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ABSTRACT

On microcontrollers, timer devices provide high-precision timing,

but that precision is lost when using high-level languages without

suitable abstractions for temporal behavior. So, for timing-sensitive

applications, programmers resort to low-level languages like C

which lack expressiveness and safety guarantees. Other program-

mers use specialized precision-timing hardware which is expensive

and difficult to obtain.

In this work, we achieve sub-microsecond precision from a high-

level real-time programming language on the RP2040, a cheap,

widely available microcontroller. Our work takes advantage of the

RP2040’s Programmable I/O (PIO) devices, which are cycle-accurate

coprocessors designed for implementing hardware protocols over

the RP2040’s GPIO pins.

We use the PIO devices to implement timestamp peripherals,

which are input capture and output compare devices. We use times-

tamp peripherals to mediate I/O from programs written in Sslang,

a real-time programming language with deterministic concurrency.

We show that timestamp peripherals help Sslang programs achieve

the precise timing behavior prescribed by Sslang’s Sparse Synchro-

nous Programming model.
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1 INTRODUCTION

Systems often have a mix of real-time requirements, ranging from

picosecond-level precision to best-effort. This paper proposes times-

tamp peripherals—general-purpose peripherals that timestamp in-

put events and emit output events according to timestamps—as an

interface between the hardest real-time layer and the first software

layer (Figure 1). While a handful of existing peripherals timestamp

events, most are specialized.
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Figure 1: Our approach: a peripheral interprets changes on

input pins as timestamped events, which are passed to a real-

time discrete-event simulator (the Sslang program), which

sends timestamped output events to another peripheral that

generates precisely timed output waveforms.

These hardware-managed timestamps make it much easier to de-

velop and analyze real-time software. Lohstroh et al. [13] argue that

real-time programming models should provide software with some

notion of logical time, an engineering fiction that is easier to reason

about than physical models of time. Within a real-time system, the

timestamp peripherals we propose here form the boundary between

the logical software and the physical external environment.

Timestamping in software, such as with an interrupt service

routine that records a system timer value, is imprecise because

of interrupt response time uncertainty. Another approach would

be to implement such timestamping hardware in an FPGA with

a processor core, but such chips are substantially more expensive

than commodity microcontrollers.

To demonstrate timestamp peripherals, we implement them on

the inexpensive (US$0.70), widely available RP2040 microcontroller,

using its programmable input/output (PIO) blocks and interface

them with the Sparse Synchronous Model (SSM) runtime. The re-

sulting peripherals sample input pins at 16MHz and allow output

changes to be scheduled with the same precision, far more accu-

rately than is possible using only the RP2040’s 1MHz timer. Overall,

our system
†
gives users the ability to write high-level programs

that can measure and produce output signals with 62.5 ns precision.

In this paper, we describe and evaluate the performance of our

real-time software environment with timestamp peripherals. We

based our environment on Edwards and Hui’s [5] Sparse Synchro-

nous Model and propose a real-time language called Sslang (Sparse

Synchronous Language), described in Section 2. Sslang relies on

timestamp peripherals, which we implemented on the RP2040 mi-

crocontroller and its PIO blocks, described in Section 3 and Section 4.

To determine the performance limits of our approach, we ran exper-

iments and describe our findings in Section 5. Section 6 summarizes

related work; we conclude in Section 7.

†
Source code available at https://github.com/ssm-lang/pico-ssm
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2 THE SPARSE SYNCHRONOUS MODEL

The Sparse Synchronous Model [5, 7] is a discrete-event model

of computation for specifying real-time behavior. Like traditional

discrete-event systems, it is built around scheduled variable updates

managed by an event queue that executes them in temporal order;

its main novelty is a deterministic mechanism for resolving logically

simultaneous events, inspired by the synchronous languages [4].

Sslang is an imperative-functional language built on SSM that

provides scheduled variable updates, blocking waits on variables,

and parallel computation. Like Python, Sslang uses indentation to

signify grouping; like Haskell and OCaml, Sslang features strong

and static typing with type inference. Here is the “hello world” of

the embedded world in Sslang, which blinks an LED at 10Hz:

blink led = / / blink takes one parameter: led
loop / / Repeat the following lines

/ / 50ms from now, toggle the value of led

after ms 50, led <- not (deref led)
wait led / / Wait for led to be updated

Here, blink led = defines the function blink with a single

argument led, an otherwise ordinary mutable variable that has been

connected to an output peripheral. loop starts an infinite loop that

begins by scheduling an update to toggles the led variable 50ms

in the future. In that after statement, ms is a function applied to

50 that computes the number of system ticks in a 50ms duration,

and deref reads the current value of led, a mutable variable. The

subsequent wait statement suspends this function’s execution until

the next write to led; when execution resumes, the loop restarts.

While this example resembles a “blink” program in C or Python,

Sslang manipulates an event’s time with the same care as its value.

In particular, logical time does not advance except at wait state-
ments, meaning each loop iteration logically takes exactly 50ms,

regardless of how long the processor physically takes to execute

the machine instructions in the loop. Using a timestamp output pe-

ripheral with 62.5 ns precision, our implementation of this program

on the RP2040 generates a 10Hz square wave that is as accurate

and precise as the microcontroller’s crystal oscillator.

Figure 2 showcases more of Sslang with a larger program that

transforms presses of a bouncy pushbutton switch into clean 200ms

pulses. The oscilloscope traces in Figure 3 illustrates its behavior.

The first two functions illustrate how we build abstractions from

Sslang primitives. The sleep function provides the familiar “sus-

pend execution for a period of time” functionality. It creates a local

variable timer that conveys pure events (written “()” in Sslang),

schedules a future event on this variable, then waits for that update.

The waitfor function blocks until a given variable takes a given

value, returning instantly if the variable already has that value.

Constructs such as sleep and waitfor are standard library functions.

The debounce and pulse functions implement the two halves of

our pulse generator. The debounce function is an infinite loop that

generates a pure event when it sees an active-low button pressed,

waits some time for any bouncing to subside, then waits again for

the button to be released. The pulse function waits for a button-

press event; after one arrives, pulse immediately sets the output

high while scheduling it to become low again in the future. The

last wait makes pulse ignore any event before the end of the pulse.

sleep delay =
let timer = new () / / Allocate a pure event variable
after delay, timer <- () / / Schedule a wake-up
wait timer / / Suspend until then

waitfor var value =
while deref var != value / / Current value is not value

wait var / / Wait for update to var

debounce delay input press =
loop

waitfor input 0 / / Active-low button pressed
press <- () / / Send “press” event
sleep delay / / Debounce
waitfor input 1 / / Button released
sleep delay / / Debounce

pulse period press output =
loop

wait press / / Wait for the “press” event
output <- 1 / / Pulse high immediately
after period, output <- 0 / / Schedule low
wait output / / Wait for low

buttonpulse button led =
let press = new () / / Debounced button press signal
par debounce (ms 10) button press

pulse (ms 200) press led

Figure 2: A debounced pulse generator in Sslang. The sleep
function pauses execution; waitfor pauses until a variable

takes the specified value; debounce filters a bouncy pushbut-

ton input into clean press events; pulse emits a pulse at each

press event; buttonpulse runs debounce and pulse in parallel.

The buttonpulse function, the main entry point to our program,

runs debounce and pulse together. It creates a pure-event variable
press to convey clean button-press events between debounce and
pulse, which are run in parallel using the par statement. par runs

earlier operands at a higher priority than later operands, ensuring

that an event generated by debounce is seen instantly by pulse.
Following the techniques of Hui and Edwards [7], our Sslang

compiler generates C code that links against the SSM runtime [5],

a discrete-event simulator that provides a tick function to execute

the system for an instant, updating the event queue (a priority

heap) as needed. The SSM runtime library is platform-agnostic and

requires a timing-aware platform runtime to call tick at the right

time. The platform runtime is also responsible for managing vari-

ables mapped to external I/O, scheduling external inputs as delayed

assignments to input variables, and fowarding output variables

updates to the environment. Our RP2040 platform runtime does so

using timestamp peripherals, which we describe below in detail.
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(a)

(b)

Figure 3: Behavior of the debounced pulse generator program.

The top trace (blue) is the active-low pushbutton input; the

bottom (cyan) is the LED output. (a) The program emits two

200ms pulses in response to two button presses. (b) Zoomed

in, button bounces and the 20 µs reaction time become visible.

3 THE RP2040 AND ITS PIO BLOCKS

The RP2040 microcontroller, produced by the Raspberry Pi Founda-

tion [19], features dual ARM Cortex-M0+ cores, 264 kB of on-chip

SRAM, a 64-bit counter/timer with 1 µs precision, a QSPI interface

for off-chip flash memory backed by an execute-in-place cache,

and a direct memory access (DMA) controller. We run the core

processors at 128MHz, clocked by a 12MHz crystal-driven PLL.

In addition to traditional peripherals such as GPIO and UARTs,

the RP2040 includes Programmable I/O (PIO) devices that execute

tiny PIO-specific assembly language programs designed to act as

conduits between the RP2040’s 30 GPIO pins and its ARM cores.

Typical applications include “soft UARTs” and drivers for the un-

usual serial protocol used by WS2812 color LEDs. The RP2040

provides two such PIO blocks, each comprised of four independent

state machines (SMs) that each have their own program counter,

two 32-bit shift registers, and two 32-bit scratch registers. While

these 8 SMs provide ample parallelism, program memory is limited

to 32 instructions per PIO block shared among four SMs, they do

not have direct access to any memory, and the only arithmetic

operations they support are decrement and equality comparison.

The SMs provide precise timing by guaranteeing each non-

blocking instruction executes in a single cycle, followed by a fixed

number of stall cycles prescribed in the instruction itself. Blocking

instructions wait on events such as an inter-SM interrupt signal or

data arriving from the ARM cores. As such, programs on two SMs

execute in lockstep if neither block and their instruction counts

align (accounting for stall cycles). PIO devices send and receive data

from the ARM cores via two 4x32-bit FIFOs (one in each direction)

and may raise interrupts that can run interrupt service routines

(ISRs) on either of the two ARM cores.

Although the PIO was not designed for implementing times-

tamp peripherals, it is fast, predictable, and powerful enough to

do so. To timestamp inputs, we implement a precisely timed loop

that maintains a counter and emits a timestamped input update

event when it sees a change in input levels. The output system also

implements a counter with a precisely timed loop, but checks the

counter against an alarm time to emit a new output when the two

timestamps match.

4 THE RP2040 PLATFORM RUNTIME

To run Sslang programs in real-time, our RP2040 platform runtime

uses Edwards & Hui’s platform-agnostic SSM runtime library to

schedule internal events and processes. The RP2040 platform run-

time coordinates execution with the hardware timer and relays

external inputs and outputs to the SSM runtime.

The tick loop procedure for our RP2040 platform runtime, shown

in Figure 4, keeps up with physical time while calling the SSM run-

time’s tick function to execute the Sslang program for an instant

and advancing logical time. We based this on Hui & Edwards [7].

At each iteration, the platform runtime checks for available input

events that may have preempted internally-scheduled events, and

forwards these as delayed assignments to the corresponding sched-

uled variables. If there is nothing to be done, the tick loop sleeps

until it is time to execute the next SSM instant, or when some ex-

ternal input wakes up the system: it blocks on a semaphore until it

is unblocked by an interrupt service routine (ISR).

The block diagram in Figure 5 illustrates how the tick loop com-

municates with the rest of the system. Notably, our platform run-

time uses the RP2040’s cycle-accurate PIO hardware to predictably

manage external input and output events, isolated from main pro-

cessor delays. The input system uses a single SM that timestamps

input events; the output system uses two SMs that emit output

events at target timestamps specified by the running program. In

the rest of this section, we describe our PIO input and output imple-

mentation, and how we integrate them with the rest of the system.

4.1 Timestamps and Clock Synchronization

Our RP2040 platform runtime uses 64-bit timestamps (time_t) that
count at 16MHz (62.5 ns), which we chose due to our PIO programs

running 8-cycle loops at 128MHz and the RP2040 system timer

running at 1MHz. At this speed, 32-bit timestamps would wrap

around in under 5min; 64-bit timestamps give us 36,533 years.

We use the RP2040’s 1MHz system timer as the master clock,

which measures time since it was started. We plan to eventually

synchronize this clock to, say, a GPS reference.
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procedure tick_loop(invar, outvar): // The main tick loop, with PIO input and output variables
init_ssm_runtime() // Initialize the SSM runtime
tick() // Run the program for time zero
forever

rt ← timer_read() // Read the real time from the system timer
nt ← next_time() // Get the time of the next scheduled event
if input_queued() && input_peek().time < nt // Is there a pending input event before any other event?

schedule(invar, input_dequeue()) // . . . yes: move it from the PIO queue to the SSM runtime queue
elseif nt ≤ rt // Has the model fallen behind physical time?

tick() // . . . yes: run the program for an instant; update next time
if outvar.next_time ≠∞ // Is there a scheduled PIO output?

pio_output(outvar.next_time, // . . . yes: send it to the PIO
outvar.next_value)

elseif nt ≠∞ // Is there an event scheduled for the future?
set_alarm(nt) // . . . yes: schedule an alarm to wake up then
wait(semaphore) // Wait for the alarm or an input event
cancel_alarm() // If an input event awakened us, cancel the alarm
release(semaphore) // Release the semaphore if an alarm came just after an input event

else

wait(semaphore) // Wait for an input event

Figure 4: The RP2040 platform runtime tick loop, which calls tick() to advance model time, then sleeps until the next scheduled

event or external input. Based on the tick loop from Hui & Edwards [7].
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The tick loop (Figure 4) gathers the next event from the input queues, schedules it in the ssm event queue, calls tick to run the

Sslang program for an instant, feeds updated time/value to Alarm and Buffer sms (also in pio0), sets an alarm, and sleeps.

Because the PIO programs cannot directly read the system timer,

we maintain two additional real-time clocks in the PIO programs

that need access to the current time. Fortunately, all three timers

are driven by clocks derived from the external 12MHz crystal, so

we set them to run at precisely the same rate. They will remain

synchronized provided we start them in phase. We initialize the

PIO counters with the code in Figure 6, which reads the system

timer, sends the initial count value to the counting SMs, and starts

all the three SMs simultaneously.

The initialization routine compensates for its own latency, which

we measured to be roughly 3 µs. We add this offset to the initial PIO

counter to ensure it runs slightly ahead of the system clock. This

offset is critical for the correctness of the tick loop, which assumes

that if the PIO input queue is empty, future queued events will

have a greater timestamp than the current system clock time. If the

PIO counters were run behind the system clock, PIO timestamps

could be smaller, violating this assumption. We verify our clocks

are synchronized using the loopback test described in Section 5.4.
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void start_pio_counters(void) {
/ / Read the 1 MHz system timer
uint32_t tmr = timer_hw->timerawl;
/ / Convert to 16 MHz countdown value
uint32_t ctr = ~((tmr + 3) << 4);

/ / Send initial count to input and output SMs
pio_sm_put(pio0, capture_sm);
pio_sm_put(pio0, alarm_sm);

pio_set_sm_mask_enabled(pio0, / / Start SMs in sync
CAPTURE_SM | ALARM_SM | BUFFER_SM, true);

}

Figure 6: Initializing PIO counters using the system timer.

4.2 The Input System

The input system uses a single PIO SM to sample a group of input

pins at 16MHz and send a sequence of timestamped changes to

the platform runtime. This Capture SM is conceptually simple: it

reads an initial counter value from the CPU to synchronize with

the system timer, then enters a loop that increments the counter

and polls the input pins. If any input pin state has changed, the

Capture SM emits the new pin values and current counter value

into a FIFO, and interrupts the CPU to notify it of the input event.

The actual PIO code for this (Figure 7) is complicated because the

PIO instruction set is highly idiosyncratic. For example, only the

two scratch registers X and Y can be compared, and decrement can

only be done as part of a conditional jump. To compensate for this

limitation, we complement PIO counter values when we convert

them to and from the system timestamps that SSM uses (Figure 8).

We have tuned our PIO code so that the counter decrements

every eight cycles regardless of any input change, keeping the

counter synchronized with the system timer. We run the PIO at

128MHz, so our code samples and timestamps inputs at 16MHz.

This frequency is a power-of-two multiple of the 1MHz system

clock frequency, which lets us efficiently convert between the time

bases with bit-shifting (Figure 9).

While our implementation samples inputs at 16MHz, it cannot

resolve consecutive events occurring faster than 8MHz: when the

Capture SM detects an input event, it takes extra instructions to

send the captured event to the CPU. We pad these instructions to

eight cycles to keep the counter decrementing at a constant rate.

To allow our system to handle longer input event bursts, we

program a channel of the RP2040’s DMA controller to empty the

4-word hardware RX FIFO from the Capture SM into a 64-word ring

buffer inmainmemory.We leverage the controller’s built-in support

for power-of-two-sized ring buffers, and use a trick to make the

transfer continue indefinitely: a second channel, configured to start

the moment the first channel completes, restarts the first channel.

4.3 The Output System

The output system allows the Sslang program to schedule a single

new value to be placed on the output pins at a specific 16MHz

timestamp in the future. It does so with two PIO SMs: the Alarm

.program input_capture
; X: The previous GPIO pins’ values
; Y: Counter/timestamp value (decreasing)
; ISR: For reading GPIO pins
; OSR: Scratch
pull ; Read initial counter value
mov y, osr
in pins, IN_PINS ; Read initial GPIO pin state
in null, 32-IN_PINS ; Pad unused pin bits
mov x, isr [13] ; Save initial GPIO pin state

.wrap_target
cmp:
jmp y--, decr ; Decrement counter

decr:
mov osr, y ; Back up counter value
in pins, IN_PINS ; Read GPIO pin state
in pins, 32-IN_PINS ; Pad unused pin bits
mov y, isr
jmp x!=y, event ; Jump if state changed
mov y, osr ; Restore counter value
jmp cmp ; Restart the loop

event: ; Input value change: send event
mov x, isr ; Remember new value
push noblock ; . . . and enqueue it
mov isr, osr ; Enqueue the current counter
push noblock
irq 0 ; Notify CPU of the event
mov y, osr ; Restore counter
jmp y--, cmp [3] ; Decrement counter, stall 3 cycles

.wrap ; Restart the loop

void pio_irq0_isr(void) {
sem_post(&sem); / / Post to semaphore; awaken tick loop

}

Figure 7: Input Capture PIO program and the ISR triggered

by irq 0. Every 8 cycles, this checks the input pins and, if

they have changed, pushes the new value and the current

time to the RX FIFO.

SM acts as a real-time alarm that triggers the Buffer SM to emit

a new value on the pins at the scheduled time. This split arose

because a Sslang program can “change its mind” about when and

which outputs need to be emitted. SSM semantics allow only one

pending event per variable, but allows that pending event to be

overwritten, which is useful, say, when handling timeout behavior.

As such, we needed the output system to be able to reschedule

an alarm and the value to be written at that time, and the PIO’s

compulsory per-SM FIFOs were getting in the way.

Figure 10 shows the code for the Alarm SM: after reading an

initial counter value to synchronize with the system timer, it enters

an 8-cycle loop, which we padded to operate at the same frequency

as the input Capture loop. Each loop iteration, the Alarm SM checks

for an updated alarm target before decrementing the counter and
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uint32_t time_to_pio(time_t t) {
return ~(uint32_t) t; / / PIO counter decrements

}

time_t pio_to_time(uint32_t ctr) {
time_t himask = ~(((time_t) 1 << 32) - 1);
time_t rt = read_timer(); / / System timer
time_t hi = rt & himask; / / Get top 32 bits
time_t lo = (time_t) ~ctr; / / Counter decrements
if (lo & (1 << 31) && !(rt & (1 << 31))) {

hi -= (time_t) 1 << 32; / / Correct near epoch
}
return hi | lo;

}

Figure 8: Conversion between 64-bit SSM time and the PIO’s

32-bit 16MHz decrementing counters. We take the top 32 bits

from the system timer, being cautious around 32-bit epochs.

time_t read_timer(void) {
uint32_t lo = timer_hw->timelr; / / Latches timehr

uint32_t hi = timer_hw->timehr;
uint64_t us = ((uint64_t) hi << 32) | lo;
return us << 4; / / Convert 1 MHz timer to 16 MHz

}

void set_alarm(time_t t) { / / Convert to 1 MHz timer
timer_hw->alarm[ALARM_NUM] = t >> 4;

}

Figure 9: Translation between SSM time and the RP2040’s

64-bit 1MHz timer. Reading the lower 32 bits from the timelr
register latches the upper 32 bits, to avoid a wraparound race.

comparing it against the current alarm target, sending an interrupt

to the Buffer SM when the alarm target matches the counter. The

Buffer SM (Figure 11) program blocks on IRQ4 before sending data

to the output pins (IRQ4 is only visible within the PIO block where

the Output and Buffer SMs reside, and used for synchronizing SMs).

The main processor changes the Alarm target and the Buffer data

by writing to their respective FIFOs, as shown in Figure 12. Because

the Buffer SM does not poll its FIFO like the Alarm SM, the main

processor injects a pull instruction to force the Buffer SM to read

the new data from its FIFO. If there is not enough time to set up an

Alarm-triggered output, it injects an out instruction to directly emit

the output at the expense of precise timing. This happens when a

Sslang program makes an instantaneous assignment to the output

variable, or when it schedules a delayed assignment for too soon.

5 EXPERIMENTAL RESULTS

We run Sslang programs to evaluate our RP2040 platform runtime’s

input and output performance. We find that our timestamp periph-

erals provide 62.5 ns timing precision on both input and outputs,

but that the reaction time (input-to-output latency) of the RP2040

platform runtime is at least 13 µs.

.program output_alarm
; X: The alarm counter value
; Y: Counter/timestamp value (decreasing)
; OSR: Reads the TX FIFO for a new alarm value
pull noblock ; Read initial counter value
mov y, osr

continue:
nop ; Stall for 1 cycle

.wrap_target
jmp y--, decr [3] ; Decrement counter, stall 3 cycles

decr:
pull noblock ; Read the new alarm value, if any
mov x, osr ; (OSR reads X on TX FIFO empty)
jmp x!=y, continue ; Loop again if alarm not reached
irq 4 ; Interrupt output buffer

.wrap ; Loop again

Figure 10: Output Alarm PIO program. Every 8 cycles, this

decrements a counter, reads a new alarm value if the CPU

has written one, and sends an interrupt to the Output Buffer

PIO program if the counter matches the alarm.

.program output_buffer
; ISR: Reads the initial GPIO state
; OSR: Holds output to GPIO
in pins, 32 ; Read current GPIO state
mov osr, isr ; as the default output value

.wrap_target
wait 1 irq 4 ; Wait for IRQ from Alarm SM
out pins, 32 ; Write OSR to GPIO pins

.wrap ; Loop again

Figure 11: Output Buffer PIO program.

5.1 Signal Generator a.k.a. Blink

Our platform runtime is able to “tick” in as little as 13 µs, with the

following variant of the blink program from Section 2:

loop / / The highest frequency Sslang blink program on RP2040
after us 13, led <- 1 - deref led
wait led

This generates a 38.46 kHz square wave. Its speed is limited by

interrupt latency, the time it takes for the interrupt service routine

to post to the semaphore, the time for the main tick loop to acquire

the semaphore, check the input queues, tick for an instant, and

schedule a future update with the Alarm and Buffer SMs. The input

system goes unused here.

5.2 Pulse Timer

To test the precision of input timestamps and our system’s response

to high input loads, we use the program in Figure 13, which mea-

sures and reports the width of input pulses. Two parallel processes

measure pulse widths and samples the results once a second.
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void sched_pio_out(time_t t, uint32_t v) {
/ / Enqueue new buffer output value
pio_sm_put(pio0, buffer_sm, v);

/ / Make the SM read this output value: inject a pull instruction
pio_sm_exec(pio0, buffer_sm,

pio_encode_pull(0, 1));

if (t < read_timer() + OUTPUT_MARGIN)
/ / Deadline too close: immediately send the output value
/ / by injecting an out instruction
pio_sm_exec(pio0, buffer_sm,

pio_encode_out(pio_pins, 32));
else {

/ / Set Alarm time
uint32_t tgt = time_to_pio(t);
pio_sm_put(pio0, alarm_sm, tgt);

}
}

Figure 12: Function that schedules a new value/time event

on the output buffer and alarm programs

pulsewidth input =
let result = new 0
par loop

wait input / / Wait for rising edge
let b = now ()
wait input / / Wait for falling edge
let a = now ()
result <- a - b / / Compute pulse width

loop
sleep (ms 1000) / / Pause between logging
log_pwm (deref result)

Figure 13: A Sslang program to measure pulse width. Note

that the now calls return model time, not wall-clock time.

Table 1: Pulse widths (in clock cycles) reported by the

pulsewidth program

Pulse Input Expected Observed Jitter Error

80ms 1 280 000 1 280 021 1 22

8ms 128 000 128 002 1 3

800 µs 12 800 12 800 1 1

80 µs 1 280 1 280 1 1

8 µs 128 128 1 1

800 ns 12.8 13 1 0.2

80 ns 1.28 2 0.72

40 ns 0.64 2 1.36

Experimental data for the Sslang pulse timer program in Figure 13.

Units are 16MHz clock cycles (62.5 ns). We attribute the 17 ppm

error in the 80ms measurement to the crystal oscillator.

freqcount input =
let count = new 0

gate = new ()

after ms 1000, gate <- ()
loop

if updated gate / / Was gate assigned just now?
log_count (deref count)

if updated input / / Was input assigned just now?
count <- 1 / / Yes: reinitialize count to 1

else
count <- 0 / / No: reinitialize count to 0

after ms 1000, gate <- ()
wait gate / / Pause before counting again

after ms 1000, gate <- ()
else
count <- deref count + 1

wait gate || input / / Block until either is assigned

Figure 14: A frequency counter that reports the number of

events an input variable each second, after Krook et al. [12].

The updated function returns true when the variable was

assigned in the current instant.

We test this program with 10 kHz pulses of varying widths and

record the difference in timestamps between pulse edges. Table 1

shows the results. We observe a single least-significant bit of jit-

ter in all cases, likely an artifact of sampling. We attribute the

roughly 20 ppm errors in the long-period measurements to the

expected precision of the crystal oscillator.

While we do not expect correct results for pulses shorter than

the 62.5 ns sampling period, we were pleased that the resulting

behavior was not absurd. The input SM was still able to observe

certain pulses and conclude that they were short.

When short pulses are applied above 200 kHz, we begin to ob-

serve sporadic but drastic measurement errors. For instance, with

a 320 kHz pulse signal with a 500 ns pulse, the program occasion-

ally reports 808 or 809 ticks instead of the expected 8 or 9. These

errors are due to incoming input events accumulating faster than

the program can process them, overflowing the input ring buffer.

It takes 32 events—16 cycles of the pulse signal—to overflow a

256 B ring buffer; at 320 kHz, 16 cycles is 50 µs, accounting for the

extra 800 ticks we observe.

5.3 Frequency Counter

To further assess our RP2040 runtime’s ability under high input

load, we implement the frequency counter from Krook et al. [12] in

Sslang, shown in Figure 14. This program measures the frequency

of a signal by counting the number of events that appear on an

input variable every second.
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Table 2: Events observed by the frequency counter

Frequency Expected Events Observed Events

30 kHz 60000 60000

40 kHz 80000 74271

50 kHz 100000 72670

60 kHz 120000 71390

70 kHz 140000 70013

80 kHz 160000 68574

>90 kHz 180000 unstable

Experimental data for the frequency counter program in Figure 14.

Like Krook et al., we subject our frequency counter to a square

wave signal that produces twice the number of events as the fre-

quency of the signal (one each for the rising and falling edge).

We are able to reliably measure frequencies below 37 kHz (74000

events), with only 1Hz of error due to sampling artifacts. Beyond

this “reliability ceiling,” the program remains responsive, though

it logs lower event counts than expected; for instance, at 50 kHz,

the program consistently counts 71390 instead of 100000. Table 2

shows our observations.

Above 90 kHz, the frequency counter’s event counts are no

longer stable, though they continue to decrease as we push the

input frequency ever higher. We find that the program continues

to respond up to 740 kHz, albeit completely inaccurately. Above

that, the program freezes, as the processor spends all of its time

thrashing within the PIO ISR without any opportunity to make any

progress with the user program.

These results show our platform runtime outperforms Scoria’s,

whose frequency counter could only handle frequencies below

14.5 kHz, and would freeze above that [12]. Our result comes despite

the fact that our runtime only uses a 256 B ring buffer; Scoria used

4096 B. Part of Scoria’s degraded performance is due to its use of

Zephyr RTOS’s ISR and device abstractions, which Krook et al. show

produce considerable overhead. The RP2040’s processor also runs

twice as fast as the 64MHz Cortex-M4 on the NRF52840-DK used

by Krook et al. However, we believe the RP2040 runtime remains

responsive for workloads far beyond its 37 kHz reliability ceiling

chiefly because the responsibility to timestamp events is delegated

to the PIO hardware, rather than in software. Our input ISR merely

posts to the semaphore to wake up the main thread.

SSM was not designed for throughput; as its name suggests, it is

best on sparse events, but it also performs well on input bursts. For

example, we found that with a 256 B ring buffer, it could successfully

handle 3MHz bursts of 28 events with no loss of accuracy because

the DMA controller could buffer them all before the software had to

start processing them. A larger buffer would handle longer bursts.

5.4 Loopback

To compare the physical timing behavior of Sslang programs with

their logical behavior, we test our system with a loopback connec-

tion running the program in Figure 15. This schedules a delayed

assignment to the output pin, and awaits events on the input pin.
Externally, we connect the output to the input pin, meaning we

indirectly measure the timing of the delayed output assignment

loopback d input output =
loop

let b = now ()
after d, output <- 1 - deref output
wait input / / Should be updated after d
let a = now ()
log_latency (a - b) / / Measure actual latency
sleep (ms 500) / / Pause between rounds

Figure 15: A loopback program, tested with the input and

output pins connected externally.

/ / Triggered on rising edge of INPUT_PIN
void gpio_rise_isr(void) {
gpio_put(OUTPUT_PIN, 1);
busy_wait_us(100);
gpio_put(OUTPUT_PIN, 0);

}

Figure 16: The reactive 100 µs pulse generator program in C.

Additional code configures the GPIO to generate an interrupt

that runs this code (not shown).

using the input variable. loopback should behave the same whether

input and output refer to shorted external GPIO pins or the same

internal scheduled variable.

We find that the latency this program logs is exactly equal to the

prescribed delay d when d is above 17 µs, comparable to the speed

of the fastest blink program reported above.

In earlier runs of this experiment, we observed that the measured

latency consistently lagged 1 tick behind the prescribed latency.

This error arises when the input and output SMs’ synchronous loops

are not correctly phase-aligned, leading the input SM to sample the

GPIO pin before the output SM writes the pin. We fixed this lag by

starting the input SM a few instructions later to put it in phase.

The loopback test is also useful for detecting when the system

clock is not correctly synchronized with the PIO counters, which we

used to determine the 3 µs offset applied during the SM initialization

procedure (see Section 4.1). Because the delayed assignment to

output takes place in the same instant as the event on input, a
poorly calibrated system clock—running ahead of the PIO timers—

would lead the tick loop to execute the instant before waiting long

enough for the input event to show up. When the tick loop tries to

schedule the late-arriving input event in a later iteration, the SSM

runtime complains that it cannot schedule a delayed assignment

for an instant it has already executed, and throws a runtime error.

5.5 Reactive 100 µs Pulse Generator

To compare the performance of our approach with a more tradi-

tional C program, we wrote a reactive 100 µs pulse generator in

C (Figure 16) and in Sslang (Figure 17). The program attempts to

match a 100 µs input pulse by “immediately” setting the output high

upon seeing input, then setting the output low after 100 µs.

Our measurements (Figure 18) show the C program reacts faster

at first, but the Sslang falling edge is more accurate. The C program
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pulse input output =
loop

wait input
if deref input == 1

output <- 1
after us 100, output <- 0

Figure 17: The reactive 100 µs pulse generator in Sslang.

has a shorter reaction time (1.96 µs vs. 13.8 µs; see Figure 18b) be-

cause it eliminates most software overhead by performing all work

in an input-triggered ISR. The Sslang program times the falling

edge significantly better because of our PIO timestamp peripherals.

The output of the C program is 1.43 µs–2.39 µs late (Figure 18c)

because of the initial latency and imprecision in the busy wait

loop, which polls the system timer. the Sslang program’s falling

output is 0 ns–62.4 ns late; that jitter in Figure 18d is purely due to

phase differences between the PIO’s 16MHz sampling clock and

the frequency generator’s oscillator.

The Sslang output system uses two strategies to transmit output

variable assignments to the environment: for sufficiently later as-

signments, the output system sets the Alarm SM’s target counter to

trigger the Buffer SM when the event is scheduled for; for instanta-

neous assignments, shorter delays, and when the system is running

behind, the output system instructs the Buffer SM to immediately

emit the event, rather than risk missing the output deadline while

programming the Alarm SM. The result is high-precision output

timing when possible, and best-effort timing otherwise.

6 RELATEDWORK

6.1 Synchronous Software on Real Hardware

Our RP2040 runtime is not the first implementation of the Sparse

Synchronous Model on real hardware; Krook et al. previously devel-

oped Zephyr bindings for Edwards & Hui’s SSM runtime to run pro-

grams on an NRF52840-DK development board [7, 12]. In contrast to

our work, Krook et al. implement the input and output timestamp-

ing in software: input event timestamps are captured during the

GPIO interrupt service routine, and output event timing depends

on when tick executes the output handler process. Though their

approach does not require specialized hardware like the RP2040’s

PIO, their timestamps’ accuracy is limited by the unpredictable

latency of the interrupt handler. Our RP2040 platform runtime can

capture and emit events far more reliably, as demonstrated by our

pulse generator experiment in Section 5.5. Our approach supports

Scoria-like non-timestamp peripherals alongside timestamp GPIO.

Other synchronous, discrete-event programming models have

also been implemented on real hardware. Jellum et al. [11] imple-

ment an embedded target for Lingua Franca, a polyglot coordination

language that supports event-driven execution like SSM [14]. Like

Scoria, Jellum et al.’s embedded target is based on Zephyr RTOS and

manages timestamps in software. Their square wave generator’s

1 µs sleep-induced jitter appears consistent with that of our C im-

plementation for the reactive pulse generator, and their 28 µs/35 µs

input/output latency reflects the kind of error we eliminate using

dedicated PIO hardware.

(a)

(b)

(c)

(d)

Figure 18: Behavior of the reactive 100 µs pulse generator.

The top trace (blue) is the input; the middle (cyan) is the

C program’s output; the bottom (magenta) is from Sslang.

(a) The C and Sslang programs try to match the 100 µs in-

put pulse. (b) C responds faster (1.96 µs) than Sslang (13.8 µs).

(c) The C program’s falling edge is 1.43 µs–2.39 µs late, while

(d) the Sslang program is at most 62.4 ns late.
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Zou et al. [20–22] develop PtidyOS to execute programs im-

plemented using the Ptides programming model, a precursor to

Lingua Franca. PtidyOS features a preemptive EDF scheduler and

runs on the Luminary microcontroller, though it uses the same

software-based timestamping strategy as Scoria’s runtime and does

not appear to take advantage of the hardware’s input capture fea-

tures. To help developers account for this latency, Zou et al. show

that that they can statically determine the schedulability of Ptides

programs by annotating actors and input/output ports with worst-

case latencies and simulating the execution, made possible by the

fixed actor topology of Ptides programs. Sslang trades the ability

to do such analysis for a more expressive programming model.

6.2 Timestamp Peripherals

Certain microcontrollers’ peripherals are capable of a primitive

form of timestamping termed input capture and output compare.

For example, Atmel ATmega328P microcontrollers [1] include in-

put capture units that sample a 16-bit timer on the rising or falling

edge of a single input. The Microchip PIC32 family of microcon-

trollers [16] possess similar functionality with a 32-bit timer and

also include an output compare device that can raise, lower, or

toggle an output pin when the timer matches a target timestamp.

These facilities are geared toward the measurement and generation

of PWM signals, which are highly periodic and not bursty.

We chose to implement our SSM runtime on the RP2040 rather

than on an ATmega or PIC32 device because we wanted to take

advantage of the RP2040’s 64-bit timer. Unlike the ATmega328P

and PIC32, our timestamp peripherals are implemented using the

RP2040’s PIO device, and support reading from and writing to

multiple consecutive GPIO pins at the same time.

Timestamping hardware devices also exist for specific applica-

tions. For instance, the IEEE’s Time-Sensitive Networking proto-

cols [8, 9] ensure deterministic networking between devices syn-

chronized using the Precision Timing Protocol. These devices work

by timestamping network packets; Austad and Mathisen [2] show

that this capability is useful for minimizing network-induced jitter

for distributed Lingua Franca programs.

CertainNordic Semiconductor SoCs, such as theNRF52 series [17],

include a “programmable peripheral interconnect” system that can

configure a timer to timestamp and schedule events on arbitrary pe-

ripherals including single GPIO pins. This feature appears to enable

timestamp peripherals, but we are unaware of any implementations.

6.3 Timing-Predictable Hardware

Rather than rely on peripherals for precise timing, Precision Timed

(PRET) machine architectures ensure predictable for the main pro-

cessor [6]. This approach typically sacrifices single-threaded perfor-

mance in favor of highly parallel real-time workloads that benefit

from numerous timing-predictable cores. Jellum et al. [10] propose

InterPRET as a hardware architecture for running Lingua Franca

programs. Their architecture is comparable to XMOS’s XCore ar-

chitecture [15], a commercial PRET machine.

Other approaches offload time-sensitive computation to timing-

predictable co-processors. For instance, Vicuna [18] is a co-processor

designed for massively parallel workloads. Meanwhile, the Beagle-

bone family of development boards [3] feature timing-predictable

Programmable Real-time Unit (PRU) co-processors that execute

alongside the Beaglebone’s desktop-class processors.

Such PRET processors are currently much more expensive than

the RP2040 we used in this work, and it is unclear how precise tim-

ing (as opposed to predictable) can be achieved on these machines.

The RP2040’s PIO blocks are technically PRET machines (their

parallel SMs even appear to be implemented with an interleaved

pipeline), but their lack of memory access and most arithmetic

operations make them far more limited than other PRET machines.

7 CONCLUSIONS

This work shows how software can achieve high timing precision

through access to peripherals that can timestamp input events and

schedule timestamped output events. We demonstrated a system

running on the RP2040, an inexpensive, commodity microcontroller,

able to achieve 62.5 ns precision on both input and output, although

minimum reaction time is in the 13 µs range. We implemented the

input and output systems as precisely timed programs running

on the RP2040’s novel PIO system, but similar results could be

achieved with peripherals implemented in an FPGA or directly on

the processor chip.

Although the RP2040 has a 64-bit 1MHz system timer designed

to be a master time base, limitations of the PIO system forced us to

implement separate clocks within the PIO devices, which provided

higher timing precision (these clocks run at 16MHz) as well as

clock synchronization headaches. While the system clock and the

PIO clocks run off the same crystal oscillator, it was very important

to start them in sync and in phase so that the peripheral timestamps

did not “time travel” and cause unexpected behavior. This confirmed

to us that synchronized clocks are key to implementing the Sparse

Synchronous Model.

An early plan for the output system had it consuming a sequence

of time-value pairs from a FIFO, but this proved unworkable since

SSM semantics allows a scheduled output event to be replaced

with an earlier event. While the SSM runtime handles this with a

heap that supports re-insertion, implementing such a data structure

with a PIO is impractical. This led us to the simpler mechanism

presented above: separate time and value “registers” that can be

overwritten when preemption is needed. The disadvantage of this

approach is that the software runtime needs to perform a separate

action for each output event, even if the desired output sequence

is known in advance and could be buffered. For future work, we

plan to introduce non-preemptible events to Sslang for reducing

software load, combined with a DMA-assisted output queue for

more reliable and precise burst outputs.

While the Input SM clock and the RP2040’s system timer are

synchronized, there is a small but difficult-to-characterize latency

between when an input event is observed (and timestamped) and

when the DMA controller makes that event available to the main

tick loop. The uncertainty arises from any DMA controller latency

plus any interference from other bus traffic.While short, this latency

raises the question of when the system can safely advance time past

a certain point and be assured that no additional inputs will arrive

before that point. Interestingly, this is exactly the problem that

Zou et al. [22] considered for distributed systems, even though our

system is not one that would traditionally be considered distributed.
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