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ABSTRACT
Wepresent a technique for implementing dataflow networks as com-
positional hardware circuits. We first define an abstract dataflow
model with unbounded buffers that supports data-dependent blocks
(mux, demux, and nondeterministic merge); we then show how to
faithfully implement such networks with bounded buffers and hand-
shaking. Handshaking admits compositionality: our circuits can
be connected with or without buffers and still compute the same
function without introducing spurious combinational cycles. As
such, inserting or removing buffers affects the performance but not
the functionality of our networks, which we demonstrate through
experiments that show how design space can be explored.

CCS CONCEPTS
• Theory of computation → Streaming models; • Hardware →
Hardware description languages and compilation; • Computing
methodologies→ Parallel programming languages;
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1 INTRODUCTION
Dataflow networks are a natural model for parallel, distributed com-
putation [13]. Processes in a network execute in parallel and com-
municate via sequences of atomic tokens passed over unbounded
channels. These networks are particularly suited to specifying hard-
ware designs because of their “patience”: process speed has no affect
on network function. We address the challenge of implementing
such a network with fast, correct hardware.

We describe and experimentally validate a technique for synthe-
sizing synchronous digital circuits that implement a restricted class
of Kahn process (dataflow) networks [12]. Our approach is composi-
tional: each Kahn process becomes a circuit that may be connected
to others with or without buffering, making it easy to consider a
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Figure 1: A recursive definition of Euclid’s greatest common
divisor algorithm and a dataflow network implementing it.

variety of designs. For example, buffer-free connections are fast but
lead to combinational paths that limit clock speed; inserting buffers
breaks long paths and loops but increases latency.

Our generated circuits retain the “patience” of Kahn’s formalism
through a valid/ready flow-control protocol (i.e., backpressure);
local handshaking eliminates any global controller (and thus long
signal lines) and enables the arbitrary insertion and removal of
buffering. This accommodates blocks with arbitrary latency (e.g.,
memories) and enables designers to adjust the number of pipeline
stages, even in the presence of feedback.

Although bounded buffering will not affect the sequence of data
values passed between processes (due to the Kahn model), it may
introduce deadlock in our circuits. Preventing such deadlock via
buffering is undecidable in general [14], but we are confident that
effective heuristics can be developed. As is typical of synthesis
problems, most buffer optimization problems are np-complete (e.g.,
finding theminimumnumber of buffers necessary to break all cycles
is the feedback arc set problem), but as usual, we believe there must
be effective heuristics that will produce acceptable (but not always
optimal) results on a wide variety of interesting networks (but not
all). We defer the optimal buffer insertion problem to later work.

Fig. 1 illustrates a dataflow network we can implement. This uses
Euclid’s algorithm to compute the greatest common divisor of pairs
of tokens arriving on the two input channels. For example, if chan-
nel a receives tokens 100 and 56 and channel b receives 45, 49, and 3,
the output will be 5 = gcd(100, 45) followed by 7 = gcd(56, 49).
The 3 on b is ignored because no mating token ever arrives on a.

https://doi.org/10.1145/3127041.3127055
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In this network, an initial “1” token is fed to the top row of
multiplexers, instructing each to steer a token from an input to
the equality comparator actor (“=”). Because the channels from
the multiplexers fork, the first row of demultiplexers also receive
copies of these tokens. If the tokens are equal (the base case for the
algorithm), the comparator emits a 1, causing the demultiplexers
to emit the a token as the result and discard the b token. The 1
from the comparator is also fed back to both input multiplexers,
prompting them to accept a new pair of tokens from the inputs.

In the recursive case, the tokens differ, prompting the demulti-
plexers to send copies of the tokens to the magnitude comparator
(<) and to the second row of demultiplexers. The output of the
magnitude comparator flows to the second demuxes and bottom
multiplexers, which together control whether a is subtracted from
b or b is subtracted from a. Since the equality comparator emitted
a 0, the outputs from the bottom multiplexers are fed around and
flow back through the top multiplexers and the process repeats.

We synthesize networks by transforming each actor into a small
block of logic and replacing each channel with a mixture of point-
to-point connections, buffers, and fork circuitry. Fig. 14 shows our
preferred buffering of this gcd network.

We make the following contributions:
• circuits, for a small, rich family of data-dependent dataflow
actors, that can be composed with or without buffering with-
out introducing spurious combinational cycles;
• a novel approach to breaking long combinational paths and
loops that uses two distinct types of buffers: one for the data
network and one for backpressure;
• a novel, “safe” way to implement nondeterministic merge
for managing shared resources; and
• experiments that show how buffering may be added to ex-
plore the design space without affecting functionality.

We present our work in four pieces. First, we formalize our
unbounded dataflow network specifications (§2). Our main con-
tribution is second: how to implement bounded variants of these
specifications in hardware. We describe implementing processes
in §3 and channels in §4. Third, in §5, we argue why our circuits
faithfully implement our specifications. Fourth, we present experi-
mental results that demonstrate that our circuits work and facilitate
design-space exploration in §6.

2 SPECIFICATIONS: KAHN NETWORKS
Our goal is a hardware implementation of a dataflow network.
Here, we describe our specifications: a restricted class of Kahn
networks with unbounded buffers. Our specifications, expressed in
this model of computation, are deliberately more abstract than our
implementations to allow buffers to be added and removed (e.g., to
adjust pipeline depth) as part of the implementation process.

This section is largely review: Kahn [12] provides the framework,
Lee and Matsikoudis [13] show how to model firing rules, and the
model of nondeterministic merge is due to Broy [2].

2.1 Kahn Networks
A Kahn network passes around atomic tokens drawn from a set Σ.
We consider both finite and infinite sequences of tokens flowing on
channels and write S = Σ∗ ∪ Σω for the set of such sequences. The

empty sequence ϵ is included in this set, since it contains zero tokens
and thus is finite (ϵ ∈ Σ∗). Juxtaposition will denote concatenation,
e.g., for two tokens x ,y ∈ Σ, xy represents the two-token sequence
consisting of x followed by y. Concatenation extends to sequences:
if a ∈ Σ∗ is a finite sequence and b ∈ S , ab is a followed by b.

We write a ⊑ b if a is a prefix of or equal to b; ⊑ is a partial
order. Technically a ⊑ b iff a = b or ∃c ∈ S s.t. ac = b. We
extend this ordering elementwise to n-tuples of sequences (written
in bold): if a1, . . . ,an ,b1, . . . ,bn ∈ S , a = (a1, . . . ,an ) ∈ Sn , and
b = (b1, . . . ,bn ) ∈ Sn , we write a ⊑ b iff a1 ⊑ b1, . . . , an ⊑ bn .
Juxtaposition is elementwise concatenation: ab = (a1b1, . . . ,anbn ).

A Kahn process is a continuous function P : Sn → Sm that takes
a tuple of n input sequences and produces a tuple of m output
sequences. Continuity means P is monotonic, so a ⊑ b implies
P (a) ⊑ P (b). Equivalently, providing P with additional tokens may
produce more output tokens, but tokens that have already been
produced cannot be changed or rescinded. Continuity also means a
process cannot produce an output only after an infinite time. See
Lee and Matsikoudis [13] for a formal discussion of continuity.

As an example, consider a process that adds two input sequences
to produce an output sequence. Assume integer-valued tokens,
i.e., Σ = Z. This process computes the pairwise sum of the two
sequences up to the end of the shorter sequence, i.e.,

P (x1x2 · · · xn ,y1y2 · · ·ym ) = w1w2 · · ·wmin(m,n) (1)

wherem and n may be zero, finite, or infinite andwi = xi + yi .
A Kahn network is a collection of Kahn processes whose input

sequences are supplied through channels, each of which is either
supplied by the environment or the output of some process. A
Kahn network N = (P, e,M ) is a triple consisting of a vector of r
Kahn processes P = {P1, . . . , Pr }, a number e ∈ {0, 1, . . .} of input
channels from the environment, and a “wiring matrix” function
M : {1, . . . , r } × {1, . . .} → {1, . . . , e} ∪ ({1, . . . , r } × {1, . . .}) that
maps each process input (a process and input index) to either one
of the e environment channels or the output of some process.

Let ci, j be output j from process i , ck be environmental channel
k ,mi be the number of outputs from process i , and let

c = (c1, . . . , ce︸     ︷︷     ︸
e inputs

, c1,1, . . . , c1,m1︸            ︷︷            ︸
process 1 outputs

, c2,1, . . . , c2,m2︸            ︷︷            ︸
process 2 outputs

, . . . , cr,1, . . . , cr,mr︸            ︷︷            ︸
process r outputs

)

be the vector of all channels in the system. The behavior of a Kahn
network for input (c1, . . . , ce ) is the least c satisfying

(c1,1, . . . , c1,m1 ) = P1
(
cM (1,1) , . . . , cM (1,n1 )

)
...

(cr,1, . . . , cr,mr ) = Pr
(
cM (r,1) , . . . , cM (r,nr )

) (2)

where nk is the number of inputs on the kth process and cM (k,l )
is the channel feeding the lth input of the kth process: either an
environment channel (i.e., 1 ≤ M (k, l ) ≤ e) or a specific output
channel of a specific process (i.e.,M (k, l ) = i, j , wherek, i ∈ {1 . . . r },
1 ≤ l ≤ nk , and 1 ≤ j ≤ mi ).

Channels may “fork”: each channel has a single source (either a
process output or the environment) but may havemultiple receivers.
I.e.,M (k1, l1) = M (k2, l2) may hold for some (k1, l1) , (k2, l2).

Kahn showed [12] that his networks are deterministic: there is
exactly one least c that satisfies (2) for each tuple of input sequences
provided the Pi are continuous.
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2.2 Dataflow Actors
The Kahn formalism describes our networks; we follow Lee and
Matsikoudis’s formalism for actors [13] for describing processes.
Actors react to input tokens according to firing rules; a rule is
a tuple of empty or singleton token sequences. When an actor’s
input matches a rule, the actor consumes the matched tokens and
produces a single token on certain outputs. Lee andMatsikoudis use
sequences in their firing rules and reactions; we use only singletons
because we target hardware.

Formally, an n-input, m-output dataflow actor is a pair (R, f )
where R ⊂ (Σ ∪ ϵ )n are the firing rules, f : R → (Σ ∪ ϵ )m is the
firing function, and for any a, b ∈ R with a , b, there is no c such
that a ⊑ c and b ⊑ c. This “no-common-prefix” constraint on R
ensures the actor behaves deterministically: in particular, once an
actor can fire on a given rule it cannot fire on another, even if
additional tokens arrive.

The Kahn process P for the dataflow actor (R, f ) is

P (s) =



f (r)P (t) when ∃r ∈ R such that s = rt;
ϵm otherwise,

(3)

where ϵm is them-tuple of empty sequences and juxtaposition rep-
resents the pointwise concatenation of sequences. Lee and Matsik-
oudis [13] showed that P is a continuous function (and thus a Kahn
process) provided the firing rules R obey the no-common-prefix
rule described above. Note that (3) matches the usual recursive
definition of the map function familiar to functional programmers.

Our processes can emit an initial sequence of tokens to break
initial deadlocks in loops. For example, the top multiplexers in Fig. 1
would deadlock without the initial token provided. A dataflow actor

with initial output is a triple (R, f , i) where R and f are as before
and i : (Σ∗)m is the initial output from the actor. The Kahn process
for such an actor is

P ′(s) = iP (s). (4)

2.3 Unit-rate, Mux, and Demux Actors
We construct our networks from three stateless actors. The first, a
unit-rate actor, waits for a single token on each of its inputs before
producing a single output token on each of its outputs.

For example, a two-input process that adds its two integer token
inputs is a unit-rate actor. Again, let Σ = Z. The actor (R, f ) has

R = {(x ,y) : x ,y ∈ Z}
f
(
(x ,y)

)
= (x + y),

(5)

i.e., the actor can fire on any pair of integer tokens (R) and, given
such a pair of tokens x and y, the actor produces a single token
whose value is x + y (f ). It is easy to show that this R follows the
no-common-prefix rule. Furthermore, an inductive argument shows
that applying (3) to the R and f in (5) gives the P function in (1).
In Fig. 1, the equality tester (=), less-than (<), and subtractor (−)
actors are each unit-rate.

Our second building block is the mux actor (Fig. 1 uses four),
which consumes a token from its control input to determine from
which of its inputs to consume a further token that it then emits on
its output channel. For example, a two-way mux actor that takes
a 0 or a 1 on its select input has

R = {(0,x , ϵ ) : x ∈ Σ} ∪ {(1, ϵ,y) : y ∈ Σ}
f
(
(0,x , ϵ )

)
= (x )

f
(
(1, ϵ,y)

)
= (y).

(6)

Our third fundamental type of actor is the demux (Fig. 1 uses
four): each input token is routed to an output channel based on a
select input token. For a two-output demux,

R =
{
(x ,y) : x ∈ {0, 1},y ∈ Σ

}

f
(
(0,y)

)
= (y, ϵ )

f
(
(1,y)

)
= (ϵ,y).

(7)

2.4 Nondeterministic Merge
The determinism of Kahn networks means they cannot model non-
deterministic merge processes. Although we desire deterministic
I/O, we also want to use merge actors judiciously, as they provide a
mechanism for sharing hardware resources (explained below).

We adopt Broy’s [2] solution: the behavior of a process is a
set of continuous functions. Most processes have only a single
function in their set, but the set for a merge actor includes one
function for every possible interleaving of its inputs. We think of
a nondeterministic merge as a mux with a hidden select input, so
the behavior of a network is any fixed point consistent with some
select input sequence for each merge.

3 HARDWARE DATAFLOW ACTORS
In this section and the next, we present our main contribution: a
technique for implementing our restricted class of dataflow net-
works in hardware. Our high-performance circuits facilitate design
space exploration because inserting or removing buffering does not
affect their functional behavior. Specifically, multiple actors may
be chained together directly for speed or buffers may be added to
break frequency-robbing critical paths through pipelining.

To implement a dataflow network, each dataflow actor becomes a
block of logic with handshaking communication ports, one for each
input and output. Each channel in the network becomes a small
communication network of wires potentially augmented with fork
and buffering circuity (§4). Aside from the need to buffer each cycle
in the network, the user is free to prescribe buffering to modify the
frequency, area, and latency of the synthesized circuit.

In general, the datapath of each actor implements the firing
function f of each actor and the flow control logic implements the
firing rules R. Due to space, we do not include formal proofs that
show each circuit faithfully implements its specification.

We only present a limited, core group of actors that we have
found is rich enough to implement a wide variety of algorithms
(see Townsend et al. [18]). Our framework could support additional
actor types, but their design is outside the scope of this paper.

3.1 Communication and Combinational Cycles
Actors, buffers, and forks in our implementation communicate
through unidirectional point-to-point links. We use the bundled-
data protocol with handshaking inspired by Carloni’s lid [4] and
elastic circuits [6] shown in Fig. 2. This is a bundled data protocol
in which the valid bit indicates a token is present on the data wires.
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upstream

dow
nstream

data

valid
ready

valid ready Meaning

1 0 Token valid; not consumed
1 1 Token transferred
0 − No token to transfer

Figure 2: A point-to-point link and its protocol [3]: valid in-
dicates the data lines carry a token; ready indicates down-
stream is willing to consume a token.

The downstream block sends the ready signal upstream to indicate
it is able to consume a token being proffered by the upstream block.

A token is transferred from the upstream block to the down-
stream block when both valid and ready are asserted.

We provide a fragment of synthesizable rtl SystemVerilog for
each block. To represent, say, an 8-bit channel c, we use a nine-bit
vector c for data (c[8:1]) and valid (c[0]), and a wire named c_r for
ready. In our schematics, we label all wires of this port just c.

This seemingly simple protocol poses a potentially perilous prob-
lem: combinational cycles inadvertently induced by the ready sig-
nals, which flow backwards through the network. For example, it
would be easy to produce a cycle if a valid signal depended instan-
taneously a ready at an output port while a ready instantaneously
depended on a valid at an input port.

We avoid combinational cycles by insisting each cycle in the
dataflow network have at least one data and one control buffer (see
§4) and by insisting no block has a combinational path from a ready
to a valid signal. The data buffer rule eliminates combinational
cycles in the data/valid network; the control buffer rule similarly
breaks cycles in the ready network; and prohibiting combinational
paths from ready to valid means no combinational cycle can include
a signal that crosses between the two networks. Intuitively, the flow-
control network can be scheduled statically: the valid network can
be computed first (it is acyclic, with inputs from data buffers and
the environment) followed by the ready network, which may take
inputs from the valid network, control buffers, and the environment.

3.2 Unit-Rate Actors
Fig. 3 shows how we implement single-output unit-rate actors
such as the two-input adder. This actor waits for a valid token on
both its inputs before asserting its output is valid. It indicates it is
willing to consume both its inputs when they are both valid and the
downstream is also ready to consume the output token. Additional
inputs can be added to the two-input circuit of Fig. 3 by widening
the and gate for the valids; the ready logic remains the same but
fans out more widely. An n-output actor can be implemented by n
single-output actors with their inputs connected in parallel.

in0

in1 out

f
assign out =
{ f ( in0[W:1], in1[W:1]),
in0 [0] && in1[0] };

assign { in0_r , in1_r } =
{ 2 {out_r && out[0]} };

Figure 3: A unit-rate actor: computes f of twoW -bit inputs

in0

in1

in2

select out

muxed

decoder

onehot[0]

onehot[1]

onehot[2]

logic [2:0] onehot; // One per input

logic [W:0] muxed;
always_comb
unique case ( select [2:1])

2'd0 : {onehot, muxed} = {3' d1, in0 };
2'd1 : {onehot, muxed} = {3' d2, in1 };
2'd2 : {onehot, muxed} = {3' d4, in2 };
default: {onehot, muxed} = {3' bx, {{W{1'bx }}, 1'd0 }};

endcase
assign out = {muxed[W:1], muxed[0] && select [0]};
assign select_r = out[0] && out_r;
assign { in2_r , in1_r , in0_r } = select_r ? onehot : 3'd0;

Figure 4: A three-inputW -bit multiplexer; select is 2 bits.

3.3 Mux and Demux Actors
Mux and demux actors are not unit-rate actors. A mux uses the
value of a selection token to route a token on one selected input to
the output. The select token and the token on the selected input
must be valid to produce a valid output; input and select tokens are
consumed when the output is ready.

The demux is complementary: it directs an input token to a
single, specific output depending on the value of a select token.
Both the select and input tokens must be valid before a token is
proffered on the selected output; that output must be ready before
the two tokens are consumed.

Fig. 4 shows our implementation of a three-input multiplexer
that routesW -bit tokens. The local signal muxed comes from one
of the input ports according to the value of the select token, which
is also decoded to generate the onehot vector.

The downstream valid bit is the and of the valid from the selected
input and the valid bit of select. Select and the selected input are
ready when the downstream output is valid and ready.

Fig. 5 shows a three-output demultiplexer. The datapath copies
input data to all outputs. If both the in port and the select port have
valid tokens, the one-hot decoder uses the value of the select token
to indicate exactly one of the output ports has a valid token. Both
inputs are consumed if the selected output is ready.

Note that each actor is implemented as a “stock” datapath for
a combinational function, a multiplexer, and fan-out augmented
with flow-control logic. Our technique therefore does not introduce
additional delay into the data network.
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select

in

out2

out1

out0

decoder

onehot[2]

onehot[1]

onehot[0]

logic [2:0] onehot; // One per output

always_comb
if ( select [0] && in[0]) // Enabled if both valid

unique case ( select [2:1])
2'd0 : onehot = 3'd1;
2'd1 : onehot = 3'd2;
2'd2 : onehot = 3'd4;
default : onehot = 3'bx;

endcase
else onehot = 3'd0;

assign out0 = { in[W:1], onehot [0]};
assign out1 = { in[W:1], onehot [1]};
assign out2 = { in[W:1], onehot [2]};
assign select_r = | (onehot & {out2_r , out1_r , out0_r });
assign in_r = select_r ;

Figure 5: A demultiplexer with a two-bit select input and
threeW -bit outputs.

f f f
Share with

merge/demux

merge

f

demux

select

Figure 6: A merge used to share a unit-rate subnetwork.

3.4 Merge Actors
Our implementation of the nondeterministic merge actor is novel:
it is essentially a mux actor whose select “input” is electrically an
output. Thus, a merge actor is a mux with a nondeterministic select
input, but in our implementation, the merge actor itself generates
the tokens on the select channel rather than receiving them.

Fig. 6 illustrates how we use our merge node to share a stateless
block (or subnetwork) f that produces one output token per input.
The merge actor nondeterministically chooses a token from one
of its three inputs to route to the shared f and reports its choice
in the form of a token on the select channel. When f produces its
result, the demux routes the result to the output corresponding to
the chosen input.

in0

in1

out

sel

emitted[0]

done[0]

emitted[1]

done[1]

0
1

A
rbiter

won[0]

won[1]

winner[0]

winner[1]

fired

logic [1:0] won, winner; // One arbiter bit per input

assign winner = | won ? won : // Decided

in0 [0] ? 2'd1 : // in0 wins

in1 [0] ? 2'd2 : // in1 wins

2'd0; // Nothing ready

initial won = 2'd0; // No input has won initially

always_ff@(posedge clk) won <= fired ? 2'd0 : winner;
logic [1:0] emitted , done; // One each for out, sel

assign done = emitted | ({ sel [0], out [0]} & { sel_r , out_r });
initial emitted = 2'd0; // Both outputs initially clear

always_ff@(posedge clk) emitted <= fired ? 2'd0 :done;
assign fired = & done;
assign { in1_r , in0_r } = fired ? winner : 2'd0;
assign out = winner[0] && !emitted[0] ? in0 :

winner[1] && !emitted[0] ? in1 :
{{W{1'bx }}, 1'd0 };

assign sel = winner[0] && !emitted[1] ? {1' d0, 1'b1} :
winner[1] && !emitted[1] ? {1' d1, 1'b1} :
{1' bx, 1'd0 }));

Figure 7: A two-input nondeterministic merge that reports
1-bit arbitration decisions on sel.

Fig. 7 shows a two-input nondeterministic merge actor, which in-
terleaves tokens on inputs in0 and in1 onto the out port and reports
how the interleaving was done on the sel port. As we described in
§2.4, Broy [2] models nondeterministic merge as a mux driven by
a nondeterministic input that controls how the input streams are
interleaved; our merge actor emits this selection sequence.

The circuit in Fig. 7 is complex because it generates tokens on
two output channels when it fires and needs to cope with only one
channel being ready. The naïve approach of insisting both outputs
be ready for the actor to fire leads to circuits with combinational
cycles; our circuit avoids this by allowing firing across multiple
cycles and thus needs state. The fork described in §4.2 is similar.

An n-input merge has n + 2 state bits: n one-hot “won” bits that
indicate which input won the arbitration and two emitted bits that
indicate the out and sel outputs have already emitted tokens in this
firing and should not emit any more. All of these bits reset to 0
between firings.
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Our merge actor is built around an arbiter that selects a valid
input and declares it the winner through the one-hot winner vector.
This vector controls the multiplexers that route the winning input
to out and its identity to sel.

If both out and sel are ready, both done signals become true, fired
becomes true, the winning input’s ready is asserted, all the won
and emitted registers stay at 0, and the arbiter can handle another
token in the next cycle.

When an output is not ready, it sets the emitted bit for the other
output, suppressing that output’s valid signal in the next cycle.
Furthermore, because fired is not asserted, the winner vector will
be loaded into the won register. In the next cycle, since the won
register is non-zero, the arbiter will maintain the identity of the
winner and ignore any new input tokens.

In cycles after the initial arbitration, the winner vector holds its
value and maintains a valid token on the output that has not yet
been consumed. When both outputs have finally been consumed
(i.e., when each is either emitted or ready), fired will be asserted,
the winning input token is finally consumed, and the merge actor’s
state resets to fire again in the next cycle.

4 CHANNELS IN HARDWARE
In our specifications, a channel is an abstract mechanism that con-
veys a sequence of tokens generated by a process or supplied by
the environment to one or more processes. Our technique allows
such channels to be implemented in a variety of ways, providing
various speed/area tradeoffs.

A point-to-point channel can be implemented with a direct con-
nection, as shown in Fig. 2. Such a link is the fastest and consumes
the fewest resources but may produce a long combinational path
that limits clock frequency. It also couples the two process’ firings.

Adding a buffer to a point-to-point link decouples the firing of
the upstream and downstream actors. Such buffering is mandatory
on loops in the Kahn network and on channels with initial tokens
(see §2.2). Buffering can also improve performance by breaking long
combinational paths in the generated circuit, effectively pipelining
them to improve throughput and clock frequency.

We provide fork blocks for implementing channels with fanout.
The datapath of a fork is trivial (simply wires that fan out); the
flow control logic (i.e., for valid and ready) turns out to be fairly
complicated to avoid a combinational path from ready to valid.

Choosing an optimal channel implementation is outside the
scope of this paper. However, we can correctly implement any
channel in our specification as a single-source, feed-forward net-
work comprised of forks, buffers, and point-to-point connections.

Below, we describe how we implement buffers and forks.

4.1 Data and Control Buffers
We provide two buffer types: a data buffer breaks a combinational
path (or cycle) on the data/valid network; a control buffer does so
on the ready network. Each type of buffer can hold a single data
token, but their implementations differ.

A data buffer (Fig. 8) is a traditional pipeline register: it breaks
the combinational path on data/valid signals, stores a single data
token, and adds a clock cycle of latency. The downstream ready

signal acts like a latch enable when the buffer holds a valid token;

in out

0
1

initial out = {{W{1'bx }}, 1'b0 }; // Start empty

always_ff@(posedge clk) if ( in_r ) out <= in ;
assign in_r = out_r || !out [0];

Figure 8: A data buffer, after Cao et al. [3]. This pipeline reg-
ister breaks a combinational path in the data/valid network.

in
out

0
1

0
1 0

1
0

initial buffer = {{W{1'bx }}, 1b '0}; // Start empty

always_ff@(posedge clk)
if (out_r && buffer [0]) buffer <= {{W{1'bx }}, 1'd0 };
else if (! out_r && !buffer [0]) buffer <= in ;

assign out = buffer [0] ? buffer : in ;
assign in_r = ! buffer [0];

Figure 9: A control buffer, after Cao et al. [3]. This breaks a
combinational path in the (upstream) ready network.

an upstream token is always latched when the buffer is empty. Note
that a data buffer’s ready path is combinational.

The control buffer in Fig. 9 performs the more challenging task of
breaking the combinational path on the ready network. By design,
the upstream ready signal (in_r) depends only on a flip-flop output—
the valid bit of a “spill buffer.” Complementary to a data buffer, a
control buffer induces a cycle of latency on the ready network, but
not necessarily any on the data/valid network.

The control buffer intercepts and stores any valid token that the
downstream cannot accept. In normal operation, the buffer in Fig. 9
is empty: its valid bit is false, any valid token flows directly from in

to out, and in_r is asserted. If out_r remains true, the buffer remains
empty (holds its previous contents); however, if out_r goes false,
the downstream will not consume any valid token, so instead any
valid token on in is “spilled” into the buffer.

When the buffer holds a token, no token is accepted from up-
stream because in_r is false, the buffered token is proffered down-
stream, and out_r controls whether the token will continue to be
held or advanced in the next cycle.

Connecting control and data buffers back-to-back in either order
breaks any combinational path that would pass through them, al-
lowing them to be chained arbitrarily without reducing peak clock
frequency. Back-to-back, they behave like the latency-insensitive
relay stations of Li et al. [15].
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in

out2

out1

out0
emitted[0]

done[0]

emitted[1]

done[1]

emitted[2]

done[2]

logic [2:0] emitted , done; // One per output

initial emitted = 3'd0; // All channels initially clear

assign out0 = { in[W:1], in [0] && !emitted[0] };
assign out1 = { in[W:1], in [0] && !emitted[1] };
assign out2 = { in[W:1], in [0] && !emitted[2] };
assign done = emitted | ({ out2 [0], out1 [0], out0 [0]} &

{out2_r , out1_r , out0_r });
assign in_r = & done;
always_ff@(posedge clk) emitted <= in_r ? 3'd0 : done;

Figure 10: A three-way fork. An output port’s emitted flip-
flop is set when the input token has been consumed on that
port. All are reset after a token is consumed on every port.

4.2 Forks
To implement channels with fanout, we use “fork” circuits that
handle the flow-control logic (i.e., valid and ready signals) without
introducing combinational cycles in the generated circuit.

The obvious way to implement fork—a block that waits for all
its downstream actors to be ready before firing—would introduce
combinational cycles when composed because such a policy implies
a path from ready to valid. A block that considered ready inputs to
determine whether to fire would not be compositional.

Our implementation of fork avoids combinational cycles by using
one flip-flop per output. It allows a valid token to pass through a
fork and be consumed downstream before it is consumed upstream.

Fig. 10 illustrates our solution, which uses one flip-flop per output
in a vector called emitted. Each emitted bit indicates whether the
downstream consumer previously consumed the current token. If
an output’s emitted bit is set, the fork suppresses that output’s valid
signal to avoid sending a second copy of the token to the consumer.

Initially all emitted bits are zero. If there is no input token, the
state is unchanged. If an input token arrives it is proffered on all
downstream ports. If all consumers are ready, done is all ones, the
upstream ready is asserted, and the emitted flip-flops remain cleared.

If any consumer is not ready, the input token is not consumed
(the upstream ready is not asserted) and the ready consumers’
emitted bits are set to one to prevent any further tokens being
proffered on the outputs before the current token is consumed.

When some emitted bits are set, the upstream ready is not as-
serted, the input token is held, and an output token is proffered on
output channels whose emitted bits are zero. Each output’s done
bit is asserted if the proffered token was consumed in this or a
previous cycle. Once all done bits are true, the emitted bits are reset,
the upstream token is consumed, and the process repeats.

5 THE ARGUMENT FOR CORRECTNESS
In this section, we argue that our circuits faithfully implement the
specifications in §2 in that anything the hardware implementation
can do is permitted by the specification. However, the reverse is not
true: the hardware may deadlock because of (finite) buffer overflow
where the specification would proceed. Specifically, the sequence
of tokens that can be observed passing through any channel in
a hardware implementation is a prefix of (but often equal to) the
sequence of tokens that the Kahn fixed point semantics implies
would pass through the channel.

The argument relies on our hardware behaving according to the
formal notion of an actor firing. According to (3), when a process
finds tokens on its input sequences that match a firing rule r, it
produces tokens on its output sequences according to its firing func-
tion f , and then advances past (“consumes”) the tokens identified
in the firing rule by recursing on the tuple of sequences t, which
skips the tokens in the firing rule r.

We use the valid signal to indicate the “next” token in sequence;
a block indicates it is willing to consume a token when it asserts
the ready signal on the port. An upstream block must continue to
provide the same valid token until the downstream block is ready.

We argue that each block maintains the following inductive
invariant between clock cycles: on each port, if valid is true, the
data wires carry the token value that appears “next” in the sequence
given by the underlying Kahn network behavior; the “previous”
token value was consumed during the last cycle in which both
valid and ready were true (or no such token existed because the
circuit was reset). Furthermore, once valid has been asserted, it
must stay asserted until the next cycle in which ready is asserted.
Thus, valid indicates the correct next token value is present; when it
is accompanied by ready the token has been consumed. A corollary
is that observing the data values on a port in cycles where both
valid and ready were true gives a prefix of the sequence on that
port. For the sequence . . . , ct−1, ct , ct+1, . . . , we might observe

data: · · · ct−1 ct−1 ct−1 x ct ct ct+1 · · ·

valid: · · · 1 1 1 0 1 1 1 · · ·

ready: · · · 0 0 1 x 0 1 0 · · ·

Here, the highlighted columns denote token-transfer cycles. The
environmental inputs must follow this protocol.

We also assume that when the circuit is reset, any and all initial
tokens on the channels required by the specification are residing
in the appropriate data or control buffers.

The unit-rate actor preserves the invariant. According to the
logic in its schematic, if all its inputs are valid, each carries the
value of the next token on their respective sequences, the function
block computes the next token in sequence on the output, which is
made valid. If, additionally, the output is ready, the inputs are also
made ready, indicating the input tokens have been consumed.

For the multiplexer, if the select input is valid, it must carry
the next token in sequence. The value of the select token routes
the data/valid signals from the appropriate input port to the muxed

signal internally. If muxed is valid, the output carries the proper
value (next token in sequence) and is set valid. If, additionally, the
output is ready, both the select input and the selected input are
made ready and no others.
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For the demultiplexer, only if both the input and select inputs
have a valid token is the decoder activated and the appropriate
output made valid. If, furthermore, that output is also ready, only
then are both the input and select inputs marked ready.

The nondeterministic merge block must ensure that once it
decides what the next tokens on its output should be, these values
persist. When the emitted and won registers are all zero, the arbiter
decides which one, if any, of the valid inputs wins the arbitration.
This causes correct, valid tokens to appear on both the output and
select ports. If both ports are ready, fired is asserted, the winning
input is also marked ready, and the emitted and won registers stay
zero. If only one output port is ready, fired will remain low, the
ready output port will set its emitted bit and the won register will
record the arbitration winner. In future cycles the token, if any, from
the winning input port will continue to be routed to the output
port and the corresponding value will be sent on select, but the
emitted register will suppress the valid signal on the already-ready
port. Note that the environment must sustain the valid token on
the winning input port. If ready is asserted on the non-emitted port,
fired will be asserted, the winning input will be made ready, the
registers cleared, and the process repeats.

Buffers are the only blocks that hold tokens. Consider when the
data buffer is empty. The output is invalid and the ready output
is asserted. If a valid token is proffered, the token will be stored
in the buffer at the end of the cycle, consistent with the invariant.
When the data buffer is full, valid is asserted. If the downstream
ready is false, the upstream ready is false and the register will hold
the token. When the downstream ready is true, the upstream ready
will be asserted and the token in the buffer will be overwritten. If a
valid token was proffered, it will be stored in the buffer.

If the control buffer is empty, the input token/valid signal is
simply copied to the output and the upstream ready is asserted. If
the downstream does not assert ready, the valid upstream token,
if any, will be stored in the buffer for the next cycle. If the buffer
is full, the upstream ready is false and the valid token is proffered
on the output. If the downstream ready is true, the buffer will be
emptied in the next cycle.

The fork block relies on the upstream block sustaining a valid
token until it is consumed. When the emitted register is zero, a valid
token on the input becomes a valid token on each of the outputs.
Any output that is also ready asserts its respective done signal. If
all the done signals are set, the upstream ready is asserted and the
emitted registers are all reset. Otherwise, each ready output sets its
emitted bit in the next cycle. These bits suppress the valid signal
on each of the outputs that had already asserted ready with the
current input token. Each done bit becomes true if its emitted bit is
true or if a valid token has been consumed by a ready on the output.
When all the done bits are true, the current token is consumed from
the input and the emitted bits are all reset.

6 EVALUATION
A designer can use our blocks to implement a dataflow network and
adjust buffering to affect area and performance without changing
functionality, although insufficient buffering may introduce dead-
lock. To verify this, we created dataflow networks (both manually
and using the compiler of Townsend et al. [18]) buffered them both
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Figure 11: The splitter component
of a Conveyor. This network parti-
tions tokens arriving on the input
stream in by comparing each input
value against a “split” value: the ini-
tial token s. Each input token is sent
out on one of three ports depending
on whether it is less than (lt), equal
to (eq), or greater than (out) the split
value.
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Figure 12: The network on the left routes the larger of two
input tokens to the top output and the smaller to the bottom.
These are the vertical lines in the eight-element bitonic sort-
ing network on the right (after Cormen et al. [7]).

randomly and manually, simulated the resulting circuits to check
that each functioned correctly, and calculated the circuits’ highest
clock rate when synthesized on an fpga.

As part of this work, we developed a compiler that takes a low-
level textual dataflow language that specifies the topology of a
network composed of blocks, buffers, forks, and point-to-point
channels and generates synthesizable SystemVerilog for each block
following the templates described in §3 and §4.

We both simulated the function of each circuit with Verila-
tor 3.874 to verify that our circuits operate correctly and are free
of combinational cycles and synthesized each circuit using Al-
tera’s Quartus 15.0, targeting a modest-performance Cyclone V
5CGXFC7C7F23C8 fpga with 56480 ALMs, to estimate the maxi-
mum operating frequency and resource usage of the design.

6.1 Experimental Networks
We experimented with the five applications described below. We
manually coded the first three networks in our dataflow language;
the last two networks were synthesized from small Haskell pro-
grams using the translation of Townsend et al. [18].

gcd. This is Fig. 1’s networkmade to compute gcd(100,2) with 32-
bit integers.

Conveyor. This network performs range partitioning [20]. The
design chains n splitters (Fig. 11) to partition an input stream into
2n + 1 output streams (e.g., 10 splitters yield a 21-way Conveyor
design). Each splitter routes tokens to its outputs depending on how
each token compares to the splitter’s value. We feed the Conveyor
an input sequence of 32-bit numbers (1, . . . , 10000) and set the
ith splitter value to 10000/(i + 1). To limit I/O pins, we merge the
Conveyor’s outputs with a chain of merge actors to produce a single
(nonsensical) 32-bit output stream.
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Figure 13: Completion times under random buffer place-
ment. Horizontal lines labeled with a buffer count indicate
the completion time of the best manual design.

Bitonic Sorting Network (bsn). This sorts a fixed number of values
with two-input comparators that operate in parallel. Fig. 12 shows
the dataflow network for a comparator and an eight-input bsn.
Each comparator takes in a pair of tokens and routes the smaller
to its lower output and the larger to its upper, either by passing
the tokens straight through or swapping them. We execute this
network on ten sets of eight 8-bit values and merge the sorted
numbers with an 8-input adder (again, to limit I/O pins).

MergeSort and TreeSort. These are recursive sorting algorithms
that use memories to store their data structures (lists and trees)
and the “continuation” objects that implement their recursion. We
feed each network a list of 20 32-bit integers. We limited the input
size because the circuits generate a large number of intermediate
structures and our memories are not currently garbage collected.

6.2 Random Buffer Allocation
We first employ random buffer allocation, not because it produces
efficient designs, but to show that buffers may be added arbitrarily
without affecting functionality thereby facilitating design space
exploration. Given unbuffered gcd, bsn, and 21-way Conveyor
networks, we assign data buffers to store the initial tokens from
their specifications (gcd and Conveyor) and place a control buffer
on the same channels to break a combinational cycle.

We next assign between two and ten control/data buffer pairs
on randomly chosen channels, discarding any implementation that
produces premature deadlock or leaves a combinational cycle. All
remaining implementations compute the same result. Fig. 13 shows
the completion time of each of these implementations in microsec-
onds: cycles divided by maximum frequency (MHz).

6.3 Manual Buffer Allocation
In Fig. 13, we also plot the completion time for the best design we
could devise manually (the horizontal lines). Naturally, these are
much better than what random buffering produced.

Fig. 14 depicts our best manual buffer placements. Each black
bar represents a data buffer; red represents a control buffer. For
space, we only depict two representative splitters (of ten) in the
Conveyor.

We manually implemented 6-stage and 20-stage bsn and Con-
veyor networks, respectively. Each stage adds only a single ad-
ditional cycle to the total execution (since no stalls occur) while

gcd 5-Way Conveyor Bitonic Sorting Network (bsn)

Figure 14: Buffering our networks. Red bars represent con-
trol buffers; black for data. Each cycle requires both buffers.
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Figure 15: Three Conveyor pipelining strategies: doubling
the size has only a small effect on total completion time

substantially increasing the clock frequency (103 MHz for bsn;
109 MHz for Conveyor) to reduce completion time.

We found separating data and control buffers improved perfor-
mance for the gcd example. We initially placed the two buffer types
together at the bottom of the network, but found splitting and mov-
ing them as shown in Fig. 14 improved the frequency from 79 MHz
to 109 MHz.

6.4 Pipelining the Conveyor
Over Conveyors with 4 to 64 splitters, we experimented with the
three pipelining strategies shown in Fig. 15: two splitters per stage,
one splitter per stage, and two stages per splitter.

The graphs show that the two stages/splitter design provides the
best overall performance on our workload, followed closely by the
one stage/splitter. For one stage/two splitters, the barely noticeable
reduction in the number of cycles required is swamped by the 40%
reduction in maximum clock frequency.

6.5 Memory in Dataflow Networks
We plan to use our dataflow networks to implement realistic al-
gorithms with irregular memory access patterns. MergeSort and
TreeSort both meet these criteria: sorting is a ubiquitous problem
and these algorithms employ pointer-based data structures.
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We can incorporate memories in our networks with block ram
(“bram”) actors along with actors that maintain an address pointer
(one per bram) and route memory requests and results to and from
the rest of the network. We employ a separate bram per object type,
allowing us to tailor its width to the size of the object.

We modify the translation of Townsend et al. [18] to insert mem-
ory actors into the MergeSort and TreeSort networks and translate
them to SystemVerilog. Each bram actor becomes a bit vector ar-
ray with 8-bit addresses, which we access with a basic memory
model: given an address and an optional write enable signal with
data, the array produces the data at that address before writing in
new data if the write enable signal is high. We place two data/con-
trol buffers around each bram to impose a two-cycle latency per
Altera’s recommendations.

The TreeSort circuit runs faster with less logic but more mem-
ory because its (two-pointer) tree objects are wider than (one-
pointer) list objects: it completes in 94.8 µs, operates at 54 MHz,
and uses 3,330 ALMs and 8.7 kB of memory, while MergeSort
takes 114.8 µs, running at 49 MHz with 3,592 ALMs and 5.9 kB.
These are meant to demonstrate that our formalism readily accom-
modates memory and are not high-performance sorters.

7 RELATEDWORK
Surprisingly little has been written about synthesizing hardware
from a dataflow model as rich as ours. Tripakis et al. [19] surveys a
number of dataflow-to-hardware projects, but most have focused
on statically schedulable models such as sdf that do not support
actors such as mux and demux that make data-dependent decisions.
For example, the lid work of Carloni et al. [5] was inspirational for
us but only considers unit-rate actors.

Perhaps closest in spirit to our work is that of Janneck et al.
around Cal [10]: a rich, functional-inspired language for expressing
dataflow process actors and networks. Janneck et al. [1, 11] have
a synthesis system for such networks, although little has been
published about its internals. Cal treats nondeterminism differently
than we: Cal actors are nondeterministic in general; we consider
only a nondeterministic merge actor that reports its choices. Thavot
et al. [17] synthesize hybrid hardware/software systems from Cal.

The Elastic Systems of Cortadella et al. [8, 9] are also networks
based on tokens and handshaking, but also include the notions of
speculation and anti-tokens. Their focus has been more on proces-
sor datapaths instead of synthesis of high-level algorithms.

Possignolo et al. [16] also consider token/handshaking pipelines
for processor design. They use Colored Petri Nets to model through-
put, something we may be able to adopt.

8 CONCLUSIONS
We presented a formal model of dataflow networks that admit data-
dependent actors and nondeterministic merge, and we showed how
to implement these networks in hardware. The Kahn principle
allows us to insert buffers without changing function, only perfor-
mance. We argued for the correctness of our implementations and
validated them with random design space exploration.
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