
Network Synthesis for Database Processing Units

Andrea Lottarini Stephen A. Edwards Kenneth A. Ross
Martha A. Kim

Columbia University, New York, NY
{lottarini,sedwards,kar,martha}@cs.columbia.edu

ABSTRACT
We explore on-chip network topologies for the Q100, an analytic
query accelerator for relational databases. In such data-centric ac-
celerators, interconnects play a critical role by moving large vol-
umes of data. In this paper we show that various interconnect
topologies can trade a factor of 2.5× in performance for 3.3× area.
Moreover, standard topologies (e.g., ring or mesh) are not optimal.

Significant prior work on network topology specialization aug-
ments generic topologies with additional dedicated links. In this
paper, we present a network specialization algorithm that builds
a specialized network first then introduces a generic network as a
fallback. We find our algorithm produces networks that are 1.24×
slower than the highest-performance generic topology considered
(a fat tree), and 18% smaller than the least expensive (a double
ring). Moreover, our method produces topologies that outperform
those produced by others by 1.21× while being 25% smaller.

1. INTRODUCTION
Analytic query processing is a mature and critical business appli-

cation. Given the ubiquity of these workloads and the exponentially
growing data sets on which they operate [16], it is crucial that their
performance and efficiency be optimized. There have been multi-
ple academic proposals to augment Database Management Systems
(DBMS) with specialized hardware [27, 28, 4, 12], as well as recent
industrial designs that implement such solutions [20, 18].

This paper explores how to design on-chip networks (“NoCs”)
for such systems. We consider the Q100 database processor [27,
28] whose design principles were recently embraced by Baidu [20].
The Q100 contains a heterogeneous set of fixed-function process-
ing elements; tiles in Q100 terminology. Each tile implements a
relational operator such as a join or filter. These processing ele-
ments operate on streams of data corresponding to columns of the
database. The Q100 architecture can readily exploit both pipeline
parallelism: performing different operations on the elements of a
column, and data parallelism: performing the same operation on
multiple columns. This allows the Q100 to process queries faster,
using far less power than a general purpose system running a soft-
ware DBMS.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’17, June 18-22, 2017, Austin, TX, USA
c© 2017 ACM. ISBN 978-1-4503-4927-7/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3061639.3062289

1K

32K

1M

32M

1G

32G

 0 40 80 120 160 200

D
at

a
V

ol
um

e
Link Index

Figure 1: Motivation for limited specialization: the volume of
link traffic falls off exponentially from the busiest links, sug-
gesting only a handful of specialized links are necessary. (TPC-
H on the Q100)

The tiles are highly specialized and have limited configurability;
complex query plans are executed by routing data between tiles.
Therefore, the NoC is central to the Q100, greatly influencing both
its area footprint and performance. For example, a fat tree NoC
would require 40% of the area of the computation tiles where as a
simple double ring would consume only 12%. However, the fat tree
allows the Q100 to complete the TPC-H benchmark 2.5 times faster
than the ring. TPC-H is the most widely used benchmark for query
processing analytic workloads [3], both in academia and industry.
We will use it in the remainder of the paper in order to evaluate
each interconnect’s impact on query processing performance.

Ideally, we would want the system to perform as if a full cross-
bar were present while devoting minimal area to the NoC. The fat
tree and the double ring are good examples of high performance
and economical NoC topologies, respectively. Moreover, under a
fixed area budget, a small, performant NoC creates room for more
processing tiles and potentially increased performance.

Relatively few edges carry the vast majority of data in our ap-
plication, which motivates our approach to custom network design.
Figure 1—our results from profiling the TPC-H query plans ex-
ecution on the Q100—illustrates this. These patterns arise from
the workload, as many tiles communicate preferentially with other
tiles to implement the computation expressed by query plans. In
particular, data is only ever sent over 196 of the 896 possible edges
(i.e., 28 output ports times 32 inputs). Hoping existing algorithms
could exploit such patterns, we first tried applying two NoC synthe-
sis algorithms found in the literature [15, 19] to the Q100 system.
We found that since these methods are strictly additive to the base
NoC topology; their solutions will be strictly larger than the base
topology, and thus also slower due to the increased degree of the
routers in the resulting NoC.

Our network synthesis algorithm remedies this. As others do, we
expose a parameter than can be tuned—effectively the degree of
specialization—that allows a designer to produce networks that fall
between general-purpose and fully specialized. However, unlike
the additive state of the art, we introduce dedicated, low-contention
links for the most important communication pairs and connect the
remainder of the ports through a generic topology. In Section 3
we present our algorithm and prove it generates deadlock-free net-
works. Our experiments show we produce networks that are faster
and smaller than competing algorithms. We put more of the high-
volume communication on dedicated links while reducing the size
of the standard interconnect that serves the less-important traffic.

In Section 5, we use our algorithm to find an interconnect that
executes the TPC-H benchmark only 1.24× slower than a fat tree
topology while consuming only 82% of the area of a double ring.
Compared with NoCs produced by competing algorithms [19, 15],
our algorithm reduces NoC area by 25% while increasing system
performance by 1.21×.

2. BACKGROUND AND RELATED WORK

2.1 Query Processing Accelerators
As analytic query processing is a stable workload that is widely

used in enterprise computing and that operates on highly struc-
tured data, it is a good candidate for acceleration. As such, many
researchers have proposed acceleration of key operators includ-
ing hash-joins [13], nested loop joins [24], partitioning [26], sort-
ing [14], filtering and aggregation [9], as well as full analytical
queries [27, 4, 20]. Other notable approaches to analytic accel-
eration include modifications to the storage subsystem to increase
the DBMS performance [12] as well as near storage compute [25].

2.2 Background on the Q100
The Q100 [27, 28], whose NoC we consider here, is a spatial

architecture for the acceleration of relational analytic queries. The
Q100 is composed of a mix of processing elements (called tiles),
which are specialized units that perform relational algebra opera-
tions1. An instance of a Q100 accelerator can have replicated tiles
in order to exploit parallelism in the query plan. The tiles stream
data to each other over an on-chip interconnection network, which
is the subject of the experiments that follow.

A SQL query is compiled to a Q100 query plan, which is sim-
ply a DAG in which the nodes are tile operations and the edges
represent producer/consumer dependencies. The tiles pass data to
each other, according to these producer-consumer relations, using
an on-chip interconnection network, which is the subject of the ex-
periments that follow. Because the query plan may call for more
resources than the target accelerator has (e.g., a plan that requires
three sort operations running on a Q100 instance with only one
Sorter tile) a software scheduler partitions the work into sequential
steps, none of which exceeds the accelerator tile resources.

The Q100 belongs to a class of emerging architectures for ac-
celerators that are composed of multiple, possibly redundant pro-
cessing elements capable of performing key kernel functions. The
benefits of such organization is that the accelerator can more eas-
ily adapt to changing workloads than a monolithic accelerator de-
sign [5].

1Those types are Reader, Writer, Boolgen, Colfilter, Case, ALU,
Joiner, Aggregator, Sorter, and Merger.

2.3 Interconnection Synthesis
Networks-on-Chip, or NoCs, are a de facto standard for System-

on-Chip integration [8, 1]. Application-specific network synthesis
techniques have been widely investigated to improve and automate
the design of networks for SoCs. The typical approach considers a
fixed communication graph with clearly defined endpoints.

In this paper we compare against the two recent network spe-
cialization techniques of Koibuchi et al. [15] and Ogras et al. [19].
Both approaches start with a standard NoC topology then augment
it with additional links to bypass congestion. The criteria for when
a new link is introduced differ between the two methods. Koibuchi
et al. produce a new NoC by adding random links in different ways
then picking the resulting NoC that shows minimum diameter. This
approach is meant to reduce congestion by reducing the amount of
hops for all paths regardless of the amount of traffic they carry. In
contrast, Ogras et al. use traffic traces to decide which link to add.

By contrast, we begin with an empty network, build links for a
user-specified number of high-traffic paths, and finally connect all
remaining paths with a network of standard topology. In Section 5
we compare the quality of the network our algorithm produces with
both Koibuchi and Ogras’s method, and find that our approach ex-
ploits specialization in a more resource-conscious way.

Notice that neither our method, nor the other two methods we
compare against [15, 19] consider communication timing [11].

A fully generative approach to interconnection synthesis never
uses a standard topology. With such techniques, since the space of
possible solutions is much larger than for additive techniques, addi-
tional constraints are necessary for these methods to find a solution
in a reasonable time. Murali et al. [17] provide an algorithm that
hierarchically partitions the communication graph. Pinto et al. [22]
propose an algorithm relying on weighted unate covering solvers to
generate a NoC. Srinivasan et al. introduce an approach that spec-
ifies the synthesis problem as an ILP formulation [23]. All these
methods use floorplanning and frequency constraints to reduce the
space of admissible solutions. In our case we operate at a higher
level of abstraction, with no restrictions on the placement of the
NoC endpoints. Therefore, these generative methods can not be
readily applied.

Lastly, there are techniques to map computation into a standard
topology such as a mesh or a torus (e.g. NETCHIP [2]). These
solutions are orthogonal to our work and could be applied to further
improve performance of the standard fallback networks we utilize.

3. NETWORK SYNTHESIS ALGORITHM
Our algorithm operates in two phases: it begins by building a

partial, specialized network by considering a user-specified num-
ber of high-traffic edges and building custom, point-to-point links
and routers to carry their load. After doing this, it connects all re-
maining edges through a generic “fallback” network. We describe
this below; Figure 4 shows pseudocode.

3.1 Specialization
The algorithm starts with an empty network consisting only of

ports that must be connected and, like prior NoC synthesis algo-
rithms, a communication graph. Each node in the graph represents
a type of port (e.g., the output of a filter tile or the input to the sorter
tile).2 Each directed, weighted edge indicates the relative amount
2Because we target systems that allow multiple instances of each
type of tile, a node in our communication graph represents a set of
interchangeable physical ports, i.e., the same kind of port on identi-
cal tiles. This represents a slight extension over prior network syn-
thesis algorithms that assume edges in the communication graph to
have a one to one correspondence to NoC ports.

A×2 B×2

C×1

100

3 10

A1

A2

B1

B2

C1

(step 1)

50

A×2 B×2

C×1

50

3 10

A1

A2

B1

B2

C1

(step 2)

50

50

A×2 B×2

C×1

0

3 10

A1

A2

B1

B2

C1

(step 3)

50

50 60

10

A×2 B×2

C×1

0

3 0

A1

A2

B1

B2

C1

(step 4)

53 50

3

50 60

10

Figure 2: Our algorithm performing four specialization steps on a system with two A processing elements, two B’s, and one C. The
top graphs depict the communication patterns as observed in simulation; the bottom graphs depict the structure of the synthesized
network. In step 1, our algorithm selects the highest-weight edge (A→ B) and adds the point-to-point connection A1 → B1 with
load 50 because there are two A’s and two B’s sharing the load of 100. In step 2, A→ B has been reduced to 50 but remains the
highest so A2 → B2 is added. C→ B is highest in step 3, but B2 already has a connection so a router is added with a link from C1.
Finally, A→C is selected and another router is added connecting A1 to C1, although would also have been possible to add another
link from the existing router to C1.

to_specialize = 0 to_specialize = 1 to_specialize = 4 to_specialize = 5

Figure 3: Networks produced by our algorithm employing a ring fallback for a certain system with 8 ports. More specialization steps
produces a more customized network and a smaller ring.

or importance of the communication between the source and des-
tination nodes. We will use the term edge to denote an abstract
connection in the communication graph while a link will indicate a
physical connection in a NoC.

During specialization (i.e., while to_specialize > 0 in Figure 4),
we select the highest-traffic edge from the communication graph
and introduces a link in the physical network to serve it. Since a
Q100 device may have multiple physical replicas of a tile to ex-
ploit parallelism between operations on different columns, we se-
lect the least heavily loaded instances (as determined by lightest
in Figure 4) of both the source and destination port. It then anno-
tates the new physical link with an expected load, which is the total
load on the communication edge, divided by the minimum num-
ber of instances of producer or consumer ports. If the least-loaded
source or destination already has an outgoing or incoming link (re-
spectively), this step may require introducing a router to share the
port. Once a physical link is introduced, the algorithm deducts this
expected load on the newly added physical link from the commu-
nication graph’s edge.

Figure 2 illustrates this process for a simple example. The top
row depicts the communication graph in which each node is la-
beled with a port type and count. In this example, there are two
type-A ports, two type-B’s, and a single C. The edges indicate data

flowing from one type of port to another with a weight indicating
the edge’s importance. In this example, communication between
A-type and B-type ports is the most important, followed by that
from A to C and C to B. The bottom row of Figure 2 depicts the
physical network under construction. Here, each physical port is
represented explicitly (e.g., A1 and A2 are the two type-A ports),
routers are introduced (the black circles), and each edge represents
a physical point-to-point link with an associated expected load.

Each step from left to right in Figure 2 illustrates a single spe-
cialization step. In step 1, the physical link between A1 and B1 is
marked with a load of 50 because the edge from A to B has a weight
(load) of 100 and there are two instances of A and B in the target
architecture. Had there been three instances of both port B and A,
the physical link would have an expected load of 33.

In step 2 of Figure 2 we see the algorithm choosing the least
loaded port when deciding which physical instance of a port should
serve an edge. There the algorithm connects A2 and B2 because
they are unused; A1 and B1 already have an expected load of 50.
If either the source or destination port already has an incident link,
we introduce a router to serve both logical communication streams,
as shown in step 3 of Figure 2.

The algorithm proceeds greedily for the desired number of spe-
cialization steps, at each one selects and removes the highest-weight

Synthesize a partially specialized network
endpoints List of ports in the NoC, each with a type
edges Priority queue of communication graph edges
to_specialize Number of edges to specialize
fallback Ring, mesh, torus, or fat_tree
specialize(endpoints, edges, to_specialize, fallback):

noc = NoC(endpoints) # Create a network of just endpoints
r = noc.create_router() # Add fallback router
while edges is not empty:

src_type, dest_type, load = edges.pop() # Get busiest edge
Locate the least loaded endpoints
src = lightest(endpoints, outgoing, src_type)
dest = lightest(endpoints, incoming, dest_type)
Count how many tiles exist for both source and destination
src_count = |{e : e ∈ endpoints,e.type = src_type}|
dest_count = |{e : e ∈ endpoints,e.type = dest_type}|
if to_specialize > 0: # Create specialized link

min_count = min(src_count, dest_count)
noc.add_link(src, dest, load/min_count) # May add router
Put the edge back after adjusting its load
edges.push(src_type, dest_type, load − load/min_count)
to_specialize = to_specialize − 1

else: # Create unspecialized link to the fallback router
noc.add_link(src, r, load)
noc.add_link(r, dest, load)

Replace the fallback router with a fallback network
r.transform_to_network(fallback)
return noc

Return the lightest loaded endpoint of a particular type
endpoints List of ports in the NoC, each with a type
direction Incoming or outgoing
type Endpoint type to consider
lightest(endpoints, direction, type):

Consider only endpoints of a certain type
weights = {e.direction.weight : e ∈ endpoints,e.type = type}
return the endpoint ∈ weights with minimum weight

Figure 4: Our algorithm for NoC synthesis.

edge from the graph. While a larger number of specialization steps
produces a more customized network, more specialization is not al-
ways better because it can produce more irregular networks that are
either too large, too slow, or both. By exposing the degree of spe-
cialization (the to_specialize parameter in Figure 4) we can quickly
generate many networks with differing degrees of specialization,
allowing the designer to evaluate and select the best option.

3.2 Generalization
After specialization, the remaining unconnected ports are con-

nected to each other and the network by a standard “fallback” in-
terconnect. In Figure 4, our algorithm first introduces the fallback
router, which serves as a placeholder for the generic network and
to which all edges that were not specialized during the specializa-
tion phase are connected. Once every edge has been added to the
network, the fallback router is replaced with a standard network:
we currently support ring, mesh, torus, and fat tree topologies, al-
though others would be possible.

Figure 3 depicts the output of our algorithm using a ring fallback
after 0, 1, 4, and 5 specialization steps. As more specialized links
are introduced, the smaller the fallback network becomes.

8.0e3

1.0e4

1.2e4

1.4e4

1.6e4

1.8e4

2.0e4

2.2e4

10% 15% 20% 25% 30% 35% 40% 45%

Ring

Mesh

Torus

Fat Tree

T
P

C
-H

 R
un

tim
e

(m
s)

Network Area (% of Q100 Tiles)

Ogras: (from ring)
(from mesh)
(from torus)

Koibuchi: (from ring)
(from mesh)
(from torus)

Us: (ring fallback)
(mesh fallback)
(torus fallback)

(fat tree fallback)

Figure 5: Design space exploration of semi-specialized NoC
topologies. We compare our algorithm with Ogras et al. [19],
Koibuchi et al. [15], and four generic topologies. We find that
our approach to network specialization is the most effective,
producing designs that approach the performance of a fat tree
and have a smaller resource-cost than a simple double ring,
which are indicated by the dashed lines in the plot.

3.3 Proof of Deadlock Freedom
Our algorithm generates networks that are free from deadlock or

livelock. We show this by relying on the argument of Dally and
Seitz [7]: there is an ordering of channels in the generated network
such that every path will traverse channels in descending order.

We rely on the fallback network already having this property.
Known deadlock-free routing algorithms exist for each type of fall-
back network we currently support. For example, a mesh can be
made free of deadlocks by using dimension ordered routing or the
turn model [10]. As a result, we can safely treat traffic that crosses
our fallback network as going through a deadlock-free black box;
we can treat it as a single edge in the ordering argument.

The generated part of the network use minimal destination based
routing with no adaptivity. Specifically, data follows exactly two
kinds of routes. For paths considered during the specialization
phase of our algorithm, our network sends data through at most
two routers: one connected to the source tile and one connected
to the destination tile. For all other paths, data enters at most one
router, then traverses the fallback network, then traverses at most
one router to reach its destination. Once data emerges from the
fallback network, it never reenters.

Our algorithm enforces this property by construction. During
the specialization phase, each time a new link is added, the source
router’s routing table is updated to steer data sent to the destination
through the newly added link. For every other path, the relevant
routers are instructed to send data to the fallback network instead.
Furthermore, these paths do not interfere with each other and the
routing tables remain fixed throughout the system’s execution.

Thus, every path traverses each of the following links, in order,
no more than once:

source→ specialized router→ fallback router→
path within the fallback network→ fallback router→
specialized router→ destination

This is the total order on link types that Dally and Seitz’s argu-
ment demands; our generated networks are deadlock-free.

4. EXPERIMENTAL METHODOLOGY
We evaluate interconnect topologies using a Q100 with 18 tiles

and 16 input and output ports to memory.3 Because a tile may have
multiple inputs or outputs, the network will have 66 input ports
and 76 output ports. The slight skew is due to the fact that the tiles
in the Q100 design tend to have more inputs (network outputs) than
outputs (network inputs). Each link is 32 bits wide.

To evaluate a network, we consider its performance relative to
its size. We use CONNECT [21] to produce FPGA-optimized,
synthesizable RTL from a network description. We then synthe-
size the RTL using Quartus (targeting a mid-range Altera Stratix
5SGXEA7N1F45 FPGA) to obtain the network size and maximum
clock frequency. In order to minimize the NoC area we fix the
buffer count to the minimum amount allowed by the tool (4 entries),
use Input Queued routers, and turn off all pipelining options. To
calculate the overall performance of a network, we simulate TPC-
H on our cycle-level Q100 simulator using the network in question.
This produces a total cycle count for the workload which, multi-
plied by the clock period from Quartus, produces the total runtime.
We then limit the frequency of the overall design to the frequency
of the slowest tile in our implementation: the merger tile which
operates at a frequency of 145MHz.

In all fallback networks we use minimal destination-based rout-
ing. The only exceptions are the fat trees which require dynami-
cally changing routing tables to ensure non-blocking communica-
tion [6]. CONNECT does not support dynamic routing, so while
the dynamic policy is accounted for in our simulation, the area and
frequencies derived from CONNECT correspond to simpler static
routers and thus should be considered lower bounds on fat tree area
and upper bounds on fat tree frequency. This does not impact our
final conclusions as the data show that even with these allowances,
the fat trees are the largest interconnects.

To gather the communication graph, we simulate 19 (out of 22)
TPC-H queries and register the amount of data flowing across be-
tween each combination of of tiles’ ports; the three queries that are
left out contain operators that are not supported by our current com-
piler infrastructure. TPC-H is the standard benchmark for analytic
query processing workloads [3]. We run the queries on a database
with a scaling factor of 1, meaning the whole database is 1GB.

For scheduling query plans to the finite resources of the Q100
device we employ a greedy “longest job first” heuristic that sched-
ules the longer latency operations first on the processing element
which would require the smallest number of network’s hops for all
its input operands. We found that, on average, this simple greedy
heuristic produces schedules that are only 5% slower than the best
schedule out of 10000 random valid schedules.

5. EXPERIMENTAL RESULTS
We compare with two other network specialization algorithms

developed by Ogras et al. [19] and Koibuchi et al. [15]. The idea
behind both methods is to start with a standard network topol-
ogy to which dedicated links are added for important connections.
Ogras, at each step, exhaustively consider all possible pairs of non-
adjacent nodes and greedily select the one which reduces a cost
function the most. The cost function they use is the free packet
delay of each communication – a metric proportional to the hop
count – weighted by the amount of traffic it carries. Koibuchi et
al. instead produce a fixed number or randomly augmented graphs
– they found 100 to be a reasonable number – from which they
select the one with the smallest diameter. Although the original

3Three Aggregator, two Boolgen, one Sorter, five Colfilter, two
ALU, two Joiner, one Merger, two Case

5.0e3

1.0e4

1.5e4

2.0e4

2.5e4

T
P

C
-H

 R
un

tim
e

(m
s) Ogras: (from ring)

Koibuchi: (from ring)
Us: (ring fallback)

 (fat tree fallback)

1.0e6

2.0e6

3.0e6

C
lo

ck
 C

yc
le

s

 100

 200

 300

F
re

qu
en

cy
 (

M
H

z)

0%

15%

30%

45%

0 20 40 60 80 100 120 140 160

N
et

w
or

k
A

re
a

 (
R

el
. T

o
Q

10
0

T
ile

s)

Links Specialized

Figure 6: The best NoC configuration we found came from spe-
cializing 60 edges and employing a double ring fallback. This
network is superior to those from other methods because our
NoCs are more resource conscious.

paper by Ogras et al. only considered a mesh base topology, we
apply their method to specialize a ring and torus as well. Like us,
both these strategies seek to balance the benefits of specialized and
generic network topologies. However, whereas their specialization
is strictly additive to the generic network starting point, we start
with no network, introduce dedicated links, and lastly fill in with a
generic network.

For all algorithms, we sweep the degree of specialization from
no specialization (i.e., the base network topology) to fully special-
ized. Figure 5 plots the performance and area trade-off of the result-
ing networks for different degrees of specialization. It is clear that
the most desirable networks are bidirectional rings that are slightly
specialized. This is consistent with the observed patterns of com-
munication for the Q100 accelerator (Figure 1) where a small set
of edges carry most of the traffic. Koibuchi et al. also observe
how ring topologies provide the most benefits with their approach.
However, the networks produced by our synthesis algorithm out-
perform both standard topologies and the specialized topologies
produced by the other algorithms. Figure 5 shows how all points
in the Pareto frontier, other than the fat tree, are NoCs produced by
our algorithm.

To develop our intuition as to why our method outperforms the
others, in Figure 6 we analyze the impact of growing specialization
on all figures of merit: completion time, clock cycles, frequency,
and area. In these plots x links specialized for Ogras and Koibuchi’s
method means x dedicated links added, and for us x specialization
steps. Note that Ogras does not specialize beyond 40 links due to
the method’s constraint that each router can have no more than one

long-distance link.4 We plot the data for the strongest base topol-
ogy, the ring, as well as the fat tree which was the least congested
at all times5.

Starting with no specialization, Figure 6 shows that a ring topol-
ogy will have the smallest area, but performs poorly. As we in-
crease specialization, the number of clock cycles tends to drop, but
the frequency does too as the specialization breaks the regularity
of the network. For the same reason the area of the ring will in-
crease. Therefore, performance will not necessarily increase with
specialization. This is exactly what limits the other techniques we
are comparing against. Networks produced by Koibuchi or Ogras’
method might outperform ours when considering raw clock cycle
count and a given specialization target. However, they are much
larger and can only operate at slower frequencies with respect to
our more resource conscious NoCs. It is also clear that using in-
formation about the traffic patterns helps ours and Ogras’ method
produce networks that are better than what the random approach
can achieve. Finally, notice how a dense fallback network like a
fat tree “slims down” as we remove incoming and outgoing con-
nections. However, because the specialized network is now less
versatile, congestion slowly increases as well. For all methods fre-
quency drops rapidly after 60 links are specialized, emphasizing
the importance of regularity in the NoC structure.

6. SUMMARY AND CONCLUSIONS
Database Processing Units are a promising class of accelerators

that target analytical query processing, a ubiquitous application. To
the best of our knowledge this is the first paper that specifically tar-
gets the design and optimization of NoCs for these types of sys-
tems. The algorithm we presented allows rapid network design
space exploration by sweeping the number of specialized links.
It finds networks that perform better per unit area than standard
topologies and custom networks obtained by other algorithms for
NoC synthesis. In particular, our algorithm found networks that im-
prove application performance by 1.21× and reduce area by 25%
relative to state-of-the-art network synthesis techniques.

7. ACKNOWLEDGMENTS
This work is supported by the National Science Foundation un-

der CCF-1065338 and by C-FAR, one of the six SRC STARnet
Centers sponsored by MARCO and DARPA. We also wish to thank
Luca Carloni and the anonymous reviewers for their contributions.

8. REFERENCES
[1] L. Benini and G. De Micheli. Networks on chips: A new

SoC paradigm. IEEE Trans. on Computers, Jan. 2002.
[2] D. Bertozzi et al. NoC synthesis flow for customized domain

specific multiprocessor systems-on-chip. IEEE Trans. PDS,
2005.

[3] P. Boncz, T. Neumann, and O. Erling. TPC-H Analyzed:
Hidden Messages and Lessons Learned from an Influential
Benchmark. Springer International Publishing, 2014.

[4] E. S. Chung, J. D. Davis, and J. Lee. Linqits: Big data on
little clients. In ISCA, 2013.

4We experimented with relaxing this constraint to create a fairer
comparison to our method. However, this did not improve perfor-
mance and since this was not part of the original algorithm, we do
not report results for it.
5We do not apply Ogras or Koibuchi’s method starting from a fat
tree since it is already non-blocking and therefore will not benefit
from extra links.

[5] J. Cong et al. Composable accelerator-rich microprocessor
enhanced for adaptivity and longevity. In ISLPED, 2013.

[6] W. Dally and B. Towles. Principles and Practices of
Interconnection Networks. Morgan Kaufmann Publishers
Inc., 2003.

[7] W. J. Dally and C. Seitz. Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks. IEEE ToC, (5),
May 1987.

[8] W. J. Dally and B. Towles. Route packets, not wires:
On-chip interconnection networks. In DAC, 2001.

[9] C. Dennl, D. Ziener, and J. Teich. Acceleration of SQL
restrictions and aggregations through FPGA-based dynamic
partial reconfiguration. In FCCM, 2013.

[10] C. J. Glass and L. M. Ni. The turn model for adaptive
routing. In ISCA, 1992.

[11] W. H. Ho and T. M. Pinkston. A methodology for designing
efficient on-chip interconnects on well-behaved
communication patterns. In HPCA, 2003.

[12] S.-W. Jun et al. Bluedbm: An appliance for big data
analytics. In ISCA, 2015.

[13] O. Kocberber et al. Meet the walkers: Accelerating index
traversals for in-memory databases. In MICRO, 2013.

[14] D. Koch and J. Torresen. FPGASort: A high performance
sorting architecture exploiting run-time reconfiguration on
FPGAs for large problem sorting. In FPGA, 2011.

[15] M. Koibuchi, H. Matsutani, H. Amano, D. F. Hsu, and
H. Casanova. A case for random shortcut topologies for HPC
interconnects. In ISCA, 2012.

[16] A. McAfee and E. Brynjolfsson. Big Data: The management
revolution. Harvard Business Review, October 2012.

[17] S. Murali et al. Designing application-specific networks on
chips with floorplan information. In ICCAD, 2006.

[18] F. Nagel et al. Code generation for efficient query processing
in managed runtimes. VLDB, Aug. 2014.

[19] U. Ogras and R. Marculescu. It’s a small world after all:
NoC performance optimization via long-range link insertion.
IEEE Trans. VLSI, July 2006.

[20] J. Ouyang et al. SDA: Software-defined accelerator for
general-purpose distributed big data analysis system. In
HotChips, 2016.

[21] M. K. Papamichael and J. C. Hoe. CONNECT:
Re-examining conventional wisdom for designing NoCs in
the context of FPGAs. In FPGA, 2012.

[22] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli.
Constraint-driven communication synthesis. In DAC, 2002.

[23] K. Srinivasan et al. Linear-programming-based techniques
for synthesis of network-on-chip architectures. IEEE Trans.
VLSI, Apr. 2006.

[24] J. Teubner and R. Mueller. How soccer players would do
stream joins. In SIGMOD, 2011.

[25] L. Woods, Z. István, and G. Alonso. Ibex: An intelligent
storage engine with support for advanced SQL offloading.
VLDB, 2014.

[26] L. Wu et al. Navigating big data with high-throughput,
energy-efficient data partitioning. In ISCA, 2013.

[27] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross.
Q100: The architecture and design of a database processing
unit. In ASPLOS, 2014.

[28] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross.
The Q100 database processing unit. IEEE Micro, May 2015.

