
The Challenges of Hardware Synthesis from C-like Languages

Stephen A. Edwards∗

Department of Computer Science
Columbia University, New York

Abstract

The relentless increase in the complexity of integrated circuits
we can fabricate imposes a continuing need for ways to de-
scribe complex hardware succinctly. Because of their ubiquity
and flexibility, many have proposed to use the C and C++ lan-
guages as specification languages for digital hardware. Yet,
tools based on this idea have seen little commercial interest.

In this paper, I argue that C/C++ is a poor choice for specify-
ing hardware for synthesis and suggest a set of criteria that the
next successful hardware description language should have.

1 Introduction

Familiarity is the main reason C-like languages have been pro-
posed for hardware synthesis. Synthesize hardware from C,
proponents claim, and we will effectively turn every C pro-
grammer into a hardware designer. Another common motiva-
tion is hardware/software codesign: today’s systems are very
often implemented as a mix of hardware and software, and it
is often unclear at the onset which portions to implement in
hardware and which can be software. Here, the claim is that
using a single language for both simplifies the migration task.

In this paper, I argue that these claims are largely false and
that C is a poor choice for specifying hardware. On the con-
trary, I claim that the semantics of C-like imperative languages
are so distant from those of hardware that C-like thinking is
actually detrimental to hardware design.

Executing a given piece of C code on a traditional sequential
processor can be thought of as synthesizing hardware from C,
but the techniques presented here instead strive for more cus-
tomized implementations that exploit more parallelism, hard-
ware’s main advantage. Unfortunately, as discussed below, the
C language has no support for parallelism and as such either
the synthesis tool is responsible for finding it (a very difficult
task) or the designer is forced to modify the algorithm and
insert explicit parallelism. Neither solution is particular satis-
factory and the latter deviates significantly from the objective
of trivially turning C programmers into hardware designers.

The thesis of this paper is that giving C programmers tools
is not enough to turn them into reasonable hardware design-
ers. I show that efficient hardware is usually impossible to
describe in an unmodified C-like language because the lan-
guage inhibits the specification or automatic inference of ad-
equate concurrency, timing, types, and communication. The

∗sedwards@cs.columbia.edu http://www.cs.columbia.edu/˜sedwards
Edwards is supported by an NSF CAREER award, a grant from Intel corpora-
tion, an award from the SRC, and from New York State’s NYSTAR program.

most successful C-like languages, in fact, bear little syntactic
or semantic resemblance to C, effectively forcing users to learn
a new language anyway. As a result, techniques for synthesiz-
ing hardware from C either generate inefficient hardware or
propose a language that merely adopts part of C syntax.

For space reasons, this paper is focused purely on the use of
C-like languages for synthesis. I deliberately omit discussion
of other important uses of a design language, such as validation
and algorithm exploration. C-like languages are much more
compelling for these tasks, and one in particular (SystemC) is
now widely used, as are many ad hoc variants.

2 A Short History of C

Dennis Ritchie developed C in the early 1970 [18] based on
experience with Ken Thompson’s B language, which had itself
evolved from Martin Richards’ BCPL [17]. Ritchie describes
all three as “close to the machine” in the sense that their ab-
stractions are very similar to the data types and operations sup-
plied by conventional processors.

A core principle in BCPL is its undifferentiated array of
words memory model. Integers, pointers, and characters are all
represented in a single word; the language is effectively type-
less. This made perfect sense on the word-addressed machines
BCPL was targeting at the time, but wasn’t acceptable for the
byte-addressed PDP-11 on which C was first developed.

Ritchie modified BCPL’s “array of words” model to add the
familiar character, integer, and floating-point types now sup-
ported by virtually every general-purpose processor. Ritchie
considers C’s treatment of arrays to be characteristic of the lan-
guage. Unlike other languages that have explicit array types,
arrays in C are almost a side-effect of its pointer semantics.
While this model leads to simple, very efficient implemen-
tations, Ritchie observes that the prevalence of pointers in C
means that compilers must use careful dataflow techniques to
avoid aliasing problems while applying optimizations.

Ritchie lists a number of infelicities in the language caused
by historical accident. For example, the use of break to sep-
arate cases in switch statements arose because Ritchie copied
an early version of BCPL; later versions used endcase. The
precedence of bitwise-AND is lower than the equality opera-
tor because the logical-AND operator was added later.

Many aspects of C are greatly simplified from their BCPL
counterparts because of limited memory on the PDP-11 (24K,
of which 12 were devoted to the nascent Unix kernel). For ex-
ample, BCPL allowed arbitrary control-flow statements to be
embedded within expressions. This facility does not exist in C
because limited memory demanded a one-pass compiler.

Language Comment
Cones [25] Early, combinational only
HardwareC [12] Behavioral synthesis-centric
Transmogrifier C [7] Limited scope
SystemC [8] Verilog in C++
Ocapi [19] Algorithmic structural descriptions
C2Verilog [23] Comprehensive; company defunct
Cyber [26] Little made public (NEC)
Handel-C [2] C with CSP (Celoxica)
SpecC [6] Resolutely refinement-based
Bach C [10] Untimed semantics (Sharp)
CASH [1] Synthesizes asynchronous circuits

Table 1: The languages/compilers considered in this paper.

Thus, C has at least four defining characteristics: a set of
types that correspond with what the processor directly manip-
ulates, pointers instead of a first-class array type, a number
of language constructs that are historical accidents, and many
others that are due to memory restrictions.

These characteristics are troubling when synthesizing hard-
ware from C. Variable-width integers are natural in hardware,
yet C only supports four sizes, all larger than a byte. C’s mem-
ory model is a large, undifferentiated array of bytes, yet many
small, varied memories are most effective in hardware. Fi-
nally, modern compilers can assume available memory is eas-
ily 10 000 times larger than what was available to Ritchie.

3 C-like Hardware Synthesis Languages

A variety of C-like hardware languages have been proposed
since the late 1980s (Table 1). This section describes each in
roughly chronological order. See also De Micheli [3].

Stroud et al.’s Cones [25] was one of the earliest. From a
strict subset of C, it synthesized single functions into combi-
national blocks. It could handle conditionals; loops, which it
unrolled; and arrays treated as bit vectors.

Ku and De Micheli developed HardwareC [12] for input to
their Olympus synthesis system [4]. It is a behavioral hardware
language with a C-like syntax and has extensive support for
hardware-like structure and hierarchy.

Galloway’s Transmogrifier C [7] is a fairly small C subset.
It supports integer arithmetic, conditionals and loops. Unlike
Cones, it generates sequential designs by inferring a state at
function calls and at the the beginning of while loops.

SystemC [8] is a C++ dialect that supports hardware and
system modeling. While its popularity seems to stem mainly
from its facilities for simulation (it provides concurrency with
lightweight threads [13]), a subset of the language can be syn-
thesized. It uses the C++ class mechanism to model hierarchi-
cal structure and models hardware using combinational and
sequential processes, much like Verilog or VHDL. The Cynlib
language from Forte Design Systems is similar.

IMEC’s Ocapi system [19] is also C++-based but takes a
very different approach. Instead of being parsed, analyzed, and
synthesized, the C++ program is run to generate in-memory
data structures that represents the structure of the hardware

system. Supplied classes provide mechanisms for specifying
datapaths, finite-state machines, and similar constructs (Paško
et al. [16] describes adding an extension for RAM interfaces).
These data structures are then translated into languages such
as Verilog and passed to conventional synthesis tools. Lipton
et al.’s PDL++ system [14] takes a very similar approach.

The C2Verilog compiler developed at CompiLogic (later
called C Level Design and, since November 2001, part of Syn-
opsys) is one of the few that can claim broad support of ANSI
C. It can translate pointers, recursion, dynamic memory allo-
cation, and other thorny C constructs. Soderman and Panchul
describe their compiler in a pair of 1998 papers [23, 24] and
hold a broad patent covering C-to-Verilog-like translation [15]
that describes their compiler in detail.

NEC’s Cyber system [26] accepts a C variant dubbed BDL.
While details of the language are not publicly available, the
available information suggests it is a somewhat ad hoc transla-
tion that probably puts restrictions on the language, insists its
users write C in particular idioms, and probably requires a fair
amount of coaxing from users.

Celoxica’s Handel-C [2] is a C variant that extends the lan-
guage with constructs for parallel statements and OCCAM-
like rendezvous communication. Handel-C’s timing model is
uniquely simple: each assignment statement takes one cycle.

Gajski et al.’s SpecC language [6] is a superset of ANSI C
augmented with many system- and hardware-modeling con-
structs, including ones for finite-state machines, concurrency,
pipelining, and structure. The latest language reference man-
ual [5] lists thirty-three new keywords. SpecC imposes a re-
finement methodology. As such, the whole language is not di-
rectly synthesizable but through a series of both manual and
automated rewrites, a SpecC description can be refined into
one that can be synthesized.

Like Handel-C, Sharp’s Bach C [10] is an ANSI-C variant
with explicit concurrency and rendezvous-style communica-
tion. However, Bach C only imposes sequencing rather than
assigning a particular number of cycles to each operation. And
although it supports arrays, it does not support pointers.

Budiu et al.’s CASH compiler [1] is unique among the C
synthesizers because it generates asynchronous hardware. It
accepts ANSI C, identifies instruction-level parallelism, and
generates an asynchronous dataflow circuit.

4 Concurrency

The biggest difference between hardware and software is its
execution model: software is based on a sequential, memory-
based execution model derived from Turing machines, while
hardware is fundamentally concurrent. Thus, sequential algo-
rithms that are efficient in software are rarely the best choice
in hardware. This has serious implications for any software
programmer designing hardware: his familiar toolkit of algo-
rithms is suddenly useless.

Why is so little software developed for parallel hardware?
The plummeting cost of parallel hardware would make this ap-
pear even more attractive, yet concurrent programming has had
limited success compared to its sequential counterpart. One
fundamental reason is the conceptual difficulty humans have

in conceiving of parallel algorithms, and many more sequential
algorithms are known than parallel algorithms. Another chal-
lenge is disagreement about the preferred model for parallel
programming (e.g., shared memory versus message-passing);
the panoply of parallel programming languages, none of which
has emerged as a clear winner [22], is indicative of this.

Instead of exposing concurrency to the programmer and en-
couraging the use of parallel algorithms, the most successful
approach has been automatically exposing parallelism in se-
quential code. Since C does not naturally support concurrency,
using such a technique is virtually mandatory for synthesizing
efficient hardware. Unfortunately these techniques are limited.

4.1 Finding Parallelism in Sequential Code

There are three main approaches to exposing parallelism in se-
quential code, distinguished by their granularity. Instruction-
level parallelism (ILP) dispatches groups of nearby instruc-
tions simultaneously. While this has become the preferred ap-
proach in the computer architecture community, it is recog-
nized that are fundamental limits to the amount of ILP that can
be exposed in typical programs [27, 28], and that adding hard-
ware to approach these limits, nowadays most often through
speculation, results in diminishing returns.

Pipelining, the second approach, requires less hardware than
ILP but may be less effective. A pipeline dispatches instruc-
tions in sequence but overlaps them: the second instruction is
initiated before the first completes. Like ILP, inter-instruction
dependencies and control-flow transfers tend to limit the max-
imum amount of achievable parallelism. Pipelines work well
for regular loops, such as those in scientific or signal process-
ing applications [11], but are less effective in general.

Instead of single instructions, process-level parallelism dis-
patches multiple threads of control simultaneously. This can be
much more effective than finer-grain parallelism depending on
the algorithm, but it is very difficult to identify automatically.
Hall et al. [9] attempt to invoke multiple iterations of outer
loops simultaneously, but unless the code is written to avoid
dependencies, this may not be ineffective. Exposing process-
level parallelism is thus usually the programmer’s responsi-
bility, and is usually controlled through the operating system
(e.g., POSIX threads) or the language itself (e.g., Java).

4.2 Approaches to Concurrency

The C-to-hardware compilers considered here take two ap-
proaches to concurrency. The first approach adds parallel con-
structs to the language, thereby forcing the programmer to ex-
pose most concurrency. HardwareC, SystemC, and Ocapi all
provide process-level parallel constructs; Handel-C, SpecC,
and Bach C additionally provide statement-level parallel con-
structs. SystemC’s parallelism resembles that in standard hard-
ware description languages such as Verilog: a system is a col-
lection of clock-edge-triggered processes. Handel-C, SpecC,
and Bach C’s approaches are more software-like, providing
constructs that dispatch collections of instructions in parallel.

The other approach lets the compiler identify parallelism.
While the languages that provide parallel constructs also iden-
tify some parallelism, Cones, Transmogrifier C, C2Verilog,

for (i = 0 ; i < 8 ; i++) {
a[i] = c[i];
b[i] = d[i] || f[i];

}

Figure 1: In how many cycles does this execute?
Cones says one (it is combinational), Transmogrifier C says
eight (one per iteration), and Handel-C says twenty-five (one
per assignment).

and CASH rely on the compiler to expose all possible paral-
lelism. The Cones compiler takes the most extreme approach,
flattening an entire C function with loops and conditionals into
a single two-level combinational function evaluated in paral-
lel. The CASH compiler, by contrast, takes an approach closer
to compilers for VLIW processors, carefully examining inter-
instruction dependencies and scheduling instructions to maxi-
mize parallelism. None of these compilers attempt to identify
process-level parallelism.

Neither approach is satisfactory. The latter group places the
burden on the compiler and therefore limits the parallelism
achievable in general if normal, sequential algorithms are used.
While this could be mitigated by careful selection of algo-
rithms that can be easily parallelized, such thinking would be
foreign to most software programmers, and may actually be
harder than thinking in an explicitly concurrent language.

The former group, by adding parallel constructs to C, intro-
duces a fundamental and far-reaching change to the language,
again demanding substantially different thinking on the part of
the programmer. Even if s/he is experienced with concurrent
programming with, say, POSIX threads, the parallel constructs
in hardware-like languages differ greatly from the thread-and-
shared-memory model of threads typical of software.

Any reasonable hardware specification language must be
able to express parallel algorithms since they are the most effi-
cient for hardware. C-like languages, because of their inherent
sequentiality, fail this requirement.

Which concurrency model the next hardware design lan-
guage should employ remains an open question, but it seems
clear that the usual software model—asynchronously running
threads communicating through shared memory—is not it.

5 Timing

The C language is mute on the subject of time. It guarantees
causality among most sequences of statements, but says noth-
ing about the amount of time it takes to execute each. This flex-
ibility simplifies life for compilers and programmers alike, but
makes it fairly difficult to achieve specific timing constraints.
C’s compilation technique is transparent enough to make gross
performance improvements easy to understand and achieve,
and differences in efficiency of sequential algorithms is a well-
studied problem, but wringing another 5% speed-up from any
piece of code can be quite difficult.

Achieving a performance target is fundamental to hardware
design. Miss a timing constraint by 3% and the circuit will fail
to operate or the product will fail to sell. Achieving a particular

performance target under power and cost constraints is usually
the only reason to implement a particular piece of functional-
ity in hardware as opposed to using an off-the-shelf processor.
Thus, any reasonable technique for specifying hardware needs
mechanisms for specifying and achieving timing constraints.

This disparity leads to yet another fundamental question
in using C-like languages for hardware design: where to put
the clock cycles. With two exceptions (Cones only generates
combinational logic; CASH generates self-timed logic), the
compilers described here define generate synchronous logic in
which the clock cycle boundaries have been defined.

5.1 Approaches to Timing Control

The compilers considered here use a variety of techniques for
inserting clock cycle boundaries, ranging from fully explicit to
a variety of rules for fully implicit.

Ocapi’s clocks are the most explicit: a designer specifies ex-
plicit state machines and each state gets a cycle. At some point
in the SpecC refinement flow, the state machines are also ex-
plicit, although clock boundaries may not be explicit earlier
in the flow. The clocks in the Cones system are also explicit,
although in an odd way: since Cones generates only combina-
tional logic, clocks are implicitly at function boundaries. Sys-
temC’s clock boundaries are also explicit: like Cones, combi-
national processes’ clock boundaries are at the edges and in se-
quential processes, explicit wait statements delay a prescribed
number of cycles.

HardwareC allows the user to specify clock constraints, an
approach common in high-level synthesis tools. For example,
a user can require that three particular statements should exe-
cute in two cycles. While this presents a greater challenge to
the compiler and is sometimes more subtle for the designer,
it allows flexibility that may lead to a more optimal design.
Bach C takes a similar approach.

Like HardwareC, the C2Verilog compiler also inserts cycles
using fairly complex rules and provides mechanisms for im-
posing timing constraints. Unlike HardwareC, however, these
constraints are outside the language.

Transmogrifier C and Handel-C use fixed implicit rules for
inserting clocks. Handel-C’s are the simplest: assignment and
delay statements each take a cycle; everything else executes
in the same clock cycle. Transmogrifier C’s rules are nearly
as simple: each loop iteration and function call takes a cycle.
Such simple rules can make it difficult to achieve a particular
timing constraint, unfortunately: assignment statements may
need to be fused to speed up a Handel-C specification, and
Transmogrifier C may require loops to be manually unrolled.

The ability to specify or constrain detailed timing in hard-
ware is another fundamental requirement. While slow software
is an annoyance, slow hardware is a disaster. When something
happens in hardware is usually as important as what happens.
This is another big philosophical difference between software
and hardware, and again hardware requires different skills.

The next hardware specification language needs the ability
to specify detailed timing, both explicitly and through con-
straints, but perhaps should not be mandatory everywhere. Un-
fortunately, the best-effort model of software is inadequate.

6 Types

Data types are another central difference between hardware
and software languages. The most fundamental type in hard-
ware is a single bit traveling through a memoryless wire. By
contrast, the base types in C and C++ are bytes and multiples
thereof stored in memory. While C’s base types can be imple-
mented in hardware, C has almost no support for types smaller
than a byte1. As a result, straight C code can easily be inter-
preted as bloated hardware.

The situation in C++ is better. C++ supports a one-bit bool
type and its class mechanism makes it possible to add more
types such as arbitrary-width integers to the language.

The compilers considered here take three approaches to in-
troducing hardware types to C programs. The first approach,
and perhaps the purest, neither modify nor augment C’s types
but allow the compiler or designer to adjust the width of the in-
teger types outside the language. For example, the C2Verilog
compiler provides a GUI that allows the user to set the width
of each variable used in the program. The width of each integer
in Transmogrifier C can be set through a preprocessor pragma.

The second approach is to add hardware types to the C lan-
guage. HardwareC, for instance, adds a boolean vector type.
Both Handel-C and Bach C add integers with an explicit width.
SpecC adds all these types and many others that cannot be syn-
thesized, such as pure events and simulated time.

The third approach, taken by the C++-based languages, is
to provide hardware-like types through C++’s type system.
The SystemC libraries include variable width integers and an
extensive collection of types for fixed-point fractional num-
bers. Ocapi, since it is an algorithmic mechanism for generat-
ing structure, also effectively takes this approach, allowing the
user to explicitly request wires, buses, and whatnot.

Each approach, however, constitutes a fairly radical depar-
ture from the “call it an integer and forget about it” approach of
C. Even the languages that support only C types compel a user
to provide the actual size of each integer. Worrying about the
width of each variable in a program is not something a typical
C programmer does.

Compared to timing and concurrency, however, adding ap-
propriate hardware types is a fairly easy problem to solve when
adapting C to hardware. C++’s type system is flexible enough
to accommodate hardware types, and minor extensions to C
suffice. A bigger question, which none of the languages ade-
quately addresses, is how to apply higher-level types such as
classes and interfaces to hardware description. SystemC has
some facilities for inheritance, but since its mechanism is sim-
ply the one used for software, it is not clear that it is convenient
for adding or modifying behavior of existing pieces of hard-
ware. Incidentally SystemC has supported templates, more ab-
stract modeling of communication channels, and so forth since
version 2.0, but they are not typically synthesizable.

The next hardware description language needs a rich type
system that allows precise definition of hardware types, but it
should also assist in ensuring program correctness.

1With one exception: the number of bits for each field in a struct may be
specified explicitly. Oddly, none of these languages even mimic this syntax.

7 Communication

C-like languages are built on the very flexible random-access
memory model of communication. The language models all
memory locations as being equally costly to access, but mod-
ern memory hierarchies make this a lie. At any point in time,
it make take hundreds or even thousands of times longer to
access certain locations. And although the behavior of these
memories, specifically caches, can often be predicted and used
more efficiently, this is very difficult and C-like languages pro-
vide scant support for it.

In hardware, long, nondeterministic communication delays
are anathema. Timing predictability is mandatory, so large,
uniform-looking memory spaces are rarely the primary com-
munication mechanism. Instead, a variety of mechanisms are
used, ranging from simple wires to complex protocols, de-
pending on the more precise needs of the system. An impor-
tant characteristic of this approach is the need to understand
a system’s communication channels and patterns before it is
running, since communication channels must be hard-wired.

7.1 The Problem with Pointers

Communication patterns within software, unfortunately, are
often very difficult to determine a priori because of the fre-
quent use of pointers. These are memory addresses computed
at run-time, and as such are often data-dependent and simply
cannot be known completely before a system is running. Im-
plementing such behavior in hardware mandates at least small
memory regions.

Aliasing, when a single value can be accessed through mul-
tiple sources, is an even more serious problem. Without a good
understanding of when a variable can be aliased, a hardware
compiler is forced to place that variable into a large, central
memory, which is necessarily slower than a small memory lo-
cal to the computational units that read and feed it.

One of C’s strengths is its memory model that allows com-
plicated pointer arithmetic and essentially uncontrolled access
to memory. While very useful for systems programs such as
operating systems, such abilities make it especially difficult to
analyze the communication patterns of an arbitrary C program.
This problem is so great, in fact, that software compilers of-
ten have a much easier time analyzing a FORTRAN program
rather than an equivalent C program.

Any technique that implements a C-like program in hard-
ware must either analyze the program to understand all possi-
ble communication pathways, resort to large, slow memories,
or some combination of both.

Luc Semeria et al. [20, 21] have applied pointer analysis
algorithms from the software compiler literature to estimate
the communication patterns of C programs for hardware syn-
thesis. Pointer analysis identifies to which data each pointer
may refer, allowing memory to be divided. While an impres-
sive body of work, it illustrates the difficulty of the problem.
Exact pointer analysis is undecidable, so approximations are
used. These are necessarily conservative and hence may miss
opportunities to split memory regions, leading to higher-cost
implementations. Finally, pointer analysis is a costly algorithm
with many variants.

7.2 Communication Costs

The event-oriented style of communication in software is an-
other key difference. Every bit of data communicated among
parts of a software program has a cost (i.e., a read or write op-
eration to registers or memory) and as such, communication
must be explicitly requested in software. Communicating the
first bit is very costly in hardware because it requires the addi-
tion of a wire, but after that, communication is actually more
costly to disable than continue.

This difference leads to a fairly different set of concerns.
Good communication design in hardware amounts to trying
to minimize the number of pathways among parts of the de-
sign, where good design in software minimizes the number
of transactions. For example, good design in software tries to
avoid forwarding through copying, preferring instead to pass a
reference to the data being forwarded. This is a good strategy
for hardware that stores large blocks of data in a memory, but
rarely in other cases. Instead, good design in hardware consid-
ers alternate encodings of data, such as serialization.

7.3 Approaches to Communication

The languages considered here fall broadly into two groups:
those that effectively ignore C’s memory model and look only
at communication through variables, and those that adopt the
full C memory model.

Languages that ignore C’s memory model do not support
arrays or pointers and instead only look at how local vari-
ables are used to communicate between statements. Cones is
the simplest: all variables, arrays included, are interpreted as
wires. HardwareC and Transmogrifier C do not support arrays
or memories. Ocapi also falls into this class, although arrays
and pointers can be used to assist during system construction.

The other group of languages go to great lengths to preserve
C’s memory model. The CASH compiler is the most brute-
force: it synthesizes one, large memory and puts all variables
and arrays into it. The Handel-C and C2Verilog compilers can
split up memory into multiple regions and assign each to a
separate memory element. Handel-C adds explicit constructs
to the language for specifying these. SystemC also supports
the explicit declaration of separate memory regions.

Other languages provide communication primitives whose
semantics differ greatly from the memory style of commu-
nication used in C. HardwareC, Handel-C, and Bach C all
provide blocking rendezvous-style (i.e., unbuffered) commu-
nication primitives for communicating between concurrently-
running processes. SpecC and later versions of SystemC pro-
vide a large library of communication primitives.

Again, the difference between appropriate design for soft-
ware and hardware is substantial. Software designers usually
ignore memory access patterns. Although this can slow overall
memory access speed, it is usually acceptable. Good hardware
design, by contrast, usually starts with a block diagram detail-
ing every communication channel and attempts to minimize
communication pathways.

So software designers usually ignore the fundamental com-
munication cost issues common in hardware. Furthermore, au-
tomatically extracting efficient communication structures from

software is challenging because of the pointer problem in C-
like languages. While pointer analysis can help to mitigate the
problem, it is imprecise and cannot improve an algorithm with
poor communication patterns.

The next hardware specification language should make it
easy to specify efficient communication patterns.

8 Meta-data

Any given high-level construct can be implemented in many
different ways. However, because hardware is at a much lower
level than software, there are many more ways to implement a
particular C construct in hardware. For example, consider an
addition operation. A processor probably only has one useful
addition instruction, whereas in hardware there are a dizzy-
ing number of different adder architectures (e.g., ripple-carry,
carry lookahead, and carry save).

The translation process for hardware therefore has more de-
cisions to make than translation for software. Making many
decisions correctly is fundamentally difficult and computation-
ally expensive. Furthermore, the right set of decisions varies
with design constraints. For example, a designer might prefer
a ripple-carry adder if area and power were at a premium and
speed was of little concern, but a carry lookahead adder might
be preferred if speed were of greater concern.

While much effort has been put into improving optimiza-
tion algorithms, it remains unrealistic to expect all of these de-
cisions to be automated. Instead, designers need mechanisms
that allow them to ask for exactly what they want.

Such designer guidance takes two forms: through manual
rewriting of high-level constructs into the desired lower-level
ones (e.g., replacing a “+” operator with a collection of gates
that implements a carry-lookahead adder), or through anno-
tations such as constraints or hints about how to implement
a particular construct. Both approaches are common register-
transfer level design. Designers routinely specify complex dat-
apaths at the gate level instead of using higher-level constructs.
Constraint information, often supplied in an auxiliary file, usu-
ally drives logic optimization algorithms.

One of the anonymous reviewers suggested that C++’s op-
erator overloading mechanism could be used to specify, for
example, when a carry-lookahead adder was to be used to im-
plement an addition. Unfortunately, I believe it would be very
difficult. C++’s overloading mechanism uses argument types
to resolve ambiguities, which is natural when you want dif-
ferent data types to be treated differently, but the choice of
particular algorithm in hardware is usually driven by resource
constraints (e.g., area or delay) rather than data representation
(although of course data representation matters). Concurrency
is the fundamental problem: in software, there is little reason
to have multiple implementations of the same algorithm, but it
happens all the time in hardware. Not surprisingly, C++ does
not really support this sort of thing.

The languages considered here take two approaches to spec-
ifying such meta-data. One group places it within the program
itself, hiding it in comments, pragmas, or added constructs,
and the other group places it outside the program, either in a
text file or in a database populated by graphical user interface.

Challenge Comment
The concurrency model Specifying parallel algorithms
Specifying timing How many clock cycles?
Types Need bits and bit-precise vectors
Communication patterns Want isolated memories
Hints and constraints How to implement something

Table 2: The big challenges in hardware languages

C does have a standard way of supplying extra information
to the compiler: the #pragma directive. By definition, a com-
piler ignores such lines unless it understands them. Transmo-
grifier C uses it to specify the width of integers, and Bach C
uses it to specify timing and mapping constraints.

HardwareC provides three language-level constructs: timing
constraints, resource constraints, and arbitrary string-based at-
tributes, whose semantics are much like a C #pragma.

SpecC takes the other approach: many tools for synthesizing
and refining SpecC have the user to use a GUI to specify how
various constructs are to be interpreted.

Constructs such as addition that are low-level in software
are effectively high-level in hardware and as such, there must
be some mechanism for conveying designer intent to any hard-
ware synthesis procedure, regardless of the source language.
The next hardware specification language needs some way of
guiding the synthesis procedure to select among different im-
plementations, trading off between, say, power and speed.

9 Conclusions

Table 2 lists the key challenges of a successful hardware spec-
ification language. In this paper, I discussed how a variety of
C-like languages and compilers proposed for specifying hard-
ware tried to address these issues and argued why choosing a
C-like language over one specifically designed to specify hard-
ware is not helpful. In particular, giving experienced software
designers hardware synthesis tools is unlikely to turn them into
effective hardware designers.

Why bother generating hardware from C? It is clearly not
necessary since there are many excellent processors and soft-
ware compilers. This is certainly the cheapest and easiest way
to run a C program. So why consider using hardware?

Efficiency is the logical answer. Although general-purpose
processors get the job done, well-designed customized hard-
ware can always do the job faster using fewer transistors and
less energy. Thus the utility of any hardware synthesis proce-
dure depends on how well it is able to produce efficient hard-
ware specialized for the particular application.

9.1 Summary

To recap the difficulties with C-like languages, concurrency
is fundamental for efficient hardware, yet C-like languages
impose sequential semantics and nearly demand the use of
sequential algorithms. Unfortunately, automatically exposing
concurrency in sequential programs is limited in its effective-
ness, so an effective language almost surely requires explicit
concurrency, something missing from most C-like languages.

Adding such a construct is easy, but teaching software pro-
grammers to use concurrent algorithms is much harder.

Careful timing design is also required for efficient hardware,
yet C-like languages provide essentially no control over tim-
ing, so the language needs to have timing control added to it.
The problem amounts to where to put the clock cycles, and
the languages have a variety of solutions, both implicit and ex-
plicit. The bigger problem, though, is changing programmer
habits to consider such timing details.

Using software-like types (e.g., bytes and multiples thereof)
is also a problem in hardware, which wants to manipulate in-
dividual bits for efficiency, but a much easier problem to solve
for C-like languages. Some languages add the ability to spec-
ify the number of bits used for each integer, for example, and
C++’s type system is flexible enough to allow hardware types
to be defined. The type problem is the easiest to address.

Communication also presents a challenge. C’s very flexible
global-memory communication model is not very efficient for
hardware. Instead, memory should be broken into smaller re-
gions, often as small as a single variable. Compilers can do
this to a limited degree, but efficiency often demands explicit
control over this. A fundamental problem, again, is that C pro-
grammers generally do not worry about memory, and that C
programs are rarely written with memory behavior in mind.

A high-level hardware description language must allow the
designer to provide constraints or hints to the synthesis system
because of the wide semantic gap between a C program and
efficient hardware. Since there are many ways to implement
in hardware a construct such as addition, the synthesis system
needs some way to select an implementation. Constraints and
hints are the two main ways to control the algorithm, yet stan-
dard C has no such facility.

While presenting designers with a higher level of abstrac-
tion is obviously desirable, presenting them with an inappro-
priate level of abstraction (e.g., one in which they cannot effec-
tively ask for what they want), is of little help. Unfortunately,
C-like languages do not lend themselves to the synthesis of
efficient hardware.

In summary, I believe the next great hardware specifica-
tion language will not closely resemble C or any other famil-
iar software language. Software languages work well only for
software, and a hardware language that does not produce effi-
cient hardware is of little use. It is my hope that this paper will
prompt a more effective discussion about the design of the next
great hardware description language.

Another important future issue will be the ability of the lan-
guage to effectively build systems from existing pieces (a.k.a.
IP-based design), which none of these languages really ad-
dresses. This appears necessary to raise designer productivity
to the level needed for the next generation of chips.

Lording over all these issues, however, is verification. What
we really need are languages that let us create correct sys-
tems more quickly, by making it easier to check, identify, and
correct mistakes. Raising the level of abstraction and facilitat-
ing efficient simulation are two well-known ways of achieving
this, but are there others?

References

[1] Mihai Budiu and Seth C. Goldstein. Compiling
application-specific hardware. In Proceedings of the
12th International Conference on Field Programmable
Logic and Applications (FPL), volume 2438 of Lecture
Notes in Computer Science, pages 853–863,
Montpellier, France, September 2002. Springer-Verlag.

[2] Celoxica, http://www.celoxica.com. Handel-C
Language Reference Manual, 2003. RM-1003-4.0.

[3] Giovanni De Micheli. Hardware synthesis from C/C++
models. In Proceedings of Design, Automation, and Test
in Europe (DATE), pages 382–383, Munich, Germany,
March 1999.

[4] Giovanni De Micheli, David Ku, Frédéric Mailhot, and
Thomas Truong. The Olympus synthesis system. IEEE
Design & Test of Computers, 7(5):37–53, October 1990.

[5] Rainer Dömer, Andreas Gerstlauer, and Daniel Gajski.
SpecC Language Reference Manual. SpecC consortium,
version 2.0 edition, March 2001.

[6] Daniel D. Gajski, Jianwen Zhu, Rainer Dömer, Andreas
Gerstlauer, and Shuqing Zhao. SpecC: Specification
Language and Methodology. Kluwer, Boston,
Massachusetts, 2000.

[7] David Galloway. The Transmogrifier C hardware
description language and compiler for FPGAs. In
Proceedings of the IEEE Symposium on FPGAs for
Custom Computing Machines (FCCM), pages 136–144,
Napa, California, April 1995.

[8] Thorsten Grötker, Stan Liao, Grant Martin, and Stuart
Swan. System Design with SystemC. Kluwer, Boston,
Massachusetts, 2002.

[9] Mary W. Hall, Saman P. Amarasinghe, Brian R.
Murphy, Shih-Wei Liao, and Monica S. Lam. Detecting
coarse-grain parallelism using an interprocedural
parallelizing compiler. In Proceedings of
Supercomputing ’95, December 1995.

[10] Takashi Kambe, Akihisa Yamada, Koichi Nishida,
Kazuhisa Okada, Mitsuhisa Ohnishi, Andrew Kay, Paul
Boca, Vince Zammit, and Toshio Nomura. A C-based
synthesis system, Bach, and its application. In
Proceedings of the Asia South Pacific Design
Automation Conference (ASP-DAC), pages 151–155,
Yokohama, Japan, 2001. ACM Press.

[11] Ken Kennedy and Randy Allen. Optimizing Compilers
for Modern Architectures. Morgan Kaufmann, 2001.

[12] David C. Ku and Giovanni De Micheli. HardwareC: A
language for hardware design. Technical Report
CSTL-TR-90-419, Computer Systems Lab, Stanford
University, California, August 1990. Version 2.0.

[13] Stan Liao, Steve Tjiang, and Rajesh Gupta. An efficient
implementation of reactivity for modeling hardware in
the Scenic design environment. In Proceedings of the
34th Design Automation Conference, Anaheim,
California, June 1997.

[14] Richard J. Lipton, Dimotrios N. Serpanos, and
Wayne H. Wolf. PDL++: an optimizing generator
language for register transfer design. In Proceedings of
the International Symposium on Circuits and Systems
(ISCAS), pages 1135–1138 vol. 2, New Orleans,
Louisiana, May 1990.

[15] Yuri Panchul, Donald A. Soderman, and Denis R.
Coleman. System for converting hardware designs in
high-level programming language to hardware
implementations. US Patent 6,226,776, May 2001.

[16] Robert Paško, Serge Vernalde, and Patrick Schaumont.
Techniques to evolve a C++ based system design
language. In Proceedings of Design, Automation, and
Test in Europe (DATE), pages 302–309, Paris, France,
March 2002.

[17] Martin Richards and Colin Whitby-Strevens. BCPL:
The Language and its Compiler. Cambridge University
Press, 1979.

[18] Dennis M. Ritchie. The development of the C language.
In History of Programming Languages II, Cambridge,
Massachusetts, April 1993.

[19] Patrick Schaumont, Serge Vernalde, Luc Rijnders, Marc
Engels, and Ivo Bolsens. A programming environment
for the design of complex high speed ASICs. In
Proceedings of the 35th Design Automation Conference,
pages 315–320, San Francisco, California, June 1998.

[20] Luc Séméria and Giovanni De Micheli. Resolution,
optimization, and encoding of pointer variables for the
behavioral synthesis from C. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 20(2):213–233, February 2001.

[21] Luc Séméria, Koichi Sato, and Giovanni De Micheli.
Synthesis of hardware models in C with pointers and
complex data structures. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 9(6):743–756,
dec 2001.

[22] David B. Skillicorn and Domenico Talia. Models and
languages for parallel computation. ACM Computing
Surveys, 30(2):123–169, June 1998.

[23] Donald Soderman and Yuri Panchul. Implementing C
algorithms in reconfigurable hardware using C2Verilog.
In Proceedings of the IEEE Symposium on FPGAs for
Custom Computing Machines (FCCM), pages 339–342,
Los Alamitos, CA, April 1998.

[24] Donald Soderman and Yuri Panchul. Implementing C
designs in hardware: a full-featured ANSI C to RTL
Verilog compiler in action. In Proceedings of the 1998
International Verilog HDL Conference (IVC), pages
22–29, Santa Clara, California, March 1998.

[25] Charles E. Stroud, Ronald R. Munoz, and David A.
Pierce. Behavioral model synthesis with cones. IEEE
Design & Test of Computers, 5(3):22–30, July 1988.

[26] Kazutoshi Wakabayashi. C-based synthesis experiences
with a behavior synthesizer, “Cyber”. In Proceedings of
Design, Automation, and Test in Europe (DATE), pages
390–393, Munich, Germany, March 1999.

[27] David. W. Wall. Limits of instruction-level parallelism.
In Proceedings of the 4th International Conference on
Architectural Support for Programming Languages and
Operating System (ASPLOS), SIGPLAN Notices,
26(4):176–189, New York, NY, 1991. ACM Press.

[28] David W. Wall. Speculative execution and
instruction-level parallelism. Technical Report TN–42,
DEC Western Research Laboratory, Palo Alto,
California, March 1994.

