
SHIM Optimization: Elimination Of Unstructured Loops

Ravindra Babu Ganapathi

Department of Computer Science

Columbia University

New York, USA

rg2547@cs.columbia.edu

Stephen A. Edwards

Department of Computer Science

Columbia University

New York, USA

sedwards@cs.columbia.edu

Abstract

The SHIM compiler [4] for IBM CELL processor [1]

generates distinct code for the two processing units,

PPE(Power Processor Element) and SPE(Synergistic Pro-

cessor Elements). The SPE is specialized to give high

throughput with computation intensive application operat-

ing on dense data. We propose mechanism to tune the code

generated by the SHIM compiler to enable optimizing com-

pilers to generate structured code.

Although, the discussion here is related to optimizing

SHIM IR(Intermediate Representation) code, the techniques

discussed here can be incorporated into compilers to con-

vert unstructured loops consisting of goto statements to

structured loops such as while and do-while statements to

ease back end compiler optimizations.

Our research based SHIM compiler takes the code writ-

ten in SHIM language and performs various static analysis

and finally transforms it into C code. This generated code is

compiled to binary using standard compilers available for

IBM cell processor such as GCC and IBM XL compiler [2].

Keywords: goto, while, SHIM, IBM, XL, SIMD

1. Introduction

The two possible ways to gain performance in a multi-

core processor such as CELL without change in algorithm

is through task level parallelism and Data level parallelism.

Further, the task level parallelism is achieved by multi-

threading and data level parallelism is through code vector-

ization. The discussions hence forth here is limited to data

level parallelism through code vectorization using stream-

ing SIMD instructions.

The terms data parallelization, auto-vectorization and

converting into SIMD code are used interchangeably here.

The various steps involved in data parallelization are ana-

lyzing the data flow, grouping sequential data elements and

executing those using SIMD instructions. The data paral-

lelization can be achieved either by manual optimization of

the code using SIMD instructions or auto-vectorization by

compiler. However, the manual optimization requires ex-

pert programming skills and in cases where the programmer

lacks the required skill results in poor performance. Hence,

our approach here is to improve the compiler infrastruc-

ture by implementing optimization techniques in compiler

so that the existing code performs better by just recompiling

the code.

The state of the art IBM XL compiler does auto-

vectorization where ever possible by analyzing data flow

and packing the data as required and converts the instruc-

tions into SIMD instructions. However, there are cases

when the code is unstructured and the compiler fails to iden-

tify the available data parallelism inherent in the code. The

following section discusses on analyzing the code to find

one such case where loops are represented as goto state-

ments and we propose method to convert them into struc-

tured loops.

2. Problem Analysis

The sample code used in our analysis is JPEG decoder

code [6] written in SHIM(C like syntax). Let us consider

a small snippet of code extracted from IDCT(Inverse Dis-

crete Cosine Transform) function listed in Figure 1. In

this code snippet, line 3 and 4 are idle candidate for auto-

vectorization where each input buffer element is left shifted

by S_BITS and stored in output buffer. However, due to the

complex code analysis and transformation carried out by

the SHIM compiler, the final C code generated is as listed

in Figure 2.

In the SHIM output listing, the code between lines 5 and

15 corresponds to that of the SHIM code in line 3 and 4

listed in Figure 1. However, the while loop structure is

transformed and is represented by a set of goto statements,

one forward goto(line 6) to check the loop condition and

the other backward goto(14, 15) when the loop condition is



1. S_BITS=3
2. for (k = 0; k < 8; k++) {
3. for (l = 0; l < 8; l++)
4. output[8 ∗ k + l] = (input[k∗8+l]<< S_BITS);
5. foo(output, 8 ∗ k);
6. }

Figure 1: SHIM code

1. S_BITS = 3;
2. k = 0;
3. goto _continue6;
4. _while5: ;
5. l = 0;
6. goto _continue4;
7. _while3: ;
8. _tmp2 = 8 ∗ k;
9. index = _tmp2 + l;
10. output[index] = (input)[index] << S_BITS;
11. l = l + 1;
12. _continue4: ;
13. _tmp1 = l < 8;
14. if (_tmp1)
15. goto _while3;
16. _tmp3 = 8 ∗ k;
17. _func_idct_1d(&output, _tmp3);
18. k = k + 1;
19. _continue6: ;
20. _tmp0 = k < 8;
21. if (_tmp0)
22. goto _while5;

Figure 2: SHIM output C code

true. The problem with this code is the loops are not eas-

ily inferred resulting in sub-optimal binary generated by the

optimizing C compiler.

The details of the assembly code listed in Figure 3 are

not essential for our discussion. However, to understand the

underlying optimization problem, a trimmed down version

of the code is shown here which is obtained by compiling

the SHIM output code using IBM XL compiler. A few as-

pects to notice in this code listing is that the loop iterates

for 8 times with line 1 initializing the loop variable, line 7

contains the comparison to exit from the loop, line 8 is the

branch instruction to exit the loop and line 23 is an uncondi-

tional branch to the start of the loop. This is identical to the

behavior of the code sequence found in the original source

listing. Hence, it is clear that the compiler failed to unroll

the loop and optimize the code for data parallelization.

Our first attempt to analyze the problem to enable com-

piler optimization is through manual tweaking of the code.

This involves manually identifying the loops in code listed

1. il $2,0
2. shli $4,$40,3
3. brnz $3,.LC__116
4. or $3,$42,$42
5. or $5,$41,$41
6. .LC__158:
7. cgti $6,$2,7
8. brnz $6,.LC__115
9. ai $2,$2,1
10. lqd $6,32($5)
11. hbrr .LC__647, .LC__158
12. lqd $7,160($3)
13. cwd $8,0($3)
14. rotqby $6,$6,$5
15. ai $5,$5,2
16. rotmai $6,$6,−16
17. shli $6,$6,3
18. shufb $6,$6,$7,$8
19. nop $12
20. stqd $6,160($3)
21. ai $3,$3,4
22. .LC__647:
23. br .LC__158
24. .LC__115:
25. ai $3,$1,160
26. hbrr .LC__648,_func_idct_1d

Figure 3: Assembly code generated by IBM XL compiler

1. S_BITS = 3;
2. k = 0;
3. while(k<8)
4. {
5. l = 0;
6. while(l < 8)
7. {
8. _tmp2 = 8 ∗ k;
9. index = _tmp2 + l;
10. output[index] = (input)[index] << S_BITS;
11. l = l + 1;
12. }
13. _tmp3 = 8 ∗ k;
14. _func_idct_1d(&output, _tmp3);
15. k = k + 1;
16. }

Figure 4: Manual optimized code

in Figure 2 and replace the goto statements with structured

while loop. The structured code enables the IBM XL com-

piler to analyze the loops, unroll them and parallelize them

with SIMD instructions.

The code listed in Figure 4 is manual optimized version

of the code in Figure 2 with the goto’s replaced by struc-

2



cond_continue4 = 1;
do {
if(!cond_continue4)
{
_tmp2 = 8 ∗ k;
index = _tmp2 + l;
Y[index] = (input.linear)[index] << S_BITS;
l = l + 1;
}
_continue4: cond_continue4 = 0;
_tmp1 = l < 8;
}while(_tmp1);

Figure 5: Resulting code from Systematic goto elimination

tured while loops and removing all the redundant labels and

dead code. In the assembly code generated for this struc-

tured code the inner loop is completely unrolled and the

code is converted into SIMD operations. The performance

improvement observed here for a single thread code decod-

ing JPEG image is over 20

3. Related Work

Our first attempt to optimize the code was through ex-

isting research available on goto elimination strategy pub-

lished in the paper Taming control flow: a structured ap-

proach to eliminating goto statements [5]. They propose a

structured approach to eliminate goto statements and hence

by following the steps stated in [5] we derive the final code

listed in figure 5. However, the IBM XL compiler fails to

optimize this code due to the conditional statement embed-

ded in the structured loop.

4. Algorithm to convert unstructured loops to

structured loops

The solution we propose here is based on certain heuris-

tics to infer loops with goto statements and convert them

into structured while loops. Our solution does not optimize

code with loops consisting of goto statements that are not

properly nested or consisting of goto statements that jump

across loops. This simplifies the problem and we optimize

only the case where simple while loops are represented in

the form of goto statements.

The first step involved is to build the control flow

graph(CFG) for the IR code or any other code to be op-

timized, in our case we build the graph for the SHIM IR

code. Further, the loops can be inferred by identifying back-

tracking edges in CFG to find patterns such as those listed

in Figure 6. We store these identified backtracking edges

from the CFG in a list, where each element of the list is an

Label:
...
...
...
...
...
if (condition) goto Label;

Figure 6a: do−while loop represented using goto

goto Label1;
...
...
Label2:
...
...
...
Label1:
...
...
if(condition) goto Label2;

Figure 6b: while loop represented using goto

1. eliminate_goto(back_edges)
2. Begin
3. for each (Head,Tail) in back_edges
4. Begin
5. if (dom(Tail) = Head)
6. construct_do_while(Head, Tail);
7. else if(check_goto(dom(Tail)))
8. verify_and_construct_while(Head, Tail);
10. End
11. End

Figure 7: Algorithm to eliminate goto statements

ordered pair with start(Tail) and end(Head) of the directed

edge. The pseudo code for converting goto statement to

structured while loops is shown in Figure 7. The functions

used here are explained in the following sections.

The function eliminiate_goto iterates through each ele-

ment in the list of backtracking edges(back_edges) and the

code corresponding to the Head and Tail of the edge are an-

alyzed. If the edge is inferred as a valid while or do-while

loop without any conflict then the unstructured goto’s are

converted to structured loops.

In the function eliminiate_goto , dom(node) returns the

immediate dominator [3] for a given node. The algorithm

for finding dominator is explained in section 9.6 of [3]. If

the return value by dom in line 5 is "Head" then the pat-

tern found is a perfect do...while loop. Hence, the con-

3



1. verify_and_construct_while(Head, Tail)
2. Begin
3. //node corresponding to next statement in code sequence
4. top:=next_node(dom(Tail));
5. //get the condition expression in tail node
6. cond:=getCond(Tail);
7. //get the target label of the goto statement at (dom(Tail))
8. target:=getLabel(dom(Tail));
9. while(top != Head)
10. Begin
11. if(isvalid_stmt(top))
12. return;
13. else
14. next_node(top);
15. End
16. while(top != target)
17. Begin
18. if(getExpr(temp) related to cond)
19. return;
20. else
21. next_node(top);
22. End
23. //node of previous statement in code sequence
24. temp:=prev_node(Tail);
25. while(temp != top)
26. Begin
27. if(getExpr(temp) related to cond)
28. cond:=merge(cond, expr)
29. prev_node(temp);
30. End
31. construct_while(dom(Tail), Tail, cond);
32. End

Figure 8: Algorithm to infer and consturct while loops

struct_do_while routine is called. This routine contains

simple code to replace the "Head" node and the "Tail"

node with the start and end of the do...while statement.

Further, the following condition at line 7 calls the routine

check_goto(node) passing dom(Tail) as an argument, which

checks if the dom(Tail) is an unconditional goto state-

ments, if yes, then the routine verify_and_construct_while

is called.

The routine verify_and_construct_while checks if the se-

quence of statements between the dom(Tail) and Tail of

the backtracking edge forms a valid while statement, if the

check is positive then the goto statements are replaced with

the structured while loop. The algorithm is as listed in Fig-

ure 8, the first while loop starting at line 9 checks if there is

any valid executable code other than labels and dead code,

if one such statement found then the inferred code is not a

valid while loop and hence exits without changing the code.

Further, the second while loop in the code beginning at line

16 checks if the condition statement for the inferred while

1. S_BITS = 3;
2. k = 0;
3. while (k < 8)
4. {
5. _while5: ;
6. l = 0;
7. while (l < 8)
8. {
9. _while3: ;
10. _tmp2 = 8 ∗ k;
11. index = _tmp2 + l;
12. output[index] = (input)[index] << S_BITS;
13. l = l + 1;
14. _continue4: ;
15. _tmp1 = l < 8;
16. }//while (l < 8)
17. _tmp3 = 8 ∗ k;
18. _func_idct_1d(&Y, _tmp3);
19. k = k + 1;
20. _continue6: ;
21. _tmp0 = k < 8;
22. }//while (k < 8)

Figure 9: New SHIM generated code

loop is dependent on any of the instruction before the target

of the forward unconditional goto statement. If yes, then

the identified goto combination might not be valid while

loop and hence returns. Finally, the last while loop begin-

ning at line 25 walks backwards starting from the Tail node

to identify the expressions that build the conditional state-

ment stored in cond. If any expression is found then that ex-

pression is merged with the existing conditional statement

forming a new expression. This results in the conditional

being complete statement without any dependency on any

other statement within the Head and Tail node. This com-

pletes the process of identification of valid while statement

and the condition on which the while loop iterates.

The final part of the code in figure 8 calls con-

struct_while with the arguments dom(Tail), the goto state-

ment which is the beginning of the inferred while loop, the

Tail node, which is the backtracking conditional goto denot-

ing the end of the while loop and the cond, the conditional

statement on which the inferred while loop iterates. This

is a simple function which replaces the unconditional goto

statement at dom(Tail) with the start of while loop contain-

ing the condition cond. The Head node is replaced with the

end of while statement and thus the construction of the in-

ferred while loop is complete. The dead code related to the

cond located in the code can be ignored since these state-

ments will be eventually removed by any optimizing com-

piler. In our case, the IBM XL compiler does good job of

cleaning up the dead code without any performance impli-

4



cations.

The final code obtained after applying the algorithm to

eliminate goto to the source code in Figure 2 is as listed

in figure 9. This optimized code performs on par with the

manually optimized code in Figure 4. The statements in line

15 and 21 are dead code and can be removed by analyzing

the CFG but in our case we pass on this task to the optimiz-

ing compiler that compiles SHIM output code to executable

binary.

5. Conclusion and Future work

Here, we proposed solution to eliminate goto statements

by inferring loops by analyzing CFG. Our current tests are

limited to JPEG decoder which gave a performance boost of

over 20 percent, our future work in this respect involves test-

ing with other applications and measuring the performance

improvement.

Further, we have other issues which limit auto-

vectorization such as conditional statements within the

loops which hinders analyzing the data flow in the pro-

gram. This can be optimized manually by using combina-

tion of certain comparison and logical operations available

in SIMD instruction set. However, this requires expert pro-

gramming skills and is a slow process. Additionally, this is

very complex to implement in compilers and will be good

research work to pursue as a follow on work in data paral-

lelism.

Although, our current focus is on structuring the loops

to enhance data parallelism, during our tests we found that

the thread overhead is significant for multi-threaded JPEG

decoding. Hence, one of the performance challenges to

deal with is optimizing these threads overhead. Thus, an-

other area to focus on is optimizing task level parallelism in

SHIM.

References

[1] The cell project at ibm research.

http://www.research.ibm.com/cell/.

[2] Ibm xl c/c++ for multicore acceleration for linux on x86

systems, v9.0 delivers cell broadband engine architec-

ture application development capability. http://www-

01.ibm.com/common/ssi/rep_ca/2/897/ENUS207-

252/index.html.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Com-

pilers: principles, techniques, and tools. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 1986.

[4] Stephen A. Edwards. Shim: A language for hardware/-

software integration. December 2004.

[5] Ana M. Erosa and Laurie J. Hendren. Taming control

flow: A structured approach to eliminating goto state-

ments. In In Proceedings of 1994 IEEE International

Conference on Computer Languages, pages 229–240.

IEEE Computer Society Press, 1994.

[6] Nalini Vasudevan and Stephen A. Edwards. A jpeg de-

coder in shim. (CUCS–048–06), December 2006.

5


