
"�
���")"���"6����:��
'�

(&
��
"���&

������"$'(;"
���'�

("%
�
���	6��'/������
/(&

*

������"$'��
"�(;"����'�"M"�("%
���")"�&

*
*

contains several variable initializers and also contains constructor initializers of both forms (���� and
���).
The example corresponds to the code shown below, where each comment indicates an automatically inserted
statement (the syntax used for the automatically inserted constructor invocations isn’t valid, but merely serves to
illustrate the mechanism).

�����"���
��	-�����
����&

�����"6
%

��
"� "� "����
&

������"6'("%
�")"�& <<"J�������"���
����P��
�")"5�& <<"J�������"���
����P��
�����
'(& <<"3���8�"�����
'("����
���
��
����
")"
&

*

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 261

������"6'��
"�("%
�")"�& <<"J�������"���
����P��
�")"5�& <<"J�������"���
����P��
�����
'(& <<"3���8�"�����
'("����
���
��
����
")"�&

*
*

�����"$;"6
%

������"�U�
+&
6����:��
"�
���&
��
"���&

������"$'(;"
���'�

("%
$'�

(& <<"3���8�"$'��
("����
���
��
�
���	6��'/������
/(&

*

������"$'��
"�(;"����'�"M"�("%
�U�
+")"R�
�	�U�
'+	
(& <<"J�������"���
����P��
�
���")"���"6����:��
'�

(& <<"J�������"���
����P��
6'�"M"�(& <<"3���8�"6'��
("����
���
��
���")"�&

*
*

10.10.4 Default constructors

If a class contains no instance constructor declarations, a default instance constructor is automatically provided.
The default constructor simply invokes the parameterless constructor of the direct base class. If the direct base
class does not have an accessible parameterless instance constructor, a compile-time error occurs. If the class is
abstract then the declared accessibility for the default constructor is protected. Otherwise, the declared
accessibility for the default constructor is public. Thus, the default constructor is always of the form

���
��
��"-'(;"����'("%*

or

������"-'(;"����'("%*

where - is the name of the class.

In the example

�����"R������
%

�����
"������&
�
����"
��
&

*

a default constructor is provided because the class contains no instance constructor declarations. Thus, the
example is precisely equivalent to

�����"R������
%

�����
"������&
�
����"
��
&

������"R������'(;"����'("%*
*

C# LANGUAGE SPECIFICATION

262 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

10.10.5 Private constructors

When a class declares only private instance constructors, it is not possible for other classes to derive from the
class or create instances of the class (an exception being classes nested within the class). Private instance
constructors are commonly used in classes that contain only static members. For example:

������"�����"!���
%

�����
�"!���'("%* <<"0�����
"���
��
��
���

������"����
"������"03")",	�S�=W+X=,=YWVW,+,YSX&

������"�
�
��"������"���'������"�("%			*
������"�
�
��"������"-��'������"�("%			*
������"�
�
��"������"!��'������"�("%			*

*

The !��� class groups related methods and constants, but is not intended to be instantiated. Therefore it
declares a single empty private instance constructor. At least one instance constructor must be declared to
suppress the automatic generation of a default constructor.

10.10.6 Optional instance constructor parameters

The
���'			(form of an instance constructor initializer is commonly used in conjunction with overloading
to implement optional instance constructor parameters. In the example

�����"!��

%

������"!��
'(;"
���'
 "
 "����("%*

������"!��
'��
"� "��
"�(;"
���'� "� "����("%*

������"!��
'��
"� "��
"� "�
����"�("%
<<"6�
���"����
���
��"��������
�
���

*
*

the first two instance constructors merely provide the default values for the missing arguments. Both use a

���'			(constructor initializer to invoke the third instance constructor, which actually does the work of
initializing the new instance. The effect is that of optional instance constructor parameters:

!��
"
�")"���"!��
'(& <<"����"��"!��
'
 "
 "����(
!��
"
+")"���"!��
'= "�
(& <<"����"��"!��
'= "�
 "����(
!��
"
,")"���"!��
'= "+
 "/O����/(&

10.11 Static constructors
A static constructor is a member that implements the actions required to initialize a class. Static constructors are
declared using static-constructor-declarations:

static-constructor-declaration:
attributesopt static-constructor-modifiers identifier ' (static-constructor-body

static-constructor-body:
block
&

static-constructor-modifiers:
��
���opt"�
�
��

�
�
��"��
���opt

A static-constructor-declaration may include a set of attributes (§17) and an ��
��� (§10.5.7) modifier.

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 263

The identifier of a static-constructor-declaration must name the class in which the static constructor is declared.
If any other name is specified, a compile-time error occurs.

When a static constructor declaration includes an ��
��� modifier, the static constructor is said to be an
external static constructor. Because an external static constructor declaration provides no actual
implementation, its static-constructor-body consists of a semicolon. For all other static constructor declarations,
the static-constructor-body consists of a block which specifies the statements to execute in order to initialize the
class. This corresponds exactly to the method-body of a static method with a ���� return type (§10.5.8).

Static constructors are not inherited, and cannot be called directly.

The static constructor for a class executes at most once in a given application domain. The execution of a static
constructor is triggered by the first of the following events to occur within an application domain:

• An instance of the class is created.

• Any of the static members of the class are referenced.

If a class contains the R��� method (§3.1) in which execution begins, the static constructor for that class
executes before the R��� method is called. If a class contains any static fields with initializers, those initializers
are executed in textual order immediately prior to executing the static constructor.

The example

�����"���
��&

�����"!��

%

�
�
��"����"R���'("%
6	7'(&
$	7'(&

*
*

�����"6
%

�
�
��"6'("%
-������	.��
�:���'/3��
"6/(&

*
������"�
�
��"����"7'("%

-������	.��
�:���'/6	7/(&
*

*

�����"$
%

�
�
��"$'("%
-������	.��
�:���'/3��
"$/(&

*
������"�
�
��"����"7'("%

-������	.��
�:���'/$	7/(&
*

*

must produce the output:

3��
"6
6	7
3��
"$
$	7

because the execution of 6's static constructor is triggered by the call to 6	7, and the execution of $'s static
constructor is triggered by the call to $	7.

C# LANGUAGE SPECIFICATION

264 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

It is possible to construct circular dependencies that allow static fields with variable initializers to be observed in
their default value state.

The example

�����"���
��&

�����"6
%

������"�
�
��"��
"K&
�
�
��"6'("%"K")"$	Q"4"�&*

*

�����"$
%

������"�
�
��"��
"Q")"6	K"4"�&
�
�
��"$'("%*
�
�
��"����"R���'("%

-������	.��
�:���'/K")"%
* "Q")"%�*/ "6	K "$	Q(&
*

*

produces the output

K")"� "Q")"+

To execute the R��� method, the system first runs the initializer for $	Q, prior to class $'s static constructor.
Q's initializer causes 6's static constructor to be run because the value of 6	K is referenced. The static
constructor of 6 in turn proceeds to compute the value of K, and in doing so fetches the default value of Q, which
is zero. 6	K is thus initialized to 1. The process of running 6's static field initializers and static constructor then
completes, returning to the calculation of the initial value of Q, the result of which becomes

10.12 Destructors
A destructor is a member that implements the actions required to destruct an instance of a class. A destructors is
declared using a destructor-declaration:

destructor-declaration:
attributesopt ��
���opt > identifier ' (destructor-body

destructor-body:
block
&

A destructor-declaration may include a set of attributes (§17) and an ��
��� modifier.

The identifier of a destructor-declarator must name the class in which the destructor is declared. If any other
name is specified, a compile-time error occurs.

When a destructor declaration includes an ��
��� modifier, the destructor is said to be an external destructor.
Because an external destructor declaration provides no actual implementation, its destructor-body consists of a
semicolon. For all other destructors, the destructor-body consists of a block which specifies the statements to
execute in order to destruct an instance of the class. A destructor-body corresponds exactly to the method-body
of an instance method with a ���� return type (§10.5.8).

Destructors are not inherited. Thus, a class has no destructors other than the one which may be declared in it.

Since a destructor is required to have no parameters, it cannot be overloaded. Thus, a class can have, at most,
one destructor.

Destructors are invoked automatically, and cannot be invoked explicitly. An instance becomes eligible for
destruction when it is no longer possible for any code to use the instance. Execution of the destructor for the

Chapter 1017 ClassesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 265

instance may occur at any time after the instance becomes eligible for destruction. When an instance is
destructed, the destructors in its inheritance chain are called, in order, from most derived to least derived. A
destructor may be executed on any thread. For further discussion of the rules that govern when and how a
destructor is executed, see §3.9.

The output of the example

�����"���
��&

�����"6
%

>6'("%
-������	.��
�:���'/6G�"���
���
��/(&

*
*

�����"$;"6
%

>$'("%
-������	.��
�:���'/$G�"���
���
��/(&

*
*

�����"!��

%
"""�
�
��"����"R���'("%

$"�")"���"$'(&
�")"����&
H-	-�����
'(&
H-	.��
7��0������7�����P���'(&

"""*
*

is

$^�"���
���
��
6^�"���
���
��

since destructors in an inheritance chain are called in order, from most derived to least derived.

Destructors are implemented by overriding the virtual method 7�����P� on ���
��	�����
. C# programs
are not permitted to override this method or call it (or overrides of it) directly. For instance, the program

�����"6
%

��������"���
��
��"����"7�����P�'("%* <<"�����

������"����"7'("%

���	7�����P�'(& <<"�����

*
*

produces two compile-time errors. The compiler behaves as if this method, and overrides of it, do not exist at
all. Thus, this program:

�����"6
%

����"7�����P�'("%* <<"�����

��
*

is valid, and the method shown hides ���
��	�����
’s 7�����P� method.

For a discussion of the behavior when an exception is thrown from a destructor, see §16.3.

Chapter 1117 StructsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 267

11. Structs

Structs are similar to classes in that they represent data structures that can contain data members and function
members. Unlike classes, structs are value types and do not require heap allocation. A variable of a struct type
directly contains the data of the struct, whereas a variable of a class type contains a reference to the data, the
latter known as an object.

Structs are particularly useful for small data structures that have value semantics. Complex numbers, points in a
coordinate system, or key-value pairs in a dictionary are all good examples of structs. Key to these data
structures is that they have few data members, that they do not require use of inheritance or referential identity,
and that they can be conveniently implemented using value semantics where assignment copies the value instead
of the reference.

As described in §4.1.3, the simple types provided by C#, such as ��
, ������, and ����, are in fact all struct
types. Just as these predefined types are structs, so it is possible to use structs and operator overloading to
implement new “primitive” types in the C# language. Two examples of such types are given in at the end of this
chapter (§11.3.1011.4).

11.1 Struct declarations
A struct-declaration is a type-declaration (§9.5) that declares a new struct:

struct-declaration:
attributesopt struct-modifiersopt �
���
 identifier struct-interfacesopt struct-body &opt

A struct-declaration consists of an optional set of attributes (§17), followed by an optional set of struct-
modifiers (§11.1.1), followed by the keyword �
���
 and an identifier that names the struct, followed by an
optional struct-interfaces specification (§11.1.2), followed by a struct-body (§11.1.3), optionally followed by a
semicolon.

11.1.1 Struct modifiers

A struct-declaration may optionally include a sequence of struct modifiers:

struct-modifiers:
struct-modifier
struct-modifiers struct-modifier

struct-modifier:
���

������

���
��
��

��
�����

�����
�

It is a compile-time error for the same modifier to appear multiple times in a struct declaration.

The modifiers of a struct declaration have the same meaning as those of a class declaration (§10.1.1).

C# LANGUAGE SPECIFICATION

268 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

11.1.2 Struct interfaces

A struct declaration may include a struct-interfaces specification, in which case the struct is said to implement
the given interface types.

struct-interfaces:
; interface-type-list

Interface implementations are discussed further in §13.4.

11.1.3 Struct body

The struct-body of a struct defines the members of the struct.

struct-body:
% struct-member-declarationsopt *

11.2 Struct members
The members of a struct consist of the members introduced by its struct-member-declarations and the members
inherited from ���
��	J����!���, which, in turn, inherits from �����
.

struct-member-declarations:
struct-member-declaration
struct-member-declarations struct-member-declaration

struct-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
static-constructor-declaration
type-declaration

Except for the differences noted in §11.3, the descriptions of class members provided in §10.2 through §10.11
apply to struct members as well.

11.3 Class and struct differences
Structs differ from classes in several important ways:

• Structs are value types (§11.3.1).

• All struct types implicitly inherit from class �����
 (§11.3.2).

• Assignment to a variable of a struct type creates a copy of the value being assigned (§11.3.3).

• The default value of a struct is the value produced by setting all value type fields to their default value and
all reference type fields to ���� (§11.3.4).

• Boxing and unboxing operations are used to convert between a struct type and �����
 (§11.3.5).

• The meaning of
��� is different for structs (§11.3.6).

• Instance field declarations for a struct are not permitted to include variable initializers (§11.3.7).

Chapter 1117 StructsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 269

• A struct is not permitted to declare a parameterless instance constructor (§11.3.8).

• A struct is not permitted to declare a destructor (§11.3.9).

11.3.1 Value semantics

Structs are value types (§4.1) and are said to have value semantics. Classes, on the other hand, are reference
types (§4.2) and are said to have reference semantics.

A variable of a struct type directly contains the data of the struct, whereas a variable of a class type contains a
reference to the data, the latter known as an object.

With classes, it is possible for two variables to reference the same object, and thus possible for operations on
one variable to affect the object referenced by the other variable. With structs, the variables each have their own
copy of the data, and it is not possible for operations on one to affect the other. Furthermore, because structs are
not reference types, it is not possible for values of a struct type to be ����.

Given the declaration

�
���
"0���

%

������"��
"� "�&

������"0���
'��
"� "��
"�("%

���	�")"�&

���	�")"�&

*
*

the code fragment

0���
"�")"���"0���
'�
 "�
(&
0���
"�")"�&
�	�")"�

&
���
��	-������	.��
�:���'�	�(&

outputs the value �
. The assignment of � to � creates a copy of the value, and � is thus unaffected by the
assignment to �	�. Had 0���
 instead been declared as a class, the output would be �

 because � and �
would reference the same object.

11.3.2 Inheritance

All struct types implicitly inherit from class �����
. A struct declaration may specify a list of implemented
interfaces, but it is not possible for a struct declaration to specify a base class.

Struct types are never abstract and are always implicitly sealed. The ���
���
 and ������ modifiers are
therefore not permitted in a struct declaration.

Since inheritance isn’t supported for structs, the declared accessibility of a struct member cannot be ���
��
��
or ���
��
�� ��
�����.

Function members in a struct cannot be ���
���
 or ���
���, and the �������� modifier is allowed only to
override methods inherited from the ���
��	J����!��� or �����
 type.

11.3.3 Assignment

Assignment to a variable of a struct type creates a copy of the value being assigned. This differs from
assignment to a variable of a class type, which copies the reference but not the object identified by the reference.

Similar to an assignment, when a struct is passed as a value parameter or returned as the result of a function
member, a copy of the struct is created. A struct may be passed by reference to a function member using a ���
or ��
 parameter.

C# LANGUAGE SPECIFICATION

270 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

When a property or indexer of a struct is the target of an assignment, the instance expression associated with the
property or indexer access must be classified as a variable. If the instance expression is classified as a value, a
compile-time error occurs. This is described in further detail in §7.13.1.

11.3.4 Default values

As described in §5.2, several kinds of variables are automatically initialized to their default value when they are
created. For variables of class types and other reference types, this default value is ����. However, since structs
are value types that cannot be ����, the default value of a struct is the value produced by setting all value type
fields to their default value and all reference type fields to ����.

Referring to the 0���
 struct declared above, the example

0���
��"���")"���"0���
��

�&

initializes each 0���
 in the array to the value produced by setting the � and � fields to zero.

The default value of a struct corresponds to the value returned by the default constructor of the struct (§4.1.1).
Unlike a class, a struct is not permitted to declare a parameterless instance constructor. Instead, every struct
implicitly has a parameterless instance constructor which always returns the value that results from “zeroing
out” the fields of the struct.

Structs should be designed to consider the default initialization state a valid state. In the example

�����"���
��&

�
���
"]��J����0���
%

�
����"8��&
�
����"�����&

������"]��J����0���'�
����"8�� "�
����"�����("%
��"'8��"))"����"EE"�����"))"����("
����"���"6������
�����
���'(&

���	8��")"8��&

���	�����")"�����&

*
*

the user-defined instance constructor protects against null values only where it is explicitly called. In cases
where a]��J����0��� variable is subject to default value initialization, the 8�� and ����� fields will be null,
and the struct must be prepared to handle this state.

11.3.5 Boxing and unboxing

A value of a class type can be converted to type �����
 or to an interface type that is implemented by the class
simply by treating the reference as another type at compile-time. Likewise, a value of type �����
 or a value of
an interface type can be converted back to a class type without changing the reference (but of course a run-time
type check is required in this case).

Since structs are not reference types, these operations are implemented differently for struct types. When a value
of a struct type is converted to type �����
 or to an interface type that is implemented by the struct, a boxing
operation takes place. Likewise, when a value of type �����
 or a value of an interface type is converted back
to a struct type, an unboxing operation takes place. A key difference from the same operations on class types is
that boxing and unboxing copies the struct value either into or out of the boxed instance. Thus, following a
boxing or unboxing operation, changes made to the unboxed struct are not reflected in the boxed struct.

For further details on boxing and unboxing, see §4.3.

Chapter 1117 StructsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 271

11.3.6 Meaning of this

Within an instance constructor or instance function member of a class,
��� is classified as a value. Thus, while

��� can be used to refer to the instance for which the function member was invoked, it is not possible to assign
to
��� in a function member of a class.

Within an instance constructor of a struct,
��� corresponds to an ��
 parameter of the struct type, and within
an instance function member of a struct,
��� corresponds to a ��� parameter of the struct type. In both cases,

��� is classified as a variable, and it is possible to modify the entire struct for which the function member was
invoked by assigning to
��� or by passing this as a ��� or ��
 parameter.

11.3.7 Field initializers

As described in §11.3.4, the default value of a struct consists of the value that results from setting all value type
fields to their default value and all reference type fields to ����. For this reason, a struct does not permit
instance field declarations to include variable initializers, and the following example produces compile-time
errors:

�
���
"0���

%

������"��
"�")"�&""<<"����� "���
����P��"��
"�����

��
������"��
"�")"�&""<<"����� "���
����P��"��
"�����

��

*

This restriction applies only to instance fields. Static fields of a struct are permitted to include variable
initializers.

11.3.8 Constructors

Unlike a class, a struct is not permitted to declare a parameterless instance constructor. Instead, every struct
implicitly has a parameterless instance constructor which always returns the value that results from setting all
value type fields to their default value and all reference type fields to null (§4.1.1).

A struct instance constructor is not permitted to include a constructor initializer of the form ����'			(.

The
��� variable of a struct instance constructor corresponds to an ��
 parameter of the struct type, and
similar to an ��
 parameter,
��� must be definitely assigned (§5.3) at every location where the instance
constructor returns.

A struct can declare instance constructors having parameters. In the example

�
���
"0���

%

��
"� "�&

������"0���
'��
"� "��
"�("%

���	�")"�&

���	�")"�&

*
*

the struct 0���
 declares a instance constructor with two ��
 parameters. Given this declaration, the statements

0���
"��")"���"0���
'(&

0���
"�+")"���"0���
'
 "
(&

both create a 0���
 with � and � initialized to zero.

11.3.9 Destructors

A struct is not permitted to declare a destructor.

C# LANGUAGE SPECIFICATION

272 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

11.3.10 Static Constructors

Static constructors for structs follow most of the same rules as for classes. The execution of a static constructor
for a struct is triggered by the first of the following events to occur within an application domain:

• Any of the instance members of the class are referenced.

• Any of the static members of the class are referenced.

• Any of the explicitly declared constructors of the struct is called.

[Note: Note that default values (§11.3.4) of struct types can be created without triggering the static constructor,
for example as an array element or by calling the default constructor. end note]

11.4 Struct examples
Struct examples are provided in the following sections.

11.4.1 Database integer type

The I$3�
 struct below implements an integer type that can represent the complete set of values of the ��

type, plus an additional state that indicates an unknown value. A type with these characteristics is commonly
used in databases.

�����"���
��&

������"�
���
"I$3�

%

<<"!��"1���"������"��������
�"��"��8����"I$3�
"�����	

������"�
�
��"��������"I$3�
"1���")"���"I$3�
'(&

<<".���"
��"�������"�����"��"
��� "
���"I$3�
"��������
�"�"8����"�����
<<"�����"��"�
����"��"
��"�����"�����	".���"
��"�������"�����"��"�����
<<"
���"I$3�
"��������
�"��"��8����"����� "���"
��"�����"�����"��"
	

��
"�����&
����"�������&

<<"0����
�"���
����"����
���
��	"-���
��"�"I$3�
"��
�"�"8����"�����	

I$3�
'��
"�����("%

���	�����")"�����&

���	�������")"
���&

*

<<"!��"3�1���"������
�"��"
���"��"
���"I$3�
"��������
�"��"��8����"�����	

������"����"3�1���"%"��
"%"��
���"C�������&"*"*

<<"!��"J����"������
�"��"
��"8����"�����"��"
���"I$3�
 "��"
"��"
���
<<"I$3�
"��������
�"��"��8����"�����	

������"��
"J����"%"��
"%"��
���"�����&"*"*

<<"3������
"����������"����"��
"
�"I$3�
	

������"�
�
��"�������
"�����
��"I$3�
'��
"�("%
��
���"���"I$3�
'�(&

*

<<"�������
"����������"����"I$3�
"
�"��
	"!�����"��"�����
���"��"
��
<<"�����"I$3�
"��������
�"��"��8����"�����	

������"�
�
��"�������
"�����
��"��
'I$3�
"�("%
��"'C�	�������("
����"���"3�����������
��������
���'(&
��
���"�	�����&

*

Chapter 1117 StructsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 273

������"�
�
��"I$3�
"�����
��"4'I$3�
"�("%
��
���"�&

*

������"�
�
��"I$3�
"�����
��"5'I$3�
"�("%
��
���"�	�������N"5�	�����;"1���&

*

������"�
�
��"I$3�
"�����
��"4'I$3�
"� "I$3�
"�("%
��
���"�	�������"DD"�	�������N"�	�����"4"�	�����;"1���&

*

������"�
�
��"I$3�
"�����
��"5'I$3�
"� "I$3�
"�("%
��
���"�	�������"DD"�	�������N"�	�����"5"�	�����;"1���&

*

������"�
�
��"I$3�
"�����
��"?'I$3�
"� "I$3�
"�("%
��
���"�	�������"DD"�	�������N"�	�����"?"�	�����;"1���&

*

������"�
�
��"I$3�
"�����
��"<'I$3�
"� "I$3�
"�("%
��
���"�	�������"DD"�	�������N"�	�����"<"�	�����;"1���&

*

������"�
�
��"I$3�
"�����
��"@'I$3�
"� "I$3�
"�("%
��
���"�	�������"DD"�	�������N"�	�����"@"�	�����;"1���&

*

������"�
�
��"I$$���"�����
��"))'I$3�
"� "I$3�
"�("%
��
���"�	�������"DD"�	�������N"�	�����"))"�	�����;"I$$���	1���&

*

������"�
�
��"I$$���"�����
��"C)'I$3�
"� "I$3�
"�("%
��
���"�	�������"DD"�	�������N"�	�����"C)"�	�����;"I$$���	1���&

*

������"�
�
��"I$$���"�����
��"B'I$3�
"� "I$3�
"�("%
��
���"�	�������"DD"�	�������N"�	�����"B"�	�����;"I$$���	1���&

*

������"�
�
��"I$$���"�����
��"A'I$3�
"� "I$3�
"�("%
��
���"�	�������"DD"�	�������N"�	�����"A"�	�����;"I$$���	1���&

*

������"�
�
��"I$$���"�����
��"B)'I$3�
"� "I$3�
"�("%
��
���"�	�������"DD"�	�������N"�	�����"B)"�	�����;"I$$���	1���&

*

������"�
�
��"I$$���"�����
��"A)'I$3�
"� "I$3�
"�("%
��
���"�	�������"DD"�	�������N"�	�����"A)"�	�����;"I$$���	1���&

*

������"��������"����"�U����'�����
"�("%

��"%

��
���"'����("'
���"))"'I$3�
("�(&
*
��
��"%

��
���"�����&
*

*

������"��������"��
"H�
O���-���'("%
��"'�������(

��
���"�����&
����

��
���"
&
*

C# LANGUAGE SPECIFICATION

274 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

������"��������"�
����"!��
����'("%
��"'�������(

��
���"�����	!��
����'(&
����

��
���"/I$3�
	1���/&
**

11.4.2 Database boolean type

The I$$��� struct below implements a three-valued logical type. The possible values of this type are
I$$���	!���, I$$���	7����, and I$$���	1���, where the 1��� member indicates an unknown value.
Such three-valued logical types are commonly used in databases.

�����"���
��&

������"�
���
"I$$���
%

<<"!��"
����"��������"I$$���"������	

������"�
�
��"��������"I$$���"1���")"���"I$$���'
(&
������"�
�
��"��������"I$$���"7����")"���"I$$���'5�(&
������"�
�
��"��������"I$$���"!���")"���"I$$���'�(&

<<"0����
�"�����"
��
"�
����"M� "
 "�"���"7���� "1��� "!���	

���
�"�����&

<<"0����
�"���
����"����
���
��	"!��"�����"������
��"���
"��"M� "
 "��"�	

I$$���'��
"�����("%

���	�����")"'���
�(�����&

*

<<"0�����
���"
�"�������"
��"�����"��"�"I$$���	"2�
���"
���"��"
���
<<"I$$���"���"
��"�����"����� "�����"�
�������	

������"����"3�1���"%"��
"%"��
���"�����"))"
&"*"*

������"����"3�7����"%"��
"%"��
���"�����"A"
&"*"*

������"����"3�!���"%"��
"%"��
���"�����"B"
&"*"*

<<"3������
"����������"����"����"
�"I$$���	"R���"
���"
�"I$$���	!���"���
<<"�����"
�"I$$���	7����	

������"�
�
��"�������
"�����
��"I$$���'����"�("%
��
���"�N"!���;"7����&

*

<<"�������
"����������"����"I$$���"
�"����	"!�����"��"�����
���"��"
��
<<"�����"I$$���"��"1��� "�
�������"��
����"
���"��"�����	

������"�
�
��"�������
"�����
��"����'I$$���"�("%
��"'�	�����"))"
("
����"���"3�����������
��������
���'(&
��
���"�	�����"B"
&

*

<<"�U����
�"�����
��	"2�
����"1���"��"��
���"�������"��"1��� "�
�������
<<"��
����"!���"��"7����	

������"�
�
��"I$$���"�����
��"))'I$$���"� "I$$���"�("%
��"'�	�����"))"
"EE"�	�����"))"
("��
���"1���&
��
���"�	�����"))"�	�����N"!���;"7����&

*

<<"3��U����
�"�����
��	"2�
����"1���"��"��
���"�������"��"1��� "�
�������
<<"��
����"!���"��"7����	

Chapter 1117 StructsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 275

������"�
�
��"I$$���"�����
��"C)'I$$���"� "I$$���"�("%
��"'�	�����"))"
"EE"�	�����"))"
("��
���"1���&
��
���"�	�����"C)"�	�����N"!���;"7����&

*

<<":������"����
���"�����
��	"2�
����"!���"��"
��"�������"��"7���� "1���
<<"��"
��"�������"��"1��� "��"7����"��"
��"�������"��"!���	

������"�
�
��"I$$���"�����
��"C'I$$���"�("%
��
���"���"I$$���'5�	�����(&

*

<<":������"61I"�����
��	"2�
����"7����"��"��
���"�������"��"7����
<<"�
�������"1���"��"��
���"�������"��"1��� "�
�������"!���	

������"�
�
��"I$$���"�����
��"D'I$$���"� "I$$���"�("%
��
���"���"I$$���'�	�����"A"�	�����N"�	�����;"�	�����(&

*

<<":������"�2"�����
��	"2�
����"!���"��"��
���"�������"��"!��� "�
�������
<<"1���"��"��
���"�������"��"1��� "�
�������"7����	

������"�
�
��"I$$���"�����
��"E'I$$���"� "I$$���"�("%
��
���"���"I$$���'�	�����"B"�	�����N"�	�����;"�	�����(&

*

<<"I�����
���"
���"�����
��	"2�
����"
���"��"
��"�������"��"!��� "�����
<<"�
�������	

������"�
�
��"����"�����
��"
���'I$$���"�("%
��
���"�	�����"B"
&

*

<<"I�����
���"�����"�����
��	"2�
����"
���"��"
��"�������"��"7���� "�����
<<"�
�������	

������"�
�
��"����"�����
��"�����'I$$���"�("%
��
���"�	�����"A"
&

*

������"��������"����"�U����'�����
"�("%

��"%

��
���"'����("'
���"))"'I$$���("�(&
*
��
��"%

��
���"�����&
*

*

������"��������"��
"H�
O���-���'("%
��
���"�����&

*

������"��������"�
����"!��
����'("%
���
��"'�����("%

����"5�;
��
���"/I$$���	7����/&

����"
;
��
���"/I$$���	1���/&

����"�;
��
���"/I$$���	!���/&

������
;

����"���"3�����������
��������
���'(&

*
**

Chapter 1217 ArraysAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 277

12. Arrays

An array is a data structure that contains a number of variables which are accessed through computed indices.
The variables contained in an array, also called the elements of the array, are all of the same type, and this type
is called the element type of the array.

An array has a rank which determines the number of indices associated with each array element. The rank of an
array is also referred to as the dimensions of the array. An array with a rank of one is called a single-
dimensional array, and an array with a rank greater than one is called a multi-dimensional array. Multi-
dimensional arrays of specific sizes are often referred to by size, as two-dimensional arrays, three-dimensional
arrays, and so on.

Each dimension of an array has an associated length which is an integral number greater than or equal to zero.
The dimension lengths are not part of the type of the array, but rather are established when an instance of the
array type is created at run-time. The length of a dimension determines the valid range of indices for that
dimension: For a dimension of length 1, indices can range from
 to 1 M � inclusive. The total number of
elements in an array is the product of the lengths of each dimension in the array. If one or more of the
dimensions of an array have a length of zero, the array is said to be empty.

The element type of an array can be any type, including an array type.

12.1 Array types
An array type is written as a non-array-type followed by one or more rank-specifiers:

array-type:
non-array-type rank-specifiers

non-array-type:
type

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

rank-specifier:
� dim-separatorsopt �

dim-separators:

dim-separators

A non-array-type is any type that is not itself an array-type.

The rank of an array type is given by the leftmost rank-specifier in the array-type: A rank-specifier indicates
that the array is an array with a rank of one plus the number of “ ” tokens in the rank-specifier.

The element type of an array type is the type that results from deleting the leftmost rank-specifier:

• An array type of the form !�2� is an array with rank 2 and a non-array element type !.

• An array type of the form !�2��2��			�21� is an array with rank 2 and an element type !�2��			�21�.

C# LANGUAGE SPECIFICATION

278 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

In effect, the rank-specifiers are read from left to right before the final non-array element type. For example, the
type ��
��� �� � is a single-dimensional array of three-dimensional arrays of two-dimensional arrays of
��
.

At run-time, a value of an array type can be ���� or a reference to an instance of that array type.

12.1.1 The System.Array type

The ���
��	6���� type is the abstract base type of all array types. An implicit reference conversion (§6.1.4)
exists from any array type to ���
��	6����, and an explicit reference conversion (§6.2.3) exists from
���
��	6���� to any array type. Note that ���
��	6���� itself is not an array-type. Rather, it is a class-type
from which all array-types are derived.

At run-time, a value of type ���
��	6���� can be ���� or a reference to an instance of any array type.

12.2 Array creation
Array instances are created by array-creation-expressions (§7.5.10.2) or by field or local variable declarations
that include an array-initializer (§12.6).

When an array instance is created, the rank and length of each dimension are established and then remain
constant for the entire lifetime of the instance. In other words, it is not possible to change the rank of an existing
array instance, nor is it possible to resize its dimensions.

An array instance is always of an array type. The ���
��	6���� type is an abstract type that cannot be
instantiated.

Elements of arrays created by array-creation-expressions are always initialized to their default value (§5.2).

12.3 Array element access
Array elements are accessed using element-access expressions (§7.5.6.1) of the form 6�3� 3+ 			 31�,
where 6 is an expression of an array type and each 3K is an expression of type ��
, ���
, ����, �����, or of a
type that can be implicitly converted to one or more of these types. The result of an array element access is a
variable, namely the array element selected by the indices.

The elements of an array can be enumerated using a ������� statement (§8.8.4).

12.4 Array members
Every array type inherits the members declared by the ���
��	6���� type.

12.5 Array covariance
For any two reference-types 6 and $, if an implicit reference conversion (§6.1.4) or explicit reference conversion
(§6.2.3) exists from 6 to $, then the same reference conversion also exists from the array type 6�2� to the array
type $�2�, where 2 is any given rank-specifier (but the same for both array types). This relationship is known as
array covariance. Array covariance in particular means that a value of an array type 6�2� may actually be a
reference to an instance of an array type $�2�, provided an implicit reference conversion exists from $ to 6.

Because of array covariance, assignments to elements of reference type arrays include a run-time check which
ensures that the value being assigned to the array element is actually of a permitted type (§7.13.1). For example:

�����"!��

%

�
�
��"����"7���'�����
��"����� "��
"����� "��
"����
 "�����
"�����("%
���"'��
"�")"�����&"�"A"�����"4"����
&"�44("��������")"�����&

*

Chapter 1217 ArraysAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 279

�
�
��"����"R���'("%
�
������"�
�����")"���"�
������

�&
7���'�
����� "
 "�

 "/L��������/(&
7���'�
����� "
 "�
 "����(&
7���'�
����� "W
 "�
 "
(&

*
*

The assignment to �������� in the 7��� method implicitly includes a run-time check which ensures that the
object referenced by ����� is either ���� or an instance of a type that is compatible with the actual element
type of �����. In R���, the first two invocations of 7��� succeed, but the third invocation causes a
���
��	6����!���R����
�������
��� to be thrown upon executing the first assignment to ��������.
The exception occurs because a boxed ��
 cannot be stored in a �
���� array.

Array covariance specifically does not extend to arrays of value-types. For example, no conversion exists that
permits an ��
�� to be treated as an �����
��.

12.6 Array initializers
Array initializers may be specified in field declarations (§10.4), local variable declarations (§8.5.1), and array
creation expressions (§7.5.10.2):

array-initializer:
% variable-initializer-listopt *
% variable-initializer-list *

variable-initializer-list:
variable-initializer
variable-initializer-list variable-initializer

variable-initializer:
expression
array-initializer

An array initializer consists of a sequence of variable initializers, enclosed by “%”and “*” tokens and separated
by “ ” tokens. Each variable initializer is an expression or, in the case of a multi-dimensional array, a nested
array initializer.

The context in which an array initializer is used determines the type of the array being initialized. In an array
creation expression, the array type immediately precedes the initializer. In a field or variable declaration, the
array type is the type of the field or variable being declared. When an array initializer is used in a field or
variable declaration, such as:

��
��"���")"%
 "+ "S "X "Y*&

it is simply shorthand for an equivalent array creation expression:

��
��"���")"���"��
��"%
 "+ "S "X "Y*&

For a single-dimensional array, the array initializer must consist of a sequence of expressions that are
assignment compatible with the element type of the array. The expressions initialize array elements in increasing
order, starting with the element at index zero. The number of expressions in the array initializer determines the
length of the array instance being created. For example, the array initializer above creates an ��
�� instance of
length 5 and then initializes the instance with the following values:

��
�")"
&"����")"+&"��+�")"S&"��,�")"X&"��S�")"Y&

For a multi-dimensional array, the array initializer must have as many levels of nesting as there are dimensions
in the array. The outermost nesting level corresponds to the leftmost dimension and the innermost nesting level
corresponds to the rightmost dimension. The length of each dimension of the array is determined by the number

C# LANGUAGE SPECIFICATION

280 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

of elements at the corresponding nesting level in the array initializer. For each nested array initializer, the
number of elements must be the same as the other array initializers at the same level. The example:

��
� �"�")"%%
 "�* "%+ ",* "%S "=* "%X "V* "%Y "W**&

creates a two-dimensional array with a length of five for the leftmost dimension and a length of two for the
rightmost dimension:

��
� �"�")"���"��
�= "+�&

and then initializes the array instance with the following values:

��
 "
�")"
&"��
 "��")"�&
��� "
�")"+&"��� "��")",&
��+ "
�")"S&"��+ "��")"=&
��, "
�")"X&"��, "��")"V&
��S "
�")"Y&"��S "��")"W&

When an array creation expression includes both explicit dimension lengths and an array initializer, the lengths
must be constant expressions and the number of elements at each nesting level must match the corresponding
dimension length. Some examples:

��
"�")",&
��
��"�")"���"��
�,�"%
 "� "+*& <<"�]
��
��"�")"���"��
���"%
 "� "+*& <<"����� "�"��
"�"����
��

��
��"P")"���"��
�,�"%
 "� "+ ",*& <<"����� "����
�<���
����P��"�����
��

Here, the initializer for � results in a compile-time error because the dimension length expression is not a
constant, and the initializer for P results in a compile-time error because the length and the number of elements
in the initializer do not agree.

Chapter 1317 InterfacesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 281

13. Interfaces

An interface defines a contract. A class or struct that implements an interface must adhere to its contract. An
interface may inherit from multiple base interfaces, and a class or struct may implement multiple interfaces.

Interfaces can contain methods, properties, events, and indexers. The interface itself does not provide
implementations for the members that it defines. The interface merely specifies the members that must be
supplied by classes or interfaces that implement the interface.

13.1 Interface declarations
An interface-declaration is a type-declaration (§9.5) that declares a new interface type.

interface-declaration:
attributesopt interface-modifiersopt ��
������ identifier interface-baseopt interface-body &opt

An interface-declaration consists of an optional set of attributes (§17), followed by an optional set of interface-
modifiers (§13.1.1), followed by the keyword ��
������ and an identifier that names the interface, optionally
followed by an optional interface-base specification (§13.1.2), followed by a interface-body (§13.1.3),
optionally followed by a semicolon.

13.1.1 Interface modifiers

An interface-declaration may optionally include a sequence of interface modifiers:

interface-modifiers:
interface-modifier
interface-modifiers interface-modifier

interface-modifier:
���

������

���
��
��

��
�����

�����
�

It is a compile-time error for the same modifier to appear multiple times in an interface declaration.

The ��� modifier is only permitted on nested interfaces. It specifies that the interface hides an inherited member
by the same name, as described in §10.2.2.

The ������, ���
��
��, ��
�����, and �����
� modifiers control the accessibility of the interface.
Depending on the context in which the interface declaration occurs, only some of these modifiers may be
permitted (§3.5.1).

13.1.2 Base interfaces

An interface can inherit from zero or more interfaces, which are called the explicit base interfaces of the
interface. When an interface has more than zero explicit base interfaces, then in the declaration of the interface,
the interface identifier is followed by a colon and a comma separated list of base interface identifiers.

interface-base:
; interface-type-list

C# LANGUAGE SPECIFICATION

282 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

The explicit base interfaces of an interface must be at least as accessible as the interface itself (§3.5.4). For
example, it is a compile-time error to specify a �����
� or ��
����� interface in the interface-base of a
������ interface.

It is a compile-time error for an interface to directly or indirectly inherit from itself.

The base interfaces of an interface are the explicit base interfaces and their base interfaces. In other words, the
set of base interfaces is the complete transitive closure of the explicit base interfaces, their explicit base
interfaces, and so on. An interface inherits all members of its base interfaces. In the example

��
������"3-��
���
%

����"0���
'(&
*

��
������"3!��
$��;"3-��
���
%

����"��
!��
'�
����"
��
(&
*

��
������"3:��
$��;"3-��
���
%

����"��
3
���'�
������"�
���(&
*

��
������"3-����$��;"3!��
$�� "3:��
$��"%*

the base interfaces of 3-����$�� are 3-��
���, 3!��
$��, and 3:��
$��.

In other words, the 3-����$�� interface above inherits members ��
!��
 and ��
3
��� as well as 0���
.

A class or struct that implements an interface also implicitly implements all of the interface’s base interfaces.

13.1.3 Interface body

The interface-body of an interface defines the members of the interface.

interface-body:
% interface-member-declarationsopt *

13.2 Interface members
The members of an interface are the members inherited from the base interfaces and the members declared by
the interface itself.

interface-member-declarations:
interface-member-declaration
interface-member-declarations interface-member-declaration

interface-member-declaration:
interface-method-declaration
interface-property-declaration
interface-event-declaration
interface-indexer-declaration

An interface declaration may declare zero or more members. The members of an interface must be methods,
properties, events, or indexers. An interface cannot contain constants, fields, operators, instance constructors,
destructors, or types, nor can an interface contain static members of any kind.

All interface members implicitly have public access. It is a compile-time error for interface member declarations
to include any modifiers. In particular, it is a compile-time error for an interface member to include any of the

Chapter 1317 InterfacesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 283

following modifiers: ���
���
, ������, ���
��
��, ��
�����, �����
�, ���
���, ��������, or
�
�
��.

The example

������"������
�"����"�
����:��
����
'3�
����:��
"������(&

������"��
������"3�
����:��

%

����"6��'�
����"�(&

��
"-���
"%"��
&"*

����
"�
����:��
����
"-������&

�
����"
������
"������"%"��
&"��
&"*
*

declares an interface that contains one each of the possible kinds of members: A method, a property, an event,
and an indexer.

An interface-declaration creates a new declaration space (§3.3), and the interface-member-declarations
immediately contained by the interface-declaration introduce new members into this declaration space. The
following rules apply to interface-member-declarations:

• The name of a method must differ from the names of all properties and events declared in the same
interface. In addition, the signature (§3.6) of a method must differ from the signatures of all other methods
declared in the same interface.

• The name of a property or event must differ from the names of all other members declared in the same
interface.

• The signature of an indexer must differ from the signatures of all other indexers declared in the same
interface.

The inherited members of an interface are specifically not part of the declaration space of the interface. Thus, an
interface is allowed to declare a member with the same name or signature as an inherited member. When this
occurs, the derived interface member is said to hide the base interface member. Hiding an inherited member is
not considered an error, but it does cause the compiler to issue a warning. To suppress the warning, the
declaration of the derived interface member must include a ��� modifier to indicate that the derived member is
intended to hide the base member. This topic is discussed further in §3.7.1.2.

If a ��� modifier is included in a declaration that doesn’t hide an inherited member, a warning is issued to that
effect. This warning is suppressed by removing the ��� modifier.

13.2.1 Interface methods

Interface methods are declared using interface-method-declarations:

interface-method-declaration:
attributesopt ���opt return-type identifier ' formal-parameter-listopt (&

The attributes, return-type, identifier, and formal-parameter-list of an interface method declaration have the
same meaning as those of a method declaration in a class (§10.5). An interface method declaration is not
permitted to specify a method body, and the declaration therefore always ends with a semicolon.

13.2.2 Interface properties

Interface properties are declared using interface-property-declarations:

interface-property-declaration:
attributesopt ���opt type identifier % interface-accessors *

C# LANGUAGE SPECIFICATION

284 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

interface-accessors:
attributesopt ��
 &
attributesopt ��
 &
attributesopt ��
 & attributesopt ��
 &
attributesopt ��
 & attributesopt ��
 &

The attributes, type, and identifier of an interface property declaration have the same meaning as those of a
property declaration in a class (§10.6).

The accessors of an interface property declaration correspond to the accessors of a class property declaration
(§10.6.2), except that the accessor body must always be a semicolon. Thus, the accessors simply indicate
whether the property is read-write, read-only, or write-only.

13.2.3 Interface events

Interface events are declared using interface-event-declarations:

interface-event-declaration:
attributesopt ���opt ����
 type identifier &

The attributes, type, and identifier of an interface event declaration have the same meaning as those of an event
declaration in a class (§10.7).

13.2.4 Interface indexers

Interface indexers are declared using interface-indexer-declarations:

interface-indexer-declaration:
attributesopt ���opt type
��� � formal-parameter-list � % interface-accessors *

The attributes, type, and formal-parameter-list of an interface indexer declaration have the same meaning as
those of an indexer declaration in a class (§10.8).

The accessors of an interface indexer declaration correspond to the accessors of a class indexer declaration
(§10.8), except that the accessor body must always be a semicolon. Thus, the accessors simply indicate whether
the indexer is read-write, read-only, or write-only.

13.2.5 Interface member access

Interface members are accessed through member access (§7.5.4) and indexer access (§7.5.6.2) expressions of
the form 3	R and 3�6�, where 3 is an instance of an interface type, R is a method, property, or event of that
interface type, and 6 is an indexer argument list.

For interfaces that are strictly single-inheritance (each interface in the inheritance chain has exactly zero or one
direct base interface), the effects of the member lookup (§7.3), method invocation (§7.5.5.1), and indexer access
(§7.5.6.2) rules are exactly the same as for classes and structs: More derived members hide less derived
members with the same name or signature. However, for multiple-inheritance interfaces, ambiguities can occur
when two or more unrelated base interfaces declare members with the same name or signature. This section
shows several examples of such situations. In all cases, explicit casts can be used to resolve the ambiguities.

In the example

��
������"3:��

%

��
"-���
"%"��
&"��
&"*
*

Chapter 1317 InterfacesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 285

��
������"3-���
��
%

����"-���
'��
"�(&
*

��
������"3:��
-���
��;"3:��
 "3-���
��"%*

�����"-
%

����"!��
'3:��
-���
��"�("%
�	-���
'�(& <<"�����
�	-���
")"�& <<"�����
''3:��
(�(-���
")"�& <<"�8 "����8��"3:��
	-���
	��

''3-���
��(�(-���
'�(& <<"�8 "����8��"3-���
��	-���

*
*

the first two statements cause compile-time errors because the member lookup (§7.3) of -���
 in
3:��
-���
�� is ambiguous. As illustrated by the example, the ambiguity is resolved by casting � to the
appropriate base interface type. Such casts have no run-time costs—they merely consist of viewing the instance
as a less derived type at compile-time.

In the example

��
������"33�
����
%

����"6��'��
"�(&
*

��
������"3I�����
%

����"6��'������"�(&
*

��
������"31�����;"33�
���� "3I�����"%*

�����"-
%

����"!��
'31�����"�("%
�	6��'�(& <<"����� "��
�"6��"��
����"���"����������
�	6��'�	
(& <<"�8 "����"3I�����	6��"��"����������
''33�
����(�(6��'�(& <<"�8 "����"33�
����	6��"��"�"�������
�
''3I�����(�(6��'�(& <<"�8 "����"3I�����	6��"��"�"�������
�

*
*

the invocation �	6��'�(is ambiguous because a method invocation (§7.5.5.1) requires all overloaded
candidate methods to be declared in the same type. However, the invocation �	6��'�	
(is permitted because
only 3I�����	6�� is applicable. When explicit casts are inserted, there is only one candidate method, and thus
no ambiguity.

In the example

��
������"3$���
%

����"7'��
"�(&
*

��
������"3:��
;"3$���
%

���"����"7'��
"�(&
*

��
������"32���
;"3$���
%

����"H'(&
*

C# LANGUAGE SPECIFICATION

286 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

��
������"3I������;"3:��
 "32���
"%*

�����"6
%

����"!��
'3I������"�("%
�	7'�(& <<"3���8��"3:��
	7
''3$���(�(7'�(& <<"3���8��"3$���	7
''3:��
(�(7'�(& <<"3���8��"3:��
	7
''32���
(�(7'�(& <<"3���8��"3$���	7

*
*

the 3$���	7 member is hidden by the 3:��
	7 member. The invocation �	7'�(thus selects 3:��
	7, even
though 3$���	7 appears to not be hidden in the access path that leads through 32���
.

The intuitive rule for hiding in multiple-inheritance interfaces is simply this: If a member is hidden in any access
path, it is hidden in all access paths. Because the access path from 3I������ to 3:��
 to 3$��� hides
3$���	7, the member is also hidden in the access path from 3I������ to 32���
 to 3$���.

13.3 Fully qualified interface member names
An interface member is sometimes referred to by its fully qualified name. The fully qualified name of an
interface member consists of the name of the interface in which the member is declared, followed by a dot,
followed by the name of the member. The fully qualified name of a member references the interface in which
the member is declared. For example, given the declarations

��
������"3-��
���
%

����"0���
'(&
*

��
������"3!��
$��;"3-��
���
%

����"��
!��
'�
����"
��
(&
*

the fully qualified name of 0���
 is 3-��
���	0���
 and the fully qualified name of ��
!��
 is
3!��
$��	��
!��
.

In the example above, it is not possible to refer to 0���
 as 3!��
$��	0���
.

When an interface is part of a namespace, the fully qualified name of an interface member includes the
namespace name. For example

���������"���
��
%

������"��
������"3-��������
%

�����
"-����'(&
*

*

Here, the fully qualified name of the -���� method is ���
��	3-��������	-����.

13.4 Interface implementat ions
Interfaces may be implemented by classes and structs. To indicate that a class or struct implements an interface,
the interface identifier is included in the base class list of the class or struct.

��
������"3-��������
%

�����
"-����'(&
*

Chapter 1317 InterfacesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 287

��
������"3-���������
%

��
"-������!�'�����
"�
���(&
*

�����":��
��
��;"3-�������� "3-���������
%

������"�����
"-����'("%			*

������"��
"-������!�'�����
"�
���("%			*
*

A class or struct that implements an interface also implicitly implements all of the interface’s base interfaces.
This is true even if the class or struct doesn’t explicitly list all base interfaces in the base class list.

��
������"3-��
���
%

����"0���
'(&
*

��
������"3!��
$��;"3-��
���
%

����"��
!��
'�
����"
��
(&
*

�����"!��
$��;"3!��
$��
%

������"����"0���
'("%			*

������"����"��
!��
'�
����"
��
("%			*
*

Here, class !��
$�� implements both 3-��
��� and 3!��
$��.

13.4.1 Explicit interface member implementations

For purposes of implementing interfaces, a class or struct may declare explicit interface member
implementations. An explicit interface member implementation is a method, property, event, or indexer
declaration that references a fully qualified interface member name. For example

��
������"3-��������
%

�����
"-����'(&
*

��
������"3-���������
%

��
"-������!�'�����
"�
���(&
*

�����":��
��
��;"3-�������� "3-���������
%

�����
"3-��������	-����'("%			*

��
"3-���������	-������!�'�����
"�
���("%			*
*

Here, 3-��������	-���� and 3-���������	-������!� are explicit interface member implementations.

In some cases, the name of an interface member may not be appropriate for the implementing class, in which
case the interface member may be implemented using explicit interface member implementation. A class
implementing a file abstraction, for example, would likely implement a -���� member function that has the
effect of releasing the file resource, and implement the I������ method of the 3I��������� interface using
explicit interface member implementation:

C# LANGUAGE SPECIFICATION

288 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

��
������"3I���������"%
����"I������'(&

*

�����"R�7���;"3I���������"%
����"3I���������	I������'("%

-����'(&
*

������"����"-����'("%
<<"I�"���
G�"���������"
�"�����"
��"����
���
��	H-	��������7�����P�'
���(&

*
*

It is not possible to access an explicit interface member implementation through its fully qualified name in a
method invocation, property access, or indexer access. An explicit interface member implementation can only
be accessed through an interface instance, and is in that case referenced simply by its member name.

It is a compile-time error for an explicit interface member implementation to include access modifiers, and it is a
compile-time error to include the ���
���
, ���
���, ��������, or �
�
�� modifiers.

Explicit interface member implementations have different accessibility characteristics than other members.
Because explicit interface member implementations are never accessible through their fully qualified name in a
method invocation or a property access, they are in a sense private. However, since they can be accessed
through an interface instance, they are in a sense also public.

Explicit interface member implementations serve two primary purposes:

• Because explicit interface member implementations are not accessible through class or struct instances, they
allow interface implementations to be excluded from the public interface of a class or struct. This is
particularly useful when a class or struct implements an internal interface that is of no interest to a consumer
of the class or struct.

• Explicit interface member implementations allow disambiguation of interface members with the same
signature. Without explicit interface member implementations it would be impossible for a class or struct to
have different implementations of interface members with the same signature and return type, as would it be
impossible for a class or struct to have any implementation at all of interface members with the same
signature but with different return types.

For an explicit interface member implementation to be valid, the class or struct must name an interface in its
base class list that contains a member whose fully qualified name, type, and parameter types exactly match those
of the explicit interface member implementation. Thus, in the following class

�����"�����;"3-��������
%

�����
"3-��������	-����'("%			*

��
"3-���������	-������!�'�����
"�
���("%			* <<"�������
*

the declaration of 3-���������	-������!� results in a compile-time error because 3-��������� is not
listed in the base class list of ����� and is not a base interface of 3-��������. Likewise, in the declarations

�����"�����;"3-��������
%

�����
"3-��������	-����'("%			*
*

�����"�������;"�����
%

�����
"3-��������	-����'("%			* <<"�������
*

Chapter 1317 InterfacesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 289

the declaration of 3-��������	-���� in ������� results in a compile-time error because 3-�������� is not
explicitly listed in the base class list of �������.

The fully qualified name of an interface member must reference the interface in which the member was
declared. Thus, in the declarations

��
������"3-��
���
%

����"0���
'(&
*

��
������"3!��
$��;"3-��
���
%

����"��
!��
'�
����"
��
(&
*

�����"!��
$��;"3!��
$��
%

����"3-��
���	0���
'("%			*

����"3!��
$��	��
!��
'�
����"
��
("%			*
*

the explicit interface member implementation of 0���
 must be written as 3-��
���	0���
.

13.4.2 Interface mapping

A class or struct must provide implementations of all members of the interfaces that are listed in the base class
list of the class or struct. The process of locating implementations of interface members in an implementing
class or struct is known as interface mapping.

Interface mapping for a class or struct - locates an implementation for each member of each interface specified
in the base class list of -. The implementation of a particular interface member 3	R, where 3 is the interface in
which the member R is declared, is determined by examining each class or struct �, starting with - and repeating
for each successive base class of -, until a match is located:

• If � contains a declaration of an explicit interface member implementation that matches 3 and R, then this
member is the implementation of 3	R.

• Otherwise, if � contains a declaration of a non-static public member that matches R, then this member is the
implementation of 3	R.

A compile-time error occurs if implementations cannot be located for all members of all interfaces specified in
the base class list of -. Note that the members of an interface include those members that are inherited from base
interfaces.

For purposes of interface mapping, a class member 6 matches an interface member $ when:

• 6 and $ are methods, and the name, type, and formal parameter lists of 6 and $ are identical.

• 6 and $ are properties, the name and type of 6 and $ are identical, and 6 has the same accessors as $ (6 is
permitted to have additional accessors if it is not an explicit interface member implementation).

• 6 and $ are events, and the name and type of 6 and $ are identical.

• 6 and $ are indexers, the type and formal parameter lists of 6 and $ are identical, and 6 has the same
accessors as $ (6 is permitted to have additional accessors if it is not an explicit interface member
implementation).

Notable implications of the interface mapping algorithm are:

• Explicit interface member implementations take precedence over other members in the same class or struct
when determining the class or struct member that implements an interface member.

C# LANGUAGE SPECIFICATION

290 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• Neither non-public nor static members participate in interface mapping.

In the example

��
������"3-��������
%

�����
"-����'(&
*

�����"-;"3-��������
%

�����
"3-��������	-����'("%			*

������"�����
"-����'("%			*
*

the 3-��������	-���� member of - becomes the implementation of -���� in 3-�������� because explicit
interface member implementations take precedence over other members.

If a class or struct implements two or more interfaces containing a member with the same name, type, and
parameter types, it is possible to map each of those interface members onto a single class or struct member. For
example

��
������"3-��
���
%

����"0���
'(&
*

��
������"37���
%

����"0���
'(&
*

�����"0���;"3-��
��� "37���
%

������"����"0���
'("%			*
*

Here, the 0���
 methods of both 3-��
��� and 37��� are mapped onto the 0���
 method in 0���. It is of
course also possible to have separate explicit interface member implementations for the two methods.

If a class or struct implements an interface that contains hidden members, then some members must necessarily
be implemented through explicit interface member implementations. For example

��
������"3$���
%

��
"0"%"��
&"*
*

��
������"3I������;"3$���
%

���"��
"0'(&
*

An implementation of this interface would require at least one explicit interface member implementation, and
would take one of the following forms

�����"-;"3I������
%

��
"3$���	0"%"��
"%			*"*

��
"3I������	0'("%			*
*

�����"-;"3I������
%

������"��
"0"%"��
"%			*"*

Chapter 1317 InterfacesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 291

��
"3I������	0'("%			*
*

�����"-;"3I������
%

��
"3$���	0"%"��
"%			*"*

������"��
"0'("%			*
*

When a class implements multiple interfaces that have the same base interface, there can be only one
implementation of the base interface. In the example

��
������"3-��
���
%

����"0���
'(&
*

��
������"3!��
$��;"3-��
���
%

����"��
!��
'�
����"
��
(&
*

��
������"3:��
$��;"3-��
���
%

����"��
3
���'�
������"�
���(&
*

�����"-����$��;"3-��
��� "3!��
$�� "3:��
$��
%

����"3-��
���	0���
'("%			*

����"3!��
$��	��
!��
'�
����"
��
("%			*

����"3:��
$��	��
3
���'�
������"�
���("%			*
*

it is not possible to have separate implementations for the 3-��
��� named in the base class list, the 3-��
���
inherited by 3!��
$��, and the 3-��
��� inherited by 3:��
$��. Indeed, there is no notion of a separate
identity for these interfaces. Rather, the implementations of 3!��
$�� and 3:��
$�� share the same
implementation of 3-��
���, and -����$�� is simply considered to implement three interfaces, 3-��
���,
3!��
$��, and 3:��
$��.

The members of a base class participate in interface mapping. In the example

��
������"3�
�������
%

����"7'(&
*

�����"-�����
%

������"����"7'("%*

������"����"H'("%*
*

�����"-����+;"-����� "3�
�������
%

���"������"����"H'("%*
*

the method 7 in -����� is used in -����+'s implementation of 3�
�������.

13.4.3 Interface implementation inheritance

A class inherits all interface implementations provided by its base classes.

C# LANGUAGE SPECIFICATION

292 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Without explicitly re-implementing an interface, a derived class cannot in any way alter the interface mappings
it inherits from its base classes. For example, in the declarations

��
������"3-��
���
%

����"0���
'(&
*

�����"-��
���;"3-��
���
%

������"����"0���
'("%			*
*

�����"!��
$��;"-��
���
%

���"������"����"0���
'("%			*
*

the 0���
 method in !��
$�� hides the 0���
 method in -��
���, but it does not alter the mapping of
-��
���	0���
 onto 3-��
���	0���
, and calls to 0���
 through class instances and interface instances
will have the following effects

-��
���"�")"���"-��
���'(&
!��
$��"
")"���"!��
$��'(&
3-��
���"��")"�&
3-��
���"�
")"
&
�	0���
'(& <<"����8��"-��
���	0���
'(&

	0���
'(& <<"����8��"!��
$��	0���
'(&
��	0���
'(& <<"����8��"-��
���	0���
'(&
�
	0���
'(& <<"����8��"-��
���	0���
'(&

However, when an interface method is mapped onto a virtual method in a class, it is possible for derived classes
to override the virtual method and alter the implementation of the interface. For example, rewriting the
declarations above to

��
������"3-��
���
%

����"0���
'(&
*

�����"-��
���;"3-��
���
%

������"���
���"����"0���
'("%			*
*

�����"!��
$��;"-��
���
%

������"��������"����"0���
'("%			*
*

the following effects will now be observed

-��
���"�")"���"-��
���'(&
!��
$��"
")"���"!��
$��'(&
3-��
���"��")"�&
3-��
���"�
")"
&
�	0���
'(& <<"����8��"-��
���	0���
'(&

	0���
'(& <<"����8��"!��
$��	0���
'(&
��	0���
'(& <<"����8��"-��
���	0���
'(&
�
	0���
'(& <<"����8��"!��
$��	0���
'(&

Since explicit interface member implementations cannot be declared virtual, it is not possible to override an
explicit interface member implementation. However, it is perfectly valid for an explicit interface member
implementation to call another method, and that other method can be declared virtual to allow derived classes to
override it. For example

Chapter 1317 InterfacesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 293

��
������"3-��
���
%

����"0���
'(&
*

�����"-��
���;"3-��
���
%

����"3-��
���	0���
'("%"0���
-��
���'(&"*

���
��
��"���
���"����"0���
-��
���'("%			*
*

�����"!��
$��;"-��
���
%

���
��
��"��������"����"0���
-��
���'("%			*
*

Here, classes derived from -��
��� can specialize the implementation of 3-��
���	0���
 by overriding the
0���
-��
��� method.

13.4.4 Interface re-implementation

A class that inherits an interface implementation is permitted to re-implement the interface by including it in the
base class list.

A re-implementation of an interface follows exactly the same interface mapping rules as an initial
implementation of an interface. Thus, the inherited interface mapping has no effect whatsoever on the interface
mapping established for the re-implementation of the interface. For example, in the declarations

��
������"3-��
���
%

����"0���
'(&
*

�����"-��
���;"3-��
���
%

����"3-��
���	0���
'("%			*
*

�����"R�-��
���;"-��
��� "3-��
���
%

������"����"0���
'("%*
*

the fact that -��
��� maps 3-��
���	0���
 onto -��
���	3-��
���	0���
 doesn’t affect the re-
implementation in R�-��
���, which maps 3-��
���	0���
 onto R�-��
���	0���
.

Inherited public member declarations and inherited explicit interface member declarations participate in the
interface mapping process for re-implemented interfaces. For example

��
������"3R�
����
%

����"7'(&
����"H'(&
����"O'(&
����"3'(&

*

�����"$���;"3R�
����
%

����"3R�
����	7'("%*
����"3R�
����	H'("%*
������"����"O'("%*
������"����"3'("%*

*

C# LANGUAGE SPECIFICATION

294 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

�����"I������;"$��� "3R�
����
%

������"����"7'("%*
����"3R�
����	O'("%*

*

Here, the implementation of 3R�
���� in I������ maps the interface methods onto I������	7,
$���	3R�
����	H, I������	3R�
����	O, and $���	3.

When a class implements an interface, it implicitly also implements all of the interface’s base interfaces.
Likewise, a re-implementation of an interface is also implicitly a re-implementation of all of the interface’s base
interfaces. For example

��
������"3$���
%

����"7'(&
*

��
������"3I������;"3$���
%

����"H'(&
*

�����"-;"3I������
%

����"3$���	7'("%			*

����"3I������	H'("%			*
*

�����"I;"- "3I������
%

������"����"7'("%			*

������"����"H'("%			*
*

Here, the re-implementation of 3I������ also re-implements 3$���, mapping 3$���	7 onto I	7.

13.4.5 Abstract classes and interfaces

Like a non-abstract class, an abstract class must provide implementations of all members of the interfaces that
are listed in the base class list of the class. However, an abstract class is permitted to map interface methods onto
abstract methods. For example

��
������"3R�
����
%

����"7'(&
����"H'(&

*

���
���
"�����"-;"3R�
����
%

������"���
���
"����"7'(&
������"���
���
"����"H'(&

*

Here, the implementation of 3R�
���� maps 7 and H onto abstract methods, which must be overridden in non-
abstract classes that derive from -.

Note that explicit interface member implementations cannot be abstract, but explicit interface member
implementations are of course permitted to call abstract methods. For example

Chapter 1317 InterfacesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 295

��
������"3R�
����
%

����"7'(&
����"H'(&

*

���
���
"�����"-;"3R�
����
%

����"3R�
����	7'("%"77'(&"*

����"3R�
����	H'("%"HH'(&"*

���
��
��"���
���
"����"77'(&

���
��
��"���
���
"����"HH'(&
*

Here, non-abstract classes that derive from - would be required to override 77 and HH, thus providing the actual
implementation of 3R�
����.

Chapter 1417 EnumsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 297

14. Enums

An enum type is a distinct type that declares a set of named constants.

The example

����"-����
%

2��
H����
$���

*

declares an enum type named -���� with members 2��, H����, and $���.

14.1 Enum declarations
An enum declaration declares a new enum type. An enum declaration begins with the keyword ����, and
defines the name, accessibility, underlying type, and members of the enum.

enum-declaration:
attributesopt enum-modifiersopt ���� identifier enum-baseopt enum-body &opt

enum-base:
; integral-type

enum-body:
% enum-member-declarationsopt *
% enum-member-declarations *

Each enum type has a corresponding integral type called the underlying type of the enum type. This underlying
type must be able to represent all the enumerator values defined in the enumeration. An enum declaration may
explicitly declare an underlying type of ��
�, ���
�, ����
, �����
, ��
, ���
, ���� or �����. Note that
���� cannot be used as an underlying type. An enum declaration that does not explicitly declare an underlying
type has an underlying type of ��
.

Enum member declarations are separated the comma (“ ”) character, and a comma is permitted but not required
after the last one. Both of the enum declarations in the example

����"-�����
%

2��
H����
$���

*

����"-����+
%

2��
H����
$���

*

are valid.

The example

C# LANGUAGE SPECIFICATION

298 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

����"-����;"����
%

2��
H����
$���

*

declares an enum with an underlying type of ����. A developer might choose to use an underlying type of
����, as in the example, to enable the use of values that are in the range of ���� but not in the range of ��
, or
to preserve this option for the future.

14.2 Enum modifiers
An enum-declaration may optionally include a sequence of enum modifiers:

enum-modifiers:
enum-modifier
enum-modifiers enum-modifier

enum-modifier:
���

������

���
��
��

��
�����

�����
�

It is a compile-time error for the same modifier to appear multiple times in an enum declaration.

The modifiers of an enum declaration have the same meaning as those of a class declaration (§10.1.1). Note,
however, that the ���
���
 and ������ modifiers are not permitted in an enum declaration. Enums cannot be
abstract and do not permit derivation.

14.3 Enum members
The body of an enum type declaration defines zero or more enum members, which are the named constants of
the enum type. No two enum members can have the same name.

enum-member-declarations:
enum-member-declaration
enum-member-declarations enum-member-declaration

enum-member-declaration:
attributesopt identifier
attributesopt identifier) constant-expression

Each enum member has an associated constant value. The type of this value is the underlying type for the
containing enum. The constant value for each enum member must be in the range of the underlying type for the
enum. The example

����"-����;"���

%

2��")"5�
H����")"5+
$���")"5,

*

produces a compile-time error because the constant values 5�, 5+, and M, are not in the range of the underlying
integral type ���
.

Multiple enum members may share the same associated value. The example

Chapter 1417 EnumsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 299

����"-����
%

2��
H����
$���

R��")"$���
*

shows an enum that has two enum members—$��� and R��—that have the same associated value.

The associated value of an enum member is assigned either implicitly or explicitly. If the declaration of the
enum member has a constant-expression initializer, the value of that constant expression, implicitly converted to
the underlying type of the enum, is the associated value of the enum member. If the declaration of the enum
member has no initializer, its associated value is set implicitly, as follows:

• If the enum member is the first enum member declared in the enum type, its associated value is zero.

• Otherwise, the associated value of the enum member is obtained by increasing the associated value of the
textually preceding enum member by one. This increased value must be within the range of values that can
be represented by the underlying type.

The example

����"-����
%

2��
H����")"�

$���

*

�����"!��

%

�
�
��"����"R���'("%
-������	.��
�:���'�
����7���-����'-����	2��((&
-������	.��
�:���'�
����7���-����'-����	H����((&
-������	.��
�:���'�
����7���-����'-����	$���((&

*

�
�
��"�
����"�
����7���-����'-����"�("%
���
��"'�("%

����"-����	2��;
��
���"�
����	7����
'/2��")"%
*/ "'��
("�(&

����"-����	H����;
��
���"�
����	7����
'/H����")"%
*/ "'��
("�(&

����"-����	$���;
��
���"�
����	7����
'/$���")"%
*/ "'��
("�(&

������
;
��
���"/3������"�����/&

*
*

*

prints out the enum member names and their associated values. The output is:

2��")"

H����")"�

$���")"��

for the following reasons:

• the enum member 2�� is automatically assigned the value zero (since it has no initializer and is the first
enum member);

C# LANGUAGE SPECIFICATION

300 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• the enum member H���� is explicitly given the value �
;

• and the enum member $��� is automatically assigned the value one greater than the member that textually
precedes it.

The associated value of an enum member may not, directly or indirectly, use the value of its own associated
enum member. Other than this circularity restriction, enum member initializers may freely refer to other enum
member initializers, regardless of their textual position. Within an enum member initializer, values of other
enum members are always treated as having the type of their underlying type, so that casts are not necessary
when referring to other enum members.

The example

����"-�������
%

6")"$
$

*

produces a compile-time error because the declarations of 6 and $ are circular. 6 depends on $ explicitly, and $
depends on 6 implicitly.

Enum members are named and scoped in a manner exactly analogous to fields within classes. The scope of an
enum member is the body of its containing enum type. Within that scope, enum members can be referred to by
their simple name. From all other code, the name of an enum member must be qualified with the name of its
enum type. Enum members do not have any declared accessibility—an enum member is accessible if its
containing enum type is accessible.

14.4 Enum values and operations
Each enum type defines a distinct type; an explicit enumeration conversion (§6.2.2) is required to convert
between an enum type and an integral type, or between two enum types. The set of values that an enum type can
take on is not limited by its enum members. In particular, any value of the underlying type of an enum can be
cast to the enum type, and is a distinct valid value of that enum type.

Enum members have the type of their containing enum type (except within other enum member initializers: see
§14.3). The value of an enum member declared in enum type � with associated value � is '�(�.

The following operators can be used on values of enum types:)), C), A, B, A), B) (§7.9.5), 4 (§7.7.4),
5 (§7.7.5), F, D, E (§7.10.2), > (§7.6.4), 44, 55 (§7.5.9 and §7.6.5), and ��P��� (§A.5.4).

Every enum type automatically derives from the class ���
��	����. Thus, inherited methods and properties of
this class can be used on values of an enum type.

Chapter 1517 DelegatesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 301

15. Delegates

Delegates enable scenarios that other languages—such as C++, Pascal, and Modula—have addressed with
function pointers. Unlike C++ function pointers, delegates are fully object oriented; unlike C++ pointers to
member functions, delegates encapsulate both an object instance and a method.

A delegate declaration defines a class that derives from the class ���
��	I�����
�. A delegate instance
encapsulates one or more methods, each of which is referred to as a callable entity. For instance methods, a
callable entity consists of an instance and a method on the instance. For static methods, a callable entity consists
of just a method. Given a delegate instance and an appropriate set of arguments, one can invoke all of that
delegate's instance's methods with that set of arguments.

An interesting and useful property of a delegate instance is that it does not know or care about the classes of the
methods it encapsulates; all that matters is that the methods are compatible (§15.1) with the delegate's type. This
makes delegates perfectly suited for “anonymous” invocation.

15.1 Delegate declarations
A delegate-declaration is a type-declaration (§9.5) that declares a new delegate type.

delegate-declaration:
attributesopt delegate-modifiersopt ������
� return-type identifier ' formal-parameter-listopt

(&

delegate-modifiers:
delegate-modifier
delegate-modifiers delegate-modifier

delegate-modifier:
���

������

���
��
��

��
�����

�����
�

It is a compile-time error for the same modifier to appear multiple times in a delegate declaration.

The ��� modifier is only permitted on delegates declared within another type. It specifies that the delegate hides
an inherited member by the same name, as described in §10.2.2.

The ������, ���
��
��, ��
�����, and �����
� modifiers control the accessibility of the delegate type.
Depending on the context in which the delegate declaration occurs, some of these modifiers may not be
permitted (§3.5.1).

The delegate's type name is identifier.

The optional formal-parameter-list specifies the parameters of the delegate, and return-type indicates the return
type of the delegate. A method and a delegate type are compatible if both of the following are true:

• They have the same number or parameters, with the same types, in the same order, with the same parameter
modifiers.

• Their return types are the same.

C# LANGUAGE SPECIFICATION

302 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Delegate types in C# are name equivalent, not structurally equivalent. (However, note that instances of two
distinct but structurally equivalent delegate types may compare as equal (§7.9.8).) Specifically, two different
delegate types that have the same parameter lists and signature and return type are considered different delegate
types.

For example:

������
�"��
"I�'��
"� "������"�(&

�����"6
%

������"�
�
��"��
"R�'��
"� "������"�("%"<?"			"?<"*
*

�����"$
%

������
�"��
"I+'��
"� "������"�(&

������"�
�
��"��
"R�'��
"� "������"�("%"<?"			"?<"*

������"�
�
��"����"R+'��
"8 "������"�("%"<?"			"?<"*

������"�
�
��"��
"R,'��
"�("%"<?"			"?<"*

������"�
�
��"����"RS'��
"�("%"<?"			"?<"*
*

The delegate types I� and I+ are both compatible with the methods 6	R� and $	R�, since they have the same
return type and parameter list; however, these delegate types are two different types, so they are not
interchangeable. The delegate types I� and I+ are incompatible with the methods $	R+, $	R,, and $	RS, since
they have different return types or parameter lists.

The only way to declare a delegate type is via a delegate-declaration. A delegate type is a class type that is
derived from ���
��	I�����
�. Delegate types are implicitly ������, so it is not permissible to derive any
type from a delegate type. It is also not permissible to derive a non-delegate class type from
���
��	I�����
�. Note that ���
��	I�����
� is not itself a delegate type; it is a class type from which all
delegate types are derived.

C# provides special syntax for delegate instantiation and invocation. Except for instantiation, any operation that
can be applied to a class or class instance can also be applied to a delegate class or instance, respectively. In
particular, it is possible to access members of the ���
��	I�����
� type via the usual member access syntax.

The set of methods encapsulated by a delegate instance is called an invocation list. When a delegate instance is
created (§15.2) from a single method, it encapsulates that method, and its invocation list contains only one entry.
However, when two non-null delegate instances are combined, their invocation lists are concatenated—in the
order left operand then right operand—to form a new invocation list, which contains two or more entries.

Delegates are combined using the binary + (§7.7.4) and += operators (§7.13.2). A delegate can be removed from
a combination of delegates, using the binary - (§7.7.5) and -= operators (§7.13.2). Delegates can be compared
for equality (§7.9.8).

The example

������
�"����"I'��
"�(&

�����"-
%

������"�
�
��"����"R�'��
"�("%"<?"9"?<"*

������"�
�
��"����"R+'��
"�("%"<?"9"?<"*

*

Chapter 1517 DelegatesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 303

�����"!��

%

�
�
��"����"R���'("%
I"���")"���"I'-	R�(& <<"R�
I"��+")"���"I'-	R+(& <<"R+
I"��,")"���"4"��+& <<"R�"4"R+
I"��S")"��,"4"���&" <<"R�"4"R+"4"R�
I"��=")"��S"4"��,&" <<"R�"4"R+"4"R�"4"R�"4"R+

*

*

shows the instantiation of a number of delegates, and their corresponding invocation lists. When ��� and ��+
are instantiated, they each encapsulate one method. When ��, is instantiated, it has an invocation list of two
methods, R� and R+, in that order. ��S’s invocation list contains R�, R+, and R�, in that order. Finally, ��=’s
invocation list contains R�, R+, R�, R�, and R+, in that order. For more examples of combining (as well as
removing) delegates, see §15.3.

15.2 Delegate instantiation
An instance of a delegate is created by a delegate-creation-expression (§7.5.10.3). The newly created delegate
instance then refers to either:

• The static method referenced in the delegate-creation-expression, or

• The target object (which cannot be ����) and instance method referenced in the delegate-creation-
expression, or

• Another delegate

For example:

������
�"����"I'��
"�(&

�����"-
%

������"�
�
��"����"R�'��
"�("%"<?"			"?<*
������"����"R+'��
"�("%"<?"			"?<*

*

�����"!��

%

�
�
��"����"R���'("%
I"���")"���"I'-	R�(& <<"�
�
��"��
���
!��
"
")"���"-'(&
I"��+")"���"I'
	R+(& <<"���
����"��
���
I"��,")"���"I'��+(& <<"���
���"������
�

*
*

Once instantiated, delegate instances always refer to the same target object and method. When two delegates are
combined, or one is removed from another, a new delegate results with its own invocation list; the invocation
lists of the delegates combined or removed remain unchanged.

15.3 Delegate invocation
C# provides special syntax for invoking a delegate. When a non-null delegate instance whose invocation list
contains one entry is invoked, it invokes the one method with the same arguments it was given, and returns the
same value as the referred to method. See §7.5.5.2 for detailed information on delegate invocation. If an
exception occurs during the invocation of such a delegate, and the exception is not caught within the method
that was invoked, the search for an exception catch clause continues in the method that called the delegate, as if
that method had directly called the method to which the delegate referred.

C# LANGUAGE SPECIFICATION

304 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Invocation of a delegate instance whose invocation list contains multiple entries proceeds by invoking each of
the methods on the invocation list, synchronously, in order. Each method so called is passed the same set of
arguments as was given to the delegate instance. If such a delegate invocation includes reference parameters
(§10.5.1.2), each method invocation will occur with a reference to the same variable; changes to that variable by
one method in the invocation list will be visible to methods further down the invocation list. If the delegate
invocation includes output parameters or a return value, their final value will come from the invocation of the
last delegate in the list.

If an exception occurs during processing of the invocation of such a delegate, and the exception is not caught
within the method that was invoked, the search for an exception catch clause continues in the method that called
the delegate, and any methods further down the invocation list are not invoked.

Attempting to invoke a delegate instance whose value is null results in an exception of type
���
��	1���2�������������
���.

The following example shows how to instantiate, combine, remove, and invoke delegates:

������
�"����"I'��
"�(&

�����"-
%

������"�
�
��"����"R�'��
"�("%
-������	.��
�:���'/-	R�;"/"4"�(&

*

������"�
�
��"����"R+'��
"�("%
-������	.��
�:���'/-	R+;"/"4"�(&

*

������"����"R,'��
"�("%
-������	.��
�:���'/-	R,;"/"4"�(&

*
*

�����"!��

%

�
�
��"����"R���'("%
I"���")"���"I'-	R�(&
���'5�(& <<"����"R�

I"��+")"���"I'-	R+(&
��+'5+(& <<"����"R+

I"��,")"���"4"��+&
��,'�
(& <<"����"R�"
���"R+

��,"4)"���&
��,'+
(& <<"����"R� "R+ "
���"R�

-"�")"���"-'(&
I"��S")"���"I'�	R,(&
��,"4)"��S&
��,',
(& <<"����"R� "R+ "R� "
���"R,

��,"5)"���& <<"������"���
"R�
��,'S
(& <<"����"R� "R+ "
���"R,

��,"5)"��S&
��,'=
(& <<"����"R�"
���"R+

��,"5)"��+&
��,'X
(& <<"����"R�

��,"5)"��+& <<"����������"�������"��"������
��,'X
(& <<"����"R�

��,"5)"���& <<"������
���"���
"��"���
�

Chapter 1517 DelegatesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 305

<< ��,'V
(& <<"���
��	1���2�������������
���"
�����

��,"5)"���& <<"����������"�������"��"������
*

*

As shown in the statement ��,"4)"���&, a delegate can be present in an invocation list multiple times. In this
case, it is simply invoked once per occurrence. In an invocation list such as this, when that delegate is removed,
the last occurrence in the invocation list is the one actually removed.

Immediately prior to the execution of the final statement, ��,"5)"���&, the delegate ��, refers to an empty
invocation list. Attempting to remove a delegate from an empty list (or to remove a non-existent delegate from a
non-empty list) is not an error.

The output produced is:

-	R�;"5�
-	R+;"5+
-	R�;"�

-	R+;"�

-	R�;"+

-	R+;"+

-	R�;"+

-	R�;",

-	R+;",

-	R�;",

-	R,;",

-	R�;"S

-	R+;"S

-	R,;"S

-	R�;"=

-	R+;"=

-	R�;"X

-	R�;"X

Chapter 1617 ExceptionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 307

16. Exceptions

Exceptions in C# provide a structured, uniform, and type-safe way of handling both system level and application
level error conditions. The exception mechanism is C# is quite similar to that of C++, with a few important
differences:

• In C#, all exceptions must be represented by an instance of a class type derived from ���
��	�����
���.
In C++, any value of any type can be used to represent an exception.

• In C#, a finally block (§8.10) can be used to write termination code that executes in both normal execution
and exceptional conditions. Such code is difficult to write in C++ without duplicating code.

• In C#, system-level exceptions such as overflow, divide-by-zero, and null dereferences have well defined
exception classes and are on a par with application-level error conditions.

16.1 Causes of exceptions
Exception can be thrown in two different ways.

• A
���� statement (§8.9.5) throws an exception immediately and unconditionally. Control never reaches
the statement immediately following the
����.

• Certain exceptional conditions that arise during the processing of C# statements and expression cause an
exception in certain circumstances when the operation cannot be completed normally. For example, an
integer division operation (§7.7.2) throws a ���
��	I�����$�[��������
��� if the denominator is
zero. See §16.4 for a list of the various exceptions that can occur in this way.

16.2 The System.Exception class
The ���
��	�����
��� class is the base type of all exceptions. This class has a few notable properties that all
exceptions share:

• R������ is a read-only property of type �
���� that contains a human-readable description of the reason
for the exception.

• 3���������
��� is a read-only property of type �����
���. If its value is non-����, it refers to the
exception that caused the current exception. Otherwise, its value is null, indicating that this exception was
not caused by another exception. (The number of exception objects chained together in this manner can be
arbitrary.)

The value of these properties can be specified in calls to the instance constructor for ���
��	�����
���.

16.3 How exceptions are handled
Exceptions are handled by a
�� statement (§8.10).

When an exception occurs, the system searches for the nearest ��
�� clause that can handle the exception, as
determined by the run-time type of the exception. First, the current method is searched for a lexically enclosing

�� statement, and the associated catch clauses of the try statement are considered in order. If that fails, the
method that called the current method is searched for a lexically enclosing
�� statement that encloses the point
of the call to the current method. This search continues until a ��
�� clause is found that can handle the current

C# LANGUAGE SPECIFICATION

308 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

exception, by naming an exception class that is of the same class, or a base class, of the run-time type of the
exception being thrown. A ��
�� clause that doesn’t name an exception class can handle any exception.

Once a matching catch clause is found, the system prepares to transfer control to the first statement of the catch
clause. Before execution of the catch clause begins, the system first executes, in order, any ������� clauses
that were associated with try statements more nested that than the one that caught the exception.

If no matching catch clause is found, one of two things occurs:

• If the search for a matching catch clause reaches a static constructor (§10.11) or static field initializer, then a
���
��	!���3��
����P�
��������
��� is thrown at the point that triggered the invocation of the
static constructor. The inner exception of the ���
��	!���3��
����P�
��������
��� contains the
exception that was originally thrown.

• If the search for matching catch clauses reaches the code that initially started the thread, then execution of
the thread is terminated. The impact of such termination is implementation-defined.

Exceptions that occur during destructor execution are worth special mention. If an exception occurs during
destructor execution and is not caught, then the execution of that destructor is terminated and the destructor of
the base class (if any) is called. If there is no base class (as in the case of ���
��	�����
) or if there is no base
class destructor, then the exception is discarded.

16.4 Common Exception Classes
The following exceptions are thrown by certain C# operations.

Chapter 1617 ExceptionsAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 309

���
��	6��
���
�������
��� A base class for exceptions that occur during
arithmetic operations, such as
���
��	I�����$�[��������
��� and
���
��	�������������
���.

���
��	6����!���R����
�������
��� Thrown when a store into an array fails because the
actual type of the stored element is incompatible
with the actual type of the array.

���
��	I�����$�[��������
��� Thrown when an attempt to divide an integral
value by zero occurs.

���
��	3������
��2���������
��� Thrown when an attempt to index an array via an
index that is less than zero or outside the bounds of
the array.

���
��	3������-��
�����
��� Thrown when an explicit conversion from a base
type or interface to a derived types fails at run
time.

���
��	R��
����
1�
������
�������
��� Thrown when an attempt to combine two non-
���� delegates fails, because the delegate type
does not have a ���� return type.

���
��	1���2�������������
��� Thrown when a ���� reference is used in a way
that causes the referenced object to be required.

���
��	��
��R����������
��� Thrown when an attempt to allocate memory (via
���) fails.

���
��	�������������
��� Thrown when an arithmetic operation in a
����8�� context overflows.

���
��	�
��8�������������
��� Thrown when the execution stack is exhausted by
having too many pending method calls; typically
indicative of very deep or unbounded recursion.

���
��	!���3��
����P�
��������
��� Thrown when a static constructor throws an
exception, and no catch clauses exists to catch it.

Chapter 1717 AttributesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 311

17. Attributes

Much of the C# language enables the programmer to specify declarative information about the entities defined
in the program. For example, the accessibility of a method in a class is specified by decorating it with the
method-modifiers ������, ���
��
��, ��
�����, and �����
�.

C# enables programmers to invent new kinds of declarative information, called attributes. Programmers can
then attach attributes to various program entities, and retrieve attribute information in a run-time environment.
For instance, a framework might define a O���6

����
� attribute that can be placed on certain program
elements (such as classes and methods) to provide a mapping from those program elements to documentation.

Attributes are defined through the declaration of attribute classes (§17.1), which may have positional and named
parameters (§17.1.2). Attributes are attached to entities in a C# program using attribute specification (§�), and
can be retrieved at run-time as attribute instances (§17.3).

17.1 Attribute classes
A class that derives from the abstract class ���
��	6

����
�, whether directly or indirectly, is an attribute
class. The declaration of an attribute class defines a new kind of attribute that can be placed on a declaration. By
convention, attribute classes are named with a suffix of 6

����
�. Uses of an attribute may either include or
omit this suffix.

17.1.1 Attribute usage

The 6

����
�L���� attribute (§17.4.1) is used to describe how an attribute class can be used.

6

����
�L���� has a positional parameter (§17.1.2) that enables an attribute class to specify the kinds of
declarations on which it can be used. The example

�6

����
�L����'6

����
�!����
�	-����"E"6

����
�!����
�	3�
������(�
������"�����"������6

����
�;"6

����
�
%*

defines an attribute class named ������6

����
� that can be placed only on class-declarations and
interface-declarations. The example

��������"�����"-�����"%			*

��������"��
������"3�
�������"%			*

shows several uses of the ������ attribute. Although this attribute is defined with the name
������6

����
�, when it is used the 6

����
� suffix may be omitted, resulting in the short name
������. The example above is semantically equivalent to:

�������6

����
��"�����"-�����"%			*

�������6

����
��"��
������"3�
�������"%			*

6

����
�L���� has a named parameter (§17.1.2) called 6����R��
���� that indicates whether the attribute
can be specified more than once for a given entity. If 6����R��
���� for an attribute class is true, then it is a
multi-use attribute class, and can be specified more than once on an entity. If 6����R��
���� for an attribute
class is false or unspecified, then it is a single-use attribute class, and can be specified at most once on an entity.

The example

�����"���
��&

C# LANGUAGE SPECIFICATION

312 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

�6

����
�L����'6

����
�!����
�	-���� "6����R��
����")"
���(�
������"�����"6�
���6

����
�;"6

����
�"%

������"6�
���6

����
�'�
����"����("%

���	����")"����&

*

������"�
����"1���"%
��
"%"��
���"����&"*

*

�����
�"�
����"����&
*

defines a multi-use attribute class named 6�
���6

����
�. The example

�6�
���'/$����"]��������/("6�
���'/I�����"2�
����/(�
�����"-�����"%			*

shows a class declaration with two uses of the 6�
��� attribute.

6

����
�L���� has a named parameter called 3�����
�� that indicates whether the attribute, when
specified on a base class, is also inherited by classes that derive from that base class. If 3�����
�� for an
attribute class is true, then that attribute is inherited. If 3�����
�� for an attribute class is false or it is
unspecified, then that attribute is not inherited.

An attribute class K not having an 6

����
�L���� attribute attached to it, as in

�����"���
��&
�����"K;"6

����
�"%"9"*

is equivalent to the following:

�����"���
��&
�6

����
�L����'6

����
�!����
�	6�� "6����R��
����")"����� "3�����
��")

���(�
�����"K;"6

����
�"%"9"*

17.1.2 Positional and named parameters

Attribute classes can have positional parameters and named parameters. Each public instance constructor for
an attribute class defines a valid sequence of positional parameters for the attribute class. Each non-static public
read-write field and property for an attribute class defines a named parameter for the attribute class.

The example

�6

����
�L����'6

����
�!����
�	-����(�
������"�����"O���6

����
�;"6

����
�
%

������"O���6

����
�'�
����"���("% <<"���"��"�"����
�����"������
��
			

*

������"�
����"!����"% <<"!����"��"�"�����"������
��
��
"%			*
��
"%			*

*

������"�
����"L��"%"��
"%			*"*
*

defines an attribute class named O���6

����
� that has one positional parameter (�
����"���) and one
named parameter (�
����"!����). Although it is non-static and public, the L�� property does not define a
named parameter because it is not read-write.

The example

Chapter 1717 AttributesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 313

�O���'/�

�;<<���	��������
	���<			<-�����	�
�/(�
�����"-�����"%
*

�O���'/�

�;<<���	��������
	���<			<R���	�
�/ "!����")/-����+/(�
�����"-����+"%
*

shows several uses of the attribute.

17.1.3 Attribute parameter types

The types of positional and named parameters for an attribute class are limited to the attribute parameter types,
which are:

• The types ����, ��
�, ����, ������, ����
, ��
, ����, ����
, �
����.

• The type �����
.

• The type ���
��	!���.

• An enum type provided it has public accessibility and the types in which it is nested (if any) also have
public accessibility.

• Single-dimensional arrays of the above types.

17.2 Attribute specification
Attribute specification is the application of a previously defined attribute to a declaration. An attribute is a piece
of additional declarative information that is specified for a declaration. Attributes can be specified at global
scope (to specify attributes on the containing assembly or module) and for type-declarations (§9.5), class-
member-declarations (§10.2), interface-member-declarations (§13.2), enum-member-declarations (§14.3),
accessor-declarations for properties (§10.6.2), event-accessor-declarations (§10.7.1), and formal-parameter-
lists (§10.5.1).

Attributes are specified in attribute sections. An attribute section consists of a pair of square brackets, which
surround a comma-separated list of one or more attributes. The order in which attributes are specified in such a
list, and the order in which sections appear, is not significant. For instance, the attribute specifications �6��$�,
�$��6�, �6 "$�, and �$ "6� are equivalent.

global-attributes:
global-attribute-sections

global-attribute-sections:
global-attribute-section
global-attribute-sections global-attribute-section

global-attribute-section:
� global-attribute-target-specifier attribute-list �
� global-attribute-target-specifier attribute-list ,�

global-attribute-target-specifier:
global-attribute-target ;

global-attribute-target:
��������

������

attributes:
attribute-sections

C# LANGUAGE SPECIFICATION

314 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

attribute-sections:
attribute-section
attribute-sections attribute-section

attribute-section:
� attribute-target-specifieropt attribute-list �
� attribute-target-specifieropt attribute-list , �

attribute-target-specifier:
attribute-target ;

attribute-target:
�����

����

��
���

�����

������
�

��
���

���

attribute-list:
attribute
attribute-list attribute

attribute:
attribute-name attribute-argumentsopt

attribute-name:
 type-name

attribute-arguments:
' positional-argument-listopt (
' positional-argument-list named-argument-list (
' named-argument-list (

positional-argument-list:
positional-argument
positional-argument-list """positional-argument

positional-argument:
attribute-argument-expression

named-argument-list:
named-argument
named-argument-list """named-argument

named-argument:
identifier) attribute-argument-expression

attribute-argument-expression:
expression

An attribute consists of an attribute-name and an optional list of positional and named arguments. The positional
arguments (if any) precede the named arguments. A positional argument consists of an attribute-argument-
expression; a named argument consists of a name, followed by an equal sign, followed by an attribute-
argument-expression. The order of named arguments is not significant.

The attribute-name identifies an attribute class. If the form of attribute-name is type-name then this name must
refer to an attribute class. Otherwise, a compile-time error occurs. The example

Chapter 1717 AttributesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 315

�����"-�����"%*

�-������"�����"-����+"%* <<"�����

produces a compile-time error because it attempts to use -�����, which is not an attribute class, as an attribute
class.

Certain contexts permit the specification of an attribute on more than one target. A program can explicitly
specify the target by including an attribute-target-specifier. When an attribute is placed at the global level, a
global-attribute-target-specifier is required. In all other locations, a reasonable default is applied, but an
attribute-target-specifier can be used to affirm or override the default in certain ambiguous cases (or to just
affirm the default in non-ambiguous cases). Thus, attribute-target-specifiers can typically be omitted except at
the global level. The potentially ambiguous contexts are resolved as follows:

• An attribute specified at global scope can apply either to the target assembly or the target module. No
default exists for this context, so an attribute-target-specifier is always required in this context. The
presence of the �������� attribute-target-specifier indicates that the attribute applies to the target
assembly; the presence of the ������ attribute-target-specifier indicates that the attribute applies to the
target module.

• An attribute specified on a delegate declaration can apply either to the delegate being declared or to its
return value. In the absence of an attribute-target-specifier, the attribute applies to the delegate. The
presence of the
��� attribute-target-specifier indicates that the attribute applies to the delegate; the
presence of the ��
��� attribute-target-specifier indicates that the attribute applies to the return value.

• An attribute specified on a method declaration can apply either to the method being declared or to its return
value. In the absence of an attribute-target-specifier, the attribute applies to the method. The presence of the
��
��� attribute-target-specifier indicates that the attribute applies to the method; the presence of the
��
��� attribute-target-specifier indicates that the attribute applies to the return value.

• An attribute specified on an operator declaration can apply either to the operator being declared or to its
return value. In the absence of an attribute-target-specifier, the attribute applies to the operator. The
presence of the ��
��� attribute-target-specifier indicates that the attribute applies to the operator; the
presence of the ��
��� attribute-target-specifier indicates that the attribute applies to the return value.

• An attribute specified on an event declaration that omits event accessors can apply to the event being
declared, to the associated field (if the event is not abstract), or to the associated add and remove methods.
In the absence of an attribute-target-specifier, the attribute applies to the event. The presence of the ����

attribute-target-specifier indicates that the attribute applies to the event; the presence of the �����
attribute-target-specifier indicates that the attribute applies to the field; and the presence of the ��
���
attribute-target-specifier indicates that the attribute applies to the methods.

• An attribute specified on a get accessor declaration for a property or indexer declaration can apply either to
the associated method or to its return value. In the absence of an attribute-target-specifier, the attribute
applies to the method. The presence of the ��
��� attribute-target-specifier indicates that the attribute
applies to the method; the presence of the ��
��� attribute-target-specifier indicates that the attribute
applies to the return value.

• An attribute specified on a set accessor for a property or indexer declaration can apply either to the
associated method or to its implicit “value” parameter. In the absence of an attribute-target-specifier, the
attribute applies to the method. The presence of the ��
��� attribute-target-specifier indicates that the
attribute applies to the method; the presence of the ����� attribute-target-specifier indicates that the
attribute applies to the parameter.

• An attribute specified on an add or remove accessor declaration for an event declaration can apply either to
the associated method or to its lone parameter. In the absence of an attribute-target-specifier, the attribute

C# LANGUAGE SPECIFICATION

316 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

applies to the method. The presence of the ��
��� attribute-target-specifier indicates that the attribute
applies to the method; the presence of the ����� attribute-target-specifier indicates that the attribute applies
to the parameter.

In other contexts, inclusion of an attribute-target-specifier is permitted but unnecessary. For instance, a class
declaration may either include or omit the type attribute-target-specifier:

�
���;"6�
���'/$����"]��������/(�
�����"-�����"%*

�6�
���'/I�����"2�
����/(�
�����"-����+"%*

It is a compile-time error to specify an invalid attribute-target-specifier. For instance, the param attribute-target-
specifier cannot be used on a class declaration:

������;"6�
���'/$����"]��������/(�
�����"-�����"%*

An implementation may accept additional attribute target specifiers with implementation-defined semantics.
However, an implementation that does not recognize such a target shall issue a warning.

By convention, attribute classes are named with a suffix of 6

����
�. An attribute-name of the form type-
name may either include or omit this suffix. An exact match between the attribute-name and the name of the
attribute class is preferred. The example

�6

����
�L����'6

����
�!����
�	6��(�
������"�����"K;"6

����
�
%*

�6

����
�L����'6

����
�!����
�	6��(�
������"�����"K6

����
�;"6

����
�
%*

�K� <<"������"
�"K
�����"-�����"%*

�K6

����
�� <<"������"
�"K6

����
�
�����"-����+"%*

shows two attribute classes named K and K6

����
�. The attribute �K� refers to the class named K, and the
attribute �K6

����
�� refers to the attribute class named �K6

����
��. If the declaration for class K is
removed, then both attributes refer to the attribute class named K6

����
�:

�6

����
�L����'6

����
�!����
�	6��(�
������"�����"K6

����
�;"6

����
�
%*

�K� <<"������"
�"K6

����
�
�����"-�����"%*

�K6

����
�� <<"������"
�"K6

����
�
�����"-����+"%*

It is a compile-time error to use a single-use attribute class more than once on the same entity. The example

�6

����
�L����'6

����
�!����
�	-����(�
������"�����"O����
����6

����
�;"6

����
�
%

�
����"�����&

������"O����
����6

����
�'�
����"�����("%

���	�����")"�����&

*

������"�
����"J����"%"��
"%			*"*
*

Chapter 1717 AttributesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 317

�O����
����'/I������
���"��"-�����/(�
�O����
����'/6��
���"�������
���"��"-�����/(�
������"�����"-�����"%*

produces a compile-time error because it attempts to use O����
����, which is a single-use attribute class,
more than once on the declaration of -�����.

An expression � is an attribute-argument-expression if all of the following statements are true:

• The type of � is an attribute parameter type (§17.1.3).

• At compile-time, the value of � can be resolved to one of the following:

o A constant-expression (§7.15).

o A typeof-expression (§7.5.11).

o An array-creation-expression (§7.5.10.2) of the form ��� !�� %� � 			 �*, where ! is an attribute
parameter type and each � is an attribute-argument-expression.

17.3 Attribute instances
An attribute instance is an instance that represents an attribute at run-time. An attribute is defined with an
attribute class, positional arguments, and named arguments. An attribute instance is an instance of the attribute
class that is initialized with the positional and named arguments.

Retrieval of an attribute instance involves both compile-time and run-time processing, as described in the
following sections.

17.3.1 Compilation of an attribute

The compilation of an attribute with attribute class !, positional-argument-list 0 and named-argument-list 1,
consists of the following steps:

• Follow the compile-time processing steps for compiling an object-creation-expression of the form ���
!'0(. These steps either result in a compile-time error, or determine a constructor on ! that can be invoked
at run-time. Call this instance constructor -.

• If - does not have public accessibility, then a compile-time error occurs.

• For each named-argument 6�� in 1:

o Let 1��� be the identifier of the named-argument 6��.

o 1��� must identify a non-static read-write public field or property on !. If ! has no such field or
property, then a compile-time error occurs.

• Keep the following information for run-time instantiation of the attribute: the attribute class !, the instance
constructor - on !, the positional-argument-list 0 and the named-argument-list 1.

17.3.2 Run-time retrieval of an attribute instance

Compilation of an attribute yields an attribute class !, an instance constructor - on T, a positional-argument-list
0 and a named-argument-list 1. Given this information, an attribute instance can be retrieved at run-time using
the following steps:

• Follow the run-time processing steps for executing an object-creation-expression of the form ���"!'0(,
using the instance constructor - as determined at compile-time. These steps either result in an exception, or
produce an instance of !. Call this instance �.

• For each named-argument 6�� in 1, in order:

C# LANGUAGE SPECIFICATION

318 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

o Let 1��� be the identifier of the named-argument 6��. If 1��� does not identify a non-static public
read-write field or property on �, then an exception is thrown.

o Let J���� be the result of evaluating the attribute-argument-expression of 6��.

o If 1��� identifies a field on �, then set this field to the value J����.

o Otherwise, 1��� identifies a property on �. Set this property to the value J����.

o The result is �, an instance of the attribute class ! that has been initialized with the positional-argument-
list 0 and the named-argument-list 1.

17.4 Reserved attributes
A small number of attributes affect the language in some way. These attributes include:

• ���
��	6

����
�L����6

����
� (§17.4.1), which is used to describe the ways in which an attribute
class can be used.

• ���
��	-����
�����6

����
� (§17.4.2), which is used to define conditional methods.

• ���
��	������
�6

����
� (§17.4.3), which is used to mark a member as obsolete.

17.4.1 The AttributeUsage attribute

The 6

����
�L���� attribute is used to describe the manner in which the attribute class can be used.

A class that is decorated with the 6

����
�L���� attribute must derive from ���
��	6

����
�, either
directly or indirectly. Otherwise, a compile-time error occurs.

�6

����
�L����'6

����
�!����
�	-����(�
������"�����"6

����
�L����6

����
�;"6

����
�
%

������"6

����
�L����6

����
�'6

����
�!����
�"�������("%			*

������"���
���"����"6����R��
����"%"��
"%			*"��
"%			*"*

������"���
���"����"3�����
��"%"��
"%			*"��
"%			*"*

������"���
���"6

����
�!����
�"J������"%"��
"%			*"*
*

������"����"6

����
�!����
�
%

6�������")"
�

�
R�����")"
�

+
-����")"
�

S
�
���
")"
�

Y
����")"
�

�

-���
���
��")"
�

+

R�
���")"
�

S

0�����
�")"
�

Y

7����")"
�
�

����
")"
�
+

3�
������")"
�
S

0�����
��")"
�
Y

I�����
�")"
��

2�
���J����")"
�+

6��")"6�������"E"R�����"E"-����"E"�
���
"E"����"E"-���
���
��"E
R�
���"E"0�����
�"E"7����"E"����
"E"3�
������"E"0�����
��"E
I�����
�"E"2�
���J����

Chapter 1717 AttributesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 319

-����R������"")""-����"E"�
���
"E"����"E"-���
���
��"E"R�
���"E
0�����
�"E"7����"E"����
"E"I�����
�"E"3�
������

*

17.4.2 The Conditional attribute

The -����
����� attribute enables the definition of conditional methods. The -����
����� attribute
indicates a condition by testing a conditional compilation symbol. Calls to a conditional method are either
included or omitted depending on whether this symbol is defined at the point of the call. If the symbol is
defined, then the call is included; otherwise, the call is omitted.

�6

����
�L����'6

����
�!����
�	R�
��� "6����R��
����")"
���(�
������"�����"-����
�����6

����
�;"6

����
�
%

������"-����
�����6

����
�'�
����"�����
�����������("%			*

������"�
����"-����
�����������"%"��
"%			*"*
*

A conditional method is subject to the following restrictions:

• The conditional method must be a method in a class-declaration.

• The conditional method must not be an override method.

• The conditional method must have a return type of ����.

• The conditional method must not be marked with the �������� modifier. A conditional method may be
marked with the ���
��� modifier, however. Overrides of such a method are implicitly conditional, and
must not be explicitly marked with a -����
����� attribute.

• The conditional method must not be an implementation of an interface method. Otherwise, a compile-time
error occurs.

In addition, a compile-time error occurs if a conditional method is used in a delegate-creation-expression. The
example

_������"I�$LH

�����"���
��	I������
���&

�����"-�����
%

�-����
�����'/I�$LH/(�
������"�
�
��"����"R'("%

-������	.��
�:���'/�����
��"-�����	R/(&
*

*

�����"-����+
%

������"�
�
��"����"!��
'("%
-�����	R'(&

*
*

declares -�����	R as a conditional method. -����+'s !��
 method calls this method. Since the conditional
compilation symbol I�$LH is defined, if -����+	!��
 is called, it will call R. If the symbol I�$LH had not
been defined, then -����+	!��
 would not call -�����	R.

It is important to note that the inclusion or exclusion of a call to a conditional method is controlled by the
conditional compilation symbols at the point of the call. In the example

C# LANGUAGE SPECIFICATION

320 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

<<"$����"������	��
�����"���
��	I������
���&

�����"-�����
%

�-����
�����'/I�$LH/(�
������"�
�
��"����"7'("%

-������	.��
�:���'/�����
��"-�����	7/(&
*

*
<<"���"������	��

<<"$����"�����+	��
_������"I�$LH

�����"���
��	I������
���&

�����"-����+
%

������"�
�
��"����"H'("%
-�����	7'(& <<"7"��"������

*
*

<<"���"�����+	��

<<"$����"�����,	��
_�����"I�$LH

�����"-����,
%

������"�
�
��"����"O'("%
-�����	7'(& <<"7"��"��
"������

*
*

<<"���"�����,	��

the classes -����+ and -����, each contain calls to the conditional method -�����	7, which is conditional
based on whether I�$LH is defined. Since this symbol is defined in the context of -����+ but not -����,, the
call to 7 in -����+ is included, while the call to F in -����, is omitted.

17.4.3 The Obsolete attribute

The ������
� attribute is used to mark program types and members that should no longer be used.

�6

����
�L����'6

����
�!����
�	-����"E
"6

����
�!����
�	�
���
"E
"6

����
�!����
�	����"E
"6

����
�!����
�	3�
������"E
"6

����
�!����
�	I�����
�"E
"6

����
�!����
�	R�
���"E
"6

����
�!����
�	-���
���
��"E
"6

����
�!����
�	0�����
�"E
"6

����
�!����
�	7����"E
"6

����
�!����
�	����
(�
������"�����"������
�6

����
�;"6

����
�
%

������"������
�6

����
�'("%			*

������"������
�6

����
�'�
����"�������("%			*

������"������
�6

����
�'�
����"������� "����"�����("%			*

������"�
����"R������"%"��
"%			*"*

Chapter 1717 AttributesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 321

������"����"3������"%"��
"%			*"*
*

If a program uses a type or member that is decorated with the Obsolete attribute, then the compiler shall issue a
warning or error in order to alert the developer, so the offending code can be fixed. Specifically, the compiler
shall issue a warning if no error parameter is provided, or if the error parameter is provided and has the value
false. The compiler shall issue a compile-time error if the error parameter is specified and has the value true.

In the example

�������
�'/!���"�����"��"������
�&"���"�����"$"���
���/(�
�����"6
%

������"����"7'("%*
*

�����"$
%

������"����"7'("%*
*

�����"!��

%

�
�
��"����"R���'("%
6"�")"���"6'(&"<<"�������
�	7'(&

*
*

the class 6 is decorated with the ������
� attribute. Each use of 6 in R��� results in a warning that includes
the specified message, “This class is obsolete; use class B instead.”

17.5 Attributes for Interoperation
Note: This section is applicable only to the Microsoft .NET implementation of C#.

17.5.1 Interoperation with COM and Win32 components

The .NET runtime provides a large number of attributes that enable C# programs to interoperate with
components written in COM and Win32 DLLs. For example, the I��3����
 attribute can be used on a �
�
��
��
��� method to indicate that the implementation of the method is to be found in a Win32 DLL. These
attributes are found in the ���
��	2��
���	3�
������������ namespace, and detailed documentation for
these attributes is found in the .NET runtime documentation.

17.5.2 Interoperation with other .NET languages

17.5.2.1 The IndexerName attribute

Indexers are implemented in .NET using indexed properties, and have a name in the .NET metadata. If no
3������1��� attribute is present for an indexer, then the name 3
�� is used by default. The 3������1���
attribute enables a developer to override this default and specify a different name.

���������"���
��	2��
���	-���������������	-�����
%

�6

����
�L����'6

����
�!����
�	0�����
�(�
������"�����"3������1���6

����
�;"���
��	6

����
�
%

������"3������1���6

����
�'�
����"�������1���("%			*

������"�
����"J����"%"��
"%			*"*
*

*

Chapter 1717 AttributesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 323

A. Unsafe code1

The core C# language, as defined in the preceding chapters, differs notably from C and C++ in its omission of2

pointers as a data type. C# instead provides references and the ability to create objects that are managed by a3

garbage collector. This design, coupled with other features, makes C# a much safer language than C or C++. In4

the core C# language it is simply not possible to have an uninitialized variable, a “dangling” pointer, or an5

expression that indexes an array beyond its bounds. Whole categories of bugs that routinely plague C and C++6

programs are thus eliminated.7

While practically every pointer type construct in C or C++ has a reference type counterpart in C#, there are8

nonetheless situations where access to pointer types becomes a necessity. For example, interfacing with the9

underlying operating system, accessing a memory-mapped device, or implementing a time-critical algorithm10

may not be possible or practical without access to pointers. To address this need, C# provides the ability to write11

unsafe code.12

In unsafe code it is possible to declare and operate on pointers, to perform conversions between pointers and13

integral types, to take the address of variables, and so forth. In a sense, writing unsafe code is much like writing14

C code within a C# program.15

Unsafe code is in fact a “safe” feature from the perspective of both developers and users. Unsafe code must be16

clearly marked with the modifier ������, so developers can’t possibly use unsafe features accidentally, and the17

execution engine works to ensure that unsafe code cannot be executed in an untrusted environment.18

A.1 Unsafe contexts19

The unsafe features of C# are available only in unsafe contexts. An unsafe context is introduced by including an20

������ modifier in the declaration of a type or member, or by employing an unsafe-statement:21

• A declaration of a class, struct, interface, or delegate may include an ������ modifier, in which case the22

entire textual extent of that type declaration (including the body of the class, struct, or interface) is23

considered an unsafe context.24

• A declaration of a field, method, property, event, indexer, operator, constructor, destructor, or static25

constructor may include an ������ modifier, in which case the entire textual extent of that member26

declaration is considered an unsafe context.27

• An unsafe-statement enables the use of an unsafe context within a block. The entire textual extent of the28

associated block is considered an unsafe context.29

The associated grammar extensions are shown below. For brevity, ellipses (...) are used to represent productions30

that appear in preceding chapters.31

class-modifier:32

...33

������34

struct-modifier:35

...36

������37

C# LANGUAGE SPECIFICATION

324 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

interface-modifier:1

...2

������3

delegate-modifier:4

...5

������6

field-modifier:7

...8

������9

method-modifier:10

...11

������12

property-modifier:13

...14

������15

event-modifier:16

...17

������18

indexer-modifier:19

...20

������21

operator-modifier:22

...23

������24

constructor-modifier:25

...26

������27

destructor-declaration:28

attributesopt ��
���opt ������opt > identifier ' (destructor-body29

attributesopt ������opt ��
���opt > identifier ' (destructor-body30

static-constructor-modifiers:31

������opt ��
���opt"�
�
��32

������opt �
�
��"��
���opt33

��
���opt"������opt �
�
��34

�
�
��"������opt ��
���opt35

��
���opt"�
�
��"������opt36

�
�
��"��
���opt"������opt37

embedded-statement:38

...39

unsafe-statement40

unsafe-statement:41

������ block42

In the example43

Chapter 1717 AttributesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 325

������"������"�
���
"1���1
%2

������"��
"J����&3
������"1���?":��
&4
������"1���?"2���
&5

*6

the ������ modifier specified in the struct declaration causes the entire textual extent of the struct declaration7

to become an unsafe context. Thus, it is possible to declare the :��
 and 2���
 fields to be of a pointer type.8

The example above could also be written9

������"�
���
"1���10
%11

������"��
"J����&12
������"������"1���?":��
&13
������"������"1���?"2���
&14

*15

Here, the ������ modifiers in the field declarations cause those declarations to be considered unsafe contexts.16

Other than establishing an unsafe context, thus permitting the use of pointer types, the ������ modifier has no17

effect on a type or a member. In the example18

������"�����"619
%20

������"������"���
���"����"7'("%21
����?"�&22
			23

*24
*25

������"�����"$;"626
%27

������"��������"����"7'("%28
����	7'(&29
			30

*31
*32

the ������ modifier on the 7 method in 6 simply causes the textual extent of 7 to become an unsafe context in33

which the unsafe features of the language can be used. In the override of 7 in $, there is no need to re-specify the34

������ modifier—unless, of course, the 7 method in $ itself needs access to unsafe features.35

The situation is slightly different when a pointer type is part of the method’s signature36

������"������"�����"637
%38

������"���
���"����"7'����?"�("%			*39
*40

������"�����"$;"641
%42

������"������"��������"����"7'����?"�("%			*43
*44

Here, because 7’s signature includes a pointer type, it can only be written in an unsafe context. However, the45

unsafe context can be introduced by either making the entire class unsafe, as is the case in 6, or by including an46

������ modifier in the method declaration, as is the case in $.47

A.2 Pointer types48

In an unsafe context, a type (§4) may be a pointer-type as well as a value-type or a reference-type.49

C# LANGUAGE SPECIFICATION

326 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

type:1

value-type2

reference-type3

pointer-type4

A pointer-type is written as an unmanaged-type or the keyword ����, followed by a ? token:5

pointer-type:6

unmanaged-type ?7

���� ?8

unmanaged-type:9

type10

The type specified before the ? in a pointer type is called the referent type of the pointer type. It represents the11

type of the variable to which a value of the pointer type points.12

Unlike references (values of reference types), pointers are not tracked by the garbage collector—the garbage13

collector has no knowledge of pointers and the data to which they point. For this reason a pointer is not14

permitted to point to a reference or to a struct that contains references, and the referent type of a pointer must be15

an unmanaged-type.16

An unmanaged-type is any type that isn’t a reference-type and doesn’t contain reference-type fields at any level17

of nesting. In other words, an unmanaged-type is one of the following:18

• ���
�, ��
�, ����
, �����
, ��
, ���
, ����, �����, ����, ����
, ������, �������, or ����.19

• Any enum-type.20

• Any pointer-type.21

• Any user-defined struct-type that contains fields of unmanaged-types only.22

The intuitive rule for mixing of pointers and references is that referents of references (objects) are permitted to23

contain pointers, but referents of pointers are not permitted to contain references.24

Some examples of pointer types are given in the table below:25

26

Example Description

��
�? Pointer to ��
�

����? Pointer to ����

��
?? Pointer to pointer to ��

��
?�� Single-dimensional array of pointers to ��

����? Pointer to unknown type

27

For a given implementation, all pointer types must have the same size and representation.28

Unlike C and C++, when multiple pointers are declared in the same declaration, in C# the ? is written along29

with the underlying type only, not as a prefix punctuator on each pointer name. The example30

��
?"�� "��& <<"1�!"��"��
"?�� "?��&31

declares two variables, named �� and ��, of type ��
?.32

The value of a pointer having type !? represents the address of a variable of type !. The pointer indirection33

operator ? (A.5.1) may be used to access this variable. For example, given34

Chapter 1717 AttributesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 327

 a variable 0 of type ��
?, the expression ?0 denotes the ��
 variable found at the address contained in 0.1

Like an object reference, a pointer may be ����. Applying the indirection operator to a ���� pointer results in2

implementation-defined behavior. A pointer with the value ���� is represented by all-bits-zero.3

The ����? type represents a pointer to an unknown type. Because the referent type is unknown, the indirection4

operator cannot be applied to a pointer of type ����?, nor can any arithmetic be performed on such a pointer.5

However, a pointer of type ����? can be cast to any other pointer type (and vice versa).6

Pointer types are a separate category of types. Unlike reference types and value types, pointer types do not7

inherit from �����
 and no conversions exist between pointer types and �����
. In particular, boxing and8

unboxing (§4.3) are not supported for pointers. However, conversions are permitted between different pointer9

types and between pointer types and the integral types. This is described in §A.4.10

A pointer-type may be used as the type of a volatile field (§10.4.3).11

Although pointers can be passed as ��� or ��
 parameters, doing so can cause undefined behavior, since the12

pointer may well be set to point to a local variable which no longer exists when the called method returns, or the13

fixed object to which it used to point, is no longer fixed. For example:14

�����"���
��&15

�����"!��
16
%17

�
�
��"��
"�����")"+
&18

������"�
�
��"����"7'��
"��
?"��� "���"��
?"��+("%19
��
"�")"�
&20
���")"D�&21

�����"'��
?"��")"D�����("%22
<<"			23
��+")"��&24

*25
*26

������"�
�
��"����"R���'("%27
��
?"���&28
��
"�")"�
&29
��
?"��+")"D�&30

7'��
"��� "���"��+(&31
-������	.��
�:���'/?���")"%
* "?��+")"%�*/ 32

?��� "?��+(& <<"���������"��������33
*34

*35

A method can return a value of some type, and that type can be a pointer. For example, when given a pointer to36

a contiguous sequence of ��
 values, the sequence's element count, and some other ��
 value, the following37

method returns the address of the indicated value in that array, if a match occurs; otherwise it returns ����:38

������"�
�
��"��
?"7���'��
?"�� "��
"��P� "��
"�����("%39
���"'��
"�")"
&"�"A"��P�&"44�("%40

��"'?��"))"�����(41
��
���"��&42

44��&43
*44
��
���"����&45

*46

In an unsafe context, several constructs are available for operating on pointers:47

• The ? operator may be used to perform pointer indirection (§A.5.1).48

• The 5B operator may be used to access a member of a struct through a pointer (§A.5.2).49

C# LANGUAGE SPECIFICATION

328 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• The �� operator may be used to index a pointer (§A.5.3).1

• The D operator may be used to obtain the address of a variable (§A.5.4).2

• The 44 and 55 operators may be used to increment and decrement pointers (§A.5.5).3

• The 4 and 5 operators may be used to perform pointer arithmetic (§A.5.6).4

• The)), C), A, B, A), and)B operators may be used to compare pointers (§A.5.7).5

• The �
��8����� operator may be used to allocate memory from the call stack (§A.7).6

• The ����� statement may be used to temporarily fix a variable so its address can be obtained (§A.6).7

A.3 Fixed and moveable variables8

The address-of operator (§A.5.4) and the ����� statement (§A.6) divide variables into two categories: Fixed9

variables and moveable variables.10

Fixed variables reside in storage locations that are unaffected by operation of the garbage collector. Examples of11

fixed variables include local variables, value parameters, and variables created by dereferencing pointers.12

Moveable variables on the other hand reside in storage locations that are subject to relocation or disposal by the13

garbage collector. Examples of moveable variables include fields in objects and elements of arrays.14

The D operator (§A.5.4) permits the address of a fixed variable to be obtained without restrictions. However,15

because a moveable variable is subject to relocation or disposal by the garbage collector, the address of a16

moveable variable can only be obtained using a ����� statement (§A.6), and the address remains valid only for17

the duration of that ����� statement.18

In precise terms, a fixed variable is one of the following:19

• A variable resulting from a simple-name (§7.5.2) that refers to a local variable or a value parameter.20

• A variable resulting from a member-access (§7.5.4) of the form J	3, where J is a fixed variable of a struct-21

type.22

• A variable resulting from a pointer-indirection-expression (§A.5.1) of the form ?0, a pointer-member-23

access (§A.5.2) of the form 05B3, or a pointer-element-access (§A.5.3) of the form 0���.24

All other variables are classified as moveable variables.25

Note that a static field is classified as a moveable variable. Also note that a ��� or ��
 parameter is classified as26

a moveable variable, even if the argument given for the parameter is a fixed variable. Finally, note that a27

variable produced by dereferencing a pointer is always classified as a fixed variable.28

A.4 Pointer conversions29

In an unsafe context, the set of available implicit conversions (§6.1) is extended to include the following implicit30

pointer conversions:31

• From any pointer-type to the type ����?.32

• From the null type to any pointer-type.33

Additionally, in an unsafe context, the set of available explicit conversions (§6.2) is extended to include the34

following explicit pointer conversions:35

• From any pointer-type to any other pointer-type.36

• From ���
�, ��
�, ����
, �����
, ��
, ���
, ����, or ����� to any pointer-type.37

Chapter 1717 AttributesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 329

• From any pointer-type to ���
�, ��
�, ����
, �����
, ��
, ���
, ����, or �����.1

Finally, in an unsafe context, the set of standard implicit conversions (§6.3.1) includes the following pointer2

conversion:3

• From any pointer-type to the type ����?.4

Conversions between two pointer types never change the actual pointer value. In other words, a conversion from5

one pointer type to another has no effect on the underlying address given by the pointer.6

When one pointer type is converted to another, if the resulting pointer is not correctly aligned for the pointed-to7

type, the behavior is undefined if the result is dereferenced. In general, the concept “correctly aligned” is8

transitive: if a pointer to type 6 is correctly aligned for a pointer to type $, which, in turn, is correctly aligned for9

a pointer to type -, then a pointer to type 6 is correctly aligned for a pointer to type -.10

Consider the following case in which a variable having one type is accessed via a pointer to a different type:11

����"�")"G6G&12
����?"��")"D�&13
����?"��")"��&14
��
?"��")"'��
?(��&15
��
"�")"?��& <<"���������16
?��")"�+,S=X& <<"���������17

When a pointer type is converted to a pointer to byte, the result points to the lowest addressed byte of the18

variable. Successive increments of the result, up to the size of the variable, yield pointers to the remaining bytes19

of that variable. For example, the following method displays each of the eight bytes in a double as a20

hexadecimal value:21

�����"���
��&22
�����"!��
23
%24

������"�
�
��"����"R���'("%25
""""""������"�")"�+,	S=X�+,&26

"""��
�?"��")"'��
�?(D�&27
���"'��
"�")"
&"�"A"��P���'������(&"44�(28

""" -������	.��
�'/"%
 +;K*/ "'���
('?��44((&29
*30

*31

Of course, the output produced depends on endianness.32

Mappings between pointers and integers are implementation-defined. However, on 32- and 64-bit CPU33

architectures with a linear address space, conversions of pointers to or from integral types typically behave34

exactly like a conversion of ���
 or ����� values, respectively, to or from those integral types.35

A.5 Pointers in expressions36

In an unsafe context an expression may yield a result of a pointer type, but outside an unsafe context it is a37

compile-time error for an expression to be of a pointer type. In precise terms, outside an unsafe context a38

compile-time error occurs if any simple-name (§7.5.2), member-access (§7.5.4), invocation-expression (§7.5.5),39

or element-access (§7.5.6) is of a pointer type.40

In an unsafe context, the primary-no-array-creation-expression (§7.5) and unary-expression (§7.6) productions41

permit the following additional constructs:42

primary-no-array-creation-expression:43

...44

pointer-member-access45

pointer-element-access46

sizeof-expression47

C# LANGUAGE SPECIFICATION

330 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

unary-expression:1

...2

pointer-indirection-expression3

addressof-expression4

These constructs are described in the following sections. The precedence and associativity of the unsafe5

operators is implied by the grammar.6

A.5.1 Pointer indirection7

A pointer-indirection-expression consists of an asterisk (?) followed by a unary-expression.8

pointer-indirection-expression:9

? unary-expression10

The unary ? operator denotes pointer indirection and is used to obtain the variable to which a pointer points.11

The result of evaluating ?0, where 0 is an expression of a pointer type !?, is a variable of type !. It is a compile-12

time error to apply the unary ? operator to an expression of type ����? or to an expression that isn’t of a pointer13

type.14

The effect of applying the unary ? operator to a ���� pointer is implementation-defined. In particular, there is15

no guarantee that this operation throws a ���
��	1���2�������������
���.16

If an invalid value has been assigned to the pointer, the behavior of the unary ? operator is undefined. Among17

the invalid values for dereferencing a pointer by the unary ? operator are an address inappropriately aligned for18

the type pointed to (see example in §A.4), and the address of a variable after the end of its lifetime.19

For purposes of definite assignment analysis, a variable produced by evaluating an expression of the form ?0 is20

considered initially assigned (§5.3.1).21

A.5.2 Pointer member access22

A pointer-member-access consists of a primary-expression, followed by a “5B” token, followed by an identifier.23

pointer-member-access:24

primary-expression 5B identifier25

In a pointer member access of the form 05B3, 0 must be an expression of a pointer type other than ����?, and 326

must denote an accessible member of the type to which 0 points.27

A pointer member access of the form 05B3 is evaluated exactly as '?0(3. For a description of the pointer28

indirection operator (?), see §A.5.1. For a description of the member access operator (), see §7.5.4.29

In the example30

�
���
"0���
31
%32

������"��
"�&33
������"��
"�&34

������"��������"�
����"!��
����'("%35
��
���"/'/"4"�"4"/ /"4"�"4"/(/&36

*37
*38

Chapter 1717 AttributesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 331

�����"!��
1
%2

������"�
�
��"����"R���'("%3
0���
"����
&4
0���
?"�")"D����
&5
�5B�")"�
&6
�5B�")"+
&7
-������	.��
�:���'�5B!��
����'((&8

*9
*10

the 5B operator is used to access fields and invoke a method of a struct through a pointer. Because the operation11

05B3 is precisely equivalent to '?0(3, the R��� method could equally well have been written:12

�����"!��
13
%14

������"�
�
��"����"R���'("%15
0���
"����
&16
0���
?"�")"D����
&17
'?�(�")"�
&18
'?�(�")"+
&19
-������	.��
�:���''?�(!��
����'((&20

*21
*22

A.5.3 Pointer element access23

A pointer-element-access consists of a primary-no-array-creation-expression followed by an expression24

enclosed in “�” and “�”.25

pointer-element-access:26

primary-no-array-creation-expression � expression �27

In a pointer element access of the form 0���, 0 must be an expression of a pointer type other than ����?, and �28

must be an expression of a type that can be implicitly converted to ��
, ���
, ����, or �����.29

A pointer element access of the form 0��� is evaluated exactly as ?'0 4 �(. For a description of the pointer30

indirection operator (?), see §A.5.1. For a description of the pointer addition operator (4), see §A.5.6.31

In the example32

�����"!��
33
%34

������"�
�
��"����"R���'("%35
����?"�")"�
��8�����"�����+=X�&36
���"'��
"�")"
&"�"A"+=X&"�44("����")"'����(�&37

*38
*39

a pointer element access is used to initialize the character buffer in a ��� loop. Because the operation 0��� is40

precisely equivalent to ?'0 4 �(, the example could equally well have been written:41

�����"!��
42
%43

������"�
�
��"����"R���'("%44
����?"�")"�
��8�����"�����+=X�&45
���"'��
"�")"
&"�"A"+=X&"�44("?'�"4"�(")"'����(�&46

*47
*48

The pointer element access operator does not check for out-of-bounds errors and the effects of accessing an out-49

of-bounds element are undefined.50

C# LANGUAGE SPECIFICATION

332 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

A.5.4 The address-of operator1

An addressof-expression consists of an ampersand (D) followed by a unary-expression.2

addressof-expression:3

D unary-expression4

Given an expression � which is of a type ! and is classified as a fixed variable (§A.3), the construct D�5

computes the address of the variable given by �. The type of the result is !? and is classified as a value. A6

compile-time error occurs if � is not classified as a variable, if � is classified as a volatile field, or if � denotes a7

moveable variable. In the last case, a fixed statement (§A.6) can be used to temporarily “fix” the variable before8

obtaining its address.9

The D operator does not require its argument to be definitely assigned, but following an D operation, the variable10

to which the operator is applied is considered definitely assigned in the execution path in which the operation11

occurs. It is the responsibility of the programmer to ensure that correct initialization of the variable actually does12

take place in this situation.13

In the example14

�����"���
��&15

������"�����"!��
16
%17

�
�
��"����"R���'("%18
��
"�&19
��
?"�")"D�&20
?�")"�+,&21
-������	.��
�:���'�(&22

*23
*24

� is considered definitely assigned following the D� operation used to initialize �. The assignment to ?� in25

effect initializes �, but the inclusion of this initialization is the responsibility of the programmer, and no26

compile-time error would occur if the assignment was removed.27

The rules of definite assignment for the D operator exist such that redundant initialization of local variables can28

be avoided. For example, many external APIs take a pointer to a structure which is filled in by the API. Calls to29

such APIs typically pass the address of a local struct variable, and without the rule, redundant initialization of30

the struct variable would be required.31

As stated earlier (§7.5.4), outside an instance constructor or static constructor for a struct or class that defines a32

�������� field, that field is considered a value, not a variable. As such, its address cannot be taken. Similarly,33

the address of a constant cannot be taken.34

A.5.5 Pointer increment and decrement35

In an unsafe context, the 44 operator (§7.5.9) and the 55 operator (§7.6.5) can be applied to pointer variables of36

all types except ����?. Thus, for every pointer type !?, the following operators are implicitly defined:37

!?"�����
��"44'!?"�(&38

!?"�����
��"55'!?"�(&39

The operators produce the same results asx+1 and x-1, respectively (§A.5.6). In other words, for a pointer40

variable of type !?, the 44 operator adds ��P���'!(to the address contained in the variable, and the 5541

operator subtracts ��P���'!(from the address contained in the variable.42

If a pointer increment or decrement operation overflows the domain of the pointer type, the result is43

implementation-defined, but no exceptions are produced.44

Chapter 1717 AttributesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 333

A.5.6 Pointer arithmetic1

In an unsafe context, the 4 operator (§7.7.4) and 5 operator (§7.7.5) can be applied to values of all pointer types2

except ����?. Thus, for every pointer type !?, the following operators are implicitly defined:3

!?"�����
��"4'!?"� "��
"�(&4
!?"�����
��"4'!?"� "���
"�(&5
!?"�����
��"4'!?"� "����"�(&6
!?"�����
��"4'!?"� "�����"�(&7

!?"�����
��"4'��
"� "!?"�(&8
!?"�����
��"4'���
"� "!?"�(&9
!?"�����
��"4'����"� "!?"�(&10
!?"�����
��"4'�����"� "!?"�(&11

!?"�����
��"M'!?"� "��
"�(&12
!?"�����
��"M'!?"� "���
"�(&13
!?"�����
��"M'!?"� "����"�(&14
!?"�����
��"M'!?"� "�����"�(&15

����"�����
��"M'!?"� "!?"�(&16

Given an expression 0 of a pointer type !? and an expression 1 of type ��
, ���
, ����, or �����, the17

expressions 0 4 1 and 1 4 0 compute the pointer value of type !? that results from adding 1 ? ��P���'!(to18

the address given by 0. Likewise, the expression 0 5 1 computes the pointer value of type !? that results from19

subtracting 1 ? ��P���'!(from the address given by 0.20

Given two expressions, 0 and T, of a pointer type !?, the expression 0 M T computes the difference between the21

addresses given by 0 and T and then divides the difference by ��P���'!(. The type of the result is always22

����. In effect, 0 5 T is computed as ''����('0(5 '����('T((< ��P���'!(.23

For example, this program:24

�����"���
��&25

�����"!��
26
%27

������"�
�
��"����"R���'("%28
��
?"������")"�
��8�����"��
�+
�&29
��
?"�")"D���������&30
��
?"U")"D��������=�&31
-������	.��
�:���'/�"5"U")"%
*/ "�"5"U(&32
-������	.��
�:���'/U"5"�")"%
*/ "U"5"�(&33

*34
*35

produces the output:36

�"5"U")"5�S37
U"5"�")"�S38

If a pointer arithmetic operation overflows the domain of the pointer type, the result is truncated in an39

implementation-defined fashion, but no exceptions are produced.40

A.5.7 Pointer comparison41

In an unsafe context, the)), C), A, B, A), and)B operators (§7.9) can be applied to values of all pointer types.42

The pointer comparison operators are:43

����"�����
��"))'����?"� "����?"�(&44

����"�����
��"C)'����?"� "����?"�(&45

����"�����
��"A'����?"� "����?"�(&46

����"�����
��"B'����?"� "����?"�(&47

C# LANGUAGE SPECIFICATION

334 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

����"�����
��"A)'����?"� "����?"�(&1

����"�����
��"B)'����?"� "����?"�(&2

Because an implicit conversion exists from any pointer type to the ����? type, operands of any pointer type can3

be compared using these operators. The comparison operators compare the addresses given by the two operands4

as if they were unsigned integers.5

A.5.8 The sizeof operator6

The ��P��� operator returns the number of bytes occupied by a variable of a given type. The type specified as7

an operand to ��P��� must be an unmanaged-type (§A.2).8

sizeof-expression:9

��P��� ' unmanaged-type (10

The result of the ��P��� operator is a value of type ��
. For certain predefined types, the ��P��� operator11

yields a constant value as shown in the table below.12

13

Expression Result

��P���'���
�(�

��P���'��
�(�

��P���'����
(+

��P���'�����
(+

��P���'��
(S

��P���'���
(S

��P���'����(Y

��P���'�����(Y

��P���'����(+

��P���'����
(S

��P���'������(Y

��P���'����(�

14

For all other types, the result of the ��P��� operator is implementation-defined and is classified as a value, not15

a constant.16

The order in which members are packed into a struct is unspecified.17

For alignment purposes, there may be unnamed padding at the beginning of a struct, within a struct, and at the18

end of the struct. The contents of the bits used as padding are indeterminate.19

When applied to an operand that has struct type, the result is the total number of bytes in a variable of that type,20

including any padding.21

A.6 The fixed statement22

In an unsafe context, the embedded-statement (§8) production permits an additional construct, the �����23

statement, which is used to “fix” a moveable variable such that its address remains constant for the duration of24

the statement.25

Chapter 1717 AttributesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 335

embedded-statement:1

...2

fixed-statement3

fixed-statement:4

����� ' pointer-type fixed-pointer-declarators (embedded-statement5

fixed-pointer-declarators:6

fixed-pointer-declarator7

fixed-pointer-declarators fixed-pointer-declarator8

fixed-pointer-declarator:9

identifier) fixed-pointer-initializer10

fixed-pointer-initializer:11

D variable-reference12

expression13

Each fixed-pointer-declarator declares a local variable of the given pointer-type and initializes the local variable14

with the address computed by the corresponding fixed-pointer-initializer. A local variable declared in a �����15

statement is accessible in any fixed-pointer-initializers occurring to the right of the declaration, and in the16

embedded-statement of the ����� statement. A local variable declared by a ����� statement is considered17

read-only. A compile-time error occurs if the embedded statement attempts to modify this local variable (via18

assignment or the 44 and 55 operators) or pass it as a ��� or ��
 parameter.19

A fixed-pointer-initializer can be one of the following:20

• The token “D” followed by a variable-reference (§5.3.3) to a moveable variable (§A.3) of an unmanaged21

type !, provided the type !? is implicitly convertible to the pointer type given in the ����� statement. In22

this case, the initializer computes the address of the given variable, and the variable is guaranteed to remain23

at a fixed address for the duration of the ����� statement.24

• An expression of an array-type with elements of an unmanaged type !, provided the type !? is implicitly25

convertible to the pointer type given in the ����� statement. In this case, the initializer computes the26

address of the first element in the array, and the entire array is guaranteed to remain at a fixed address for27

the duration of the ����� statement. The behavior of the ����� statement is implementation-defined if the28

array expression is null or if the array has zero elements.29

• An expression of type �
����, provided the type ����? is implicitly convertible to the pointer type given30

in the ����� statement. In this case, the initializer computes the address of the first character in the string,31

and the entire string is guaranteed to remain at a fixed address for the duration of the ����� statement. The32

behavior of the ����� statement is implementation-defined if the string expression is null.33

For each address computed by a fixed-pointer-initializer the ����� statement ensures that the variable34

referenced by the address is not subject to relocation or disposal by the garbage collector for the duration of the35

����� statement. For example, if the address computed by a fixed-pointer-initializer references a field of an36

object or an element of an array instance, the ����� statement guarantees that the containing object instance is37

not relocated or disposed of during the lifetime of the statement.38

It is the programmer’s responsibility to ensure that pointers created by ����� statements do not survive beyond39

execution of those statements. For example, when pointers created by ����� statements are passed to external40

APIs, it is the programmer’s responsibility to ensure that the APIs retain no memory of these pointers.41

Fixed objects may cause fragmentation of the heap (because they can’t be moved). For that reason, objects42

should be fixed only when absolutely necessary and then only for the shortest amount of time possible.43

The example44

C# LANGUAGE SPECIFICATION

336 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

������"�����"!��
1
%2

�
�
��"��
"�&3
��
"�&4

�
�
��"����"7'��
?"�("%5
?�")"�&6

*7

�
�
��"����"R���'("%8
!��
"
")"���"!��
'(&9
��
��"���")"���"��
��
�&10
�����"'��
?"�")"D�("7'�(&11
�����"'��
?"�")"D
	�("7'�(&12
�����"'��
?"�")"D����
�("7'�(&13
�����"'��
?"�")"���("7'�(&14

*15
*16

demonstrates several uses of the ����� statement. The first statement fixes and obtains the address of a static17

field, the second statement fixes and obtains the address of an instance field, and the third statement fixes and18

obtains the address of an array element. In each case it would have been an error to use the regular D operator19

since the variables are all classified as moveable variables.20

The third and fourth ����� statements in the example above produce identical results. In general, for an array21

instance ���, specifying D����
� in a ����� statement is the same as simply specifying ���.22

Here’s another example of the ����� statement, this time using �
����:23

�����"!��
24
%25

�
�
��"�
����"����")"/��/&26

������"�
�
��"����"7'����?"�("%27
���"'��
"�")"
&"����"C)"G\
G&"44�(28

-������	.��
�:���'����(&29
*30

������"�
�
��"����"R���'("%31
�����"'����?"�")"����("7'�(&32
�����"'����?"�")"/��/("7'�(&33

*34
*35

In an unsafe context array elements of single-dimensional arrays are stored in increasing index order, starting36

with index
 and ending with index :���
�"M"�. For multi-dimensional arrays, array elements are stored such37

that the indices of the rightmost dimension are increased first, then the next left dimension, and so on to the left.38

Within a ����� statement that obtains a pointer � to an array instance �, the pointer values ranging from � to �39

4 ���	:���
� 5 � represent addresses of the elements in the array. Likewise, the variables ranging from ��
�40

to �����	:���
� 5 �� represent the actual array elements. Given the way in which arrays are stored, we can41

treat an array of any dimension as though it were linear.42

The example43

�����"!��
44
%45

�
�
��"����"R���'("%46
��
� �"�")"���"��
�+ , S�&47
������"%48

�����"'��
?"�")"�("%49
���"'��
"�")"
&"�"A"�	:���
�&"44�(<<"
���
"��"������50

����")"�&51
*52

*53
54

Chapter 1717 AttributesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 337

���"'��
"�")"
&"�"A"+&"44�(1
���"'��
"�")"
&"�"A",&"44�("%2

���"'��
"8")"
&"8"A"S&"448(3
-������	.��
�'/�%
* %�* %+*�")"%, +*"/ "� "� "8 "��� � 8�(&4

-������	.��
�:���'(&5
*6

*7
*8

produces the output:9

�

�")""
"�

 ��")""�"�

 +�")""+"�

 ,�")"",10
�
 �
�")""S"�
 � ��")""="�
 � +�")""X"�
 � ,�")""V11
�
 +
�")""Y"�
 + ��")""W"�
 + +�")"�
"�
 + ,�")"��12
��

�")"�+"��
 ��")"�,"��
 +�")"�S"��
 ,�")"�=13
�� �
�")"�X"�� � ��")"�V"�� � +�")"�Y"�� � ,�")"�W14
�� +
�")"+
"�� + ��")"+�"�� + +�")"++"�� + ,�")"+,15

In the example16

������"�����"!��
17
%18

�
�
��"����"7���'��
?"� "��
"����
 "��
"�����("%19
���"'&"����
"C)"
&"����
55("?�44")"�����&20

*21

�
�
��"����"R���'("%22
��
��"���")"���"��
��

�&23
�����"'��
?"�")"���("7���'� "�

 "5�(&24

*25
*26

a ����� statement is used to fix an array so its address can be passed to a method that takes a pointer.27

A ����? value produced by fixing a string instance always points to a null-terminated string. Within a fixed28

statement that obtains a pointer � to a string instance �, the pointer values ranging from � to � 4 �	:���
� 5 �29

represent addresses of the characters in the string, and the pointer value � 4 �	:���
� always points to a null30

character (the character with value G\
G).31

Modifying objects of managed type through fixed pointers can results in undefined behavior. Because strings are32

immutable, it is the programmer’s responsibility to ensure that the characters referenced by a pointer to a fixed33

string are not modified.34

The automatic null-termination of strings is particularly convenient when calling external APIs that expect “C-35

style” strings. Note, however, that a string instance is permitted to contain null characters. If such null characters36

are present, the string will appear truncated when treated as a null-terminated ����?.37

A.7 Stack allocation38

In an unsafe context, a local variable declaration (§8.5.1) may include a stack allocation initializer which39

allocates memory from the call stack.40

local-variable-initializer:41

expression42

array-initializer43

stackalloc-initializer44

stackalloc-initializer:45

�
��8����� unmanaged-type � expression �46

The unmanaged-type indicates the type of the items that will be stored in the newly allocated location, and the47

expression indicates the number of these items. Taken together, these specify the required allocation size. Since48

C# LANGUAGE SPECIFICATION

338 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

the size of a stack allocation cannot be negative, it is a compile-time error to specify the number of items as a1

constant-expression that evaluates to a negative value.2

A stack allocation initializer of the form �
��8����� !��� requires ! to be an unmanaged type (§A.2) and � to3

be an expression of type ��
. The construct allocates � ? ��P���'!(bytes from the call stack and returns a4

pointer, of type !?, to the newly allocated block. If � is a negative value, then the behavior is undefined. If � is5

zero, then no allocation is made, and the pointer returned is implementation-defined. If there is not enough6

memory available to allocate a block of the given size, a ���
��	�
��8�������������
��� is thrown.7

The content of the newly allocated memory is undefined.8

There is no way to explicitly free memory allocated using �
��8�����. Instead, all stack allocated memory9

blocks created during the execution of a function member are automatically discarded when the function10

member returns. This corresponds to the ������ function, an extension commonly found in C and C++11

implementations.12

Stack allocation initializers are not permitted in ��
�� or ������� blocks (§8.10).13

In the example14

�����"���
��&15

�����"!��
16
%17

������"�
�
��"�
����"3�
!��
����'��
"�����("%18
����?"������")"�
��8�����"������X�&19
����?"�")"������"4"�X&20
��
"�")"�����"B)"
N"�����;"5�����&21
��"%22

?55�")"'����('�"@"�
"4"G
G(&23
�"<)"�
&24

*"�����"'�"C)"
(&25
��"'�����"A"
("?55�")"G5G&26
��
���"���"�
����'� "
 "'��
('������"4"�X"5"�((&27

*28

�
�
��"����"R���'("%29
-������	.��
�:���'3�
!��
����'�+,S=((&30
-������	.��
�:���'3�
!��
����'5WWW((&31

*32
*33

a �
��8����� initializer is used in the 3�
!��
���� method to allocate a buffer of 16 characters on the stack.34

The buffer is automatically discarded when the method returns.35

A.8 Dynamic memory allocation36

Except for the �
��8����� operator, C# provides no predefined constructs for managing non-garbage collected37

memory. Such services are typically provided by supporting class libraries or imported directly from the38

underlying operating system. For example, the R����� class below illustrates how the heap functions of an39

underlying operating system might be accessed from C#:40

�����"���
��	2��
���	3�
������������&41

������"������"�����"R�����42
%43

<<"O�����"���"
��"�������"����	"!���"������"��"����"��"���"�����"
�"
��44
<<"O���KKK"603�"��"
��"��
����"�����	45

�
�
��"��
"��")"H�
0������O���'(&46

<<"0����
�"���
����"����
���
��"
�"������
"���
��
��
���	47

�����
�"R�����'("%*48

Chapter 1717 AttributesAttributes

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 339

<<"6�����
��"�"������"����8"��"
��"�����"��P�	"!��"������
��"������"��1
<<"��
���
������"���
����P��"
�"P���	2

������"�
�
��"����?"6����'��
"��P�("%3
����?"�����
")"O���6����'�� "O�60#[�2�#R�R�2Q "��P�(&4
��"'�����
"))"����("
����"���"��
��R����������
���'(&5
��
���"�����
&6

*7

<<"-�����"����
"��
��"����"���"
�"��
	"!��"������"���"���
���
���8
<<"����8�"���"�����

��"
�"�������	9

������"�
�
��"����"-���'����?"��� "����?"��
 "��
"����
("%10
��
�?"��")"'��
�?(���&11
��
�?"��")"'��
�?(��
&12
��"'��"B"��("%13

���"'&"����
"C)"
&"����
55("?��44")"?��44&14
*15
����"��"'��"A"��("%16

���"'��"4)"����
 "��"4)"����
&"����
"C)"
&"����
55("?55��")"?55��&17
*18

*19

<<"7����"�"������"����8	20

������"�
�
��"����"7���'����?"����8("%21
��"'CO���7���'�� "
 "����8(("
����"���"3�����������
��������
���'(&22

*23

<<"2�5������
��"�"������"����8	"3�"
��"��������
���"��U���
"��"���"�24
<<"������"��P� "
��"����
�����"������"��"������"��"��
���
������25
<<"���
����P��"
�"P���	26

������"�
�
��"����?"2�6����'����?"����8 "��
"��P�("%27
����?"�����
")"O���2�6����'�� "O�60#[�2�#R�R�2Q "����8 "��P�(&28
��"'�����
"))"����("
����"���"��
��R����������
���'(&29
��
���"�����
&30

*31

<<"2�
����"
��"��P�"��"�"������"����8	32

������"�
�
��"��
"��P���'����?"����8("%33
��
"�����
")"O�����P�'�� "
 "����8(&34
��"'�����
"))"5�("
����"���"3�����������
��������
���'(&35
��
���"�����
&36

*37

<<"O���"603"�����38

����
"��
"O�60#[�2�#R�R�2Q")"
�

Y&39

<<"O���"603"����
����40

�I��3����
'/8�����,+/(�41
�
�
��"��
���"��
"H�
0������O���'(&42

�I��3����
'/8�����,+/(�43
�
�
��"��
���"����?"O���6����'��
"�O��� "��
"����� "��
"��P�(&44

�I��3����
'/8�����,+/(�45
�
�
��"��
���"����"O���7���'��
"�O��� "��
"����� "����?"����8(&46

�I��3����
'/8�����,+/(�47
�
�
��"��
���"����?"O���2�6����'��
"�O��� "��
"����� 48

����?"����8 "��
"��P�(&49

�I��3����
'/8�����,+/(�50
�
�
��"��
���"��
"O�����P�'��
"�O��� "��
"����� "����?"����8(&51

*52

An example that uses the R����� class is given below:53

C# LANGUAGE SPECIFICATION

340 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

�����"!��
1
%2

������"�
�
��"����"R���'("%3
��
�?"������")"'��
�?(R�����	6����'+=X(&4
���"'��
"�")"
&"�"A"+=X&"�44("���������")"'��
�(�&5
��
���"�����")"���"��
��+=X�&6
�����"'��
�?"�")"�����("R�����	-���'������ "� "+=X(&7
R�����	7���'������(&8
���"'��
"�")"
&"�"A"+=X&"�44("-������	.��
�:���'��������(&9

*10
*11

The example allocates 256 bytes of memory through R�����	6���� and initializes the memory block with12

values increasing from 0 to 255. It then allocates a 256 element byte array and uses R�����	-��� to copy the13

contents of the memory block into the byte array. Finally, the memory block is freed using R�����	7��� and14

the contents of the byte array are output on the console.15

Appendix BD Documentation commentsReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 341

B. Documentation comments

C# provides a mechanism for programmers to document their code using a special comment syntax that contains
XML text. In source code files, comments having a certain form can be used to direct a tool to produce XML
from those comments and the source code elements, which they precede. Comments using such syntax are
called documentation comments, and are single-line comments of the form <<<9 They must immediately
precede a user-defined type (such as a class, delegate, or interface) or a member (such as a field, event, property,
or method). The XML generation tool is called the documentation generator. (This generator could be, but need
not be, the C# compiler itself.) The output produced by the documentation generator is called the
documentation file. A documentation file is used as input to a documentation viewer; a tool intended to produce
some sort of visual display of type information and its associated documentation.

This specification suggests a set of tags to be used in documentation comments, but use of these tags is not
required, and other tags may be used if desired, as long the rules of well-formed XML are followed.

B.1 Introduction
Comments having a special form can be used to direct a tool to produce XML from those comments and the
source code elements, which they precede. Such comments are single-line comments of the form <<<9 They
must immediately precede a user-defined type (such as a class, delegate, or interface) or a member (such as a
field, event, property, or method) that they annotate.

Syntax:

single-line-doc-comment::
<<< input-charactersopt

In a single-line-doc-comment, if there is a whitespace character following the <<< characters on each of the
single-line-doc-comments adjacent to the current single-line-doc-comment, then that whitespace character is not
included in the XML output.

Example:

<<<"A�����8�B-����"A�B0���
A<�B"������"�"����
"��"�"
��5�����������
<<<"�����	A<�����8�B
<<<
������"�����"0���

%

<<<"A�����8�B��
���"A�B����A<�B"�������"
��"����
	A<�����8�B
����"����'("%9*

*

The text within documentation comments must be well formed according to the rules of XML
(http://www.w3.org/TR/REC-xml). If the XML is ill formed, a warning is generated and the documentation file
will contain a comment saying that an error was encountered.

Although developers are free to create their own set of tags, a recommended set is defined in §B.2. Some of the
recommended tags have special meanings:

• The A�����B tag is used to describe parameters. If such a tag is used, the documentation generator must
verify that the specified parameter exists and that all parameters are described in documentation comments.
If such verification fails, the documentation generator issues a warning.

C# LANGUAGE SPECIFICATION

342 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

• The ���� attribute can be attached to any tag to provide a reference to a code element. The documentation
generator must verify that this code element exists. If the verification fails, the documentation generator
issues a warning. When looking for a name described in a ���� attribute, the documentation generator must
respect namespace visibility according to ����� statements appearing within the source code.

• The A�������B tag is intended to be used by a documentation viewer to display additional information
about a type or member.

Note carefully that the documentation file does not provide full information about the type and members (for
example, it does not contain any type information). To get such information about a type or member, the
documentation file must be used in conjunction with reflection on the actual type or member.

B.2 Recommended tags
The documentation generator must accept and process any tag that is valid according to the rules of XML. The
following tags provide commonly used functionality in user documentation. (Of course, other tags are possible.)

Tag Reference Purpose

A�B `$	+	� Set text in a code-like font

A����B `$	+	+ Set one or more lines of source code or program output

A�������B `$	+	, Indicate an example

A�����
���B `$	+	S Identifies the exceptions a method can throw

A���
B `$	+	= Create a list or table

A����B `$	+	X Permit structure to be added to text

A�����B `$	+	V Describe a parameter for a method or constructor

A��������B `$	+	Y Identify that a word is a parameter name

A����������B `$	+	W Document the security accessibility of a member

A�����8�B `$	+	�
 Describe a type

A��
����B `$	+	�� Describe the return value of a method

A���B `$	+	�+ Specify a link

A�������B `$	+	�, Generate a See Also entry

A�������B `$	+	�S Describe a member of a type

A�����B `$	+	�= Describe a property

B.2.1 <c>

This tag provides a mechanism to indicate that a fragment of text within a description should be set a special
font such as that used for a block of code. (For lines of actual code, use A����B (§B.2.2).)

Syntax:

A�B
��
"
�"��"��
"��8�"����A<�B

Example:

Appendix BD Documentation commentsReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 343

<<<"A�����8�B-����"A�B0���
A<�B"������"�"����
"��"�"
��5�����������
<<<"�����	A<�����8�B
������"�����"0���

%

<<"9
*

B.2.2 <code>

This tag is used to set one or more lines of source code or program output in some special font. (For small code
fragments in narrative, use A�B (§B.2.1).)

Syntax:

A����B������"����"��"�������"��
��
A<����B

Example:

<<<"A�������B!���"��
���"�������"
��"����
G�"����
���"��
<<<
��"�����"�5"���"�5�����
�	
<<<"A�������B7��"�������;
<<<"A����B
<<< 0���
"�")"���"0���
', =(&
<<< �	!������
�'5� ,(&
<<<"A<����B
<<<"�����
�"��"A�B�A<�BG�"������"
��"�����"'+ Y(
<<<"A<�������B
<<<"A<�������B

������"����"!������
�'��
"��� "��
"���("%
K"4)"���&
Q"4)"���&

*

B.2.3 <example>

This tag allows example code within a comment, to specify how a method or other library member may be used.
Ordinarily, this would also involve use of the tag A����B (§B.2.2) as well.

Syntax:

A�������B�������
���A<�������B

Example:

See A����B"'§B.2.2(for an example.

B.2.4 <exception>

This tag provides a way to document the exceptions a method can throw.

Syntax:

A�����
���"����)/������/B�������
���A<�����
���B

�����

����)/������/

The name of a member. The documentation generator checks that the given member exists and
translates member to the canonical element name in the documentation file.

�������
���

A description of the circumstances in which the exception is thrown.

Example:

C# LANGUAGE SPECIFICATION

344 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

������"�����"I�
�$��������
����
%

<<<"A�����
���"����)/R��
��7���7����
-�����
�����
���/BA<�����
���B
<<<"A�����
���"����)/R��
��7���:��8�����������
���/BA<�����
���B
������"�
�
��"����"2���2�����'��
"����("%

��"'����"))"�(

����"���"R��
��7���7����
-�����
�����
���'(&

����"��"'����"))"+(

����"���"R��
��7���:��8�����������
���'(&

<<"9
*

*

B.2.5 <list>

This tag is used to create a list or table of items. It may contain a A���
������B block to define the heading
row of either a table or definition list. (When defining a table, only an entry for
��� in the heading need be
supplied.)

Each item in the list is specified with an A�
��B block. When creating a definition list, both
��� and
�������
��� must be specified. However, for a table, bulleted list, or numbered list, only �������
��� need
be specified.

Syntax:

A���
"
���)/�����
/"E"/������/"E"/
����/B
"""A���
������B
""""""A
���B
���A<
���B
""""""A�������
���B�������
���A<�������
���B
"""A<���
������B
"""A�
��B
""""""A
���B
���A<
���B
""""""A�������
���B�������
���A<�������
���B
"""A<�
��B

9
"""A�
��B
""""""A
���B
���A<
���B
""""""A�������
���B�������
���A<�������
���B
"""A<�
��B
A<���
B

where

���

The term to define, whose definition is in �������
���.

�������
���

Either an item in a bullet or numbered list, or the definition of a
���.

Example:

Appendix BD Documentation commentsReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 345

������"�����"R�-����
%

<<<"A�����8�BO���"��"��"�������"��"�"�����
��"���
;
<<<"A���
"
���)/�����
/B
<<<"A�
��B
<<<"A�������
���B3
��"�	A<�������
���B
<<<"A<�
��B
<<<"A�
��B
<<<"A�������
���B3
��"+	A<�������
���B
<<<"A<�
��B
<<<"A<���
B
<<<"A<�����8�B
������"�
�
��"����"R���"'("%

<<"9
*

*

B.2.6 <para>

This tag is for use inside other tags, such as A�����8�B (§B.2.10) or A��
����B (§B.2.11), and permits
structure to be added to text.

Syntax:

A����B���
��
A<����B

where

���
��

The text of the paragraph.

Example:

<<<"A�������B!���"��"
��"��
��"����
"��"
��"0���
"�����"
��
���"�������	
<<<"A����B!���"�������"
��
�"����"��
���"���"�����
�� "���
<<<"��"��
�����"
�"��"���"��
��"���"���5
�����"����
������"���
<<<"����"���������"��"
��"0���
"�����	A<����BA<�������B
������"�
�
��"����"R���'("%

<<"9
*

B.2.7 <param>

This tag is used to describe a parameter for a method, constructor, or indexer.

Syntax:

A�����"����)/����/B�������
���A<�����B

where

����

The name of the parameter.

�������
���

A description of the parameter.

Example:

C# LANGUAGE SPECIFICATION

346 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

<<<"A�������B!���"��
���"�������"
��"����
G�"����
���"
�
<<<
��"�����"��������
��	A<�������B
<<<"A�����BA�B���A<�B"��"
��"���"�5��������
�	A<�����B
<<<"A�����BA�B���A<�B"��"
��"���"�5��������
�	A<�����B
������"����"R���'��
"��� "��
"���("%

K")"���&
Q")"���&

*

B.2.8 <paramref>

This tag is used to indicate that a word is a parameter. The documentation file can be processed to format this
parameter in some distinct way.

Syntax:

A��������"����)/����/<B

where

����

The name of the parameter.

Example:

<<<"A�������B!���"����
���
��"���
����P��"
��"���"0���
"
�
<<< 'A��������"����)/���/<B A��������"����)/���/<B(A<�������B
<<<"A�����BA�B���A<�B"��"
��"���"0���
G�"�5��������
�	A<�����B
<<<"A�����BA�B���A<�B"��"
��"���"0���
G�"�5��������
�	A<�����B
������"0���
'��
"��� "��
"���("%

K")"���&
Q")"���&

*

B.2.9 <permission>

This tag allows the security accessibility of a member to be documented.

Syntax:

A����������"����)/������/B�������
���A<����������B

where

����)/������/

The name of a member. The documentation generator checks that the given code element exists and
translates member to the canonical element name in the documentation file.

�������
���

A description of the access to the member.

Example:

<<<"A����������"����)/���
��	������
�	0�����������
/B��������"���
<<<"������"
���"��
���	A<����������B
������"�
�
��"����"!��
'("%

<<"9
*

B.2.10 <remarks>

This tag is used to specify overview information about a type. (Use A�������B (§B.2.14) to describe the
members of a type.)

Appendix BD Documentation commentsReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 347

Syntax:

A�����8�B�������
���A<�����8�B

where

�������
���

The text of the remarks.

Example:

<<<"A�����8�B-����"A�B0���
A<�B"������"�"����
"��"�"
��5�����������
�����	A<�����8�B
������"�����"0���

%

<<"9
*

B.2.11 <returns>

This tag is used to describe the return value of a method.

Syntax:

A��
����B�������
���A<��
����B

where

�������
���

A description of the return value.

Example:

<<<"A�������B2����
"�"����
G�"����
���"��"�"�
����	A<�������B
<<<"A��
����B6"�
����"��������
���"�"����
G�"����
��� "��"
��"����"'� �(
<<< ��
���
"���"������� "
������� "��"��������"���
������	A<��
����B
������"��������"�
����"!��
����'("%

��
���"/'/"4"K"4"/ /"4"Q"4"/(/&
*

B.2.12 <see>

This tag allows a link to be specified within text. (Use A�������B (§B.2.13) to indicate text that is to appear in
a See Also section.)

Syntax:

A���"����)/������/<B

where

����)/������/

The name of a member. The documentation generator checks that the given code element exists and
passes member to the element name in the documentation file.

Example:

<<<"A�������B!���"��
���"�������"
��"����
G�"����
���"
�
<<<
��"�����"��������
��	A<�������B
<<<"A���"����)/!������
�/<B
������"����"R���'��
"��� "��
"���("%

K")"���&
Q")"���&

*

C# LANGUAGE SPECIFICATION

348 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

<<<"A�������B!���"��
���"�������"
��"����
G�"����
���"��
<<<
��"�����"�5"���"�5�����
�	
<<<"A<�������B
<<<"A���"����)/R���/<B
������"����"!������
�'��
"��� "��
"���("%

K"4)"���&
Q"4)"���&

*

B.2.13 <seealso>

This tag allows an entry to be generated for the See Also section. (Use A���B (§B.2.12) to specify a link from
within text.)

Syntax:

A�������"����)/������/<B

where

����)/������/

The name of a member. The documentation generator checks that the given code element exists and
passes member to the element name in the documentation file.

Example:

<<<"A�������B!���"��
���"��
�������"���
���"
��"0���
�"����"
��"����
<<< ����
���	A<�������B
<<<"A�������"����)/�����
��))/<B
<<<"A�������"����)/�����
��C)/<B
������"��������"����"�U����'�����
"�("%

<<"9
*

B.2.14 <summary>

This tag can be used to describe a member for a type. (Use A�����8�B (§B.2.10) to describe the type itself.)

Syntax:

A�������B�������
���A<�������B

where

�������
���

A summary of the member.

Example:

<<<"A�������B!���"����
���
��"���
����P��"
��"���"0���
"
�"'

(A<�������B
������"0���
'(";"
���'

("%
*

B.2.15 <value>

This tag allows a property to be described.

Syntax:

A�����B������
�"�������
���A<�����B

where

������
�"�������
���

Appendix BD Documentation commentsReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 349

A description for the property.

Example:

<<<"A�����B0�����
�"A�BKA<�B"��������
�"
��"����
G�"�5��������
�	A<�����B
������"��
"K
%

��
"%"��
���"�&"*
��
"%"�")"�����&"*

*

B.3 Processing the documentation file
The documentation generator generates an ID string for each element in the source code that is tagged with a
documentation comment. This ID string uniquely identifies a source element. A documentation viewer can use
an ID string to identify the corresponding metadata/reflection item to which the documentation applies.

The documentation file is not a hierarchical representation of the source code; rather, it is a flat list with a
generated ID string for each element.

B.3.1 ID string format

The documentation generator observes the following rules when it generates the ID strings:

• No white space is placed in the string.

• The first part of the string identifies the kind of member being documented, via a single character followed
by a colon. The following kinds of members are defined:

Character Description

E Event

F Field

M Method (including constructors, destructors, and operators)

N Namespace

P Property (including indexers)

T Type (such as class, delegate, enum, interface, and struct)

! Error string; the rest of the string provides information about the error. For
example, the documentation generator generates error information for links that
cannot be resolved.

• The second part of the string is the fully qualified name of the element, starting at the root of the namespace.
The name of the element, its enclosing type(s), and namespace are separated by periods. If the name of the
item itself has periods, they are replaced by the NUMBER SIGN #"'L4

I(. (It is assumed that no element
has this character in its name.)

• For methods and properties with arguments, the argument list follows, enclosed in parentheses. For those
without arguments, the parentheses are omitted. The arguments are separated by commas. The encoding of
each argument is the same as a CLI signature, as follows: Arguments are represented by their fully qualified
name. For example, ��
 becomes ���
��	3�
,+, �
���� becomes ���
��	�
����, �����
 becomes
���
��	�����
, and so on. Arguments having the ��
 or ��� modifier have a '@' following their type
name. Arguments passed by value or via ������ have no special notation. Arguments that are arrays are
represented as [lowerbound:size, …, lowerbound:size] where the number of commas is the rank – 1, and the
lower bounds and size of each dimension, if known, are represented in decimal. If a lower bound or size is

C# LANGUAGE SPECIFICATION

350 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

not specified, it is omitted. If the lower bound and size for a particular dimension are omitted, the ':' is
omitted as well. Jagged arrays are represented by one "[]" per level. Arguments that have pointer types other
than void are represented using a '*' following the type name. A void pointer is represented using a type
name of "���
��	J���/.

B.3.2 ID string examples

The following examples each show a fragment of C# code, along with the ID string produced from each source
element capable of having a documentation comment:

• Types are represented using their fully qualified name.

����"-����"%2�� "$��� "H����*&
���������"6���
%
��
������"30������"%"<?"9"?<"*
�
���
"J����!���"%"<?"9"?<"*

�����".����
;"3�������
%

������"�����"1��
��-����"%"<?"9"?<"*
������"��
������"3R���3
��"%"<?"9"?<"*
������"������
�"����"I��'��
"�(&
������"����"I����
���"%1��
� "���
� "���
 ".��
*&

*
*

/!;-����/
/!;6���	30������/
/!;6���	J����!���/
/!;6���	.����
/
/!;6���	.����
	1��
��-����/
/!;6���	.����
	3R���3
��/
/!;6���	.����
	I��/
/!;6���	.����
	I����
���/

• Fields are represented by their fully qualified name.

���������"6���
%
�
���
"J����!���
%

�����
�"��
"
�
��&
*

�����".����
;"3�������
%

������"�����"1��
��-����
%

�����
�"��
"�����&
*

�����
�"�
����"�������&
�����
�"�
�
��"-����"������
-����&
�����
�"����
"������"03")",	�S�=W&
���
��
��"��������"������"���
���6������&
�����
�"������"������&
�����
�".����
� �"�����+&
�����
�"������"��
"?�-���
&
�����
�"������"����
"??��J�����&

*
*

Appendix BD Documentation commentsReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 351

/7;6���	J����!���	
�
��/
/7;6���	.����
	1��
��-����	�����/
/7;6���	.����
	�������/
/7;6���	.����
	������
-����/
/7;6���	.����
	03/
/7;6���	.����
	���
���6������/
/7;6���	.����
	������/
/7;6���	.����
	�����+/
/7;6���	.����
	�-���
/
/7;6���	.����
	��J�����/

• Constructors.

���������"6���
%
�����".����
;"3�������
%

�
�
��".����
'("%"<?"9"?<"*
������".����
'("%"<?"9"?<"*
������".����
'�
����"�("%"<?"9"?<"*

*
*

/R;6���	.����
	_��
��/
/R;6���	.����
	_�
��/
/R;6���	.����
	_�
��'���
��	�
����(/

• Destructors.

���������"6���
%
�����".����
;"3�������
%

>.����
'("%"<?"9"?<"*
*
*

/R;6���	.����
	7�����P�/

• Methods.

���������"6���
%
�
���
"J����!���
%

������"����"R'��
"�("%"<?"9"?<"*
*

�����".����
;"30������
%

������"�����"1��
��-����
%

������"����"R'��
"�("%"<?"9"?<"*
*
������"�
�
��"����"R
'("%"<?"9"?<"*
������"����"R�'����"� "��
"����
"� "���"J����!���"�("%"<?"9"?<"*
������"����"R+'����
��"�� "��
� �"�+ "��������"�,("%"<?"9"?<"*
������"����"R,'��������"�, ".����
��� �"�S("%"<?"9"?<"*
������"������"����"RS'����"?�� "-����"??��("%"<?"9"?<"*
������"������"����"R='����"?�� "������"?��� �"��("%"<?"9"?<"*
������"����"RX'��
"� "������"�����
��"����("%"<?"9"?<"*

*
*

C# LANGUAGE SPECIFICATION

352 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

/R;6���	J����!���	R'���
��	3�
,+(/
/R;6���	.����
	1��
��-����	R'���
��	3�
,+(/
/R;6���	.����
	R
/
/R;6���	.����
	R�'���
��	-��� ���
��	������a 6���	J����!���a(/
/R;6���	.����
	R+'���
��	3�
�X�� ���
��	3�
,+�
;
;� ���
��	3�
XS����(/
/R;6���	.����
	R,'���
��	3�
XS���� 6���	.����
�
;
;
;���(/
/R;6���	.����
	RS'���
��	-���? -����??(/
/R;6���	.����
	R='���
��	J���? ���
��	I�����?�
;
;���(/
/R;6���	.����
	RX'���
��	3�
,+ ���
��	�����
��(/

• Properties and indexers.

���������"6���
%
�����".����
;"3�������
%

������"��
".��
�"%��
"%"<?"9"?<"*"��
"%"<?"9"?<"**
������"��
"
������
"��"%��
"%"<?"9"?<"*"��
"%"<?"9"?<"**
������"��
"
�����
����"� "��
"��"%��
"%"<?"9"?<"*"��
"%"<?"9"?<"**

*
*

/0;6���	.����
	.��
�/
/0;6���	.����
	3
��'���
��	3�
,+(/
/0;6���	.����
	3
��'���
��	�
���� ���
��	3�
,+(/

• Events

���������"6���
%
�����".����
;"3�������
%

������"����
"I��"6�����
&
*
*

/�;6���	.����
	6�����
/

• Unary operators.

���������"6���
%
�����".����
;"3�������
%

������"�
�
��".����
"�����
��4'.����
"�("%"<?"9"?<"*
*
*

/R;6���	.����
	��#L����0���'6���	.����
(/

The complete set of unary operator function names used is as follows: ��#L����0���,",
��#L����1���
���, ��#1���
���, ��#����-��������
, ,"��#3�������
, ,"��#I�������
, ,
��#!���, and d"��#7����.

• Binary operators.

���������"6���
%
�����".����
;"3�������
%

������"�
�
��".����
"�����
��4'.����
"�� ".����
"�+("%"��
���"��&"*
*
*

/R;6���	.����
	��#6���
���'6���	.����
 6���	.����
(/

Appendix BD Documentation commentsReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 353

The complete set of binary operator function names used is as follows: ��#6���
���,
��#���
���
���, ��#R��
����, ��#I�������, ��#R������, ��#$�
����6��, ��#$�
������,
��#�����������, ��#:��
����
, ��#2���
����
, ��#�U����
�, ��#3��U����
�,
��#:���!���, ��#:���!������U���, ��#H���
��!���, and ��#H���
��!������U���.

• Conversion operators have a trailing '~' followed by the return type.

���������"6���
%
�����".����
;"3�������
%

������"�
�
��"�������
"�����
��"��
'.����
"�("%"<?"9"?<"*
������"�
�
��"�������
"�����
��"����'.����
"�("%"<?"9"?<"*

*
*

/R;6���	.����
	��#�������
'6���	.����
(>���
��	3�
,+/
/R;6���	.����
	��#3������
'6���	.����
(>���
��	3�
XS/

B.4 An example

B.4.1 C# source code

The following example shows the source code of a Point class:

���������"H�������
%

<<<"A�����8�B-����"A�B0���
A<�B"������"�"����
"��"�"
��5�����������"�����	
<<<"A<�����8�B
������"�����"0���

%

<<<"A�������B3��
����"��������"A�B�A<�B"��������
�"
��"����
G�
<<< �5��������
�	A<�������B
�����
�"��
"�&

<<<"A�������B3��
����"��������"A�B�A<�B"��������
�"
��"����
G�
<<< �5��������
�	A<�������B
�����
�"��
"�&

<<<"A�����B0�����
�"A�BKA<�B"��������
�"
��"����
G�"�5��������
�	A<�����B
������"��
"K
%

��
"%"��
���"�&"*
��
"%"�")"�����&"*

*

<<<"A�����B0�����
�"A�BQA<�B"��������
�"
��"����
G�"�5��������
�	A<�����B
������"��
"Q
%

��
"%"��
���"�&"*
��
"%"�")"�����&"*

*

<<<"A�������B!���"����
���
��"���
����P��"
��"���"0���
"
�
<<< '

(A<�������B
������"0���
'(";"
���'

("%*

C# LANGUAGE SPECIFICATION

354 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

<<<"A�������B!���"����
���
��"���
����P��"
��"���"0���
"
�
<<< 'A��������"����)/���/<B A��������"����)/���/<B(A<�������B
<<<"A�����BA�B���A<�B"��"
��"���"0���
G�"�5��������
�	A<�����B
<<<"A�����BA�B���A<�B"��"
��"���"0���
G�"�5��������
�	A<�����B
������"0���
'��
"��� "��
"���("%

K")"���&
Q")"���&

*

<<<"A�������B!���"��
���"�������"
��"����
G�"����
���"
�
<<<
��"�����"��������
��	A<�������B
<<<"A�����BA�B���A<�B"��"
��"���"�5��������
�	A<�����B
<<<"A�����BA�B���A<�B"��"
��"���"�5��������
�	A<�����B
<<<"A���"����)/!������
�/<B
������"����"R���'��
"��� "��
"���("%

K")"���&
Q")"���&

*

<<<"A�������B!���"��
���"�������"
��"����
G�"����
���"��
<<<
��"�����"�5"���"�5�����
�	
<<<"A�������B7��"�������;
<<<"A����B
<<< 0���
"�")"���"0���
', =(&
<<< �	!������
�'5� ,(&
<<<"A<����B
<<<"�����
�"��"A�B�A<�BG�"������"
��"�����"'+ Y(
<<<"A<�������B
<<<"A<�������B
<<<"A�����BA�B���A<�B"��"
��"����
���"�5�����
	A<�����B
<<<"A�����BA�B���A<�B"��"
��"����
���"�5�����
	A<�����B
<<<"A���"����)/R���/<B
������"����"!������
�'��
"��� "��
"���("%

K"4)"���&
Q"4)"���&

*

<<<"A�������B!���"��
���"��
�������"���
���"
��"0���
�"����"
��"����
<<< ����
���	A<�������B
<<<"A�����BA�B�A<�B"��"
��"�����
"
�"��"��������"
�"
��"������
"�����
	
<<<"A<�����B
<<<"A��
����B!���"��"
��"0���
�"����"
��"����"����
���"���"
���"����
<<<
��"����
"����"
���&"�
������� "�����	A<��
����B
<<<"A�������"����)/�����
��))/<B
<<<"A�������"����)/�����
��C)/<B
������"��������"����"�U����'�����
"�("%

��"'�"))"����("%
��
���"�����&

*

��"'
���"))"�("%
��
���"
���&

*

��"'H�
!���'("))"�	H�
!���'(("%
0���
"�")"'0���
(�&
��
���"'K"))"�	K("DD"'Q"))"�	Q(&

*
��
���"�����&

*

<<<"A�������B2����
"�"����
G�"����
���"��"�"�
����	A<�������B
<<<"A��
����B6"�
����"��������
���"�"����
G�"����
��� "��"
��"����"'� �(
<<< ��
���
"���"������� "
������� "��"��������"���
������	A<��
����B
������"��������"�
����"!��
����'("%

��
���"/'/"4"K"4"/ /"4"Q"4"/(/&
*

Appendix BD Documentation commentsReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 355

<<<"A�������B!���"�����
��"��
�������"���
���"
��"0���
�"����"
��"����
<<< ����
���	A<�������B
<<<"A�����BA�B��A<�B"��"
��"����
"0���
"
�"��"��������	A<�����B
<<<"A�����BA�B�+A<�B"��"
��"������"0���
"
�"��"��������	A<�����B
<<<"A��
����B!���"��"
��"0���
�"����"
��"����"����
���"���"
���"����
<<<
��"����
"����"
���&"�
������� "�����	A<��
����B
<<<"A�������"����)/�U����/<B
<<<"A�������"����)/�����
��C)/<B
������"�
�
��"����"�����
��))'0���
"�� "0���
"�+("%

��"''�����
(��"))"����"EE"'�����
(�+"))"����("%
��
���"�����&

*

��"'��	H�
!���'("))"�+	H�
!���'(("%
��
���"'��	K"))"�+	K("DD"'��	Q"))"�+	Q(&

*

��
���"�����&
*

<<<"A�������B!���"�����
��"��
�������"���
���"
��"0���
�"����"
��"����
<<< ����
���	A<�������B
<<<"A�����BA�B��A<�B"��"
��"����
"0���
"
�"��"��������	A<�����B
<<<"A�����BA�B�+A<�B"��"
��"������"0���
"
�"��"��������	A<�����B
<<<"A��
����B!���"��"
��"0���
�"��"��
"����"
��"����"����
���"���"
��
<<< ����
"����"
���&"�
������� "�����	A<��
����B
<<<"A�������"����)/�U����/<B
<<<"A�������"����)/�����
��))/<B
������"�
�
��"����"�����
��C)'0���
"�� "0���
"�+("%

��
���"C'��"))"�+(&
*

<<<"A�������B!���"��"
��"��
��"����
"��"
��"0���
"�����"
��
���
<<<"�������	
<<<"A����B!���"�������"
��
�"����"��
���"���"�����
�� "���
<<<"��"��
�����"
�"��"���"��
��"���"���5
�����"����
������"���
<<<"����"���������"��"
��"0���
"�����	A<����BA<�������B
������"�
�
��"����"R���'("%

<<"�����"
��
"����"����"����
*

*
*

B.4.2 Resulting XML

Here is the output produced by one documentation generator when given the source code for class 0���
,
shown above:

AN���"�������)/�	
/NB
A���B
""""A��������B
""""""""A����B0���
A<����B
""""A<��������B
""""A�������B
""""""""A������"����)/!;H�������	0���
/B
""""""""""""A�����8�B-����"A�B0���
A<�B"������"�"����
"��"�"
��5�����������
""""""""""""�����	
""""""""""""A<�����8�B
""""""""A<������B

""""""""A������"����)/7;H�������	0���
	�/B
""""""""""""A�������B3��
����"��������"A�B�A<�B"��������
�"
��"����
G�
""""""""""""�5��������
�	A<�������B
""""""""A<������B

C# LANGUAGE SPECIFICATION

356 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

""""""""A������"����)/7;H�������	0���
	�/B
""""""""""""A�������B3��
����"��������"A�B�A<�B"��������
�"
��"����
G�
""""""""""""�5��������
�	A<�������B
""""""""A<������B

""""""""A������"����)/R;H�������	0���
	_�
��/B
""""""""""""A�������B!���"����
���
��"���
����P��"
��"���"0���
"
�
""""""""'

(A<�������B
""""""""A<������B

""""""""A������"����)/R;H�������	0���
	_�
��'���
��	3�
,+ ���
��	3�
,+(/B
""""""""""""A�������B!���"����
���
��"���
����P��"
��"���"0���
"
�
""""""""""""'A��������"����)/���/<B A��������"����)/���/<B(A<�������B
""""""""""""A�����BA�B���A<�B"��"
��"���"0���
G�"�5��������
�	A<�����B
""""""""""""A�����BA�B���A<�B"��"
��"���"0���
G�"�5��������
�	A<�����B
""""""""A<������B

""""""""A������"����)/R;H�������	0���
	R���'���
��	3�
,+ ���
��	3�
,+(/B
""""""""""""A�������B!���"��
���"�������"
��"����
G�"����
���"
�
""""""""""""
��"�����"��������
��	A<�������B
""""""""""""A�����BA�B���A<�B"��"
��"���"�5��������
�	A<�����B
""""""""""""A�����BA�B���A<�B"��"
��"���"�5��������
�	A<�����B
""""""""""""A���
����)/R;H�������	0���
	!������
�'���
��	3�
,+ ���
��	3�
,+(/<B
""""""""A<������B

""""""""A������
""""""""""""����)/R;H�������	0���
	!������
�'���
��	3�
,+ ���
��	3�
,+(/B
""""""""""""A�������B!���"��
���"�������"
��"����
G�"����
���"��
""""""""""""
��"�����"�5"���"�5�����
�	
""""""""""""A�������B7��"�������;
""""""""""""A����B
""""""""""""0���
"�")"���"0���
', =(&
""""""""""""�	!������
�'5� ,(&
""""""""""""A<����B
""""""""""""�����
�"��"A�B�A<�BG�"������"
��"�����"'+ Y(
""""""""""""A<�������B
""""""""""""A<�������B
""""""""""""A�����BA�B���A<�B"��"
��"����
���"�5�����
	A<�����B
""""""""""""A�����BA�B���A<�B"��"
��"����
���"�5�����
	A<�����B
""""""""""""A���"����)/R;H�������	0���
	R���'���
��	3�
,+ ���
��	3�
,+(/<B
""""""""A<������B

""""""""A������"����)/R;H�������	0���
	�U����'���
��	�����
(/B
""""""""""""A�������B!���"��
���"��
�������"���
���"
��"0���
�"����"
��"����
""""""""""""����
���	A<�������B
""""""""""""A�����BA�B�A<�B"��"
��"�����
"
�"��"��������"
�"
��"������

""""""""""""�����
	
""""""""""""A<�����B
""""""""""""A��
����B!���"��"
��"0���
�"����"
��"����"����
���"���"
���"����
""""""""""""
��"����
"����"
���&"�
������� "�����	A<��
����B
""""""""""""A�������
""""""����)/R;H�������	0���
	��#�U����
�'H�������	0���
 H�������	0���
(/<B
""""""""""""A�������
""""""����)/R;H�������	0���
	��#3��U����
�'H�������	0���
 H�������	0���
(/<B
""""""""A<������B

""""""""A������"����)/R;H�������	0���
	!��
����/B
""""""""""""A�������B2����
"�"����
G�"����
���"��"�"�
����	A<�������B
""""""""""""A��
����B6"�
����"��������
���"�"����
G�"����
��� "��"
��"����
""""""""""""'� �(
""""""""""""��
���
"���"������� "
������� "��"��������"���
������	A<��
����B
""""""""A<������B

Appendix BD Documentation commentsReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 357

""""""""A������
"""""""����)/R;H�������	0���
	��#�U����
�'H�������	0���
 H�������	0���
(/B
""""""""""""A�������B!���"�����
��"��
�������"���
���"
��"0���
�"����"
��
""""""""""""����
""""""""""""����
���	A<�������B
""""""""""""A�����BA�B��A<�B"��"
��"����
"0���
"
�"��"��������	A<�����B
""""""""""""A�����BA�B�+A<�B"��"
��"������"0���
"
�"��"��������	A<�����B
""""""""""""A��
����B!���"��"
��"0���
�"����"
��"����"����
���"���"
���"����
""""""""""""
��"����
"����"
���&"�
������� "�����	A<��
����B
""""""""""""A�������"����)/R;H�������	0���
	�U����'���
��	�����
(/<B
""""""""""""A�������
"""""����)/R;H�������	0���
	��#3��U����
�'H�������	0���
 H�������	0���
(/<B
""""""""A<������B

""""""""A������
""""""����)/R;H�������	0���
	��#3��U����
�'H�������	0���
 H�������	0���
(/B
""""""""""""A�������B!���"�����
��"��
�������"���
���"
��"0���
�"����"
��
""""""""""""����
""""""""""""����
���	A<�������B
""""""""""""A�����BA�B��A<�B"��"
��"����
"0���
"
�"��"��������	A<�����B
""""""""""""A�����BA�B�+A<�B"��"
��"������"0���
"
�"��"��������	A<�����B
""""""""""""A��
����B!���"��"
��"0���
�"��"��
"����"
��"����"����
���"���
""""""""""""
��
""""""""""""����
"����"
���&"�
������� "�����	A<��
����B
""""""""""""A�������"����)/R;H�������	0���
	�U����'���
��	�����
(/<B
""""""""""""A�������
""""""����)/R;H�������	0���
	��#�U����
�'H�������	0���
 H�������	0���
(/<B
""""""""A<������B

""""""""A������"����)/R;H�������	0���
	R���/B
""""""""""""A�������B!���"��"
��"��
��"����
"��"
��"0���
"�����"
��
���
""""""""""""�������	
""""""""""""A����B!���"�������"
��
�"����"��
���"���"�����
�� "���
""""""""""""��"��
�����"
�"��"���"��
��"���"���5
�����"����
������"���
""""""""""""����"���������"��"
��"0���
"�����	A<����BA<�������B
""""""""A<������B

""""""""A������"����)/0;H�������	0���
	K/B
""""""""""""A�����B0�����
�"A�BKA<�B"��������
�"
��"����
G�
""""""""""""�5��������
�	A<�����B
""""""""A<������B

""""""""A������"����)/0;H�������	0���
	Q/B
""""""""""""A�����B0�����
�"A�BQA<�B"��������
�"
��"����
G�
""""""""""""�5��������
�	A<�����B
""""""""A<������B
""""A<�������B
A<���B

Appendix CD GrammarReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 359

C. Grammar

This appendix contains summaries of the lexical and syntactic grammars found in the main document, and of the
grammar extensions for unsafe code. Grammar productions appear here in the same order that they appear in the
main document.

C.1 Lexical grammar
input:

input-sectionopt

input-section:
input-section-part
input-section input-section-part

input-section-part:
input-elementsopt new-line
pp-directive

input-elements:
input-element
input-elements input-element

input-element:
whitespace
comment
token

C.1.1 Line terminators

new-line:
Carriage return character (L4

I)
Line feed character (L4

6)
Carriage return character (L4

I) followed by line feed character (L4

6)
Line separator character (L4+
+Y)
Paragraph separator character (L4+
+W)

C.1.2 White space

whitespace:
Any character with Unicode class Zs
Horizontal tab character (L4

W)
Vertical tab character (L4

$)
Form feed character (L4

-)

C.1.3 Comments

comment:
single-line-comment
delimited-comment

C# LANGUAGE SPECIFICATION

360 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

single-line-comment:
<< input-charactersopt

input-characters:
input-character
input-characters input-character

input-character:
Any Unicode character except a new-line-character

new-line-character:
Carriage return character (L4

I)
Line feed character (L4

6)
Line separator character (L4+
+Y)
Paragraph separator character (L4+
+W)

delimited-comment:
<? delimited-comment-charactersopt ?<

delimited-comment-characters:
delimited-comment-character
delimited-comment-characters delimited-comment-character

delimited-comment-character:
not-asterisk
* not-slash

not-asterisk:
Any Unicode character except ?

not-slash:
Any Unicode character except <

C.1.4 Tokens

token:
identifier
keyword
integer-literal
real-literal
character-literal
string-literal
operator-or-punctuator

C.1.5 Unicode character escape sequences

unicode-escape-sequence:
\� hex-digit hex-digit hex-digit hex-digit
\L hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit

C.1.6 Identifiers

identifier:
available-identifier
a identifier-or-keyword

available-identifier:
An identifier-or-keyword that is not a keyword

Appendix CD GrammarReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 361

identifier-or-keyword:
identifier-start-character identifier-part-charactersopt

identifier-start-character:
letter-character
(the underscore character L4

=7)

identifier-part-characters:
identifier-part-character
identifier-part-characters identifier-part-character

identifier-part-character:
letter-character
decimal-digit-character
connecting-character
combining-character
formatting-character

letter-character:
A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nl
A unicode-escape-sequence representing a character of classes Lu, Ll, Lt, Lm, Lo, or Nl

combining-character:
A Unicode character of classes Mn or Mc
A unicode-escape-sequence representing a character of classes Mn or Mc

decimal-digit-character:
A Unicode character of the class Nd
A unicode-escape-sequence representing a character of the class Nd

connecting-character:
A Unicode character of the class Pc
A unicode-escape-sequence representing a character of the class Pc

formatting-character:
A Unicode character of the class Cf
A unicode-escape-sequence representing a character of the class Cf

C# LANGUAGE SPECIFICATION

362 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

C.1.7 Keywords

keyword: one of
���
���
 �� ���� ���� ����8

��
� ���� ��
�� ���� ����8��

����� ����
 ���
���� ������� ������

������
� �� ������ ���� ����

����
 �������
 ��
��� ����� �������

����� ����
 ��� ������� ��
�

�� �������
 �� ��
 ��
������

��
����� �� ���8 ���� ���������

��� ���� �����
 �����
�� ��

�������� ������ �����
� ���
��
�� ������

�������� ��� ��
��� ���
� ������

����
 ��P��� �
��8����� �
�
�� �
����

�
���
 ���
��
���
����
���

��
����� ���
 ����� ������8��

������ �����
 ����� ���
��� ����

����
��� �����

C.1.8 Literals

literal:
boolean-literal
integer-literal
real-literal
character-literal
string-literal
null-literal

boolean-literal:

���

�����

integer-literal:
decimal-integer-literal
hexadecimal-integer-literal

decimal-integer-literal:
decimal-digits integer-type-suffixopt

decimal-digits:
decimal-digit
decimal-digits decimal-digit

decimal-digit: one of

""�""+"",""S""=""X""V""Y""W

integer-type-suffix: one of
L""�"":""�""L:""L�""�:""��"":L"":�""�L""��

hexadecimal-integer-literal:

� hex-digits integer-type-suffixopt

K hex-digits integer-type-suffixopt

Appendix CD GrammarReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 363

hex-digits:
hex-digit
hex-digits hex-digit

hex-digit: one of

""�""+"",""S""=""X""V""Y""W""6""$""-""I""�""7""�""�""�""�""�""�

real-literal:
decimal-digits 	 decimal-digits exponent-partopt real-type-suffixopt

	 decimal-digits exponent-partopt real-type-suffixopt

decimal-digits exponent-part real-type-suffixopt

decimal-digits real-type-suffix

exponent-part:
� signopt decimal-digits
� signopt decimal-digits

sign: one of
4""5

real-type-suffix: one of
7""�""I""�""R""�

character-literal:
G character G

character:
single-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-escape-sequence

single-character:
 Any character except G (L4

+V), \ (L4

=-), and new-line-character

simple-escape-sequence: one of
\G""\/""\\""\
""\�""\�""\�""\�""\�""\
""\�

hexadecimal-escape-sequence:
\� hex-digit hex-digitopt hex-digitopt hex-digitopt

string-literal:
regular-string-literal
verbatim-string-literal

regular-string-literal:
/ regular-string-literal-charactersopt /

regular-string-literal-characters:
regular-string-literal-character
regular-string-literal-characters regular-string-literal-character

regular-string-literal-character:
single-regular-string-literal-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-escape-sequence

C# LANGUAGE SPECIFICATION

364 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

single-regular-string-literal-character:
Any character except / (L4

++), \ (L4

=-), and new-line-character

verbatim-string-literal:
a/ verbatim -string-literal-charactersopt /

verbatim-string-literal-characters:
verbatim-string-literal-character
verbatim-string-literal-characters verbatim-string-literal-character

verbatim-string-literal-character:
single-verbatim-string-literal-character
quote-escape-sequence

single-verbatim-string-literal-character:
any character except /

quote-escape-sequence:
//

null-literal:
����

C.1.9 Operators and punctuators

operator-or-punctuator: one of
% * � � ' (; &

4 5 ? < @ D E F C >

) A B N 44 55 DD EE AA BB

)) C) A) B) 4) 5) ?) <) @) D)

E) F) AA) BB) 5B

C.1.10 Pre-processing directives

pp-directive:
pp-declaration
pp-conditional
pp-line
pp-diagnostic
pp-region

pp-new-line:
whitespaceopt single-line-commentopt new-line

conditional-symbol:
Any identifier-or-keyword except
��� or �����

pp-expression:
whitespaceopt pp-or-expression whitespaceopt

pp-or-expression:
pp-and-expression
pp-or-expression whitespaceopt EE whitespaceopt pp-and-expression

pp-and-expression:
pp-equality-expression
pp-and-expression whitespaceopt DD whitespaceopt pp-equality-expression

Appendix CD GrammarReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 365

pp-equality-expression:
pp-unary-expression
pp-equality-expression whitespaceopt)) whitespaceopt pp-unary-expression
pp-equality-expression whitespaceopt C) whitespaceopt pp-unary-expression

pp-unary-expression:
pp-primary-expression
C whitespaceopt pp-unary-expression

pp-primary-expression:

���

�����

conditional-symbol
' whitespaceopt pp-expression whitespaceopt (

pp-declaration:
whitespaceopt _ whitespaceopt ������ whitespace conditional-symbol pp-new-line
whitespaceopt _ whitespaceopt ����� whitespace conditional-symbol pp-new-line

pp-conditional:
pp-if-section pp-elif-sectionsopt pp-else-sectionopt pp-endif

pp-if-section:
whitespaceopt _ whitespaceopt �� whitespace pp-expression pp-new-line conditional-
sectionopt

pp-elif-sections:
pp-elif-section
pp-elif-sections pp-elif-section

pp-elif-section:
whitespaceopt _ whitespaceopt ���� whitespace pp-expression pp-new-line conditional-
sectionopt

pp-else-section:
whitespaceopt _ whitespaceopt ���� pp-new-line conditional-sectionopt

pp-endif-line:
whitespaceopt _ whitespaceopt ����� pp-new-line

conditional-section:
input-section
skipped-section

skipped-section:
skipped-section-part
skipped-section skipped-section-part

skipped-section-part:
skipped-charactersopt new-line
pp-directive

skipped-characters:
whitespaceopt not-number-sign input-charactersopt

not-number-sign:
Any input-character except _

C# LANGUAGE SPECIFICATION

366 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

pp-line:
whitespaceopt _ whitespaceopt ���� whitespace line-indicator pp-new-line

line-indicator:
decimal-digitswhitespace file-name
decimal-digits
������

file-name:
/ file-name-characters /

file-name-characters:
file-name-character
file-name-characters file-name-character

file-name-character:
Any input-character except /

pp-diagnostic:
whitespaceopt _ whitespaceopt ����� pp-message
whitespaceopt _ whitespaceopt ������� pp-message

pp-message:
new-line
whitespace input-charactersopt new-line

pp-region:
pp-start-region conditional-sectionopt pp-end-region

pp-start-region:
whitespaceopt _ whitespaceopt ������ pp-message

pp-end-region:
whitespaceopt _ whitespaceopt ��������� pp-message

C.2 Syntactic grammar

C.2.1 Basic concepts

namespace-name:
namespace-or-type-name

type-name:
namespace-or-type-name

namespace-or-type-name:
identifier
namespace-or-type-name 	 identifier

C.2.2 Types

type:
value-type
reference-type

value-type:
struct-type
enum-type

Appendix CD GrammarReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 367

struct-type:
type-name
simple-type

simple-type:
numeric-type
����

numeric-type:
integral-type
floating-point-type
�������

integral-type:
���
�

��
�

����

�����

��

���

����

�����

����

floating-point-type:
����

������

enum-type:
type-name

reference-type:
class-type
interface-type
array-type
delegate-type

class-type:
type-name
�����

�
����

interface-type:
type-name

array-type:
non-array-type rank-specifiers

non-array-type:
type

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

rank-specifier:
� dim-separatorsopt �

C# LANGUAGE SPECIFICATION

368 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

dim-separators:

dim-separators

delegate-type:
type-name

C.2.3 Variables

variable-reference:
expression

C.2.4 Expressions

argument-list:
argument
argument-list argument

argument:
expression
��� variable-reference
��
 variable-reference

primary-expression:
primary-no-array-creation-expression
array-creation-expression

primary-no-array-creation-expression:
literal
simple-name
parenthesized-expression
member-access
invocation-expression
element-access
this-access
base-access
post-increment-expression
post-decrement-expression
object-creation-expression
delegate-creation-expression
 typeof-expression
sizeof-expression
checked-expression
unchecked-expression

simple-name:
identifier

parenthesized-expression:
' expression (

member-access:
primary-expression 	 identifier
predefined-type 	 identifier

Appendix CD GrammarReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 369

predefined-type: one of
���� ��
� ���� ������� ������ ����
 ��
 ����

�����
 ���
� ����
 �
���� ���
 ����� �����

invocation-expression:
primary-expression ' argument-listopt (

element-access:
primary-no-array-creation-expression � expression-list �

expression-list:
expression
expression-list expression

this-access:

���

base-access:
���� 	 identifier
���� � expression-list �

post-increment-expression:
primary-expression 44

post-decrement-expression:
primary-expression 55

object-creation-expression:
��� type ' argument-listopt (

array-creation-expression:
��� non-array-type � expression-list � rank-specifiersopt array-initializeropt

��� array-type array-initializer

delegate-creation-expression:
��� delegate-type ' expression (

typeof-expression:

����� ' type (

����� ' ���� (

checked-expression:
����8�� ' expression (

unchecked-expression:
������8�� ' expression (

unary-expression:
primary-expression
4 unary-expression
5 unary-expression
C unary-expression
> unary-expression
? unary-expression
pre-increment-expression
pre-decrement-expression
cast-expression

C# LANGUAGE SPECIFICATION

370 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

pre-increment-expression:
44 unary-expression

pre-decrement-expression:
55 unary-expression

cast-expression:
' type (unary-expression

multiplicative-expression:
unary-expression
multiplicative-expression ? unary-expression
multiplicative-expression < unary-expression
multiplicative-expression @ unary-expression

additive-expression:
multiplicative-expression
additive-expression 4 multiplicative-expression
additive-expression M multiplicative-expression

shift-expression:
additive-expression
shift-expression AA additive-expression
shift-expression BB additive-expression

relational-expression:
shift-expression
relational-expression A shift-expression
relational-expression B shift-expression
relational-expression A) shift-expression
relational-expression B) shift-expression
relational-expression �� type
relational-expression �� type

equality-expression:
relational-expression
equality-expression)) relational-expression
equality-expression C) relational-expression

and-expression:
equality-expression
and-expression D equality-expression

exclusive-or-expression:
and-expression
exclusive-or-expression F and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression E exclusive-or-expression

conditional-and-expression:
inclusive-or-expression
conditional-and-expression DD inclusive-or-expression

conditional-or-expression:
conditional-and-expression
conditional-or-expression EE conditional-and-expression

Appendix CD GrammarReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 371

conditional-expression:
conditional-or-expression
conditional-or-expression N expression ; expression

assignment:
unary-expression assignment-operator expression

assignment-operator: one of
)"""4)"""5)"""?)"""<)"""@)"""D)"""E)"""F)"""AA)"""BB)

expression:
conditional-expression
assignment

constant-expression:
expression

boolean-expression:
expression

C.2.5 Statements

statement:
labeled-statement
declaration-statement
embedded-statement

embedded-statement:
block
empty-statement
expression-statement
selection-statement
iteration-statement
jump-statement
try-statement
checked-statement
unchecked-statement
lock-statement
using-statement

block:
% statement-listopt *

statement-list:
statement
statement-list statement

empty-statement:
&

labeled-statement:
identifier ; statement

declaration-statement:
local-variable-declaration &
local-constant-declaration &

C# LANGUAGE SPECIFICATION

372 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

local-variable-declaration:
type local-variable-declarators

local-variable-declarators:
local-variable-declarator
local-variable-declarators local-variable-declarator

local-variable-declarator:
identifier
identifier = local-variable-initializer

local-variable-initializer:
expression
array-initializer

local-constant-declaration:
����
 type constant-declarators

constant-declarators:
constant-declarator
constant-declarators constant-declarator

constant-declarator:
identifier = constant-expression

expression-statement:
statement-expression &

statement-expression:
invocation-expression
object-creation-expression
assignment
post-increment-expression
post-decrement-expression
pre-increment-expression
pre-decrement-expression

selection-statement:
if-statement
switch-statement

if-statement:
�� ' boolean-expression (embedded-statement
�� ' boolean-expression (embedded-statement ���� embedded-statement

boolean-expression:
expression

switch-statement:
���
�� ' expression (switch-block

switch-block:
% switch-sectionsopt *

switch-sections:
switch-section
switch-sections switch-section

Appendix CD GrammarReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 373

switch-section:
switch-labels statement-list

switch-labels:
switch-label
switch-labels switch-label

switch-label:
���� constant-expression ;
������
 ;

iteration-statement:
while-statement
do-statement
for-statement
foreach-statement

while-statement:
����� ' boolean-expression (embedded-statement

do-statement:
�� embedded-statement ����� ' boolean-expression (&

for-statement:
��� ' for-initializeropt & for-conditionopt & for-iteratoropt (embedded-statement

for-initializer:
local-variable-declaration
statement-expression-list

for-condition:
boolean-expression

for-iterator:
statement-expression-list

statement-expression-list:
statement-expression
statement-expression-list statement-expression

foreach-statement:
������� ' type identifier �� expression (embedded-statement

jump-statement:
break-statement
continue-statement
goto-statement
return-statement
throw-statement

break-statement:
����8 &

continue-statement:
���
���� &

C# LANGUAGE SPECIFICATION

374 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

goto-statement:
��
� identifier &
��
� ���� constant-expression ;
��
� ������
 &

return-statement:
��
��� expressionopt &

throw-statement:

���� expressionopt &

try-statement:

�� block catch-clauses

�� block finally-clause

�� block catch-clauses finally-clause

catch-clauses:
specific-catch-clauses general-catch-clauseopt

specific-catch-clausesopt general-catch-clause

specific-catch-clauses:
specific-catch-clause
specific-catch-clauses specific-catch-clause

specific-catch-clause:
��
�� ' class-type identifieropt (block

general-catch-clause:
��
�� block

finally-clause:
������� block

checked-statement:
����8�� block

unchecked-statement:
������8�� block

lock-statement:
���8 ' expression (embedded-statement

using-statement:
����� ' resource-acquisition (embedded-statement

resource-acquisition:
local-variable-declaration
expression

17.5.3 Namespaces

compilation-unit:
using-directivesopt global-attributesopt namespace-member-declarationsopt

namespace-declaration:
��������� qualified-identifier namespace-body &opt

qualified-identifier:
identifier
qualified-identifier 	 identifier

Appendix CD GrammarReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 375

namespace-body:
% using-directivesopt namespace-member-declarationsopt *

using-directives:
using-directive
using-directives using-directive

using-directive:
using-alias-directive
using-namespace-directive

using-alias-directive:
����� identifier) namespace-or-type-name &

using-namespace-directive:
����� namespace-name &

namespace-member-declarations:
namespace-member-declaration
namespace-member-declarations namespace-member-declaration

namespace-member-declaration:
namespace-declaration
type-declaration

type-declaration:
class-declaration
struct-declaration
interface-declaration
enum-declaration
delegate-declaration

C.2.6 Classes

class-declaration:
attributesopt class-modifiersopt ����� identifier class-baseopt class-body &opt

class-modifiers:
class-modifier
class-modifiers class-modifier

class-modifier:
���

������

���
��
��

��
�����

�����
�

���
���

������

class-base:
; class-type
; interface-type-list
; class-type interface-type-list

interface-type-list:
interface-type
interface-type-list interface-type

C# LANGUAGE SPECIFICATION

376 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

class-body:
% class-member-declarationsopt *

class-member-declarations:
class-member-declaration
class-member-declarations class-member-declaration

class-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
destructor-declaration
static-constructor-declaration
type-declaration

constant-declaration:
attributesopt constant-modifiersopt ����
 type constant-declarators &

constant-modifiers:
constant-modifier
constant-modifiers constant-modifier

constant-modifier:
���

������

���
��
��

��
�����

�����
�

constant-declarators:
constant-declarator
constant-declarators constant-declarator

constant-declarator:
identifier = constant-expression

field-declaration:
attributesopt field-modifiersopt type variable-declarators &

field-modifiers:
field-modifier
field-modifiers field-modifier

field-modifier:
���

������

���
��
��

��
�����

�����
�

�
�
��

��������

����
���

Appendix CD GrammarReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 377

variable-declarators:
variable-declarator
variable-declarators variable-declarator

variable-declarator:
identifier
identifier = variable-initializer

variable-initializer:
expression
array-initializer

method-declaration:
method-header method-body

method-header:
attributesopt method-modifiersopt return-type member-name ' formal-parameter-listopt (

method-modifiers:
method-modifier
method-modifiers method-modifier

method-modifier:
���

������

���
��
��

��
�����

�����
�

�
�
��

���
���

������

��������

���
���

��
���

return-type:
type
����

member-name:
identifier
interface-type 	 identifier

method-body:
block
&

formal-parameter-list:
fixed-parameters
fixed-parameters parameter-array
parameter-array

fixed-parameters:
fixed-parameter
fixed-parameters fixed-parameter

fixed-parameter:
attributesopt parameter-modifieropt type identifier

C# LANGUAGE SPECIFICATION

378 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

parameter-modifier:
���

��

parameter-array:
attributesopt ������ array-type identifier

property-declaration:
attributesopt property-modifiersopt type member-name % accessor-declarations *

property-modifiers:
property-modifier
property-modifiers property-modifier

property-modifier:
���

������

���
��
��

��
�����

�����
�

�
�
��

���
���

������

��������

���
���

��
���

member-name:
identifier
interface-type 	 identifier

accessor-declarations:
get-accessor-declaration set-accessor-declarationopt

set-accessor-declaration get-accessor-declarationopt

get-accessor-declaration:
attributesopt ��
 accessor-body

set-accessor-declaration:
attributesopt ��
 accessor-body

accessor-body:
block
&

event-declaration:
attributesopt event-modifiersopt ����
 type variable-declarators &
attributesopt event-modifiersopt ����
 type member-name % event-accessor-declarations *

event-modifiers:
event-modifier
event-modifiers event-modifier

Appendix CD GrammarReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 379

event-modifier:
���

������

���
��
��

��
�����

�����
�

�
�
��

���
���

������

��������

���
���

��
���

event-accessor-declarations:
add-accessor-declaration remove-accessor-declaration
remove-accessor-declaration add-accessor-declaration

add-accessor-declaration:
attributesopt ��� block

remove-accessor-declaration:
attributesopt ������ block

indexer-declaration:
attributesopt indexer-modifiersopt indexer-declarator % accessor-declarations *

indexer-modifiers:
indexer-modifier
indexer-modifiers indexer-modifier

indexer-modifier:
���

������

���
��
��

��
�����

�����
�

���
���

������

��������

���
���

��
���

indexer-declarator:
type
��� � formal-parameter-list �
type interface-type 	
��� � formal-parameter-list �

operator-declaration:
attributesopt operator-modifiers operator-declarator operator-body

operator-modifiers:
operator-modifier
operator-modifiers operator-modifier

operator-modifier:
������

�
�
��

��
���

C# LANGUAGE SPECIFICATION

380 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

operator-declarator:
unary-operator-declarator
binary-operator-declarator
conversion-operator-declarator

unary-operator-declarator:
type �����
�� overloadable-unary-operator ' type identifier (

overloadable-unary-operator: one of
4"""5"""C""">"""44"""55"""
���"""�����

binary-operator-declarator:
type �����
�� overloadable-binary-operator ' type identifier type identifier (

overloadable-binary-operator: one of
4"""5"""?"""<"""@"""D"""E"""F"""AA"""BB"""))"""C)"""B"""A"""B)"""A)

conversion-operator-declarator:
�������
 �����
�� type ' type identifier (
�������
 �����
�� type ' type identifier (

operator-body:
block
&

constructor-declaration:
attributesopt constructor-modifiersopt constructor-declarator constructor-body

constructor-modifiers:
constructor-modifier
constructor-modifiers constructor-modifier

constructor-modifier:
������

���
��
��

��
�����

�����
�

��
���

constructor-declarator:
identifier ' formal-parameter-listopt (constructor-initializeropt

constructor-initializer:
; ���� ' argument-listopt (
;
��� ' argument-listopt (

constructor-body:
block
&

static-constructor-declaration:
attributesopt static-constructor-modifiers identifier ' (static-constructor-body

static-constructor-body:
block
&

Appendix CD GrammarReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 381

static-constructor-modifiers:
��
���opt"�
�
��

�
�
��"��
���opt

destructor-declaration:
attributesopt ��
���opt > identifier ' (destructor-body

destructor-body:
block
&

C.2.7 Structs

struct-declaration:
attributesopt struct-modifiersopt �
���
 identifier struct-interfacesopt struct-body &opt

struct-modifiers:
struct-modifier
struct-modifiers struct-modifier

struct-modifier:
���

������

���
��
��

��
�����

�����
�

struct-interfaces:
; interface-type-list

struct-body:
% struct-member-declarationsopt *

struct-member-declarations:
struct-member-declaration
struct-member-declarations struct-member-declaration

struct-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
static-constructor-declaration
type-declaration

C.2.8 Arrays

array-type:
non-array-type rank-specifiers

non-array-type:
type

C# LANGUAGE SPECIFICATION

382 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

rank-specifier:
� dim-separatorsopt �

dim-separators:

dim-separators

array-initializer:
% variable-initializer-listopt *
% variable-initializer-list *

variable-initializer-list:
variable-initializer
variable-initializer-list variable-initializer

variable-initializer:
expression
array-initializer

C.2.9 Interfaces

interface-declaration:
attributesopt interface-modifiersopt ��
������ identifier interface-baseopt interface-body &opt

interface-modifiers:
interface-modifier
interface-modifiers interface-modifier

interface-modifier:
���

������

���
��
��

��
�����

�����
�

interface-base:
; interface-type-list

interface-body:
% interface-member-declarationsopt *

interface-member-declarations:
interface-member-declaration
interface-member-declarations interface-member-declaration

interface-member-declaration:
interface-method-declaration
interface-property-declaration
interface-event-declaration
interface-indexer-declaration

interface-method-declaration:
attributesopt ���opt return-type identifier ' formal-parameter-listopt (&

Appendix CD GrammarReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 383

interface-property-declaration:
attributesopt ���opt type identifier % interface-accessors *

interface-accessors:
attributesopt ��
 &
attributesopt ��
 &
attributesopt ��
 & attributesopt ��
 &
attributesopt ��
 & attributesopt ��
 &

interface-event-declaration:
attributesopt ���opt ����
 type identifier &

interface-indexer-declaration:
attributesopt ���opt type
��� � formal-parameter-list � % interface-accessors *

C.2.10 Enums

enum-declaration:
attributesopt enum-modifiersopt ���� identifier enum-baseopt enum-body &opt

enum-base:
; integral-type

enum-body:
% enum-member-declarationsopt *
% enum-member-declarations *

enum-modifiers:
enum-modifier
enum-modifiers enum-modifier

enum-modifier:
���

������

���
��
��

��
�����

�����
�

enum-member-declarations:
enum-member-declaration
enum-member-declarations enum-member-declaration

enum-member-declaration:
attributesopt identifier
attributesopt identifier) constant-expression

C.2.11 Delegates

delegate-declaration:
attributesopt delegate-modifiersopt ������
� return-type identifier ' formal-parameter-listopt

(&

delegate-modifiers:
delegate-modifier
delegate-modifiers delegate-modifier

C# LANGUAGE SPECIFICATION

384 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

delegate-modifier:
���

������

���
��
��

��
�����

�����
�

C.2.12 Attributes

global-attributes:
global-attribute-sections

global-attribute-sections:
global-attribute-section
global-attribute-sections global-attribute-section

global-attribute-section:
� global-attribute-target-specifier attribute-list �
� global-attribute-target-specifier attribute-list ,�

global-attribute-target-specifier:
global-attribute-target ;

global-attribute-target:
��������

������

attributes:
attribute-sections

attribute-sections:
attribute-section
attribute-sections attribute-section

attribute-section:
� attribute-target-specifieropt attribute-list �
� attribute-target-specifieropt attribute-list , �

attribute-target-specifier:
attribute-target ;

attribute-target:
�����

����

��
���

�����

������
�

��
���

���

attribute-list:
attribute
attribute-list attribute

attribute:
attribute-name attribute-argumentsopt

Appendix CD GrammarReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 385

attribute-name:
 type-name

attribute-arguments:
' positional-argument-listopt (
' positional-argument-list named-argument-list (
' named-argument-list (

positional-argument-list:
positional-argument
positional-argument-list """positional-argument

positional-argument:
attribute-argument-expression

named-argument-list:
named-argument
named-argument-list """named-argument

named-argument:
identifier) attribute-argument-expression

attribute-argument-expression:
expression

C.3 Grammar extensions for unsafe code

C.3.1 Unsafe contexts

class-modifier:
...
������

struct-modifier:
...
������

interface-modifier:
...
������

delegate-modifier:
...
������

field-modifier:
...
������

method-modifier:
...
������

property-modifier:
...
������

C# LANGUAGE SPECIFICATION

386 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

event-modifier:
...
������

indexer-modifier:
...
������

operator-modifier:
...
������

constructor-modifier:
...
������

destructor-declaration:
attributesopt ��
���opt ������opt > identifier ' (destructor-body
attributesopt ������opt ��
���opt > identifier ' (destructor-body

static-constructor-modifiers:
������opt ��
���opt"�
�
��

������opt �
�
��"��
���opt

��
���opt"������opt �
�
��
�
�
��"������opt ��
���opt

��
���opt"�
�
��"������opt

�
�
��"��
���opt"������opt

embedded-statement:
...
unsafe-statement

unsafe-statement:
������ block

C.3.1.1 Pointer types

type:
value-type
reference-type
pointer-type

pointer-type:
unmanaged-type ?
���� ?

unmanaged-type:
type

C.3.1.2 Pointers in expressions

primary-no-array-creation-expression:
...
pointer-member-access
pointer-element-access
sizeof-expression

Appendix CD GrammarReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 387

unary-expression:
...
pointer-indirection-expression
addressof-expression

C.3.1.3 Pointer indirection

pointer-indirection-expression:
? unary-expression

C.3.1.4 Pointer member access

pointer-member-access:
primary-expression 5B identifier

pointer-element-access:
primary-no-array-creation-expression � expression �

C.3.1.5 The address-of operator

addressof-expression:
D unary-expression

C.3.1.6 The sizeof operator

sizeof-expression:
��P��� ' unmanaged-type (

C.3.1.7 The fixed statement

embedded-statement:
...
fixed-statement

fixed-statement:
����� ' pointer-type fixed-pointer-declarators (embedded-statement

fixed-pointer-declarators:
fixed-pointer-declarator
fixed-pointer-declarators fixed-pointer-declarator

fixed-pointer-declarator:
identifier) fixed-pointer-initializer

fixed-pointer-initializer:
D variable-reference
expression

C.3.1.8 Stack allocation

local-variable-initializer:
expression
array-initializer
stackalloc-initializer

stackalloc-initializer:
�
��8����� unmanaged-type � expression �

C# LANGUAGE SPECIFICATION

388 Copyright  Microsoft Corporation 1999-2000. All Rights Reserved.

Appendix DD ReferencesReferences

Copyright  Microsoft Corporation 1999-2000. All Rights Reserved. 389

D. References

Unicode Consortium. The Unicode Standard, Version 3.0. Addison-Wesley, Reading, Massachusetts, 2000,
ISBN 0-201-616335-5.

IEEE. IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Standard 754-1985. Available from
http://www.ieee.org.

ISO/IEC. C++. ANSI/ISO/IEC 14882:1998.

