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The synchronous language Esterel provides deterministic concurrency by adopting a semantics in which threads march in step
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generic concurrent intermediate representation, a variety of back-ends have been developed. We present three of the most mature
ones, which are based on program dependence graphs, dynamic lists, and a virtual machine. After describing the very different
algorithms used in each of these techniques, we present experimental results that compares twenty-four benchmarks generated by
eight different compilation techniques running on seven different processors.
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1. INTRODUCTION

Embedded software is often conveniently described as col-
lections of concurrently running processes and implemented
using a real-time operating system (RTOS).While the func-
tionality provided by an RTOS is very flexible, the overhead
incurred by such a general-purpose mechanism can be
substantial. Furthermore, the interprocess communication
mechanisms provided by most RTOSes can easily become
unwieldy and easily lead to unpredictable behavior that is dif-
ficult to reproduce and hence debug. The behavior and per-
formance of concurrent software implemented this way are
difficult to guarantee.

The synchronous languages [1], which include Es-
terel [2], signal [3], and lustre [4], provide an alternative
by providing deterministic, timing-predictable concurrency
through the notion of a global clock. Concurrently running
threads within a synchronous program execute in lockstep,
synchronized to a global, often periodic, clock. Communi-
cation between modules is implicitly synchronized to this
clock. Provided the processes execute fast enough, processes
can precisely control the time (i.e., the clock cycle) at which
something happens.

The model of time used within the synchronous lan-
guages happens to be identical to that used in synchronous
digital logic, making the synchronous languages perfect for

modeling digital hardware. Hence, executing synchronous
languages efficiently also facilitates the simulation of hard-
ware systems.

Unfortunately, implementing such languages efficiently
is not straightforward since the detailed, instruction-level
synchronization is difficult to implement efficiently with an
RTOS. Instead, successful techniques “compile away” the
concurrency through a variety of mechanisms ranging from
building automata to statically interleaving code [5].

In this paper, we discuss three code generation techniques
for the Esterel language, which we have implemented in
the open source Columbia Esterel compiler. Such automatic
translation of Esterel into efficient executable code finds at
least two common applications in a typical design flow. Al-
though Esterel is well suited to formal verification, simula-
tion is still of great importance and as is always the case with
simulation, faster is always better. Furthermore, the final im-
plementation may also involve single-threaded code running
on a microcontroller; generating automatically this from the
specification can be a great help in reducing implementation
mistakes.

1.1. The CEC code generators

CEC has three software code generators that take very dif-
ferent approaches to generate code. That three such different
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techniques are possible is a testament to the semantic dis-
tance between Esterel and typical processors. Unlike, say, a
C compiler, where the choices are usually microscopic, our
three techniques generate radically different styles of code.

Esterel’s semantics require any implementation to deal
with three issues: the concurrent execution of sequential
threads of control within a cycle, scheduling constraints
among these threads from communication dependencies,
and how (control) state is updated between cycles. The tech-
niques presented here solve these problems in very different
ways.

Our techniques are Esterel-specific because its semantics
are fairly unique. Dataflow languages such as lustre [4], for
example, have no notion of the flow of control, preemption,
or exceptions, so they have no notion of threads and thus no
need to consider interleaving them, the source of most of the
complexity in Esterel. Nácul’s and Givargis’s phantom com-
piler [6] handles concurrent programs with threads, but they
do not use Esterel’s synchronous communication semantics,
so their challenges are also very different.

The first technique we discuss (Section 4) transforms
an Esterel program into a program dependence graph—a
graphical representation for concurrent programs developed
in the optimizing compiler community [7]. This fractures a
concurrent program into atomic operations, such as expres-
sion evaluations, then reassembles it based on the barest min-
imum of control and data dependencies. The approach al-
lows the compiler to perform aggressive instruction reorder-
ing that reduces the context-switching overhead—the main
source of overhead in executing Esterel programs.

The second technique (Section 5) takes a very different
approach to schedule the behavior of concurrent threads.
One of the challenges in Esterel is dealing with how a decision
at one point in a program’s execution can affect the control
flow much later in its execution because another thread may
have to be executed in the meantime. This is very different
from most imperative languages where the effect, say, of an if
statement always affects the flow of control immediately.

The second technique generates code that manages a col-
lection of linked lists that track which pieces of code are to
be executed in the future. While these lists are dynamic, their
length is bounded at compile time so no dynamic memory
management is necessary.

Unlike the PDG and list-based techniques, reduced code
size, not performance, is the goal of the third technique
(Section 6), which relies on a virtual machine. By closely
matching the semantics of the virtual machine to those of
Esterel, the virtual machine code for a particular program
is more concise than the equivalent assembly. Of course,
speed is the usual penalty for using such a virtual machine-
based approach, and ours is no exception: experimentally,
the penalty is usually between a factor of five and a factor
of ten. Custom hardware for Esterel, which other researchers
have proposed [8, 9], might be a solution, but we have not
explored it.

Before describing the three techniques, we provide a
short introduction to the Esterel language [2] (Section 2),
then describe the GRC intermediate representation due to

Potop-Butucaru [10] that is the starting point for each of the
code generation algorithms (Section 3). After describing our
code generation schemes, we conclude with experimental re-
sults that compare these techniques (Section 7) and a discus-
sion of related work (Section 8).

2. ESTEREL

Berry’s Esterel [2] is an imperative concurrent language
whose model of time resembles that in a synchronous digital
logic circuit. The execution of the program progresses a cycle
at a time and in each one, the program computes its output
and next state based on its input and the previous state by
doing a bounded amount of work; no intracycle loops are
allowed.

Esterel programs (e.g., Figure 1(a)) may contain multi-
ple threads of control. Unlike most multithreaded software,
however, Esterel’s threads execute in lockstep: each sees the
same cycle boundaries and communicates with other threads
using a disciplined broadcast mechanism instead of shared
memory and locks. Specifically, Esterel’s threads communi-
cate through signals that behave like wires in digital logic
circuits. In each cycle, each signal takes a single Boolean
value (present or absent) that does not persist between cy-
cles. Interthread communication is simple: within a cycle,
any thread that reads a signal must wait for any other threads
that set its value.

Signals in Esterel may be pure or valued. Both kinds are
either present or absent in a cycle, but a valued signal also has
a value associated with it that persists between cycles. Valued
signals, therefore, are more like shared variables. However,
updates to values are synchronized like pure signals so in-
terthread value communication is deterministic.

Statements in Esterel either execute within a cycle (e.g.,
emit makes a given signal present in the current cycle, present
tests a signal) or take one or more cycles to complete (e.g.,
pause delays a cycle before continuing, await waits for a cycle
in which a particular signal is present). Strong preemption
statements check a condition in every cycle before deciding
whether to allow their bodies to execute. For example, the
every statement performs a reset-like action by restarting its
body in any cycle in which its predicate is true.

Recently, Berry has made substantial changes (mostly ad-
ditions) to the Esterel language, which are currently em-
bodied only in the commercial V7 compiler. The Columbia
Esterel compiler only supports the older (V5) version of
the language, although the compilation techniques presented
here would be fairly easy to adapt to the extended language.

3. THE GRC REPRESENTATION

As in any compiler, we chose the intermediate representa-
tion in the Columbia Esterel compiler carefully because it af-
fects how we write algorithms. We chose a variant of Potop-
Butucaru’s [10] graph code (GRC) because it is the result of
an evolution that started with the IC code due to Gontier and
Berry (see Edwards [11] for a description of IC), and it has
proven itself as an elegant way to represent Esterel programs.
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module grcbal3:

input A;

output B, C, D, E;

trap T in

present A then

emit B;

present C then

emit D

end present;

present E then

exit T

end present

end present;

pause;

emit B

||
present B then

emit C

end present

||
present D then

emit E

end

end trap

end module
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Figure 1: An example of (a) a simple Esterel module (b) the GRC graph.

Shown in Figure 1(b), GRC consists of a selection tree
that represents the state structure of the program and an
acyclic concurrent control-flow graph that represents the be-
havior of the program in each cycle. In CEC, the GRC is
produced through a syntax-directed translation followed by
some optimizations to remove dead and redundant code.
The control-flow portion of GRC was inspired by the con-
current control-flow graph described by Edwards [11] and is
also semantically close to Boolean logic gates (Potop’s version
is even closer to logic gates—it includes a “merge” node that
models when control joins after an if-else statement).

3.1. The selection tree

The selection tree (upper left corner of Figure 1(b)) repre-
sents the state structure of the program and is the simpler
half of the GRC representation. The tree consists of three
types of nodes: leaves (circles) that represent atomic states,
for example, pause statements; exclusive nodes (diamonds)
that represent choice, that is, if an exclusive node is active, ex-
actly one of its subtrees is active; and fork nodes (triangles)
that represent concurrency, that is, if a fork node is active,
most or all of its subtrees are active.

Although the selection tree is used by CEC for optimiza-
tion, for the purposes of code generation, it is just a way to
enumerate the variables needed to hold the control state of an
Esterel program between cycles. Specifically, each exclusive
node becomes an integer-valued variable that stores which of
its children may be active in the next cycle. In Figure 1(b),
these variables are labeled s1 and s2. We encode these vari-
ables in the obvious way: 0 represents the first child, 1 repre-
sents the second, and so forth.

3.2. The control-flow graph

The control-flow graph (right side of Figure 1(b)) is a much
richer object and the main focus of the code generation pro-
cedure. It is a directed, acyclic graph consisting of actions
(rectangles and pointed rectangles, indicating signal emis-
sion), decisions (diamonds), forks (triangles), joins (inverted
triangles), and terminates (octagons).

The control-flow graph is executed once from entry to
exit in each cycle. The nodes in the graph test and set the
state, represented by which outgoing arc of each exclusive
node is active, test and set signal presence information, and
perform operations such as arithmetic.
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Fork, join, and terminate work together to provide Es-
terel’s concurrency and exceptions, which are closely inter-
twined since to maintain determinism, concurrently thrown
exceptions are resolved by the outermost one always taking
priority.

When control reaches a fork node, control is passed to
all of the node’s successors. Such separate threads of control
then wait at the corresponding join node until all of their sib-
ling threads have arrived. Meanwhile, the GRC construction
guarantees that all the predecessors of a join are terminate
nodes that indicate what exception, if any, has been thrown.
When control reaches a join, it follows the successor labeled
with the highest numbered exception that was thrown, which
corresponds to the outermost one.

Esterel’s structure induces properly nested forks and
joins. Specifically, each fork has exactly one matching join,
control does not pass among threads before the join (al-
though data may), and control always reaches the join of an
inner fork before reaching a join of an outer fork.

Together, join nodes—the inverted triangles in Figure
1(b)— and their predecessors, terminate nodes1—the octa-
gons—implement two aspects of Esterel’s semantics: the
“wait for all threads to terminate” behavior of concurrent
statements and the “winner-take-all” behavior of simultane-
ously thrown exceptions. Each terminate node is labeled with
a small nonnegative integer completion code that represents
a thread terminating (code 0), pausing (code 1), and throw-
ing an exception (codes 2 and higher). Once every thread in
a group started by a fork has reached the corresponding join,
control passes from the join along the outgoing arc labeled
with the highest completion code of all the threads. That the
highest code takes precedence means that a group of threads
terminates only when all of them have terminated (the max-
imum is zero) and that the highest numbered exception—
the outermost enclosing one—takes precedence when it is
thrown simultaneously with a lower numbered one. Berry
[12] first described this clever encoding.

The control-flow graph also includes data dependencies
among nodes that set and test the presence of a particular
signal. Drawn with dashed lines in Figure 1(b), there are de-
pendency arcs from the emissions of B to the test of B, and
between emissions and tests of C, D, and E.

Consider the small, rather contrived Esterel module (pro-
gram) in Figure 1(a). It consists of three parallel threads en-
closed in a trap exception handling block. Parallel operators
(||) separate the three threads.

The first thread observes the A signal from the envi-
ronment. If it is present, it emits B in response, then tests
C and emits D in response, then tests E and throws the T
trap (exception) if E was present. Throwing the trap causes
the thread to terminate in this cycle, passing control beyond
the emit B statement at the end of this thread. Otherwise, if
A was absent, control passes to the pause statement, which

1 Instead of terminate and join nodes, Potop-Butucaru GRC uses a single
type of node, sync, with distinct input ports for each completion code.
Our representation is semantically equivalent.

causes the thread to wait for a cycle before emitting B and
terminating.

Meanwhile, the second thread looks for B and emits C in
response, and the third thread looks for D and emits E.

Together, therefore, if A is present, the first thread tells the
second (through B), which communicates back to the first
thread (through C), which tells the third thread (through D),
which communicates back to the first through E. Esterel’s se-
mantics say that all this communication takes place in this
precise order within a single cycle.

This example illustrates two challenging aspects of com-
piling Esterel. The main challenge is that data dependencies
between emit and present statements (and all others that set
and test signal presence) may require precise context switch-
ing among threads within a cycle. The other challenge is deal-
ing with exceptions in a concurrent setting.

4. CODE GENERATION FORM PROGRAM
DEPENDENCE GRAPHS

Broadly, all three of our code generation techniques divide
an Esterel program into little sequential segments that can
be executed atomically and then add code that passes con-
trol among them. Code for the blocks themselves differs little
across the three techniques; the interblock code is where the
important differences are found.

Beyond correctness, the main trick is to reduce the in-
terblock (scheduling) code since it does not perform any use-
ful calculation. The first code generator takes a somewhat
counter-intuitive approach by first exposing more concur-
rency in the source program. This might seem to make for
higher scheduling overhead since it fractures the code into
smaller pieces, but in fact this analysis exposes more schedul-
ing choices that enable a scheduler to form larger and hence
fewer atomic blocks that are less expensive to schedule.

This first technique is a substantial departure from those
developed for generating code from GRC developed by
Potop-Butucaru [10]. In particular, in our technique, most
control dependencies in GRC become control dependencies
in C code, whereas other techniques based on netlist-style
code generation transform control dependencies into data
dependencies.

Practically, our first code generator starts with a GRC
graph (e.g., Figure 1(b)) and converts the control-flow por-
tion of it into the well-known program dependence graph
(PDG) representation [7] (Figure 2(a)) using a slight modi-
fication of the algorithm due to Cytron et al. [13] to handle
Esterel’s concurrent constructs. Next, the procedure inserts
assignments and tests of guard variables to represent con-
text switches (Figure 2(b)), and finally generates very ef-
ficient, compact sequential code from the resulting graph
(Figure 2(c)).

While techniques for generating sequential code from
PDGs have been known for a while, they are not directly ap-
plicable to Esterel because they assume that the PDG started
as sequential code, which is not the case for Esterel. Thus,
our main contribution in the PDG code generator is an addi-
tional restructuring phase that turns a PDG generated from
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Figure 2: Applying the PDG code generator on the program in Figure 1 produces (a) a PDG, (b) restructures it (b), and (c) makes it
sequential.
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procedure Main
Priority DFS (root node) Assign priorities
Schedule DFS (root node) Schedule with respect

to priorities
Restructure() Insert guards
Fuse guard variables
Generate sequential code from the restructured graph

Algorithm 1: The main PDG procedure.

Esterel into a form suitable for the existing sequential code
generators for PDGs.

The restructuring problem can be solved either by dupli-
cating code, a potentially costly operation that may produce
an exponential increase in code size, or by inserting addi-
tional guard variables and predicates. We take the second ap-
proach, using heuristics to choose where to cut the PDG and
introduce predicates, and produce a semantically equivalent
PDG that does have a simple sequential representation. Then
we use a modified version of Simons’ and Ferrante’s algo-
rithm [14] to produce a sequential control-flow graph from
this restructured PDG and finally generate sequential C code
from it.

Our algorithm works in three phases (see Algorithm 1).
First, we compute a schedule—a total order of all the nodes
in the PDG (Section 4.2). This procedure is exact in the sense
that it always produces a correct result, but heuristic in the
sense that it may not produce an optimal result. Second, we
use this schedule to guide a procedure for restructuring the
PDG that slices away parts of the PDG, moves them else-
where, and inserts assignments and tests of guard variables
to preserve the semantics of the PDG (Section 4.3). Finally,
we use a slightly enhanced version of the sequentializing al-
gorithm due to Simons and Ferrante to produce a control-
flow graph (Section 4.4). Unlike Simons’ and Ferrante’s algo-
rithm, our sequentializing algorithm always “finishes its job”
(the other algorithm may return an error; ours never does)
because of the restructuring phase.

4.1. Program dependence graphs

We use a variant of Ferrante et al.’s [7] program depen-
dence graph. The PDG for an Esterel program is a directed
graph whose nodes represent statements and whose arcs rep-
resent the partial ordering among statements that must be
followed to preserve the program’s semantics. In some sense,
the PDG removes the maximum number of control depen-
dencies among statements without changing the program’s
meaning. The motivation for the PDG representation is to
perform statement reordering: by removing unnecessary de-
pendencies, we give ourselves more freedom to change the
order of statements and ultimately avoid much context-
switching overhead.

There is an asymmetry between control dependence and
data dependence in the PDG because they play different roles

in the semantics of a program. A data dependence is “op-
tional” in the sense that a particular execution of the pro-
gram may not actually communicate through it (i.e., because
the source or target nodes happen not to execute); a control
dependence, by contrast, implies causality: a control depen-
dence from one node to another means that the execution of
the first node can cause the execution of the second.

A PDG is a rooted, directed acyclic graph G =
(S,P,F, r, c,D). S, P, and F are disjoint sets of statement,
predicate, and fork nodes. Together, these form the set of all
vertices in the graph,V = S∪P∪F. r ∈ V is the distinguished
root node. c : V → V∗ is a function that returns the vector of
control successors for each node (i.e., they are ordered). Each
vertex may have a different number of successors. D ⊂ V×V
is a set of data edges. If c(v1) = (v2, v3, v4), then node v1 can
pass control to v2, v3, and v4. The set of control edges can be
defined as C = {(m,n) : c(m) = (. . . ,n, . . . )}, that is, (m,n)
is a control edge if n is some element of the vector c(m). If a
data edge (m,n) ∈ D, then m can pass data to node n.

The semantics of the graph rely mostly on the vertex
types. A statement node s ∈ S is the simplest: it represents
a computation with a side-effect (e.g., assigning a value to a
variable) and has no outgoing control arcs. A predicate node
p ∈ P also represents a computation but has outgoing con-
trol arcs. When executed, a predicate arc passes control to ex-
actly one of its control successors depending on the outcome
of the computation it represents. A fork node f ∈ F does not
represent computation; instead it merely passes control to all
of its control successors. We call them fork nodes to empha-
size that they represent concurrency; other authors call them
“region nodes.”

In addition to being rooted and acyclic, the structure of
the directed graph (V ,C) satisfies two important constraints.

The first rule arises because we want unambiguous se-
mantics for the PDG, that is, we want knowledge of the state
of each predicate to provide a crisp definition of what nodes
execute and the ordering among them. Specifically, the predi-
cate least common ancestor rule (PLCA) requires that for any
node n ∈ V with two different control paths to it from the
root, the least common ancestor (LCA) of any pair of distinct
predecessors of n is a predicate node (Figure 3(b)). PLCA en-
sures that there is at most one active path to any node. If the
LCA node was a fork (Figure 3(a)), control could conceivably
follow two paths to n, perhaps implying multiple executions
of the same node, or at the very least leading to confusion
over the relative ordering of the node.

The second rule arises from assuming that the PDG
has eliminated all unnecessary control dependencies. Specif-
ically, if n is a descendant of a node m, then there is some
path from m to some statement node that does not include
n (Figure 3(d)). Otherwise, m and n would have been placed
under a common fork (Figure 3(c)). We call this the no post-
dominance rule.

4.2. Scheduling

Building a sequential control-flow graph from a program de-
pendence graph requires ordering the concurrently running
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nodes in the PDG. In particular, the children of each fork
node are semantically concurrent but must be executed in
some sequential order. The main challenge is dealing with
cases where data dependencies among children of a fork force
their execution to be interleaved.

The PDG in Figure 2(a) illustrates the challenge. In this
graph, data dependencies require the emissions of B, D, and
E to happen before they are tested. This implies that the chil-
dren under the fork node labeled 1 cannot be executed in any
one sequence: the subtree rooted at the test for A must be ex-
ecuted partially, then the subtrees that test B and D may be
executed, and finally the remainder of the subtree rooted at
the test for A may be executed. This example is fairly straight-
forward, but such interleaving can become very complicated
in large graphs with lots of data dependencies and reconverg-
ing control flow.

Duplicating certain nodes in the PDG of Figure 2(a)
could produce a semantically equivalent graph with no in-
terleaving but it also could cause an exponential increase in
graph size. Instead, we restructure the graph and add predi-
cates that test guard variables (Figure 2(b)). Unlike node du-
plication, this introduces extra runtime overhead, but it can
produce much more compact code.

Our approach inserts guard variable assignments and
tests based on cuts implied by a topological ordering of the
nodes in a PDG. A cut represents a switch from an incom-
pletely scheduled child of a fork to another child of the same
fork. It divides the nodes under a branch of a fork into two
or more subgraphs.

To minimize the runtime overhead introduced by this
technique, we try to add few guard variables by making as few
cuts as possible. Ferrante et al. [15] showed the minimum cut
problem to be NP-complete, so we attempt to solve it cheaply
with heuristics.

We first compute a schedule for the PDG then follow
this schedule to find cuts where interleavings occur. We use
a heuristic to choose a good schedule, that is, one implying
few cuts, that tries to choose a good order in which to visit
each node’s successors. We identify the cuts while restructur-
ing the graph.

4.2.1. Ordering node successors

To improve the quality of the generated cuts, we use the heu-
ristic algorithm in Algorithm 2 to influence the scheduling

procedure PriorityDFS(n)
if n has not been visited, then

add n to the visited set
for each control successor s of n do

PriorityDFS(s)
A[n] = A[n]∪ A[s]

for each control successor s of n do
ComputeSuccPriority(n, s)

if n has any incoming or outgoing data arcs, then
add n to A[n]

procedure ComputeSuccPriority(n, s)
(a, b, c) = (0, 0, 0) initialize

priorities
if s has neither incoming nor outgoing data arcs,

then
a =minimum priority number
return

for each j ∈ A[s] do
x = 0, y = 0
for each data predecessor p of j do

if there is a path from n � p, then
increase a by 1
if there is not a path s � p, then

increase x by 1
increase c by 1

for each data successor i of j do
if there is a path n � i, then

decrease a by 1
decrease c by 1

if x �= 0, then
for each k ∈ A[ j] do

for each data successor m of k do
if n � m but not s � m, then

increase y by 1
decrease b by x · y

set the priority vector of s under n to (a, b, c)

Algorithm 2: Successor priority assignment.

algorithm. It computes an order for successors of each node
that the DFS-based scheduling procedure in Algorithm 3
uses to visit the successors.
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procedure ScheduleDFS(n)
if n has not been visited, then

add n to the visited set
for each ctrl. succ. i of n in descending priority do

ScheduleDFS(i)
for each data successor i of n do

ScheduleDFS(i)
insert n at the beginning of the schedule

Algorithm 3: The scheduling procedure.

We assign each successor a priority vector of three inte-
gers (p1, p2, p3) computed using the procedure described be-
low, and later visit the successors in descending priority or-
der while constructing the schedule. We totally order priority
vectors (p1, p2, p3) > (q1, q2, q3) if p1 > q1, or p1 = q1 and
p2 > q2, or if p1 = q1, p2 = q2, and p3 > q3. For each node n,
the A array holds the set of nodes at or below n that have any
incoming or outgoing data arcs.

The first priority number of si, the ith subgraph under a
node n, counts the number of incoming data dependencies.
Specifically, it is the number of incoming data arcs from any
other subgraphs also under node n to si minus the number
of outgoing data arcs to other subgraphs under n.

The second priority number counts the number of ele-
ments that “pass through” the subgraph si. Specifically, it de-
creases by one for each incoming data arcs from a subgraph
s j to a node in si with a node m that is a descendant of si that
has an outgoing data arc to another subgraph sk ( j �= i and
k �= i, but k may equal j).

The third priority counts incoming and outgoing data
arcs connected to any nodes in sibling subgraphs. It is the
total number of incoming data arcs minus the number of
outgoing data arcs.

Finally, a node without any data arc entering or leaving
its descendants is assigned a minimum first priority number.

4.2.2. Constructing the schedule

The scheduling algorithm (Algorithm 3) uses a depth-first
search to topologically sort the nodes in the PDG. The con-
trol successors of each node are visited in order from highest
to lowest priority (assigned by Algorithm 2). Ties are broken
arbitrarily, and data successors are visited in an arbitrary or-
der.

4.3. Restructuring the PDG

The scheduling algorithm presented in the previous section
totally orders all the nodes in the PDG. Data dependen-
cies often force the execution of subgraphs under fork nodes
to be interleaved (control dependencies cannot directly in-
duce interleaving because of the PLCA rule). The algorithm
described in this section restructures the PDG by insert-

(1) procedure Restructure
(2) Clear the currently active branch of each fork
(3) Clear master-copy (n) and latest-copy (n) for each

node n
(4) for each n in scheduled order starting at the root
do
(5) D = DuplicationSet(n)
(6) for each node d in D do
(7) DuplicateNode(d)
(8) for each node d in D do
(9) ConnectPredecessors(d)

Algorithm 4: The restructure procedure.

ing guard variables (specifically, assignments to and tests of
guard variables) according to the schedule to produce a PDG
where the subgraphs under fork nodes are never interleaved.

The restructuring algorithm does two things: it identi-
fies when the schedule which implies a subgraph must be cut
away from an existing subgraph and reattaches the cut sub-
graphs to nodes that test guard variables to ensure that the
behavior of the PDG is preserved.

4.3.1. The restructure procedure

The restructure procedure (Algorithm 4) steps through the
nodes in scheduled order, adding a minimal number of
nodes to the graph under construction that ensures that
each node in the schedule can be executed without interleav-
ing the execution of subgraphs under any fork. It does this
in three phases for each node. First, it calls DuplicationSet
(Algorithm 5, called from line (5) in Algorithm 4) to estab-
lish which nodes must be duplicated in order to reconstruct
the control flow to the node n. The boundary between the set
D and the existing graph can be thought of as a cut. Second,
it calls DuplicateNode (Algorithm 6, called from line (7) of
Algorithm 4) on each of these nodes to create new predicate
nodes that reconstruct control using a previously cached re-
sult of the predicate test. Finally, it calls ConnectPredecessors
(Algorithm 7, called from line (9) of Algorithm 4) to connect
the predecessors of each of the nodes in the duplication set,
which incidentally includes n, the node being synthesized.

The main loop in restructure (lines (4)–(9)) maintains
two invariants. First, each fork maintains its currently active
branch, that is, the successor in whose subgraph a node was
most recently added. This information, tested in line (10) of
Algorithm 5 and modified in line (7) of Algorithm 7, is used
to determine whether a node can be added to an existing part
of the new graph or whether the paths leading to it must be
partially reconstructed to avoid introducing interleaving.

The second invariant is that for each node that appears
earlier in the schedule, the latest-copy array holds the most
recent copy of that node. The node n can use these latest-copy
nodes if they do not come from forks whose active branch
does not lead to n.
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(1) function DuplicationSet(n)
(2) D = {n}
(3) Clear the visited set
(4) DuplicationVisit(n)
(5) return D

(6) function DuplicationVisit(n)
(7) if n has not been visited, then
(8) Mark n as visited
(9) for each predecessor p of n do
(10) if p is a fork and p → n is not currently active, then
(11) Include n in D
(12) if latest-copy(p) is undefined, then
(13) Include n in D
(14) if DuplicationVisit(p), then
(15) Include n in D
(16) return true if n ∈ D

Algorithm 5: The DuplicationSet function. A node is in the dupli-
cation set if it is along a path from a fork node that leads to n but
whose active branch does not.

(1) procedure DuplicateNode(n)
(2) if n is a fork or a statement, then
(3) Create a new copy n′ of n
(4) else n is a predicate
(5) if master-copy(n) is undefined, then making first copy
(6) Create a new copy n′ of n
(7) master-copy(n) = n′

(8) else making second or later copy
(9) Create a new node n′ that tests vn
(10) if master-copy(n)= latest-copy(n), then second
copy
(11) for i=0 to (the number of successors of n) −1
do
(12) Create a new statement node a′ assigning
vn= i
(13) Attach a′ to the ith successor of
master-copy(n)
(14) for each successor f ′ of master-copy(n) do
(15) Find a′, the assignment to vn under f ′

(16) Add a data-dependence arc from a′ to n′

(17) Attach a new fork node under each successor of n′

(18) for each successor s of n do
(19) if s is not in D, then
(20) Set latest-copy(s) to undefined
(21) latest-copy(n) = n′

Algorithm 6: The DuplicateNode procedure. This makes either an
exact copy of a node or tests cached control-flow information to
create a node matching n.

4.3.2. The DuplicationSet function

The DuplicationSet function (Algorithm 5) determines the
subgraph of nodes whose control flow must be reconstructed

(1) procedure ConnectPredecessors(n)
(2) Let n′ = latest-copy(n)
(3) for each predecessor p of n do
(4) Let p′ = latest-copy(p)
(5) if p is a fork, then
(6) Add a new successor p′ → n′

(7) Mark p → n as the active branch of p◦
(8) else p is a predicate
(9) for each arc of the form p → n do
(10) Let f ′ be the corresponding fork under p′

(11) Add a successor f ′ → n′

Algorithm 7: The ConnectPredecessors procedure. This connects
every predecessor of n appropriately, possibly using nodes that were
just duplicated. As a side effect, it remembers the active branch of
each fork.

to execute the node n. It is a depth-first search that starts at
the node n and works backward to the root. Since the PDG is
rooted, all nodes in the PDG have a path to the root node and
therefore DuplicationVisit traverses all nodes that are along
any path from the root to n.

A node n becomes part of the duplication set D under
three circumstances. The first case, tested in line (10), is when
the immediate predecessor p of n is a fork but n is not the
currently active branch of the fork. This indicates that exe-
cuting n would require interleaving because the PLCA rule
tells us that there cannot be a path to n from p through the
currently active branch under p.

The second case, tested in line (12), occurs when the lat-
est copy of a node is undefined. This occurs when a node
is duplicated but its successor is not. The latest-copy array
is cleared in lines (18)–(20) of Algorithm 6 when a node is
copied but its successors are not.

The final case, line (14), occurs when any of n’s predeces-
sors are also in the duplication set.

As a result, every node in the duplication set D is along
some path that leads from a fork node f to n that goes
through a nonactive branch of f , or leads from a node that
has not been copied “recently.” These are exactly the nodes
that must be duplicated to reconstruct all paths to n.

4.3.3. The DuplicateNode procedure

Once the DuplicationSet function has determined which
nodes must be duplicated to reconstruct the control paths to
node n, the DuplicateNode procedure (Algorithm 6) actually
makes the copies. Duplicating statement or fork nodes is triv-
ial (line (3)): the node is copied directly and the latest-copy
array is updated (line (21)) to reflect the fact that this new
copy is the most recent version of n, something that is later
used in ConnectPredecessors. Note that statement nodes are
only ever duplicated once, when they appear in the schedule.
Fork nodes may be duplicated multiple times.
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The main complexity in DuplicateNode comes when n is
a predicate (lines (5)–(17)). The first time a predicate is du-
plicated (i.e., the first time it appears in the schedule), the
master-copy array entry for it is undefined (it was cleared
at the beginning of Restructure—line (3) of Algorithm 4),
the node is copied directly, and this copy is recorded in the
master-copy array (lines (6)-(7)).

After the first time a predicate is duplicated, its duplicate
is actually a predicate node that tests vn, a variable that stores
the decision made at the predicate n (line (9)). There is just
one special case: the second time a predicate is copied (and
only the second time—we do not want to add these assign-
ments more than once), assignment nodes are added under
the first copy (i.e., the master-copy of n in the new graph)
that saves the result of the predicate in the vn variable. This is
done in lines (11)–(13).

An invariant of the DuplicateNode procedure is that ev-
ery time a predicate node is duplicated, the duplicate version
of it has a new fork node placed under each of its succes-
sors (line (17)). While these are often redundant and can be
removed, they are useful as anchor points for the nodes that
cache the results of the predicate and in the uncommon (but
not impossible) case that the successor of a predicate is part
of the duplicate set but that the predicate is not.

4.3.4. The ConnectPredecessors procedure

Once DuplicateNode runs, all nodes needed to run n are in
place but unconnected. The ConnectPredecessors procedure
(Algorithm 7) connects these duplicated nodes to the appro-
priate nodes.

For each node n, ConnectPredecessors adds arcs from
its predecessors, that is, the most recent copies of each. The
only minor trick occurs when the predecessor is a predicate
(lines (9)–(11)). First, DuplicateNode guarantees (line (17)
of Algorithm 6) that every successor of a predicate is a fork
node, so ConnectPredecessors actually connects the node to
this fork, not to the predicate itself. Second, it can occur that
a single node can have a particular predicate node appearing
two or more times among its predecessors. The foreach loop
in lines (9)–(11) connects all of these explicitly.

4.3.5. Examples

Running this procedure on Figure 4(a) produces the graph
in Figure 4(b). The procedure copies nodes n1–n5. At this
point, n0→n3 is the active branch under n0, which is not on
the path to n6, so a cut is necessary. DuplicationSet returns
{n1, n6}, so n1 will be duplicated. This causes DuplicateN-
ode to create the two assignments to v1 under n1 and the
test of v1. ConnectPredecessors then connects the new test of
v1 to n0 and n6 to the test of v1. Finally, the algorithm just
copies nodes n7–n13 into the new graph.

Figure 5 illustrates the operation of the procedure on a
more complicated example. The PDG in (a) has some bizarre
control dependencies that force the nodes to be executed in
the order shown. The large number of forced interleavings
generates a fairly complex final result, shown in Figure 5(e).

The algorithm behaves simply for nodes n0–n8. The state
after n8 has been added as shown in Figure 5(b).

Adding n9, however, is challenging. DuplicationSet
returns {n9, n6, n5} because n8 is the active node under n4,
so DuplicateNode copies n9, makes a second copy of n6 (la-
beled n6′), creates a new test of v5, and adds the assignments
to v5 under n5 (the fork under the “0” branch from n5 has
been omitted for clarity). Adding n9’s predecessors is easy:
it is just the new copy of n6, but adding n6’s predecessors is
more complicated. In the original graph, n6 is connected to
n3 and n5, but only n5 was duplicated, so n6′ is connected to
v5 and to a fork of the copy of n3.

Figure 5(d) adds n10, which is simple because although
n3 was the active branch under n1, n10 only has it as a pre-
decessor.

Finally, Figure 5(e) shows the addition of n11, complet-
ing the graph. DuplicationSet returns {n11, n6, n3}, so n3 is
duplicated and assignment nodes to v3 are added. Again, n6
is duplicated to become n6′′, but this time n3 was duplicated.

4.3.6. Fusing guard variables

An unfortunate choice of schedule clearly illustrates the need
for guard variable fusion. Consider the correct but nonopti-
mal schedule n0, n1, n2, n6, n9, n3, n4, n5, n7, n8, n10, n11,
n12, n13 for the PDG in Figure 4(a). Figure 4(c) depicts the
effect of so many cuts. The main waste is the cascade of con-
ditionals along the right side of the graph (predicates on v1,
v6, and v9). For efficiency, we replace such predicate cascades
with single multiway conditionals.

Figure 4(d) illustrates the effect of fusing guard variables.
The predicate cascade has been replaced by a single multi-
way branch that tests the fused guard variable v169 (formed
by fusing predicates v1, v6, and v9). Similarly, group assign-
ments to these variables are fused, resulting in three single
assignments to v169 instead of three group concurrent as-
signments to v1, v6, and v9.

4.4. Generating sequential code

After the restructuring procedure described above, the PDG
is structured such that the subgraphs under each fork node
can be executed in a particular order. This order is nonobvi-
ous when there is reconvergence in the graph, and appears to
be costly to compute. Fortunately, Simons and Ferrante [14]
developed the external edge condition (EEC) as an efficient
way to compute this ordering. Basically, the nodes in eec(n)
are executed whenever any node in the subgraph under n is
executed.

In what follows, X < Y indicates that G(X) must be
scheduled before G(Y); X > Y indicates that G(X) must be
scheduled after G(Y); Y ∼ X indicates that any order is ac-
ceptable; and Y �= X indicates that no order is acceptable.
Here, G(n) represents n and all its control descendants.

We reconstruct the graph by ordering fork successors.
Given the EEC information, we use the rules in Steensgaard’s
decision table [16] to order pairs of fork successors. When
the table says any order is acceptable, we order the successors
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Figure 4: (a) A PDG requiring interleaving. (b) After restructuring. Only a single guard variable has been introduced. (c) After restructuring
with a different schedule. (d) After guard variable fusion on (c).

based on data dependencies. However, if, say, the EEC table
says G(X) must be scheduled before G(Y), yet the data de-
pendencies indicate the opposite order, the data dependen-
cies win and two additional nodes are inserted, one that sets
a guard variable and the other that tests it. Algorithm 8 illus-
trates the procedure.

In Figure 4(b), data dependency forces n11 > n10, but the
external edge condition could require n10 > n11 if there was
a control edge from a descendant of n11 to a descendant of
n10 (i.e., if there were more nodes under n10). In this case,
n10 �= n11, so our algorithm will cut the graph at n11 and
add a guard there.

This produces a sequential control-flow graph for the
concurrent program. We generate structured C code from it
using the algorithm described in Edwards [11].

5. DYNAMIC LIST CODE GENERATION

The PDG technique we described in the previous section has
one main drawback: it must assign a variable and later test
it for threads that are not running. This can be inefficient,
so our second code generation approach takes a different ap-
proach: it tries to do absolutely no work for parts of the pro-
gram that do not run. The results are mixed: the generated
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Figure 5: (a) A complex example. (b) After adding nodes n0–n8. (c) After adding n9, (d) n10, and (e) n11.
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procedure OrderSuccessors(G)
for each node n do

if n is a fork node, then
original-successors = control successors of n
clear the control successors of n
for each X in original-successors do

for each control successor Y of n do
if X ∼ Y , then

if ∃(m,n) ∈ D, m ∈ G(X), n ∈ G(Y), then
insert X before Y in n’s successors

else if Y < X , then
if ∃(m,n) ∈ D, m ∈ G(Y), n ∈ G(X), then

Cut Y
insert X before Y in n’s successors

else if Y > X , then
if ∃(m,n) ∈ D, m ∈ G(X), n ∈ G(Y), then

Cut X
else

insert X before Y in n’s successors
else if Y �= X , then

if ∃(m,n) ∈ D, m ∈ G(X), n ∈ G(Y), then
Cut Y
insert X before Y in n’s successors

else
Cut X

if X was not inserted, then
append X to the end of n’s successors

Algorithm 8: The successor ordering procedure.

code is faster than the PDG technique only for certain exam-
ples, probably because the overhead for the code that runs is
higher for this technique.

We based the second code generation technique on that
in the SAXO-RT compiler [17, 18]. It produces C code that
executes concurrently running threads by dispatching small
groups of instructions that can run without a context switch.
These blocks are dispatched by a scheduler that uses linked
lists of pointers to code blocks that will be executed in the
current cycle. The scheduling constraints are analyzed com-
pletely by the compiler before the program runs and affects
both how the Esterel programs are divided into blocks and
the order in which the blocks may execute. Control state is
held between cycles in a collection of variables encoded with
small integers.

5.1. Sequential code generation

This code generation technique relies on the following obser-
vations: while arbitrary groups of nodes in the control-flow
graph cannot be executed without interruption, many large
groups often can be; these clusters can be chosen so that each
is invoked by at most one of its incoming control arcs; be-
cause of concurrency, a cluster’s successors may have to run
after some intervening clusters have run; and groups of clus-
ters without any mutual data or control dependency can be
invoked in any order (i.e., clusters are partially ordered).

Our key contribution comes from this last observation:
because the clusters within a level can be invoked in any or-
der, we can use an inexpensive linked list to track which clus-
ters must be executed in each level. By contrast, the schedul-
ing of most discrete event simulators [19] demands a more
costly data structure such as a priority queue.

The overhead in our scheme approaches a constant
amount per cluster executed. By contrast, the overhead of the
SAXO-RT compiler [20] is proportional to the total number
of clusters in the program, regardless of how many actually
execute in each cycle, and the overhead in the netlist compil-
ers is even higher; proportional to the number of statements
in the program.

The compiler divides a concurrent control-flow graph
into clusters of nodes that can execute atomically and orders
these clusters into levels that can be executed in any order.
The generated code contains a linked list for each level that
stores which clusters need to be executed in the current cycle.
The code for each cluster usually includes code for schedul-
ing a cluster in a later level; a simple insertion into a singly
linked list.

Figure 5 shows the effect of running our clustering al-
gorithm (Algorithm 9, explained below) on the control-flow
graph in Figure 1(b). The algorithm identified nine clusters.
The algorithm does not always return the optimum (i.e., it
may produce more clusters than necessary), but this is not
surprising since the optimum scheduling problem is NP-
complete (see Edwards [11]).

After nine clusters were identified, our levelizing algo-
rithm, which uses a simple relaxation technique, grouped
them into the six levels delineated by dotted lines in Figure 5.
It observed that clusters 1, 2, and 3 have no dependencies,
and thus can be executed in any order. As a result, it placed
them together in the second level. Similarly, clusters 4 and 5
have no dependencies between them. The other clusters are
all interdependent and must be executed in the order identi-
fied by the levelizing algorithm.

The main trick in our code generation technique is its
synthesized scheduler, which maintains a sequence of linked
lists. The generated code maintains a linked list of entry
points for each level. In Figure 6(b), each head variable
points to the head of the linked list of each level; each next
variable points to the successor of each cluster.

The code in Figure 6(b) uses GCC’s computed goto ex-
tension. This makes it possible to take the address of a label,
store it in a void pointer (e.g., void *head1 = &&C1), and
later branch to it (e.g., goto *head1) provided this does not
cross a function boundary. We also provide a compiler flag
that generates more standard C code by changing the gen-
erated code to use switch statements embedded in loops in-
stead of gotos. However, using the computed-goto extension
noticeably reduces scheduling overhead since a typical switch
statement requires either a cascade of conditionals or at least
two-bound checks plus a jump table.

Figure 7 illustrates the behavior of these linked lists.
Figure 7(a) shows the condition at the beginning of every cy-
cle: every level’s list is empty—the head pointer for each level
points to an end-of-level block that runs the next level. If no
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#define sched1 next1 = head1, head1 = &&C1 C1: if (B) C = 1;
#define sched2 next2 = head1, head1 = &&C2 goto ∗next1;
#define sched3 next3 = head1, head1 = &&C3 C2: goto ∗next2;
#define sched4 next4 = head2, head2 = &&C4 C3: goto ∗next3;
#define sched5 next5 = head2, head2 = &&C5 L1: goto ∗head2;
#define sched6 next6 = head3, head3 = &&C6
#define sched7a next7 = head4, head4 = &&C7a C4: if (C) D = 1;
#define sched7b next7 = head4, head4 = &&C7b sched7a; goto ∗next4;
#define sched8a next8 = head5, head5 = &&C8a C5: sched8b; goto ∗next5;
#define sched8b next8 = head5, head5 = &&C8b L2: goto ∗head3;
#define sched8c next8 = head5, head5 = &&C8c

C6: if (D) E = 1;
int example() goto ∗next6;
{ L3: goto ∗head4;

/∗ successor of each block ∗/
void ∗next1, ∗next2, ∗next3, ∗next4; C7a: if (E) {
void ∗next5, ∗next6, ∗next7, ∗next8; s2 = 0;
/∗ head of each level’s linked list ∗/ j1 &= −(1 � 2);
void ∗head1 = &&L1, ∗head2 = &&L2; } else {
void ∗head3 = &&L3, ∗head4 = &&L4; C7b: s2 = 1;
void ∗head5 = &&L5; j1 &= −(1 � 1);

}
switch (s1) { goto ∗next7;
case 0: sched8c; break; L4: goto ∗head5;
case 1:

s1 = 1; C8a: switch (∼j1) {
sched5; sched3; sched2; case 1: break;
if (s2) B = 1; case 3: C8b: C8c:
s2 = 0; s1 = 0; break;
break; }

case 2: goto ∗next8;
s1 = 1; L5:
j1 = ∼ 0;
sched8a; sched6; sched1; if (B) {example O B(); B = 0;}
if (A) { if (C) {example O C(); C = 0;}

B = 1; sched4; if (D) {example O D(); D = 0;}
} else sched7b; if (E) {example O E(); E = 0;}
break; A = 0;

} return s1 != 0;
goto ∗head1; }

(b)

Figure 6: (a) The control-flow graph from Figure 1(b) divided into clusters. Each row of clusters is a level. To guarantee each cluster has at
most one active incoming control arc, control arcs reaching join nodes have been replaced with (dashed) data dependencies, and to replace
these lost control dependencies, one arc has been added from each fork to its join. (b) The code our compiler generates for this graph
(reformatted for clarity).

blocks where scheduled, the program would execute the code
for cluster 0 only.

Figure 7(b) shows the pointers after executing sched3,
sched1, and sched4 (note that this particular combination
never occurs in this program). Invoking the sched3 macro
(see Figure 6(b)) inserts cluster 3 into the first level’s linked
list by setting next3 to the old value of head1—L1—and set-
ting head1 to point to C3. Invoking sched1 is similar: it sets
next1 to the new value of head1—C3—and sets head1 to
C1. Finally, invoking sched4 inserts cluster 4 into the linked
list for the second level by setting next4 to the old value of
head2—L2—and setting head2 to C4. This series of schedul-
ing steps produces the arrangement of pointers shown in
Figure 7(b).

Because clusters in the same level may be executed in any
order, clusters in the same level can be scheduled cheaply by
inserting them at the beginning of the linked list. The sched
macros do exactly this. The level of each cluster is hardwired
since this information is known at compile time.

A powerful invariant arises from the structure of the
control-flow graph: each cluster can be scheduled at most
once during any cycle. This makes it unnecessary for the gen-

erated code to check that it never inserts a cluster in a partic-
ular level’s list more than once.

As is often the case, clusters 7 and 8 have multiple entry
points. This is easily handled by using a different value for the
pointer to the entry point to the cluster but using the same
“next” pointer. See the rules for sched7a and sched7b in
Figure 6(b).

We use the dominator-based code structuring algorithm
described in Edwards [11] to generate structured code for
each cluster. This occasionally inserts a goto to avoid dupli-
cating code.

5.2. The clustering algorithm

Algorithm 9 shows our clustering algorithm. It is heuristic
and certainly could be improved, but is correct and produces
reasonable results.

One important modification is made to the control-flow
graph before our clustering algorithm runs: all control arcs
leading to join nodes are removed and replaced with data de-
pendency arcs, and a control arc is added from each fork to its
corresponding join. This operation guarantees that no node
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(1) add the topmost control-flow graph node to F,
the frontier set

(2) while F is not empty do
(3) randomly select and remove f from F
(4) create a new, empty pending set P
(5) add f to P
(6) set Ci to the empty cluster
(7) while P is not empty do
(8) randomly select and remove p from P
(9) if p is not clustered and all of p’s predecessors are, then
(10) add p to Ci (i.e., cluster p)
(11) if p is not a fork node, then
(12) add all of p’s control successors to P
(13) else
(14) add the first of p’s control successors to P
(15) add all of p’s successors to F
(16) remove p from F
(17) if Ci is not empty, then
(18) i = i + 1 (move to the next cluster)

Algorithm 9: The clustering algorithm. This takes a control-flow
graph with information about control and data predecessors and
successors and produces a set of clusters {Ci}, each of which is a set
of nodes that can be executed without interruption.

ever has more than one active incoming control arc (before
this change, each join had one active incoming arc for every
thread it was synchronizing). Figure 5 reflects this restruc-
turing (dashed control-flow lines denote the arcs that were
removed). This transformation also simplifies the clustering
algorithm, which would otherwise have to handle joins spe-
cially.

The algorithm manipulates two sets of CFG nodes. The
frontier set F holds the set of nodes that might start a new
cluster, that is, those nodes with at least one clustered pre-
decessor. F is initialized in line (1) with the first node that
can run—the entry node for the control-flow graph—and is
updated in line (15) when the node p is clustered. The pend-
ing set P, used by the inner loop in lines (7)–(16), contains
nodes that could be added to the existing cluster. P is initial-
ized in line (5) and updated in lines (12)–(14).

The algorithm consists of two nested loops. The
outermost (lines (2)–(18)) selects a node f at random from
the frontier F (line (3)) and tries to start a cluster around it
by adding it to the pending set P (line (5)). The innermost
(lines (7)–(16)) selects a node p at random from the pending
set P (line (8)) and tries to add it to the current cluster Ci.

The test of p’s predecessors in line (9) is key. It ensures
that when a node p is added to the current cluster, all its
predecessors have already been clustered. This ensures that
in the final program, all of p’s predecessors will be executed
before p. If this test succeeds, p is added to the cluster under
construction in line (10).

All of p’s control successors are added to the pending
set in line (12) if p is not a fork node, and only the first if
p is a fork (line (14)). This test partially breaks clusters at
fork nodes, ensuring that all the nodes within a cluster are
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Figure 7: Cluster code and the linked list pointers: (a) at the begin-
ning of a cycle; (b) after executing sched3, sched1, and sched4.

connected with sequential control flow, that is, they do not
run concurrently. Always choosing the first successor under
a fork is arbitrary and may not be the best. In general, the
optimum choice of which thread to execute depends on the
entire structure of the threads. But even the simple-minded
rule of always executing the first thread under a fork, as op-
posed to simply scheduling it, greatly reduces the number of
clusters and significantly improves performance.

6. VIRTUAL MACHINE CODE GENERATION

Because embedded systems often have limited resources such
as power, size, computation speed, and memory, we designed
our third code generator to produce small executables rather
than striving for the highest performance.

To reduce code size, we employ a virtual machine
that provides an instruction set closely tailored to Esterel.
Lightweight concurrency support is its main novelty (a con-
text switch is coded in two bytes), although it also provides
support for Esterel’s exceptions and signals.

Along with the virtual machine, we developed a code-
generation approach, which, like the algorithm devised by
Edwards for the Synopsys Esterel compiler [11], translates a
concurrent control-flow graph (i.e., GRC) into a sequential
program with explicit context switches. We describe this in
Section 6.6.
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6.1. The BAL virtual machine

We designed our virtual machine (BAL: bytecode assembly
language) to execute Esterel programs in as little memory
as possible. Since Esterel programs, with their concurrency,
preemption, and signals, behave very differently than, say, C
programs, it seemed obvious to implement a virtual machine
whose instruction set was customized to Esterel semantics.
We devised the instruction set in Table 1 for this purpose.

Instructions in our virtual machine are one or more bytes
long. The first byte is the opcode; any second or later bytes are
operands, which may be both eight and sixteen bits.

Our virtual machine has separate “registers” for signal
presence information, thread completion codes (exception),
interthread state, and thread program counters in addition to
a set of integervalued general-purpose registers and a small
stack for evaluating expressions. To limit their addresses to a
single byte, there may be no more than 256 of each type (ex-
cept for the stack). The actual number of each is a compile-
time constant and may be adjusted for a particular imple-
mentation environment.

6.2. General-purpose and signal registers

The general-purpose registers are the most standard. The
value of such a register, an int in C, may be pushed onto the
stack with LDR and set by popping a value from the stack
with STR. Both have a register number as an operand. The
value of registers persist between cycles, so they are used to
hold the values of (integer-) valued signals, Esterel variables,
and values of implicit counters. Conditional decrement—
CDEC—is the other instruction that touches these registers.
An oddball designed to support Esterel’s counters, it replaces
the top of the stack with 1 if the given register contains zero
and 0 otherwise. Moreover, if the previous top-of-stack was
nonzero, the given register is first decremented before being
tested.

Signal-presence registers are Boolean-valued, are set and
reset by the EMIT and RST instructions, can be read onto
the stack by the LDS instruction, and begin each cycle in the
absent state.

6.3. Completion code registers

Thread completion code registers are used for concurrent ex-
ception handling and hold small nonnegative integers (our C
implementation uses unsigned chars). Like signals, their val-
ues are reset (to zero) at the beginning of each cycle. The
value of a completion code register is set with the TRM in-
struction, which sets a given register to a given value pro-
vided the existing value in the register is less than the new
one. Thus, the TRM instruction implicitly performs a max
operation when multiple numbers are assigned to the same
completion code register. Completion codes we use are the
standard ones for Esterel [12], that is, 0 for termination, 1
for pause, and 2 and higher for traps.

The only instruction that tests a completion code regis-
ter is BCC, which is one of two multiway branch statements

Table 1: The virtual machine instruction set.

Instruction Description Encoding

Signal, state, and thread instructions

EMIT sig Emit signal 00 GG

RST sig Reset signal 01 GG

SET st const Set state 02 SS VV

STRT th a Start thread 03 TT HH LL

Control-flow instructions

TICK End of instant 04

JMP a Jump 05 HH LL

Branch, switch, and terminate instructions

BST st a1 · · · an Branch on state variable
06 SS HH1 LL1

· · · HHn LLn

BCC cc a1 · · · an Branch on completion code
07 CC HH1 LL1

· · · HHn LLn

BNZ a Branch on nonzero 08 HH LL

SWC th Switch to thread 09 TT

TRM cc code Terminate thread 0B CC VV

Load/store instructions

LDI const Load immediate 0C HH LL

LDS sig Load signal status 0D GG

LDR reg Load register 0E RR

STR reg Store register 0F RR

Arithmetic and logical instructions

ADD Add 10

SUB Subtract 11

MUL Multiply 12

DIV Divide 13

MOD Remainder 14

CMP Compare 15

NEQ Compare not equal 16

LT Less than 17

LEQ Less than or equal 18

GT Greater than 19

GEQ Greater than or equal 1A

AND Logical AND 1B

OR Logical OR 1C

NEG Negate (unary) 1D

NOT Logical NOT (unary) 1E

CDEC reg Conditional decrement 1F RR

RR = register number, SS = state number, GG = signal number,
TT = thread number, CC = code number, VV = 8-bit value,
HH = high-order byte, LL = low-order byte.

in our instruction set. This reads a value i from the given
completion code register and branches to the ith address fol-
lowing the instruction. This behavior mimics the C switch
statement in that it uses a jump table to perform a multi-
way branch, but does not perform any range checking on the
value. The BCC instruction is used for join nodes in the GRC,
which has exactly these semantics.
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6.4. Arithmetic and the stack

Our VM uses a stack for arithmetic operations. It includes
the usual stack-based arithmetic operators, which each pops
the top two instructions off the stack, performs the opera-
tion, and pushes the result back on the stack. The instruc-
tions include arithmetic, comparison, and logical operators.
Most are binary, but there are also unary negation and logical
NOT operators that only modify the top-of-stack.

The stack is only used for storing temporary results of
expression evaluation. Esterel’s concurrency semantics con-
veniently never demand a context switch take place during an
expression evaluation. This makes it possible to have a single
stack shared among all threads with no danger of collision
since context switches only ever take place when the stack is
empty. Similarly, the stack is always empty at the end of a
cycle.

The LDI, LDS, and LDR instructions push an immedi-
ate value, a signal status, and a register value onto the stack
respectively. The STR instruction pops the top of the stack
into a register. The BNZ instruction tests the top of the stack
and branches if it is nonzero. It is used to implement Esterel’s
present and if statements.

6.5. Concurrency

Concurrency support is the main novelty in our VM. It is
fairly simple: there is a collection of program counters, one
for each thread. The STRT instruction initializes a given pro-
gram counter with a specific address, and the SWC instruc-
tion stores the running program counter before switching to
the given thread.

Esterel’s semantics avoid the need to store context be-
yond a program counter for each thread. The signal presence
registers are by default visible to all threads (Esterel scop-
ing rules limit which threads may access which signals, but
our compiler enforces this, not our VM). By the same to-
ken, the general-purpose registers are global. The completion
code registers are always accessed by multiple threads and are
global. Thus the stack is the only possible candidate for be-
ing local, but as mentioned above Esterel’s semantics allow
the stack to be always empty when a context switch occurs,
meaning it does not have to be stored as part of a thread’s
context.

The generated code for an Esterel program always starts
with a sequence of STRT statements, one for each thread, that
initializes each to a typically trivial code sequence that han-
dles the case when the thread is never started. This is a subtle
point: at first glance, it would seem possible to simply mark
never-running threads as dead and pass control over them
when an SWC instruction attempts to send control to them.
However, the issue arises of where to send control after at-
tempting to send it to a terminated thread. It turns out that
our scheduling procedure requires fairly detailed, context-
specific rules for this so the easiest way to handle the situ-
ation is to simply have special “dead” code for each thread
that simply passes control to the next scheduled thread when
control reaches it.

The initial STRT statements set the PC of each thread to
its “dead” version, but a later STRT statement can override
these values and point the PC for a thread to the start of ac-
tual code for it. Such statements are generated for fork nodes
in the GRC.

6.6. Sequential code generation

Our sequential code generation technique generates
bytecode from CEC’s GRC representation of the concurrent
Esterel program. One of its main goals is to take advantage
of the context-switching machinery in our VM, which we
designed to match with this procedure. Generated C code
requires a fair amount of overhead for each context switch,
such as a switch statement; our VM encodes a complete
context switch in two bytes.

The design of our VM and the matching code genera-
tor are the main contributions of this approach. The synthe-
sis algorithm adds context switches based on the schedule of
nodes in the GRC representation of the Esterel program de-
scribed in Section 3. We added a module to CEC that sched-
ules the nodes, assigns a thread number to each node, se-
quentializes the graph, and finally outputs the BAL represen-
tation (Section 6.1). Figure 8 shows the graph and generated
code produced by sequentializing the program in Figure 1.

Our algorithm begins by topologically sorting the nodes
in the control-flow portion of the GRC for the program. This
produces a schedule that respects both control and data de-
pendencies (data dependencies are drawn as dashed lines in
Figure 1(b)), and we assume the graph is cycle-free.

Next, we assign a thread number to each node. This is
straightforward: the topmost thread is numbered 0 and the
threads under a fork are numbered sequentially starting with
the next available thread number. Our one trick is to give
the first child thread under each fork the same number as
its parent. This is safe since a parent never runs until all its
children have terminated.

The next step is sequentialization, which we describe in
detail in the next section. Our algorithm introduces two new
types of control-flow graph nodes: a switch node, which be-
comes an SWC statement in the generated BAL and corre-
sponds to a point where control transfers from one thread to
another; and an active node, which corresponds to a point
where control can transfer in from another thread via a con-
text switch.

Finally, the BAL is generated by performing a depth-
first search on the graph and generating one or more BAL
instructions for each node. Needed jump instructions and
labels are added at this point. The generated code could ben-
efit from certain classical optimizations such as straightening
[21]; we have not yet implemented these optimizations.

6.7. The sequentializing algorithm

Algorithm 10 shows our sequentializing algorithm. Before
these runs, all the nodes are scheduled to respect control
and data dependencies and each node is annotated with the
thread in which it resides.
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Figure 8: (a) The sequentialized control-flow graph for the example in Figure 1 and (b) the BAL code generated from it. X’s represent context
switch points; dotted lines indicate the successors of those points.
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(1) Set c, the current thread, to be the first thread
(2) Create a new NOP node n′ for n, the first node in the schedule
(3) Set e[n] = n′ existing version of n
(4) Add n′ to r[c] ready-to-run nodes in c
(5) for each node n in scheduled order do
(6) Set t to the thread of n
(7) if t �= c, then new thread �= current: context switch
(8) for each ready-to-run node n′ ∈ r[c] do suspend thread c
(9) Add an arc from n′ to a new switch-to-t node
(10) Replace n′ in r[c] with the new switch
(11) Set e[n′] to the new switch
(12) for each ready-to-run node n′ ∈ r[t] do activate thread t
(13) Add an arc from n′ to a new active point node
(14) Replace n′ in r[t] with the new active point
(15) Set e[n′] to the new active point
(16) Set c = t remember current thread
(17) In the new graph, make a copy n′ of n synthesize
(18) Add an arc from n’s stub e[n] to n′ attach predecessors
(19) Remove n′ from r[t] just “ran” n′

(20) for each successor s of n do
(21) if s is null, then
(22) Add an arc from n′ to a new NOP node
(23) else
(24) Set a = the thread of s
(25) if n is fork and a �= t, then starting a new thread
(26) Create l and d, live and dead active points for a
(27) Start d as a at the beginning of the program
(28) Add l and d to r[a]
(29) Set e[s] = l
(30) else if s is a join and a �= t, then ending this thread
(31) Create a NOP node s′ for s
(32) Add an arc from n′ to s′

(33) Add s′ to r[t] stay in thread t to force C.S.
(34) else s is a normal node
(35) if e[s] does not exist, then
(36) Create a NOP node s′ for s
(37) Set e[s] = s′

(38) Add an arc from n′ to e[s]
(39) Add e[s] to r[t]

Algorithm 10: The sequentializing algorithm.

The algorithm steps through the nodes in scheduled or-
der, copying each to a new, sequential graph, and connecting
predecessors and successors along the way. Context switch
and active point nodes are added to the new graph based on
when the schedule says a context switch occurs. Figure 9 il-
lustrates the operation of the algorithm on a small example.

The algorithm maintains two associative arrays. For each
node n in the original graph, e[n] is the “stub” in the new
graph for it, that is, a node to which the copy of n should be
attached.

The other array is r[t], which holds, for each thread t, the
set of stub nodes in the new graph that correspond to ready-
to-run nodes in the thread t, that is, those nodes that have a
stub node that will activate them.

The algorithm consists of one main loop, lines (5)–(39),
that steps through the nodes in scheduled order. This loop
has a number of invariants: when the loop considers a node
n, all its predecessors have been synthesized and there is a
stub node for it (i.e., e[n] has been defined).

The body of the main loop performs three main func-
tions. First, if necessary, a context switch is performed from
the currently running thread c (set initially in line (1) and
updated in line (16)) to t, the thread of the current node
n. This context switch is performed in lines (7)–(16). After
the possible context switch, the algorithm copies the GRC
node n to the new graph and connects it (lines (17)–(19)).
Finally, the algorithm connects the successors of the newly
copied node n′ (lines (20)–(39)). There are special cases
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for null successors, fork nodes, and when control reaches a
join.

6.8. An example

Figure 9 depicts the structure of the sequential graph being
built for the GRC in Figure 9(a). The product, after removing
the redundant NOP nodes that are built for convenience by
the algorithm, is shown in Figure 9(b). A number on a node
in these two subfigures indicates its position in the schedule.

In Figures 9(c)–9(i), we write a number on a node n to
indicate that it is the stub for n, that is, e[n], and enclose in a
gray box all the nodes in the two r[t] sets.

The algorithm begins by creating a NOP node that will be
the stub for the first node in the schedule (line (2)), and mak-
ing it the sole ready-to-run node for the outermost thread c
(line (4)).

This first time through the loop, no context switch is
needed, so the algorithm immediately copies the node (line
(17)), makes it the successor of its stub—the NOP node cre-
ated in line (2) (line (18))—and removes it from r[c].

The successors of the first node are both “normal” and
in the same thread, so they are handled by lines (34)–(39).
For each successor, this creates a NOP node for it (a stub) if
one did not exist already (lines (35)–(37)), adds an arc from
the newly synthesized node n′ to the stub (line (38)), and
indicates that this node is now in the ready-to-run set (line
(39)).

Figure 9(c) shows the state of the graph and the r and e
arrays at the end of the first iteration of the loop.

The second node to be synthesized is a fork, which is
more complicated. Again, a context switch is unnecessary, so
the algorithm copies the fork node into the sequential graph,
connects it to the stub for 2 created at the end of the last iter-
ation, and removes this stub from the r set (lines (17)–(19)).

This time, however, the node is a fork so some of its suc-
cessors are handled by lines (25)–(29). A fork has two types
of successors: successors that represent new threads, and one
that is taken as being part of the same thread as the fork itself.
As mentioned earlier, our algorithm always “reuses” the par-
ent thread for one child since we are guaranteed that the par-
ent and child never run simultaneously. This simplifies the
generated code and reduces the number of threads that needs
to be considered.

In this example, we assume that node 3 is in the same
thread as node 2, but that node 4 is in a separate thread. The
new thread case is handled by lines (25)–(29), which creates
two new nodes for the thread, “l,” that becomes the entry
point for the code in the thread, and “d,” which will behave
as the thread when it is not started. The code under d will
be nothing but SWC statements, so it will always immedi-
ately pass control to the next thread in the schedule. This is
done by adding d to the ready-to-run nodes for thread a (the
one being activated by the fork, done in line (28)). Since it is
ready, the context switching code in lines (7)–(16) will attach
switch nodes and active points to it, but because it is never
considered a stub for any node (only l is: line (29)), it will
never have a node from the GRC attached to it.

Code that starts each node is placed at the beginning of
the program in line (27). Such code initializes the program
counters of all the threads to their dead state; the code gen-
erated at a fork node overwrites these values if the fork is
executed.

The successor node 3, which is in the same thread as 2, is
handled by the normal rules in lines (34)–(39): it creates the
stub node for 3 and adds it to the r set for the main thread.

Figure 9(d) shows the state of the graph after the fork has
been added. There are now two threads and thus two r sets.
One of the ready-to-run stubs in the second thread is where
node 4 (the first node in that thread) will be attached; the
other is for the “dead” version of the thread.

Synthesizing node 3 is easy because its thread is already
running. Figure 9(e) shows the state, which has replaced the
stub for 3 with that for 6 in the ready set for the main thread.

Synthesizing node 4 causes a context switch. First, lines
(8)–(11) attache a switch node to each ready-to-run stub in
the first thread and make these the new ready-to-run stubs
for each of the nodes. This will cause control to switch to
the other thread. Next, active nodes are added after every
ready-to-run stub in the new thread t (lines (12)–(15)); these
replace the ready-to-run stubs. Finally, c, the current thread
is set to t (line (16)).

Now that the context switch has been performed, the al-
gorithm synthesizes node 4 (attaching it to the newly created
active point) and then attaches its successors. Node 4 has a
single successor, the join node 6. Since this is in a different
thread (the first one), it is handled by lines (30)–(33). This
code has one subtle difference from the normal case: e[s] is
not set to the newly created NOP for this node. This is be-
cause the thread of the join itself (one of the children of the
fork) will eventually synthesize the join as part of that thread,
as it should. Instead, the NOP acts as a sort of placeholder to
ensure that a final context switch that returns the thread of
the join will be placed there (adding it to the ready-to-run
set in line (33) ensures this).

Figure 9(f) shows the state after the context switch has
occurred and node 4 has been synthesized. There are still two
ready sets, one for each thread, but the set for the main thread
consists of nothing but switch nodes (the crosses are labeled
5 and 6, since they are stubs for those nodes).

Synthesizing node 5 also causes a context switch. Switch
nodes are added after the two ready nodes for the right thread
by lines (8)–(11), active points for the two ready nodes in the
left thread are added by lines (12)–(15), node 5 is synthesized
and attached in lines (17)–(19), and the stub for node 7 is
attached to it and made ready. Figure 9(g) depicts this state.

Next, node 6, the join, is synthesized. No context switch
is necessary. Since an active point for 6 was created by the
last context switch, the new node 6 is attached to it. The one
different thing here is that there is already a stub for node 7
(created because node 5 also had it as a successor), so the test
on line (35) fails and the arc from the synthesized version of
6 is connected to the old node. Figure 9(h) shows this case.

Finally, node 7 is synthesized in a straightforward way
to produce the graph in Figure 9(i). This is the final graph
modulo the many redundant NOPs that were inserted as
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Figure 9: The operation of the sequentializing algorithm. Applied to the graph in (a), the algorithm produces the sequentialized graph in
(b) after NOPs (round nodes) are removed. In steps (c)–(i), numbers indicate which nodes are “stubs.” Gray boxes indicate the set of ready
nodes for each thread. Synthesizing the decision is simple (c), the fork starts another thread (d), the emit is also easy since it is in the same
thread as the fork (e), but synthesizing the hexagon requires a context switch (f), as synthesizing the pentagon does (g). Synthesizing the join
is again easy because it is in the same thread as the pentagon (h), and finally the square is very easy (i).
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placeholders. Figure 9(b) shows the graph after these NOPs
have been removed. It is from graphs such as these that we
generate bytecode.

7. EXPERIMENTAL RESULTS

We gathered a set of benchmarks (Table 2), generated code
for them using CEC, and compared the size and speed of this
code with that from the V3, V5, and V7 compilers on a va-
riety of processors (Table 3). Most of the examples are fairly
small and taken from the CEC regression test suite (grcbal3
is the example in Figure 1), but a few are “real” programs.
The two warehouse examples, due to White and Lüttgen,
were written to demonstrate the use of Esterel as a robot con-
troller. The lego examples are from Martin Richard’s Esterel-
on-Lego website.2 Abcd is a simple combinational lock due
to Berry, tcint is a Turbochannel bus controller, atds-100
is another bus controller, and ww is the wristwatch due to
Berry, all parts of the Estbench benchmark suite. Chorus is a
task controller [18], mca-200 is a shock absorber controller
[24], and counter16 is a 16-bit counter modeled in a discrete-
event style due to Henning Zabel and Wolfgang Müller. This
last benchmark illustrates the power of Esterel’s run state-
ment: the Esterel source file is only 800 lines long, includ-
ing comments, but balloons to nearly 7000 when macros are
expanded.

7.1. The benchmarks

The Lines column in Table 2 provides a rough measure of the
complexity of the benchmark: it lists the number of lines
of code generated from the CEC pretty printer after run
statements have been expanded. Esterel does not have func-
tion calls per se, but does have this macro-like module facil-
ity. The Lines column takes this expansion into account and
more closely reflects the complexity of the example.

The Threads column provides a measure of concurrency:
it lists the number of threads identified by the VM code gen-
eration procedure, which always treats one child of each fork
in the GRC as being part of the fork’s thread. Thus, a num-
ber of the benchmarks (notably warehouse-rcx2) contain no
concurrency, while others (notably chorus) spawn an enor-
mous number of threads.

The Signals column lists the number of signals the pro-
gram manipulates, including both I/O and internal signals:
another rough complexity measure.

The Clusters and Levels columns provide a rough mea-
sure of the likely efficiency of the dynamic list code genera-
tor. Each cluster is an atomic block of code (the gray boxes
in Figure 5) and each level is a maximal set of clusters that
can be executed in any order (separated by dotted lines in
Figure 5). The code generator is most efficient when there is
only one cluster, which only occurs for purely sequential ex-
amples such as warehouse-rcx2. The next best is many clus-
ters in few levels, which occur in highly parallel examples

2 http://www.emn.fr/x-info/lego.

such as chorus. This is preferred since the overhead scales
more with the number of levels, not the number of clusters.
Least desirable is when there are roughly as many levels as
clusters, indicating a lot of concurrency with many depen-
dencies (e.g., multi9). For such programs, the dynamic list
approach decays into the SAXO-RT approach.

The Cuts column gives a rough idea of the amount of
overhead from the PDG technique. It lists the number of ad-
ditional cut variables introduced to make the PDG sequen-
tializable and corresponds directly to the number of extra
assignments and conditionals needed just to manage con-
text switching. For example, only one such extra variable is
needed in Figure 2.

The Switches column gives a measure of context-
switching overhead in the virtual machine technique: it lists
the number of context-switching points required in the
heuristically found schedule (e.g., equal to the number of
rows of dots and X’s in the graph in Figure 8(a)).

7.2. Execution time on a Pentium 4

Figure 10 shows the average per cycle execution time for each
benchmark on a 2.5 GHz Pentium 4. Note that the time
scale in this graph is logarithmic and the abscissa just indi-
cates example number. To obtain these numbers, we fed a
pseudorandom input sequence to each example for as many
cycles as necessary to get the execution time into the one-
second range, then divided the execution time (measured be-
tween two calls of the clock() C library call) by the number
of iterations. The times, therefore, include input-generation
overhead, but this is little more than a few function calls and
constant assignments per cycle.

As expected, the virtual machine (the triangles) runs
the slowest in all cases, as much as forty times slower than
the PDG approach for the smallest examples, although the
penalty is lower for the larger examples.

The V5 code is usually the next fastest, but the V3
(automata-based) compiler is sometimes slower. The V7 and
two lists techniques compete for second place, but the PDG
approach is consistently faster. The two variants of the list
compiler, -goto and -switch, respectively, use GCC’s com-
puted goto extension and switch statements to transfer con-
trol between clusters. Not surprisingly, because they require
less overhead (e.g., unlike a switch, they do not require code
for a range check or a fetch from a lookup table), the com-
puted gotos are consistently faster, although not dramatically
so.

The behavior of the code from the V3 compiler shows
the most variance, it is sometimes much slower (e.g., lego2,
multi1), and sometimes the fastest (atds-100, ww). This is
another of its disadvantages: its utility is much less pre-
dictable. The V3 compiler timed out (ran for more than an
hour) on many of the large examples.

The Clusters, Levels, Cuts, and Switches columns in
Table 2 give a strong hint about why the PDG technique
is generally superior. The number of cuts—a measure of
overhead in the code generated from the PDG—is usually
much lower than the number of clusters and sometimes even

http://www.emn.fr/x-info/lego
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Table 2: The benchmarks.

Benchmark Lines Threads Signals Clusters Levels Cuts Switches

Dacexample [22] 25 5 5 10 7 4 12

Lego3 25 1 6 1 1 0 0

Lego2 27 1 7 1 1 0 0

Grcbal3 (Figure 1) 30 5 6 9 6 1 9

Multi1 32 4 11 10 5 0 8

Multi2 38 5 10 7 4 0 6

Lego1 42 1 7 1 1 0 0

Multi9 43 6 10 11 6 0 10

Multi4a 46 6 12 12 8 0 10

Multi8 62 10 12 18 6 0 14

Multi3 99 20 12 35 19 5 40

Multi7 107 13 19 18 7 2 18

Multi6 113 27 19 47 15 1 44

Warehouse-rcx2 [23] 136 1 22 1 1 0 0

Graycounter 156 19 25 47 9 10 54

Abcd 176 7 32 21 7 13 30

Warehouse-rcx1 [23] 274 7 41 16 7 12 19

Tcint 357 54 63 103 18 24 100

Mejia2 358 60 39 127 19 43 136

Ww 360 49 48 96 13 30 130

Atds-100 622 73 83 156 17 35 155

Chorus [18] 3893 320 358 662 23 335 861

Mca200 [24] 5354 95 91 148 16 80 184

Counter16 6780 1311 723 2099 266 222 2582

Table 3: The platforms.

Processor Speed L1 cache L2 cache System GCC VM bytes

Pentium 4 2.5 GHz 8 K 512 K Dell optiplex 4.1.0 868

Pentium 3 1 GHz 16 K 256 K Dell dimension 4.0.2 891

XScale (ARM) 400 MHz 32 K none Sharp zaurus 2.95.2 868

PowerPC 750 350 MHz 64 K 1024 K Macintosh G3 4.1.0 1152

MIPS R5000 180 MHz 32 K 1024 K SGI O2 3.4.6 1208

UltraSPARC-IIi 300 MHz 16 K 512 K Sun ultra 10 3.4.5 1112

Renesas H8/300 16 MHz none none Lego RCX 4.0.2 722

the number of levels. This suggests that the PDG has suc-
cessfully restructured the code to avoid most costly context
switches, that is, those in which a control state must be stored
and retrieved. The Switches column brings this into even
sharper relief: the number of cuts is often much lower than
the number of context switches. The PDG technique was able
to completely eliminate many context switches.

The lego1, lego2, lego3, and warehouse-rcx2 examples
are unusual because they are purely sequential (i.e., consist of
a single thread). As a result, they run much faster than their
similarly sized counterparts because they require no runtime
overhead for context switching. Furthermore, the advantage
the PDG technique generally has over dynamic lists disap-
pears for these examples because each generates roughly the
same code in the absence of context switches.

7.3. Code size on a Pentium 4

Figure 11 shows the code sizes on the Pentium 4. Here, the
V5 compiler usually generates larger code, but the V3 com-
piler sometimes generates exorbitantly large executables. The
multi7 example is the most extreme—the V3 code is over
400× larger than that from the PDG. The lists-switch com-
piler is generally next, followed by lists-goto, PDG, and fi-
nally the VM for the larger examples. All numbers were col-
lected with the size command and only report the size of the
executable code, not the space required for data, state, signal
presence information, and so forth, which is largely the same
for the different techniques anyway.

The number for the VM includes both the bytecode
and the size of the virtual machine itself. For the smaller
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Figure 10: Times on the Pentium 4.

examples, the size of the virtual machine (868 bytes on the
P4) dominates and leaves the VM solution both larger and
slower. However, above about 2 K, the much smaller size of
the bytecode tends to dominate. Figure 12 shows the trend:
past a certain point (around 2 K on every platform), the VM
tends to produce much smaller code, ranging from a few per-
cent better to as much as 1/4 the size of the native object.

7.4. Execution time on other platforms

The behavior on the Pentium 4 is representative, but we also
compared the relative performance of our compiler with V3,
V5, and V7 on the platforms in Table 3. Most are desktop
workstations of various vintages, but our XScale processor
(which runs an ARM-compatible instruction set) runs in a
Sharp Zaurus SL-5600, a personal digital assistant running
a small Linux environment, and the Renesas H8 is a very
small processor running inside the Lego Mindstorms RCX
controller. We used brickOS 0.2.6 on the RCX. In each case,
we used a version of GCC running at optimization level -O2
to generate the executable.

Figure 13 shows statistics for the average execution times
on the different platforms, normalized to the average cycle
time of the V5 compiler in the same example on the same

platform. Each cluster of boxes represents a particular com-
pilation technique, and each box represents a platform (the
P4 on the left, the H8 on the right). Note that there is only
time data for the H8 for the PDG and BAL+VM.

This is a standard box plot on a logarithmic scale: the
ends of the lines represent the minimum and maximum
times, the dot in the center represents the median, and the
box spans the middle two quartiles. For example, the second-
to-rightmost box in the PDG group indicates that roughly
half of the benchmarks ran in less than one-fifth the time it
took the V5 code to run on the SPARC and the fastest ran in
nearly 1/100th the time.

Figure 13 better quantifies the speed penalty of the VM.
The penalty compared to the V5 compiler was smallest on the
SPARC, with over half the examples taking less than twice as
long to run under the VM. The VM fared the worst on the P4
and H8, taking over five times as long on half the examples.

The PDG-based technique produces consistently faster
code, although the performance of the V3 compiler is much
more variable. Using computed gotos appears to produce a
modest speed improvement over using switch statements in
the dynamic list technique.

The wide variability of results in these graphs is due
to the big differences in compilation techniques and in
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Figure 11: Sizes on the Pentium 4.

the character of the benchmark programs themselves. The
biggest difference, say, between the V3 and V5 techniques is
that the running time of code from V5 tends to directly fol-
low the size of the source program, whereas the running time
of code from the V3 compiler is more closely correlated with
the “activity” of the program, that is, how many statements
run in each cycle. Different benchmarks invariably exhibit
different activities, thus leading to the wide range of relative
execution rates.

7.5. Code size on other platforms

Figure 14 is a similar figure showing the distributions of exe-
cutable sizes across the different platforms. The BAL group is
special: these are sizes for the BAL bytecode only; they do not
include the size of the VM and as such should not be com-
pared directly. We included them to show how the bytecode
is always much smaller than the equivalent executable.

The results are fairly consistent, except for the H8. GCC
that appears to be able to generate very compact code for the
H8 and as such, the improvements relative to V5 are less dra-
matic. In particular, the bytecode is usually about 1/3 the size
of the equivalent executable on the H8, while the improve-
ment is between 1/5 and 1/10 on the other platforms. We at-
tribute the apparently larger variance in BAL+VM sizes to the
constant VM overhead—notice that bytecode by itself varies
about as much as the native executables.

The BAL column by itself gives a rough measure of the
code density on the different processors: the H8 appears to
have the best, followed by the P4, the ARM, the P3, PPC,
SPARC, and MIPS.

Figures 15 and 16 plot the average cycle time as a function
of executable size. Such correlation would be unexpected for
arbitrary C programs (loops can affect the ratio arbitrarily),
but is reasonable for code generated from Esterel programs
since it is loop-free. The VM exhibits roughly the same trend,
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Figure 12: VM executable size versus PDG. The horizontal axis rep-
resents the size of the PDG executable; the vertical represents the
ratio between the VM and the PDG. For larger examples, the VM
executables are substantially smaller.

although is fundamentally much slower. Not surprisingly, the
code from the V5 compiler shows the most correlation since
the generated code contains very few long-distance jumps.
On the other hand, the V3 compiler produces very different
results, mostly because it occasionally produces very large ex-
ecutables that nonetheless run quickly.

The scatter plot for th e P4, which has only an 8 K L1
cache (see Table 3), but a generous 512 K L2 cache, shows a
fairly consistent trend with no obvious discontinuities.

The plot for the ARM, which has only a single 32 K cache,
does show a discontinuity around 32 K. While we have few
benchmarks of that size, it does appear that the trend line
grows substantially steeper at about that point, pointing out
the importance of small code footprints even for systems
with larger main memories.

7.6. Comparison with other compilers

We ran a few more experiments with other compilers, but
were only able to run a few examples because these other
compilers have effectively disappeared. Table 4 shows size
and time statistics for these examples. V5+SIS is the V5 com-
piler followed by running the SIS logic optimizer [25], V7
is the latest commercial compiler from Esterel Technologies,
SAXO and SAXO-fast are two outputs from the SAXO com-
piler due to Weil et al. [18], EC is the Synopsys Esterel com-
piler [11], and GRC2C is the compiler of Potop-Butucaru
[10].

V3 V7 Lists-goto Lists-switch PDG BAL+VM

1/200×
1/100×

1/50×

1/20×

1/10×
1/5×

1/2×
1×
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10×

Figure 13: Average execution time statistics for P4, P3, ARM, PPC,
MIPS, SPARC, and H8 (PDG and VM only). Baseline: code from
the V5 compiler.

V3 V7 Lists-goto Lists-switch PDG BAL+VM BAL

1/10

1/5

1/2

1

2×

Figure 14: Executable size statistics for P4, P3, ARM, PPC, MIPS,
SPARC, and H8. Baseline: code from the V5 compiler.

It is difficult to draw any strong conclusions from these
data because there are so few examples, although it is clear
that GRC2C and V3 generate good code for these examples.
From these data, it may appear that the V3 compiler is prac-
tical, but this is an erroneous conclusion: it can only run on
three of the five examples, and these were developed for the
V3 compiler and were probably written very deliberately to
make them practical.

Low compilation times were never a particular goal of
CEC, and the experimental results of Table 5 bear this out.
Here, we compare the time CEC takes to generate C code
using the PDG technique with the V5 compiler running on
a 2.5 GHz Pentium 4 machine under Linux and GCC 4.1.0.
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Table 4: Sizes and times on the P4 for selected benchmarks.

Compiler Atds-100 Chorus Mca200 Tcint Ww

V3 10942 bytes — — 61091 9374

V5 39282 158233 120011 16921 16898

V5+SIS 17688 — 90841 5361 8470

V7 17786 90424 75355 5851 9535

SAXO 21285 71324 38885 9217 13409

SAXO-fast 19117 63876 38245 7949 11841

EC 16312 73788 34845 7472 11590

GRC2C 18403 62835 33604 7661 10832

Lists-goto 21069 68505 38174 8913 11765

Lists-switch 35651 90153 57681 12626 13708

PDG 13427 65493 33396 7236 10287

V3 97 ns — — 190 310

V5 3500 32000 11000 1000 2200

V5+SIS 1600 — 11000 430 1300

V7 1400 12000 5200 500 1300

SAXO 130 3600 1400 210 1100

SAXO-fast 130 3200 1300 180 1000

EC 120 7200 950 170 1000

GRC2C 130 2800 620 150 910

Lists-goto 150 6400 1200 230 1100

Lists-switch 910 17000 4500 410 1300

PDG 130 5800 980 160 1100

We report results on the larger benchmarks (>100 lines). For
each, we report the average times required to produce C code
(i.e., the runtime of the CEC and V5 compilers), for GCC to
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Table 5: Comparison of compilation times (seconds on average).

Benchmark
CEC V5

C code GCC Total C code GCC Total

Multi7 0.019 0.037 0.056 0.022 0.063 0.085

Multi6 0.047 0.037 0.084 0.026 0.084 0.11

Warehouse-rcx2 0.036 0.063 0.099 0.028 0.053 0.081

Graycounter 0.033 0.040 0.073 0.027 0.072 0.099

Abcd 0.033 0.036 0.069 0.027 0.070 0.097

Warehouse-rcx1 0.11 0.12 0.22 0.048 0.12 0.17

Tcint 0.20 0.11 0.31 0.068 0.21 0.28

Mejia2 0.14 0.080 0.22 0.066 0.22 0.29

Ww 0.12 0.13 0.24 0.069 0.23 0.30

Atds-100 0.70 0.17 0.87 0.13 0.51 0.65

Chorus 69 0.75 70 0.51 2.0 2.5

Mca200 3.2 0.32 3.6 0.55 1.5 2.0

Counter16 30 0.79 31 1.1 3.1 4.1

compile the generated code, and the sum of the two. The re-
sults show that CEC is substantially slower on most bench-
marks. However, it generates C code that GCC finds sub-
stantially more palatable. We suspect this because V5 gen-
erates essentially straight line code (i.e., not containing any
branches) while the code from the PDG technique is sub-
stantially more structured.

Part of CEC’s longer runtimes is due to simple sloppy
programming. The CEC code, for example, makes exten-
sive, perhaps even gratuitous use of the stock standard tem-
plate library; we suspect that V5 does not. The biggest time
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consumer in the PDG flow appears to be a simulation algo-
rithm used by the basic optimization procedure (e.g., dead
code removal), not the PDG generation procedure. Regard-
less, the worst running time we observed (for the chorus ex-
ample) was only slightly more than a minute, which we con-
sider acceptable.

8. RELATED WORK

Many techniques to compile Esterel have been proposed dur-
ing the language’s twenty-year history. Berry and Cosserat
[26] were the first. They translated each program into a flat
automaton by directly interpreting the operational seman-
tics of the language. This technique was fairly time consum-
ing, but produced efficient code at the expense of size: the
generated code may be exponentially larger than the source,
making it impractical for all but the smallest programs.

Next, Gonthier, as part of his thesis [27], devised a more
efficient way to generate the automaton by simulating a
control-flow graph-like representation known as IC. This
formed the basis for the successful V3 compiler [2], but did
not mitigate the exponential code size problem.

The V5 generation of Esterel compilers [28] translated
Esterel programs into circuits, topologically sorted the gates,
then generated simple code for each gate. While this tech-
nique scales much better than the automaton compilers, it
does so at a great cost in speed. The fundamental problem is
that the program must execute code for every statement in
every cycle, even for statements that are not currently active.

Further progress in code generation came in 1999, when
Edwards [29] and a group at France Telecom [17] indepen-
dently developed two techniques that produced much faster
code that was roughly the same size as that from the circuit-
based compilers. The techniques we describe here are direct
descendants of these two approaches.

Potop-Butucaru [10], as part of his Ph.D. thesis [30], de-
veloped a much improved version of the circuit-based code
generation technique, incorporating a number of very clever
optimizations to improve the quality of the generated code.

Ferrante et al. [15] were the first to propose an algorithm
for generating sequential code from an acyclic PDG, but their
technique only works when no node duplication (or equiva-
lently, the addition of predicates) is necessary.

Later, Simons and Ferrante [14] presented an efficient al-
gorithm for generating sequential code from an acyclic PDG.
Their major contribution is a technique for computing “ex-
ternal edge” information for each node and using this dur-
ing the synthesis procedure. The input to their algorithm is
limited to a graph with only control dependencies; they as-
sume that data dependencies have somehow been incorpo-
rated into the control dependencies.

Building on Simons’ and Ferrante’s work, Steensgaard
[16] removed the requirement that the control dependencies
in the PDG be acyclic, thereby allowing loops in the gener-
ated code (earlier work assumed that loops had somehow
been removed), but still assumed that the generated code
did not require either node duplication or the insertion of

additional predicates. We have not integrated Steensgaard’s
cyclic extensions because they were unnecessary in our ap-
plication.

Our PDG technique extends Simons’ and Ferrante’s in
two ways. First, we propose a cutting algorithm that restruc-
tures the PDG and inserts additional predicate nodes before
it is passed to Simons’ and Ferrante’s basic algorithm, making
it work for all valid acyclic PDGs. Second, we consider data
dependencies to generate correct code for all valid PDGs.

Our dynamic list technique resembles the SAXO-RT
compiler developed at France Telecom [20]. Both techniques
divide an Esterel program into “basic blocks” that are then
sorted topologically and executed selectively based on run-
time scheduling decisions. Our technique differs in two main
ways. First, we only schedule blocks within the current cy-
cle, which makes it unnecessary to ever unschedule a node
(Esterel’s preemption constructs can prevent the execution
of statements that would otherwise run). Second, because of
this, instead of a scoreboard-based scheduler, we are able to
use one based on linked lists that eliminate conditional tests.

Maurer’s event-driven conditional-free paradigm [31]
also inspired this code generator, although his implementa-
tion is geared to logic network simulation and does not ap-
pear applicable to Esterel. Interestingly, he writes his exam-
ples using a C-like notation that resembles the GCC com-
puted goto extension we use, but apparently he uses inline
assembly instead of the GCC extension.

Potop-Butucaru’s compiler [10, 30] generates very good
code for most large examples, although we beat it on certain
ones. His technique has the advantage of actually optimizing
many of the state decisions in a program, something we have
not yet applied to CEC, and uses a technique much like the
Synopsys compiler to generate code.

Using a virtual machine to implement a high-level lan-
guage has a long history that includes Pascal [32], Modula-2,
Prolog, Smalltalk [33], Java, and C#. Portability and ease of
implementation are typical motivations for the use of a vir-
tual machine, but code size is another motivation [34].

Code compression for embedded systems is a well-
studied topic that has led to industrial solutions such as
ARM’s Thumb instruction set. This replaces the standard
32-bit ARM instruction set with a 16-bit variant that omits
many instructions and registers combinations. It generally
provides a 20–30% reduction in code size. While using such a
compact instruction set on compiled Esterel code would cer-
tainly work, the virtual machine-based approach we propose
achieves significantly higher compression ratios.

Running Esterel on the RCX microcontroller is not
novel—Christophe Mauras and Martin Richard3 did so with
some help from Xavier Fornari. Their approach, however, is
more traditional: like us, they use the BrickOS environment
to interface to the hardware, but use a standard Esterel com-
piler that generates C that is cross-compiled onto the H8 mi-
crocontroller; their contribution is mostly in providing an
API.

3 http://www.emn.fr/x-info/lego.

http://www.emn.fr/x-info/lego
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Roop et al. [9] proposed an Esterel-specific instruction
set, but their focus was on efficiency, not code size, and their
approach appears to be limited to Esterel programs with no
concurrency. For these reasons, we did not attempt to follow
their work in designing our virtual machine.

Li and von Hanxleden [8] also propose an Esterel-specific
processor that has certain similarities to our virtual machine.
One big difference is that it uses a priority-based approach
to decide which thread executes next. We expect in software
that managing a priority queue would be much less efficient
than the explicit context switching our VM currently uses,
but in hardware the difference is less clear. Implementing our
Esterel VM in hardware to improve its speed is an obvious
avenue for future research.

9. CONCLUSIONS

We have presented three different code generation techniques
for Esterel, which we have implemented in the open-source
Columbia Esterel compiler. The three take very different ap-
proaches to address the fundamental challenge of executing
Esterel: simulating concurrency and handling synchroniza-
tion among concurrently running threads. The first removes
all unnecessary control dependencies to produce a control-
dependence graph that is then cleverly reassembled to pro-
duce a sequential program with very few additional condi-
tionals. It consists of a heuristic scheduler followed by an ex-
act restructuring procedure.

The second technique generates code that maintains a
linked list of process fragments that must execute in the fu-
ture. Such an approach reduces the per-fragment overhead,
but apparently not as much as the code motion enabled by
the PDG technique. For examples with many concurrent
threads, however, it works quite well.

The third technique strives for code size instead of per-
formance by employing a virtual machine with semantics
closely matching those of Esterel itself. In particular, our vir-
tual machine provides direct support for multiple threads of
control through a low-overhead context-switching instruc-
tion. It also has signal status registers, completion code reg-
isters, per-thread program counters, and interinstant state-
and value-holding registers. Most operations are classical,
and we perform arithmetic with a stack, one instruction ex-
plicitly implements concurrency by passing control to an-
other thread.

Our compilation scheme for the virtual machine stati-
cally schedules the concurrent behavior of the program and
generates straight line code for each thread that includes ex-
plicit instructions for context-switching between threads. As
a result, the order in which threads are executed is known
at compile time and therefore does not introduce overhead,
but the details about what instructions are executed are de-
termined at runtime.

Of the three, the PDG approach seems to be the best all-
around (it is currently the default in CEC), but the lists ap-
proach can have advantages when the activity of the program
is very low and the concurrency is high.

None of our three approaches attempt to handle dynami-
cally causal (but statically cyclic) programs. This is pragmatic
choice that reflects the current thinking in the Esterel com-
munity, which has largely decided that dynamically causal
programs are of theoretical interest but do not appear to be
terribly useful in practice. It might be possible to adapt the
dynamic lists approach to handle dynamic programs since it
provides the most flexibility in controlling the execution or-
der of various blocks, but we have not done so. An alternative
approach would be to first remove the cyclic structures in the
program (which can be done by the V5 compiler; Lukoschus
proposed an alternative [35]), then pass this to one of the
acyclic code generators, but again we have not attempted this.
See Berry [36] and Potop-Butucaru [30] for a discussion of
dynamically causal programs.

Another limitation of our approaches is that they can-
not be applied to compile Esterel programs in pieces. This
is a failing of all techniques virtually for Esterel and stems
from their semantics. There are serious technical issues with
compiling Esterel programs in pieces. We made one failed at-
tempt to begin to address the separate compilation and know
of another failed attempt. Furthermore, the performance ad-
vantages obtained by our techniques are due mostly to being
able to do complete program analysis, something probably
no longer possible in a separate compilation setting. Clearly,
this is an avenue for future research.

While it has become very difficult to improve on exist-
ing Esterel compilation techniques, hybrid approaches may
further advantages. The automata style construction of the
V3 compiler generates very efficient code when it is able, but
capacity limitations make it of limited use by itself. A better
approach would be to use the automata approach on tightly
communicating parts of a program (i.e., ones that benefit the
most from the automaton approach and are small enough so
that it is still practical) and use the PDG approach to con-
nect them. Edwards and Tardieu [37] successfully used such
an approach to compile an asynchronous language.

The virtual machine approach is interesting, but suffers
from the performance problems typical of virtual machines.
Mating the technique with custom hardware is an obvious
idea. The Esterel processor of Li and von Hanxleden [8]
would be an obvious starting point.

Source code for the Columbia Esterel compiler along
with all the benchmarks used in this paper are available from
http://www.cs.columbia.edu/∼sedwards/cec.
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