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Abstract

Embedded systems are application-specific computers that
interact with the physical world. Each has a diverse set
of tasks to perform, and although a very flexible language
might be able to handle all of them, instead a variety of
problem-domain-specific languages have evolved that are
easier to write, analyze, and compile.

This paper surveys some of the more important lan-
guages, introducing their central ideas quickly without go-
ing into detail. A small example of each is included.

1 Introduction

An embedded system is a computer masquerading as a non-
computer that must perform a small set of tasks cheaply and
efficiently. A typical system might have communication,
signal processing, and user interface tasks to perform.

Because the tasks must solve diverse problems, a lan-
guage general-purpose enough to solve them all would be
difficult to write, analyze, and compile. Instead, a variety
of languages have evolved, each best suited to a particu-
lar problem domain. For example, a language for signal-
processing is often more convenient for a particular prob-
lem than, say, assembly, but might be poor for control-
dominated behavior.

This paper describes popular hardware, software,
dataflow, and hybrid languages, each of which excels a cer-
tain problems. Dataflow languages are good for signal pro-
cessing, and hybrid languages combine ideas from the other
three classes.

Due to space, this paper only describes the main features
of each language. The author’s book on the subject [9] pro-
vides many more details on all of these languages.

2 Hardware Languages

Verilog [14, 25] and VHDL [13, 23, 8, 2] are the most pop-
ular languages for hardware description and modeling (Fig-
ure 1, 2). Both model systems with discrete-event seman-
tics that ignore idle portions of the design for efficient sim-
ulation. Both describe systems with structural hierarchy: a
system consists of blocks that contain instances of primi-
tives, other blocks, or concurrent processes. Connections
are listed explicitly.

Verilog provides more primitives geared specifically to-

ward hardware simulation. VHDL’s primitive are assign-
ments such as a = b + c or procedural code. Verilog adds
transistor and logic gate primitives, and allows new ones to
be defined with truth tables.

Both languages allow concurrent processes to be de-
scribed procedurally. Such processes sleep until awak-
ened by an event that causes them to run, read and write
variables, and suspend. Processes may wait for a pe-
riod of time (e.g., #10 in Verilog, wait for 10ns in
VHDL), a value change (@(a or b), wait on a,b),
or an event (@(posedge clk), wait on clk un-
til clk=’1’).

VHDL communication is more disciplined and flexible.
Verilog communicates through wires or regs: shared mem-
ory locations that can cause race conditions. VHDL’s sig-
nals behave like wires but the resolution function may be
user-defined. VHDL’s variables are local to a single pro-
cess unless declared shared.

Verilog’s type system models hardware with four-valued
bit vectors and arrays for modeling memory. VHDL does
not include four-valued vectors, but its type system allows
them to be added. Furthermore, composite types such as C
structs can be defined.

Overall, Verilog is the leaner language more directly
geared toward simulating digital integrated circuits. VHDL
is a much larger, more verbose language capable of handing
a wider class of simulation and modeling tasks.

3 Software Languages

Software languages describe sequences of instructions for a
processor to execute. As such, most consist of sequences of
imperative instructions that communicate through memory:
an array of numbers that hold their values until changed.

Each machine instruction typically does little more than,
say, add two numbers, so high-level languages aim to
specify many instructions concisely and intuitively. Arith-
metic expressions are typical: coding an expression such
as ax2 + bx + c in machine code is straightforward, tedious,
and best done by a compiler. The C language provides such
expressions, control-flow constructs such as loops and con-
ditionals, and recursive functions. The C++ language adds
classes as a way to build new data types, templates for poly-
morphic code, exceptions for error handling, and a standard
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module fulladd(ai, bi, ci, o, co);
input ai, bi, ci;
output o, co;
wire s1;

xor x1(s1, ai, bi), x2(o, s1, ci);

assign co = (ai + bi + ci) >= 2;
endmodule

module testadd;
reg [2:0] y;
wire o, co;
reg clk;

fulladd a1(y[0], y[1], y[2], o, co);

initial begin
y = 0; clk = 0;
$monitor($time,,"%d%d%d %d%d",

y[2], y[1], y[0], co, o);
end

always #10 clk = ˜clk;
always @(posedge clk) y <= y + 1;

endmodule

Figure 1: A Verilog model for a full adder. This uses prim-
itive gates, continuous assignment, and procedural code.

entity XOR2 is
port (o: out Bit; a, b: in Bit);

end XOR2;

architecture arch1 of XOR2 is
begin
A1: o <= (a xor b);

end arch1;

entity fulladd is
port (ai, bi, ci: in Bit;

o, co: out Bit);
end fulladd;

architecture arch1 of fulladd is
signal s1 : Bit;
component XOR2

port(o: out Bit; a, b: in Bit);
end component;
for X1, X2: XOR2 use entity Work.XOR2;

begin
X1: XOR2 port map (s1, ai, bi);
X2: XOR2 port map (o, s1, ci);
A1: co <= (ai and bi) or (ai and ci)

or (bi and ci);
end arch1;

Figure 2: A VHDL model for a full adder that does not
include a test bench; compare with Figure 1.

C C++ Java
Expressions ● ● ●

Control-flow ● ● ●

Recursive functions ● ● ●

Exceptions ❍ ● ●

Classes & Inheritance ● ●

Templates ●

Namespaces ● ●

Multiple inheritance ● ❍

Threads & Locks ● ●

Garbage collection ❍ ●
● full support ❍ partial support

Table 1: Software language features compared

jmp L2 # go to L2
L1: # label

movl %ebx, %eax # n -> m
movl %ecx, %ebx # r -> n

L2:
xorl %edx, %edx # clear %edx
divl %ebx # m / n
movl %edx, %ecx # rem -> r
testl %ecx, %ecx # if r = 0,
jne L1 # go to L1

Figure 3: Euclid’s algorithm in i386 assembly language.
Symbols like %ebx represent registers. movlmeans “move
long value.” divl %ebx divides %eax by %ebx and puts
the remainder in %edx.

#include <stdio.h>

int main(int argc, char *argv[])
{

char *c;
while (++argv, --argc > 0) {
c = argv[0] + strlen(argv[0]);
while (--c >= argv[0])

putchar(*c);
putchar(’\n’);

}
return 0;

}

Figure 4: A C program that prints its arguments backwards.
The outermost while loop iterates through the arguments
(count in argc, array of strings in argv), while the inner loop
starts a pointer at the end of the current argument and walks
it backwards, printing each character along the way.

library of common data structures. Java is a still higher-
level language that provides automatic garbage collection,
threads, and monitors to synchronize them.

3.1 Assembly Languages

An assembly language program (Figure 3) is a list of pro-
cessor instructions written in a symbolic, human-readable
form. Each instruction consists of an operation such as ad-
dition along with some operands. E.g., add r5,r2,r4
might add the contents of registers r2 and r4 and write
the result to r5. Such arithmetic instructions are executed
in order, but branch instructions can perform conditionals
and loops by changing the processor’s program counter—
the address of the instruction being executed.

A processor’s assembly language is defined by its op-
codes, addressing modes, registers, and memories. The op-
code distinguishes, say, addition from conditional branch,
and an addressing mode defines how and where data is gath-
ered and stored (e.g., from a register or from a particular
memory location). Registers can be thought of as small,
fast, easy-to-access pieces of memory.

3.2 The C Language

A C program (Figure 4) contains functions built from arith-
metic expressions structured with loops and conditionals.
Instructions in a C program run sequentially, but control-

2



class Cplx {
double re, im;

public:
Cplx(double v) : re(v), im(0) {}
Cplx(double r, double i)

: re(r), im(i) {}
double abs() const {

return sqrt(re*re + im*im);
}
void operator+= (const Cplx& a) {

re += a.re; im += a.im;
}

};

int main() {
Cplx a(5), b(3,4);
b += a;
cout << b.abs() << ’\n’;
return 0;

}

Figure 5: A C++ fragment illustrating a partial complex
number type (the C++ library has a complete version).

flow constructs such as loops of conditionals can affect the
order in which instructions execute. When control reaches a
function call in an expression, control is passed to the called
function, which runs until it produces a result, and control
returns to continue evaluating the expression that called the
function.

C derives its types from those a processor manipulates
directly: signed and unsigned integers ranging from bytes
to words, floating point numbers, and pointers. These can
be further aggregated into arrays and structures—groups of
named fields.

C programs use three types of memory. Space for
global data is allocated when the program is compiled,
the stack stores automatic variables allocated and released
when their function is called and returns, and the heap sup-
plies arbitrarily-sized regions of memory that can be deal-
located in any order.

The C language is an ISO standard, but most people con-
sult the book by Kernighan and Ritchie [17]. Ritchie de-
signed the language.

3.3 C++

C++ (Figure 5) [24] extends C with structuring mechanisms
for big programs: user-defined data types, a way to reuse
code with different types, namespaces to group objects and
avoid accidental name collisions when program pieces are
assembled, and exceptions to handle errors. The C++ stan-
dard library includes a collection of efficient polymorphic
data types such as arrays, trees, strings for which the com-
piler generates custom implementations.

A class defines a new data type by specifying its repre-
sentation and the operations that may access and modify it.
Classes may be defined by inheritance, which extends and
modifies existing classes. For example, a rectangle class
might add length and width fields and an area method to a
shape class.

A template is a function or class that can work with mul-
tiple types. The compiler generates custom code for each

import java.io.*;
class Counter {

int value = 0;
boolean present = false;
public synchronized void count() {

try { while (present) wait(); }
catch (InterruptedException e) {}
value++; present = true; notifyAll();

}
public synchronized int read() {

try { while (!present) wait(); }
catch (InterruptedException e) {}
present = false; notifyAll();
return value;

}
}
class Count extends Thread {

Counter cnt;
public Count(Counter c) { cnt = c; start(); }
public void run() { for (;;) cnt.count(); }

}
class Mod5 {

public static void main(String args[]) {
Counter c = new Counter();
Count count = new Count(c);
int v;
for (;;) if ( (v = c.read()) % 5 == 0 )

System.out.println(v);
}

}

Figure 6: A contrived Java program that spawns a counting
thread to print all numbers divisible by 5.

different use of the template. For example, the same min
template could be used for both integers and floating-point
numbers.

3.4 Java

Sun’s Java language [1, 11, 20] resembles C++ but is in-
compatible. Like C++, Java is object-oriented, providing
classes and inheritance. It is a higher-level language than
C++ since it uses object references, arrays, and strings in-
stead of pointers. Java’s automatic garbage collection frees
the programmer from memory management.

Java provides concurrent threads (Figure 6). Creating
a thread involves extending the Thread class, creating in-
stances of these objects, and calling their start methods to
start a new thread of control that executes the objects’ run
methods.

Synchronizing a method or block uses a per-object lock
to resolve contention when two or more threads attempt to
access the same object simultaneously. A thread that at-
tempts to gain a lock owned by another thread will block
until the lock is released, which can be used to grant a thread
exclusive access to a particular object.

3.5 RTOS

Many embedded systems use a real-time operating system
(RTOS) to simulate concurrency on a single processor. An
RTOS manages multiple running processes, each written
in sequential language such as C. The processes perform
the system’s computation and the RTOS schedules them—
attempts to meet deadlines by deciding which process runs
when. Labrosse [18] describes the implementation of a par-
ticular RTOS.
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B completes; C starts
A completes; B resumed

C initiated, but higher-priority A continues
B preempted by higher-priority A

Figure 7: The behavior of an RTOS with fixed-priority pre-
emptive scheduling. Rate-monotonic analysis gives pro-
cess P1 the highest priority since it has the shortest period;
P3 has the lowest. A would have missed its deadline (the
tick mark) had it not preempted B.

Most RTOSes uses fixed-priority preemptive scheduling
in which each process is given a particular priority (a small
integer) when the system is designed. At any time, the
RTOS runs the highest-priority running process, which is
expected to run for a short period of time before suspend-
ing itself to wait for more data. Priorities are usually as-
signed using rate-monotonic analysis [6] (due to Liu and
Layland [21]), which assigns higher priorities to processes
that must meet more frequent deadlines.

4 Dataflow Languages

Dataflow languages describe systems of procedural pro-
cesses that run concurrently and communicate through
queues. Although clumsy for general applications, dataflow
languages are a perfect fit for signal-processing algorithms,
which use vast quantities of arithmetic derived from linear
system theory to decode, compress, or filter data streams
that represent periodic samples of continuously-changing
values such as sound or video. Dataflow semantics are
natural for expressing the block diagrams typically used to
describe signal-processing algorithms, and their regularity
makes dataflow implementations very efficient because oth-
erwise costly run-time scheduling decisions can be made at
compile time, even in systems containing multiple sampling
rates.

4.1 Kahn Process Networks

Kahn Process Networks [16] form a formal basis for
dataflow computation. Kahn’s systems consist of processes
that communicate exclusively through unbounded point-to-
point first-in, first-out queues. Reading from a port makes
a process wait until data is available, so the behavior of
Kahn’s networks does not depend on execution speeds.

Balancing processes’ relative execution rates to avoid
an unbounded accumulation of tokens is the challenge in
scheduling a Kahn network. One general approach, pro-
posed in Parks’ thesis [22] places artificial limits on the
size of each buffer. Any process that writes to a full buffer

process f(in int u, v; out int w)
{

int i; bool b = true;
for (;;) {
i = b ? wait(u) : wait(w);
printf("%i\n", i);
send(i, w);
b = !b;

}
}

process g(in int u; out int v, w)
{

for (;;) {
send(wait(u), v); send(wait(u), w);

}
}

process h(in int u, out int v, int init)
{

send(v, init);
for(;;)
send(wait(u), v);

}

channel int X, Y, Z, T1, T2;
f(Y, Z, X);
g(X, T1, T2);
h(T1, Y, 0);
h(T2, Z, 1);

Figure 8: A Kahn Process Network [16]. The f process
alternately copies from its u and v ports to its w port; the g
process does the opposite, copying its u port to alternately
v and w; and h simply copies its input to its output.
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Figure 9: A modem in SDF (from Bhattacharyya et al. [5])

blocks until space is available, but if the system deadlocks
because all buffers are full, the scheduler increases the ca-
pacity of the smallest buffer.

4.2 Synchronous Dataflow

Lee and Messerschmitt’s Synchronous Dataflow [19] fix the
communication patterns of the blocks in a Kahn network.
Each time a block runs, it consumes and produces a fixed
number of data tokens on each of its ports. This predictabil-
ity allows SDF to be scheduled completely at compile-time,
producing very efficient code.

Scheduling operates in two steps. First, the rate at which
each block fires is established by considering the produc-
tion and consumption rates of each block at the source and
sink of each queue. For example, one of the arcs in Fig-
ure 9 implies 2C = 4D. Once the rates are established, any
algorithm that simulates the execution of the network with-
out buffer underflow will produce a correct schedule if one
exists. However, more sophisticated techniques reduce gen-
erated code and buffer sizes by better ordering the execution
of the blocks (see Bhattacharyya et al. [4]).
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5 Hybrid Languages

Hybrid languages combine ideas from others to solve dif-
ferent types of problems. Esterel excels at discrete control
by blending software-like control flow with the synchrony
and concurrency of hardware. Communication protocols
are SDL’s forte; it uses extended finite-state machines with
single input queues. SystemC provides a flexible discrete-
event simulation environment built on C++. CoCentricTM

System Studio combines dataflow with Esterel-like finite-
state machine semantics to simulate and synthesize dataflow
applications that also require control.

5.1 Esterel

Intended for specifying control-dominated reactive systems,
Esterel [3] combines the control constructs of an impera-
tive software language with concurrency, preemption, and
a synchronous model of time like that used in synchronous
digital circuits. In each clock cycle, the program awakens,
reads its inputs, produces outputs, and suspends.

An Esterel program communicates through signals that
are either present or absent each cycle. In each cycle, each
signal is absent unless an emit statement for the signal runs
and makes the signal present for that cycle only. Esterel
guarantees determinism by requiring each emitter of a sig-
nal to run before any statement that tests the signal.

5.2 SDL

SDL is a graphical specification language developed for
describing telecommunication protocols defined by the
ITU [15] (Ellsberger [10] is more readable). A system con-
sists of concurrently-running FSMs, each with a single in-
put queue, connected by channels that define which mes-
sages they carry. Each FSM consumes the most recent mes-
sage in its queue, reacts to it by changing internal state or
sending messages to other FSMs, changes to its next state,
and repeats the process. Each FSM is deterministic, but be-
cause messages from other FSMs may arrive in any order
because of varying execution speed and communication de-
lays, an SDL system may behave nondeterministically.

5.3 SystemC

The SystemC language is a C++ subset for system mod-
eling. A SystemC specification is simulated by compil-
ing it with a standard C++ compiler and linking in freely-
distributed class libraries from www.systemc.org.

The SystemC language builds systems from Verilog- and
VHDL-like modules. Each has a collection of I/O ports and
may contain instances of other modules or processes de-
fined by a block of C++ code.

SystemC uses a discrete-event simulation model. The
SystemC scheduler executes the code in a process in re-
sponse to an event such as a clock signal, or a delay. This
model resembles that used in Verilog and VHDL, but has
the flexibility of operating with a general-purpose program-
ming language.

Esterel SDL SystemC CCSS
Concurrent ● ● ● ●

Hierarchy ● ● ● ●

Preemption ● ● ●

Deterministic ● ❍ ●

Synchronous communication ● ● ●

Buffered communication ● ● ●

FIFO communication ● ❍ ●

Procedural ● ❍ ● ❍

Finite-state machines ● ● ❍ ●

Dataflow ● ● ●

Multi-rate dataflow ❍ ●

Software implementation ● ● ● ●

Hardware implementation ● ● ●
● full support ❍ partial support.

Table 2: Hybrid language features compared.

module Example:

input S, I;
output O;

signal R, A in
every S do
await I;
weak abort

sustain R
when immediate A;
emit O

||
loop

pause; pause;
present R then emit A end;

end
end

end

end module

Figure 10: An Esterel program modeling a shared resource.

#include "systemc.h"

struct complex_mult : sc_module {
sc_in<int> a, b;
sc_in<int> c, d;
sc_out<int> x, y;
sc_in_clk clock;

void do_mult() {
for (;;) {

x = a * c - b * d;
wait();
y = a * d + b * c;
wait();

}
}

SC_CTOR(complex_mult) {
SC_CTHREAD(do_mult, clock.pos());

}
};

Figure 11: A SystemC model for a complex multiplier.
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5.4 CoCentric System Studio

CoCentric System StudioTM [7] uses a hierarchical for-
malism that combines Kahn-like dataflow and hierarchi-
cal, concurrent FSMs. The FSMs resemble Harel’s State-
charts [12], but use Esterel’s synchronous semantics to en-
sure determinism.

A CCSS model is built hierarchically from Dataflow,
AND, OR, and Gated models. Dataflow models are Kahn
Process networks. The blocks may be dataflow primitives
written in a C++ subset or other hierarchical models. AND
models run concurrently and communicate with Esterel-like
synchronous semantics. OR models are finite-state ma-
chines that may manipulate data and whose states may con-
tain other models. Gated models contain sub-models whose
execution can be temporarily suspended under external con-
trol.
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