
The Case for the Precision Timed (PRET) Machine

Stephen A. Edwards∗

Columbia University
New York, New York

sedwards@cs.columbia.edu

Edward A. Lee†

University of California
Berkeley, CA

eal@eecs.berkeley.edu

Categories and Subject Descriptors

C.1.3 [Processor Architectures]: Other Architecture Styles

General Terms Performance

Keywords Real-Time Embedded Systems, Predicable Timing

1. THE PROBLEM
Patterson and Ditzel [12] did not invent reduced instruction set

computers (RISC) in 1980. Earlier computers all had reduced in-
struction sets. Instead, they argued that trends in computer architec-
ture had gotten off the sweet spot, and that by dropping back a few
years and forking a new version of architectures, leveraging what
had been learned, they could get better computers by employing
simpler instruction sets.

It is again time for a change in direction in computer architec-
ture. Architectures currently strive for superior average-case per-
formance that regrettably ignores predictability and repeatability
of timing properties. “Correct” execution of the SPECint bench-
mark suite has nothing to do with how long it takes to perform any
particular action. C says nothing about timing, so timing is not
considered part of correctness. Architectures have developed deep
pipelines with speculative execution and dynamic dispatch. Mem-
ory architectures have developed multi-level caches and TLBs. The
performance criterion is simple: faster (on average) is better.

The biggest consequences have been in embedded computing.
Avionics offers an extreme example: in “fly by wire” aircraft, where
software interprets pilot commands and transports them to actu-
ators through networks, certification of the software is extremely
expensive. Regrettably, it is not the software that is certified but
the entire system. If a manufacturer expects to produce a plane for
50 years, it needs a 50-year stockpile of fly-by-wire components
that are all made from the same mask set on the same production
line. Even a slight change or “improvement” might affect timing
and require the software to be re-certified.

Nearly every abstraction provided by computing has failed our
poor aircraft manufacturer. The instruction-set architecture, meant
to hide hardware implementation details from the software, has
failed because the user of the ISA cares about timing properties that

∗Edwards was supported under NSF award CNS-0614799
†Lee was supported under NSF award CNS-0647591

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM ACM 978–1–59593–627–1/07/0006 ...$5.00.

the ISA does not guarantee. The programming language, which
hides details of the ISA from the program logic, has failed because
no widely used programming language expresses timing properties.
Timing is merely an accident of the implementation. A real-time
operating system hides details of the programs from the concurrent
orchestration, yet this fails because the timing may affect the or-
chestration. The RTOS provides no guarantees. The network hides
details of electrical or optical signaling from systems, but standard
networks provide no timing guarantees, and hence again fail to pro-
vide an appropriate abstraction. The aircraft manufacturer is stuck
with a system design (not just implementation) in silicon and wires.

All embedded systems designers face less extreme versions of
this problem. “Upgrading” a microprocessor in an engine control
unit for a car requires thorough re-testing of the system. Even “bug
fixes” in the software can be extremely risky, since they can change
timing behavior and produce effects that were never seen in testing.

Even general-purpose computing suffers from these decisions.
Since timing is neither specified in programs nor enforced by exe-
cution platforms, a program’s timing properties are not repeatable.
Buggy concurrent software often has timing-dependent behavior;
small changes in the timing of one part of a program can affect
seemingly unrelated parts.

Designers traditionally covered these failures by computing worst
case execution time (WCET) bounds and using real-time operating
systems (RTOSes) with predictable scheduling policies. But these
require substantial margins for reliability, and ultimately reliability
is (weakly) determined by bench testing the complete system.

Modern processor architectures render WCET virtually unknow-
able; even simple problems demand heroic efforts. For example,
Ferdinand et al. [5] determine the WCET of astonishingly simple
avionics code from Airbus running on a Motorola ColdFire 5307,
a pipelined CPU with a unified code and data cache. Despite the
software consisting of a fixed set of non-interacting tasks contain-
ing only simple control structures, their solution required detailed
modeling of the seven-stage pipeline and its precise interaction with
the cache, generating a large integer linear programming problem.
The technique successfully computes WCET, but only with many
caveats that are increasingly rare in software. Fundamentally, the
ISA of the processor has failed to provide an adequate abstraction.

Timing behavior in RTOSes is coarse and becomes increasingly
uncontrollable as the complexity of the system increases, e.g., by
adding inter-process communication. Locks, priority inversion, in-
terrupts and similar issues break the formalisms, forcing designers
to rely on bench testing, which is nearly impotent at flushing out
subtle timing bugs. Worse, these techniques produce brittle sys-
tems in which small changes can cause big failures.

Synchronous digital hardware—the technology on which most
computers are built—can deliver astonishingly precise, repeatable



timing behavior, thanks in part to considerable efforts on the part
of hardware designers and design tool builders. Software abstrac-
tions, however, lose several orders of magnitude in timing preci-
sion. Consider the nanosecond-scale precision with which hard-
ware can raise an interrupt request to the imprecision with which a
user-level software thread sees the effects (perhaps milliseconds).

Commercial RTOSes market predictable timing, but modern pro-
cessors have rendered such numbers only vague bounds. Real-time
software developers have long demanded predictable timing; pro-
cessor architectures no longer deliver.

2. THE SOLUTION
It is time for a new era of processors whose temporal behav-

ior is as easily controlled as their logical function. We call them
precision timed (PRET) machines. Our basic argument is that real-
time systems, in which temporal behavior is as important as logical
function, are an important and growing application; processor ar-
chitecture needs to follow suit.

This is an enormous problem, but it is easy to start making progress.
It is challenging because it spans nearly all abstraction layers in
computing, including programming languages, virtual memory, mem-
ory hierarchy, pipelining techniques, power management, I/O, DRAM
design, bus architectures, memory management, just-in-time (JIT)
compilation, multitasking (threads and processes), task scheduling,
software component technologies, and networking.

Our first step is to develop FPGA-targeted PRET cores suitable
for high-reliability embedded applications. Substantial progress
can be made in months; the revolution may take decades. Our ulti-
mate goal is networked real-time software that delivers the reliabil-
ity and timing precision of synchronous digital hardware with the
simplicity of software.

Timing precision is easy to achieve if you are willing to forgo
performance; the engineering challenge in PRET machines is to
deliver both. While we cannot abandon structures such as caches
and pipelines and 40 years of progress in programming languages,
compilers, operating systems, and networking, many will have to
be re-thought.

Fortunately, there is much work on which to build. ISAs can
be extended with instructions that deliver precise timing with low
overhead [7]. Scratchpad memories can replace caches [1]. Deep
pipelines with pipeline interleaving can deliver precise timing [10].
Memory management pause times can be bounded [2]. Program-
ming languages can be extended with timed semantics [6]. Appro-
priately chosen concurrency models can be tamed with static analy-
sis [3]. Software components can be made intrinsically concurrent
and timed [11]. Networks can provide high-precision time synchro-
nization [8]. Schedulability analysis can provide admission control,
delivering run-time adaptability without timing imprecision [4].

Our vision of a mature PRET machine incorporates most of these
techniques. At the ISA level, it provides cycle-accurate timers, a
predictable memory hierarchy based on scratchpad memories, and
an interleaved pipeline that provides predictable hardware-efficient
concurrency. It will be programmed in a C-like language that in-
cludes user-specified timing constraints and concurrency, perhaps
with synchronous semantics. Both compile- and run-time checks
will ensure the program meets timing constraints, similar to ar-
ray bounds checking. A PRET operating system will resemble an
RTOS, but its scheduling policies will provide guarantees and ad-
mission control. Such a processor will communicate through a net-
work able to provide timing guarantees, probably leveraging time
synchronization.

Many open challenges remain. How do we achieve high-precision
I/O (classical interrupts destroy all temporal predictability)? How

do we manage disk systems, DRAM behavior, and virtual memory?
How do we scale to deep sub micron without losing the precision
of synchronous digital logic (see http://www.tauworkshop.com)?
How do we adapt operating systems to provide timing guarantees?
How do we handle exceptions? How do we handle variable clock
rates (essential power management)? How do we get precise tim-
ing in networking? How do we evolve the many fledgling research
results into mainstream software engineering?

PRET machines are essential for embedded systems, but are also
valuable for general-purpose systems. In concurrent software, non-
repeatable behavior is a major obstacle to reliability [9]. PRET
machines would improve reliability of concurrent software through
repeatable concurrent behavior.

Patterson and Ditzel’s [12] plea for RISC machines was simul-
taneously heeded and ignored. Architectural complexity continued
to grow unabated, but at least architects began to analyze where it
would have the most benefit. It forced architects to evaluate the
benefits of their elaborations relative to the costs. A similar change
is needed for techniques that blithely ignore predictable timing.

3. REFERENCES
[1] O. Avissar, R. Barua, and D. Stewart. An optimal memory

allocation scheme for scratch-pad-based embedded systems.
Trans. Embedded Computing Sys., 1(1):6–26, 2002.

[2] D. F. Bacon, P. Cheng, and V. Rajan. The Metronome: A
simpler approach to garbage collection in real-time systems.
In Workshop Java Tech. for Real-Time and Embedded Sys.,
Catania, Sicily, 2003.

[3] G. Berry. The effectiveness of synchronous languages for the
development of safety-critical systems. White paper, Esterel
Tech., 2003.

[4] E. Bini and G. C. Buttazzo. Schedulability analysis of
periodic fixed priority systems. IEEE Trans. Computers,
53(11):1462–1473, 2004.

[5] C. Ferdinand et al. Reliable and precise WCET
determination for a real-life processor. In Proc. Conf.
Embedded Software, volume 2211 of LNCS, pages 469–485,
North Lake Tahoe, California, Oct. 2001.

[6] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A
time-triggered language for embedded programming. In
EMSOFT 2001, volume LNCS 2211, Tahoe City, CA, 2001.
Springer-Verlag.

[7] N. J. H. Ip and S. A. Edwards. A processor extension for
cycle-accurate real-time software. In Embedded and
Ubiquitous Computing, volume 4096 of LNCS, pages
449–458, Seoul, Korea, Aug. 2006.

[8] S. Johannessen. Time synchronization in a local area
network. IEEE Control Systems Magazine, pages 61–69,
2004.

[9] E. A. Lee. The problem with threads. Computer,
39(5):33–42, 2006.

[10] E. A. Lee and D. G. Messerschmitt. Pipeline interleaved
programmable dsps: Architecture. IEEE Trans. on Acoustics,
Speech, and Signal Processing, ASSP-35(9), 1987.

[11] E. A. Lee, S. Neuendorffer, and M. J. Wirthlin.
Actor-oriented design of embedded hardware and software
systems. Journal of Circuits, Systems, and Computers,
12(3):231–260, 2003.

[12] D. A. Patterson and D. R. Ditzel. The case for the reduced
instruction set computer. ACM SIGARCH Computer
Architecture News, 8(6):25–33, Oct. 1980.


