Further Experiences Teaching an FPGA-based
Embedded Systems Class

Stephen A. Edwards [0000—0003—2609—4861]

Columbia University, New York City NY, USA
sedwards@cs.columbia.edu
http://www.cs.columbia.edu/ "sedwards

Abstract. I describe thirteen years of teaching an embedded systems
class at Columbia University that spans three “board eras.” Students
now develop Linux systems with custom FPGA-based peripherals.

The soaring complexity of these systems has enabled more ambitious
projects at the expense of making it impossible for students to learn
“everything” about what they are developing. As such, should students
be learning similar skills or specializing in hardware or software?

Keywords: Embedded Systems - Undergraduate education - Graduate
education - FPGAs - Linux - Device Drivers - VHDL - System Verilog

1 Introduction

In 2004, I started teaching an embedded systems project course with hardware
implemented on FPGAs. I reported my initial experiences at WESE in 2005 [2];
in this paper I summarize how my course has evolved since then.

The class has always centered around students implementing a self-designed
project on a supplied FPGA board; as such, the choice of board has been both
a key driver and limiter of the class. This paper discusses my experiences with
the class chronologically, which I think of as consisting as three “eras,”
each FPGA board.

The basic outline of the class has always consisted of a sequence of canned
lab assignments designed to familiarize the students with the board and its
development tools followed by work in teams on the project. This division has
worked well, although it means the projects themselves are often quite rushed
given that the students only effectively work on them for half the semester.
Given the complexity of the boards and the development tools, however, there
is probably no alternative short of extending the class across two semesters.

We started with a Xilinx Spartan ITE board that quickly showed it limita-
tions brought on by too few pins for many peripherals, switched to an Altera
Cyclone Il-based board that eliminated the pin limitations to expose the next
problem: insufficient software support for complex peripherals, then switched to
an Altera Cyclone V with on-chip ARM processors to enable the use of Linux
to ameliorate the software challenges and replace them with sheer complexity.
Below, I discuss details of these three eras.

one for

Peripheral Bus.

Fig. 1. The XESS XSB-300E Board and its block diagram [5]. The limited number of
pins on the Spartan ITE FPGA demanded a bus-based architecture that made using
multiple peripherals challenging.

2 2003-2006: The XESS XSB-300E Era

We used a Xilinx Spartan ITE (XC2S300E) board from XESS Corporation for the
first four years of the class [2]. While well-equipped with peripherals, including
video input and output, Ethernet, USB 2.0, a serial port, SRAM, DRAM, Flash,
and an audio CODEC, these peripherals were connected to a shared bus (i.e.,
each peripheral’s data lines were connected to the same FPGA pins; see Fig. 1),
which made using multiple peripherals difficult since students would have to
develop their own bus arbiter. The board designers likely did this because of
the paucity of pins (only 208, including power) on the QFP package, but it
constrained the designs students could implement.

During this era, students did six lab assignments, hardware-only, software-
only, and hardware/software interfacing, before moving on to projects that had
to incorporate both custom hardware and software. This structure has remained
to this day, but I have changed the details. During this era, students built
video games with custom video-generation hardware (generally without a frame-
buffer, given the limited on-chip memory and difficulty of using the large off-chip
SDRAM), audio projects, and networking projects.

Most project teams encountered similar challenges when designing custom
hardware blocks. Limited on-chip memory forced them to either become parsi-
monious with their storage of data or utilize off-chip memory. Using the 512K
of off-chip SRAM was straightforward but often still insufficient; the 16 MB of
SDRAM was much larger but difficult to use because if its complex protocols,
timing constraints, and refresh requirements. Moreover, using either of these
memories from hardware meant either creating an OPB bus master and vying
for control of the bus, or simply dominating the off-chip bus and foregoing the
use of any other bussed peripherals. Most groups took the latter route.

50Mhz/ 27Mhz | Extin

USB 2.0 HostiDevico |e¢——| l&—| 16-bitAudio conec

> [~ XSGA 10-bit Video DAC
D Card f— l——{ 1V Decoder
I1DA Transceiver f—1 C{:%%r}\e . F——| user Green LeDs (8)
Flash (1-4 Mbyte) f— 2035 I——| user reaLeDs (18)
SDRAM (8Mbyte) |——P>| ——| 16x2LCD Module
SRAM (512Kbyte) [—>| l&—| Ps2&Rs-232Ports
7-SEG Display (8) f— |&———] DPDT Switches (18)
Expansion Headers (2) |a——>, |&———] Push-Button switches(s}

epcsic il UsB
Config [l Blaster
Dev

Fig. 2. The Terasic DE2 Board and its block diagram [1]. Ample pins on its Cyclone II
FPGA enabled a star-based topology that made using external peripherals vastly easier
than with the XSB, but the need for complex software for peripherals such as the USB
controller was limiting.

3 2007-2013: The Terasic DE2 Era

After four years of grappling with the shared bus topology of the XSB board,
in 2007 we made a big switch and adopted the DE2, an Altera Cyclone II-
based development board developed by Terasic Technologies in 2005 (Fig. 2).
Ample pins (672 total; 475 for I/0) allowed the DE2 designers to connect the
peripherals on the DE2 in a star configuration, making it far easier to use multiple
peripherals from VHDL compared to the bus-based XSB board. Moreover, the
array of peripherals on the DE2 was similar to that on the XSB, so the knowledge
of which projects would work transferred over easily.

The switch from Xilinx to Altera ecosystems was annoying but largely lateral:
Xilinx had XST, the Microblaze processor, the OPB, and Platform Generator;
Altera had Quartus, the Nios II processor, the Avalon bus, and SOPC Builder.

3.1 Lab Assignemnts

For the DE2 era, we streamlined the initial lab assignments down to three:

1. A pure hardware problem: an old-style computer front panel that allows the
user to examine and modify the the contents of on-chip memory locations.
The students found it challenging to turn the level-sensitive signals from the
pushbuttons into events (i.e., single-cycle pulses).

2. A pure software problem: a network chat client that receives, displays, and
sends broadcast UDP packets interpreted as text. We supplied custom hard-
ware consisting of a Nios IT processor with a VGA character display, a PS/2
keyboard receiver, and an interface to the Ethernet controller along with
skeletal software that exercised each of these.

3. A mized hardware/software problem: a custom video hardware peripheral
that displays a ball on the screen and moves the ball under the control of a
C program running on a Nios II. The students could also implement a sound
synthesizer or an image convolver, but virtually all chose the ball.

3.2 Projects

Many projects of the DE2 era featured video. The on-chip memory of the FPGA
was generally too small for a framebuffer, but some groups used the off-chip
SRAM, which allowed a byte per pixel at VGA resolutions (640 x 480).

One group did a digital picture frame that displayed JPEG files read from
an SD card with a FAT filesystem. They used the SRAM for a 15-bit-per-pixel
color framebuffer, the SDRAM as Nios IT memory, and communicated with the
SD card through a “bit banged” SPI interface.

Another group did a Pac-man clone with custom video hardware for tile
backgrounds, sprite foregrounds and interfaced classical NES controllers to the
FPGA. At the last minute, they switched the sprites to a “Pac-Edwards” theme.

Another group’s project read AES encrypted (uncompressed) monochrome
video from a raw-formatted SD card for display. Their resolution and frame rate
were modest, but they implemented the AES decoding algorithm in hardware.

A real-time hardware ray tracer was one of the few projects that actually
consumed most of programmable logic of the DE2’s Cyclone II (others routinely
exhausted on-chip memory). They had to restrict their rendered models to just
six rectangles to achieve the performance they wanted, but were able to achieve
color and reflections at 60 frames per second by running 20 ray units in parallel.

3.3 Challenges

The use of communication peripherals was the big challenge with the DE2. While
the students could develop code to send UDP packets through the Davicom
DM9000A Ethernet controller, it was not realistic for them to code a TCP/IP
stack. The Philips ISP1362 USB controller was even worse. Furthermore, net-
working or USB controller software is not something that is easily coded as a C
library; most implementations rely on the facilities of a multitasking operating
system. So the use of an existing library was not an option.

Running Linux on the DE2 was theoretically possible, but very difficult.
Linux normally relies on hardware virtual memory support to deliver multi-
tasking with memory protection, but the pClinux project has developed kernels
designed to run on processors without MMUs. David Lariviere and I experi-
mented with the use of uClinux on the DE2 in 2008 [3], but we were never able
to get this working well enough for students to use it routinely. The option of
an MMU was later added to Altera’s Nios II processor, making a full Linux port
possible, but we never experimented with getting this to work.

The DE2 board ultimately grew obsolete. In 2012, we managed to order
additional DE2s to accomondate our growing enrollments and replace broken
boards, but this was the last gasp for them. Operating a lab with multiple,
incompatible boards was not realistic for the students, so it was time to move
on. Terasic and Altera had started moving on long before: Terasic released the
similar, but slightly incompatible DE2-70 board (with a 2C70 Cyclone Il FPGA)
in 2009, and in 2012, the much more incompatible DE2-115 (with a Cyclone IV
EP4CE115 FPGA). Altera discontinued software support for the Cyclone II
family of chips after Quartus 13.0spl (June 2013).

Cyclone®V Sl
SoC

Ethernet

5CSXFCEDBF31 RGMI, J

T
s> (R~ ww uso 2001

FPGA

p
I.L.ED!..' g

iPS
sssss

sssssssss

HHHHHHHHHH

Fig. 3. The Terasic SoCKit Board [4] brought dual hard ARM9 cores via a Cyclone V
FPGA, enabling the use of Linux software and its device drivers. The main failing of
these boards has been the fragile micro-USB connectors.

4 2014-2016: The Terasic SoCKit Era

In 2014, we switched to Terasic’s SoCKit board, one of the first to incorporate Al-
tera’s System-on-chip Cyclone V FPGA (a 5CSXFC6D6F31), which integrated
dual ARM9 Cortex cores with standard peripherals (collectively, the “HPS” or
Hard Processor System) with a traditional programmable FPGA fabric. The
HPS portion of the chip was capable of directly running a stock Linux distribu-
tion (i.e., without any custom FPGA hardware) and exposed an Avalon bus to
the FPGA fabric that could be used to build peripherals.

While not flawless, the Linux distribution for the SoCKit board was a breath
of fresh air compared to software that could run on the DE2. Networking, USB,
and the package manager just worked, enabling students to easily make use
of USB peripherals, modern network services, and the like. It was no longer
necessary for students to pour over the hundreds of registers in the Ethernet
chip to write software to received a single packet.

We switched to the System Verilog hardware description language. We had
chosen VHDL in 2003 because another instructor was using it, but by 2014 that
class was gone and had been replaced with other classes that were using System
Verilog. The synthesizable subset of System Verilog is more succinct and less
error-prone than the equivalent VHDL, so we are happy with the switch.

4.1 Device Drivers

The move to the SoCKit board with Linux made it harder to access custom pe-
ripherals from software. We had been running “bare metal” C code on the DE2,
allowing custom hardware peripherals to be accessed directly, e.g., by casting
integer literals to volatile pointers. While this can be done in the Linux world
(e.g., by running programs as root and using mmap() to map the peripheral mem-
ory into userspace), device drivers are the preferred mechanism.

I now spend a lecture on Linux device drivers. I begin with the structure of
modern operating systems (userspace processes are isolated from hardware by
the kernel and device drivers), then move on to the Unix device driver model
(everything is a file; devices have major and minor numbers; the distinction be-
tween block and character devices), the Linux kernel module system, the catch-all
ioctl() function, the device tree system (.dtb files and the in-memory database
of peripheral memory layout), and all the various functions for managing re-
sources. Most of the code in students’ device drivers is a mix of boilerplate
(e.g., modules must have both nit() and exit() functions that are called when
the module is loaded and unloaded) and error-handling (when a request for a
resource fails, release all the resources that were acquired earlier and terminate).

4.2 Booting Linux

The SoCKit has a dizzying array of options (selected by a difficult-to-explain mix
of jumpers and absurdly tiny DIP switches) for booting Linux and configuring
its FPGA. One easy way is to boot from an SD card that carries a bootloader
(uboot), a Linux kernel image, a bitstream file for the FPGA, and the Linux
root filesystem. We considered this for the lab, but because we do not have the
room or budget to assign each team its own board and workstation, teams have
to share workstations and boards, meaning they would have to manage one SD
card per team, which seemed problematic (e.g., “I thought you had the card,”
or “Fred has the card but couldn’t make it to lab this time so we can’t work”).
Instead, we configured our boards to be “diskless workstations” that booted
and ran off a fileserver. Each board was configured to boot from a small on-
board flash chip containing a modified uboot image that would use DHCP to
configure its network interface, then use PXE to download both a Linux kernel
image and an FPGA bitstream. The Linux kernel would then boot and mount
its root filesystem via NFS from the same server. The result was that each team
could have one or more board configurations (kernel, root filesystem, and FPGA
bitstream) and access them from any board. When first booted, the bootloader
would download a list of available PXE images, display them on the serial con-
sole, and then allow the user to select one (i.e., the team’s image) to boot.
This “diskless” configuration ultimately worked, but was challenging to set
up. DHCP, PXE, and NFS servers all had to be configured to work in concert;
the uboot source and boot script had to be modified because the existing PXE
mechanism did not know about FPGA bitstreams; a custom bootloader had to
be flashed to each board by booting yet another version of uboot and running the
appropriate flashing commands; NFS had to be set up not only to serve the root
filesystems to the boards but the root filesystems, kernel images, and FPGA
bitstream files to the workstations so students could modify them as needed.
Security was incomplete. While the fileserver and network for the boards were
local to our lab and fairly well-protected from the public Internet (the fileserver
functioned as a firewall between the boards and our campus network), there is
little to stop one team of students from seeing or corrupting another team’s files.

4.3 Lab Assignments

For the SoCKit era, we continued to start the class with three lab assignments
adapted from the DE2 era. We supplied a starting point for each lab: a code skele-
ton that implemented a rudimentary version of the lab for students to modify.

1. Hardware: An old-style computer front panel. Unlike the DE2, the SoCKit
has no seven-segment LEDs, so I provided a VGA LED emulator that dis-
played eight seven-segment digits on a VGA monitor. This component ex-
posed a signal for each segment of each digit, making it easy to use.

2. Software: A text chat client. I supplied the students with a VGA framebuffer
that they accessed after calling mmap(). We switched to USB keyboards ac-
cessed through libusb because the SoCKit did not have the DE2’s PS/2 port.
The students used the standard socket API to connect to a simple chat server
I implemented in Python. They used pthreads to listen to the keyboard in
one thread and handle incoming network communication on another.

3. A mized hardware/software system: The bouncing ball. Students had to write
System Verilog for a VGA peripheral that would display a raster with a ball
whose position was controlled by registers written from an ARM processor
through an Avalon bus. They also had to write a device driver that would
ferry coordinates from userspace to those registers, update the .dtb (Device
Tree Blob) file that characterized the memory map visible to the processors
to include the VGA peripheral, and finally write a C program that bounced
the ball around.

4.4 Projects

In the SoCKit era, projects grew more elaborate and utilized fancier peripherals.

Accelerators grew more common in this era. One groupt implemented an
accelerator that could compute “inverse kinematics,” i.e., angles for robot arm
joints to reach a desired position in space for the end effector. Another group
implemented a cryptographic accelerator for RSA able to perform modular mul-
tiplication and exponentiation.

One team implement a 3D pottery game in which a player manipulated a
virtual pot on a turntable. The novelty here was a custom graphics controller
that would display a whole pot as a series of overlapping ellipses.

The SoCKit’s standard hardware and software made it possible to integrate
fancier periperhals. One group used a Leap Motion controller that, like Mi-
crosoft’s Kinect, uses multiple cameras to capture a 3D model of object in space,
such as your hands. They used the output of this controller to simulate the op-
eration of a digital piano, displaying the image of a piano and your fingers on
the screen and synthesizing sound through the audio CODEC on the SoCKit.

Another group used the SoCKit as a controller for an automous vehicle built
from a LEGO kit. They interfaced the SoCKit to the various LEGO motors and
sensors, ultimately enabling it to park itself in a space while avoiding the curb
and nearby vehicles. While this group ultimately succeeded, they managed to
destroy a SoCKit board by connecting the 3.3V I/0 of the SoCKit to 5V devices.

4.5 Challenges

Complexity has been the challenge of the SoCKit era. In addition to digital
hardware design an low-level C programming, students now need to understand
Linux, the boot process, device drivers, and a variety of high-level APIs (sock-
ets, libusb, etc.). While the projects have become more modern, the amount of
knowledge needed to implement a project has also grown substantially.

The fragile micro USB connectors on the SoCKit boards break easily in a
public student lab. Despite adding a Terasic-supplied metal bracket and securing
the USB cables to the board with nylon twist-ties, students still found a way to
routinely break off these connectors, rendering the US$250 boards irreparable.

5 Conclusions and Next Steps

After 2016, I took a two-year hiatus from teaching Embedded Systems because
the department needed me to teach another course, but I will resume it again
in the spring of 2019. I plan to switch to another SoCKit-like board, likely
Terasic’s DE10-Standard or DE1-SoC, but I have not made a final decision as
I write this. These boards have addressed the physical failings of the SoCKit
board while providing an almost identical development platform.

I am constantly faced with wondering how much to provide to the students
versus how much to ask them to develop themselves. The trend is to supply more,
isolating the students from implementation details to allow them to assemble
more complex projects. But at what point does this stop being embedded systems
with its emphasis on domain-specific peripherals and real-world data and simply
turns into another class on software development for desktop machines?

Another big question is the extent to which students should be allowed to
specialize in what they work on and thus learn about in the class. Practically,
students typically split their teams into software and hardware portions and
only learn more about what they already prefer. This is somehow realistic from
a professional standpoint, but is it good pedagogy?

References

1. Altera, San Jose, California: DE2 Development and Education Board User Manual
(2006), version 1.4

2. Edwards, S.A.: Experiences teaching an FPGA-based embedded systems class. In:
Proceedings of the Workshop on Embedded Systems Education (WESE). pp. 52-58.
Jersey City, New Jersey (Sep 2005)

3. Lariviere, D., Edwards, S.A.: uClinux on the Altera DE2. Tech. Rep. CUCS-055-08,
Columbia University, Department of Computer Science, New York, New York, USA
(Dec 2008)

4. Terasic Technologies, Hsinchu City, Taiwan: SoCKit User Manual (2013)

5. XESS Corporation, Franklinton, North Carolina: XSB Board V1.0 Manual (Aug
2003)

