
Live cd cluster performance

Haronil Estevez∗

Department of Computer Science
Columbia University, New York

Advisor: Professor Stephen A. Edwards

May 10, 2004

Contents

1 Abstract 2

2 Background 2
2.1 Knoppix . 2
2.2 Quantian . 2
2.3 OpenMosix . 3
2.4 PIPT . 3
2.5 MPI . 3

3 Testing Setup 4
3.1 PC’s . 4
3.2 LAN . 4
3.3 Test Data . 4
3.4 Selection of PIPT Test Routines . 4
3.5 PIPT process migration . 6

4 Knoppix Test Results 6

∗he99@columbia.edu

1

5 Quantian Test Results 8
5.1 Process migration . 9

6 Conclusion 11

7 References 11

8 Acknowledgements 12

1 Abstract

In this paper, I present a performance comparison of two linux live cd distributions, Knoppix
(v.3.3) and Quantian (v 0.4.96). The library used for performance evaluation is the Parallel
Image Processing Toolkit (PIPT), a software library that contains several parallel image
processing routines. A set of images was chosen and a batch job of PIPT routines were run
and timed using both live cd distributions. The point of comparison between the two live
cds was the total time the batch job required for completion.

2 Background

2.1 Knoppix

Knoppix is a debian linux based live cd created by Klaus Knopper. It is a bootable CD with
a collection of GNU/Linux software, automatic hardware detection, and support for many
peripherals. Running Knoppix on a PC requires only 16 MB of RAM for text mode or 96
MB of RAM for graphics mode. The Knoppix CD holds up to 2 GB of executable software
and requires no installation. [1]. It is an attempt to create a fully featured rescue/demo
system on a single CD and to unburden the user of hardware identification and configuration
of drivers, devices and X11 for his or her specific hardware. The Knoppix application file
system is an iso9660 (via cloop) file system that is transparently decompressed and read-
optimized. The file system uses zlib/gzip compression.[2]

2.2 Quantian

Quantian is a customization of Knoppix intended for use in easily creating computer clus-
ters. It is closely related to clusterKnoppix (itself a Knoppix customization) and focuses on

2

scientific computing. Both Quantian and clusterKnoppix differ from Knoppix most signifi-
cantly in their choice of linux kernel. They both use the openMosix linux kernel extension,
discussed below.

2.3 OpenMosix

openMosix is a tool for a Unix-like kernel, such as Linux, consisting of adaptive resource
sharing algorithms. These algorithms are used to respond on-line to variations in the resource
usage among nodes of a cluster through the use of process migration. Process migration
occurs preemptively and transparently, for load-balancing and to prevent thrashing due to
memory swapping. Users can run parallel applications by initiating multiple processes in
node, and then allow the system to assign the processes to the best available nodes at
that time. The dynamic load-balancing algorithm continuously attempts to reduce the load
differences between pairs of nodes, by migrating processes from higher loaded to less loaded
nodes. openMosix also contains a memory ushering algorithm geared to place the maximal
number of processes in the cluster-wide RAM, to avoid as much as possible thrashing or the
swapping out of processes.[3]

2.4 PIPT

The Parallel Image Processing Toolkit is designed principally as an extensible framework
containing generalized parallel computational kernels to support image processing. The
toolkit uses a message-passing model of parallelism designed around the Message Passing
Interface (MPI) standard. A master node distributes equally sized image slices for processing
to worker nodes using the MPI libraries and collects and recombines the processed image
once all nodes have finished processing their image slice. [4]

2.5 MPI

The Message Passing Interface (MPI) is intended for use in the implementation of paral-
lel programs on distributed memory architectures. A set of routines that support point-
to-point communication between pairs of processes forms the core of MPI. Routines for
sending and receiving blocking and nonblocking messages are provided. Implementations of
MPI include mpich (http://www-unix.mcs.anl.gov/mpi/mpich/) and lam (http://www.lam-
mpi.org). This paper uses mpich for the compilation and use of PIPT. [5]

3

3 Testing Setup

3.1 PC’s

5 Pentium machines were used for testing:
(1) Pentium II 230 MHz, 96 MB RAM
(2) Pentium II 350 MHz, 128 MB RAM
(3) Pentium II 230 MHz, 64 MB RAM
(4) Pentium II 350 MHz, 128 MB RAM
(5) Pentium II 230 MHz, 128 MB RAM

3.2 LAN

A LAN was created consisting of the 5 PC’s, networked together using an Etherfast Lynksis
Ethernet Hub. Each node was assigned local IP addresses accessible only within the LAN.
An additional ethernet card was installed in node (1) for connectivity to the internet. All
5 machines ran SSH servers, which mpich was compiled to use for launching programs in
non-local nodes.

3.3 Test Data

I originally planned on using images ranging from 500 KB to 200 MB. However, PIPT’s
distribution of image slices by the master node of an image of size greater than about 10
MB resulted in sluggish or dropped ssh connections and PIPT out of memory errors. Based
on these results, 15 TIFF files ranging from 500 KB to 8.4 MB were used for testing of the
PIPT routines. Because PIPT uses the libtiff library (a library for reading, writing, and
manipulating TIFF images), it shared some of its limitations. For example, format 28 TIFF
images could not be read by PIPT and had to be replaced. To test if individual TIFF images
could be successfully read by the libtiff library(and thus by PIPT), the X program xv was
used, which also uses the libtiff library.

3.4 Selection of PIPT Test Routines

Since only 15 images would be used for testing, I selected the 15 most computationally
intensive PIPT routines (out of 63 available). PIPT includes a test suite suitable for just
such an endeavor. It was important to select routines that required a significant amount of
time because of two reasons: 1) Routines that took a short amount of time to complete would
most likely not be affected by parallelization and might even take longer when parallelized

4

due to the initial ssh connections necessary. 2) Routines that do not last very long would not
have time to migrate when used in a Quantian environment. I ran all 63 PIPT routines in a
batch job, 5 times each, and stored the results in a flat text file (run on the CS department
machines). A perl script was used for parsing the text file and the averaging the run time

Figure 1: PIPT Routines: [1]AddUniform [2]CrossMedian [3]AddGaussian [4]ATrimmed-
CrMean [5]AddBitError [6]SquareMedian [7]ATrimmedSqMean [8]CoOccurMax [9]CoOc-
curEnergy [10]CoOcuurContrast [11]CoOccurInverseMoment [12]CoOccurHomogeneity
[13]CoOccurCorrelation [14]CoOccurEntropy [15]CoOccurCluster

for each PIPT routine. Figure 1 contains the resulting average run times of the top 15
routines. Of these, only the top 8 required more than a few seconds to complete, most likely
because they are calculating a feature matrix of the image instead of only applying a filter
or enhancement to the image. Thus only the top 8 routines running time will be used as a
point of comparison between the two live cd distributions.

5

3.5 PIPT process migration

For the compilation of PIPT for use with the Quantian live cd, several steps had to be taken
in order for PIPT processes to achieve migratability. First PIPT was compiled normally
without any modifications to its Makefile or special compilation flags. Then a simple two
node cluster running Quantian was used to test the migratability of a PIPT process. This
test resulted in negative results, the PIPT process did not migrate. The openMosix userland
tool openMosixprocs was used to monitor the PIPT process and determine why it was
not migratable. The tool revealed that the process was not migratable because it uses the
pthreads library’s clone vm function. The clone vm function causes threads to have
shared memory. In an openMosix environment such as that provided by the Quantian live
cd, processes that use shared threads are not allowed to migrate. Migration of processes
that use shared memory was accomplished by The MAASK Team[6], which implemented a
Distributed Shared Memory (DSM) patch for Openmosix. However, pthread migration has
not been achieved because of the difficulty of handling pthread synchronization issues on a
cluster platform.

A solution was found that only required slight changes to the PIPT con-
figure script and passing one additional compilation flag. The configure script
packaged with PIPT for creating a Makefile was edited so that the variables
HAVE PTHREADS,HAVE SOLTHREADS, and FOUND PTHREADS are set to
0. In addition, script code for verifying existence of the pthreads library was removed. Fi-
nally, PIPT was compiled with the additional compilation flag –without-pthreads. The
process migration test from the previous paragraph was run and resulted in successful PIPT
process migration.

4 Knoppix Test Results

The selected 8 PIPT routines were run on the 5 PC’s, all running a customized version
of Knoppix 3.3. I customized the Knoppix 3.3 CD to include mpich and PIPT. The
customization process[7] involved:
(1) Copying the Knoppix CD contents to hard disk
(2) chrooting into the copied contents
(3) removing large installed packages (such as OpenOffice)
(4) Installing mpich and adding PIPT
(5) Creating the compressed Knoppix file system
(6) Creating the Knoppix ISO image

6

PIPT’s included Sample driver program was used with a batch file, using 1 manager
node and 4 worker nodes for each PIPT routine. The manager node splits up each image
and sends an image slice to each worker node for processing and then collects and recombines
the processed image. The Sample driver program takes a batch file with a specific PIPT
format. Results were stored in a flat text file. A perl script was used to parse the file
for each routine’s running time. The averages were then manually calculated. Figure 2
contains the average running times of the chosen 8 PIPT routines. The total running time
for the batch job was approximately 3 hours and 10 minutes.

Figure 2: [1]CoOccurMax [2]CoOccurEnergy [3]CoOcuurContrast [4]CoOccurInverseMo-
ment [5]CoOccurHomogeneity [6]CoOccurCorrelation [7]CoOccurEntropy [8]CoOccurClus-
ter

7

5 Quantian Test Results

Each PIPT routine was run using PIPT’s include Sample driver program. Instead of having
a manager/worker relationship, each node worked on a completing a single PIPT routine.
In order to allow for process migration, the first 5 PIPT routines were run simultaneously
on one node (labeled 34). Then the next 3 PIPT routines were run simultaneously. Results
were stored in a flat text file. A perl script was used to parse the file for each routine’s
running time. Figure 3 contains the running times of the chosen 8 PIPT routines. The
total running time for all routines was approximately 3 hours and 4 minutes.

Figure 3: [1]CoOccurMax [2]CoOccurEnergy [3]CoOcuurContrast [4]CoOccurInverseMo-
ment [5]CoOccurHomogeneity [6]CoOccurCorrelation [7]CoOccurEntropy [8]CoOccurClus-
ter

8

Figure 4: snapshot of initial 5 PIPT routines

5.1 Process migration

Soon after the first 5 PIPT routines were run on the master node, 4 out of 5 of them
migrated to another node. Impressively, load balancing occurred relatively fast, with each
node having one PIPT process. Figure 4 contains a snapshot of the load of each node
when observed by the openMosix userland tool openMosixmigmon soon after running
the initial 5 PIPT routines. The center node (labeled 34) contains one PIPT routine, while
nodes 30-33 each contain one migrated PIPT routine each represented by dotted lines
moving from the center circle (node 34) to the surrounding smaller circles (nodes 30-33).
All 4 migrated PIPT routines remained in the node to which they initially migrated.

The next 3 PIPT routines had slightly different migration activity. Soon after run-
ning them on the master node, all 3 migrated to another node. However, 1 of the 3 PIPT
processes then began a long series of migrations between two specific nodes. This process
migrated 51 times before it finished running.Figure 5 and Figure 6 depict the two load
states the cluster was in while the process migrated back and forth between the node labeled
30 and node labeled 32.

9

Figure 5: snapshot of initial load resulting from next 3 PIPT routines

Figure 6: snapshot of subsequent load resulting from next 3 PIPT routines

10

6 Conclusion

The difference in run times for the 8 PIPT routines when run on a Knoppix cluster using
mpich and when run on a Quantian cluster was negligible (less than 10 minutes). The
individual run times of each PIPT routine when run on a Knoppix cluster using mpich were
better simply because all 5 machines were working on the same job simultaneously, whereas
in the Quantian setup each machine worked on one job at a time.

Because the cluster was heterogeneous, one would expect that Quantian’s dynamic load
balancing scheme would assign more work to nodes with more processing power or less RAM.
However, because live cds make greater use of a machine’s RAM for running applications, the
load of each machine quickly shot up to 100% when a PIPT routine migrated to or was run
on it, regardless of the amount of RAM each machine possessed. Quantian also offers explicit
control of load balancing by the user. For example, the machines with more processing power
or RAM could be assigned to handle more of the load of the entire cluster. Usage of this
load balancing control could perhaps improve the performance of a heterogeneous network
such as the one used in this paper.

Some features of PIPT that were not used include load-balancing and alternative modes
of image slice distribution and collection. These features were not used because the Sample
driver program used for testing did not offer them.

7 References

1. “Knoppix General FAQ”, http://www.knoppix.net/docs/index.php/FaqGeneral, April
2004

2. Klaus Knopper, “Building a self-contained auto-configuring Linux system on an iso9660
filesystem”, October 2000

3. Moshe Bar,Maya Kagliwal, Krushna Badge, Asmita Jagtap, Anuradha Khandekar, Snehal
Mundle, “Introduction to openMosix”, Linux-Kongress, 2003

4. J.M. Squyres, A. Lumsdaine, R.L. Stevenson, “A toolkit for parallel image process-
ing”,SPIE Annual Meeting, San Diego, 1998

5. David W. Walker, “The Design Of A Standard Message Passing Interface For Distributed
Memory Concurrent Computer”, Parallel Computing, Vol. 20, No. 4, pp 656-673, April
1994

11

6. “Maya Kagliwal, Krushna Badge, Asmita Jagtap, Anuradha Khandekar, Snehal Mun-
dle,“MigSHM: Shared Memory over openMosix”, Cummins College of Engineering, Uni-
versity of Pune, India, 2002

7. “Knoppix Remastering Howto”,
http://www.knoppix.net/docs/index.php/KnoppixRemasteringHowto, April 2004

8 Acknowledgements

I would like to thank my mother Patria, my brother Nestor, and my sister Amalfi for their
support. I would like to thank Professor Stephen A. Edwards for overseeing this project and
for his guidance.

12

