Electronic Notes in Theoretical Computer Science 65 No. 5 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume65.html 15 pages

ESUIF: An Open Esterel Compiler

Stephen A. Edwards"

Computer Science Department
Columbia University
New York, USA

Abstract

I describe a new compiler infrastructure for imperative synchronous languages
such as Esterel and ECL. Built on the SUIF 2 system, it includes a new intermediate
representation for this class of languages that has simple semantics designed for
easy implementation in hardware or software. I describe the structure of this new
compiler, the intermediate representation, and how Esterel source is translated into
this intermediate representation.

1 Introduction

ESUIF is a new compiler designed for research on synchronous imperative lan-
guages such as Esterel [6] and ECL [10]. Its design is modular and sufficiently
flexible to be the basis for work on hardware synthesis, software synthesis,
optimization, and verification.

The difficulty of compiling imperative synchronous languages such as Es-
terel and ECL motivated this work. Their semantics are subtle and com-
plex, integrating concurrency, preemption, and instantaneous broadcast. To
date, at least four substantially different approaches, automata [6], logic net-
works [1], control-flow graphs [7], and events [11], have been proposed, each
with different advantages and drawbacks. None is clearly superior, and more
work is needed. Unfortunately, none of these compilers is available in source
form, and only two are available in binary form, limiting new research in the
field. ESUIF, by contrast, is freely available”® and designed for flexibility.

ESUIF compiles programs in Esterel and related languages using a series
of refinement steps that can easily be used in different ways and extended. To
support this, ESUIF is built on the SUIF 2 system from Stanford University®

1 Email: [sedwards@cs.columbia.edu
2 lwww.cs.columbia.edu/ sedwards
3 |suif.stanford.edu

(©2002 Published by Elsevier Science B. V.

mailto:sedwards@cs.columbia.edu�
http://www.cs.columbia.edu/~sedwards/�
http://suif.stanford.edu/�

EDWARDS

which consists of a persistent, customizable object-oriented database imple-
mented in C++ along with a variety of compiler-specific utilities such as mech-
anisms for symbol tables and a type system.

Esurr, like all compilers built on SUIF 2, consists of a collection of passes,
such as dead code elimination, implemented as shared objects that can be
dynamically linked and invoked under control of a simple scripting language.
This makes it easy to make small additions and modifications to the compila-
tion process without substantially rewriting the code.

To decouple passes and allow them to be reordered, ESUIF adopts the SUIF 2
approach of using the same database throughout the compilation process. Es-
UIF uses at least three representations of an Esterel program during compila-
tion. The front end described in Section |3 builds a very high-level abstract-
syntax-tree-like representation of the source Esterel program containing, e.g.,
the LoopStatement and SuspendStatement objects of Fig. 2. Dismantlers de-
scribed in Section 6l expand these high-level constructs into the low-level ones
listed in Fig. [3l and described in Section 5. Additional passes transform these
into statements that can be optimized by existing SUIF 2 passes.

The modular nature of ESUIF allows it to easily support other compilation
paths. A proposed path translates the output of the ECL compiler into the
initial database, the dismantling passes transform this into primitives, and
another set of passes build a logic-level netlist from this. The unified nature
of ESUIF’s database enables optimizations unavailable to the existing ECL
compiler, which forcibly separates Esterel-like constructs from the C-like ones.

The overall compilation process is built modularly for flexibility, but is
less efficient than a more direct implementation. Passes can be added and
removed from the compilation chain by simply changing the top-level script;
no recompilation is necessary. However, the dynamic nature of the executable
along with the more dynamic nature of the database tends to increase compi-
lation times and memory consumption. These issues have not been a problem
for Esterel, however, since the quality of generated code—mnot compilation
speed—has been the main challenge.

2 Introduction to Esterel

In this section, I briefly introduce the Esterel language and its semantics
since these are what ESUIF was designed to support. More comprehensive
introductions can be found elsewhere [4/5]. This discussion is also relevant to
compiling the ECL language [10], which is essentially C augmented with the
Esterel constructs described here.

Esterel is an imperative synchronous language, meaning an Esterel pro-
gram is a sequence of statements that execute in lockstep with a global clock.
Most Esterel statements execute instantaneously, i.e., run and terminate in
the same cycle, but some statements provide explicit delays. For example
pause waits for one cycle before terminating.

2

EDWARDS

Esterel programs communicate via signals: flags that are either present
or absent in each clock cycle. Two statements manipulate signals: emit S
makes signal S present the instant it runs; S is absent otherwise. The present
statement is an if-then-else that tests signal presence. Thus,

present A then pause; pause; emit B end; emit C

means “if A is present in the first cycle, emit B and C in the third cycle,
otherwise emit C in the first cycle.”

Esterel is a concurrent language. Sequences of statements separated by
double vertical bars—| |—run concurrently. Esterel’s signal coherence rule
imposes a constraint on the order in which concurrently-running statements
may execute: within a cycle, any emit statement for a signal must run before
any present statement may test it. Communication is instantaneous between
concurrently-running statements. Thus,

emit A; present B then emit C end

present A then emit B end

emits C in the first cycle because the presence of A is instantaneously commu-
nicated to second present statement, which immediately emits B and causes
the first present to emit C.

Esterel’s infinite loop statement loop restarts its body instantly after it
terminates. Thus,

loop emit A; pause; emit B end

emits A in the first cycle, and both B and A in all subsequent ones. Since
Esterel insists each cycle’s computation is finite, a loop body must take at
least one cycle, perhaps by including a pause.

Esterel provides two ways to escape from infinite loops. A loop can ter-
minate itself by exiting a trap: executing ezit T inside the body of a trap
T statement terminates the trap statement. When an exit is executed con-
currently with other threads of control within the body of a trap, the other
threads are allowed to run until they reach a pause or equivalent before the trap
terminates. If multiple exits are executed within nested traps, the outermost
trap takes precedence.

An abort when S statement terminates a loop (or any group of statements)
from outside. When signal S is present, the body of the abort is terminated
before it has an opportunity to run. Thus,

abort loop pause end when S

waits for the next cycle in which signal S is present. This behavior is so
common that Esterel has a shorthand for it—await S.

Like abort, the suspend statement prevents its body from running when
certain signals are present, but unlike abort, suspend only delays the execution
of its body, holding its state in limbo while the preempting condition holds.

3

EDWARDS

One of the main challenges in compiling Esterel is identifying programs
that are contradictory under Esterel’s signal coherence rule, e.g.,

present A else emit A end % A is present if it is absent
abort pause; emit A; when A 7 A is not emitted if it was

This is even more complicated than it appears because Esterel permits a pro-
gram to contain a contradiction provided the program can never get in a state
where all statements involved in the contradiction can run simultaneously.
Implementing the trap and exit statements is another challenge. Since
an erit statement terminates the body of its enclosing trap, it may termi-
nate concurrently-running statements. The rule is that any concurrently-
running statements continue until they terminate or encounter a pause before
being terminated. Furthermore, multiple exit statements may be executed by
concurrently-running threads in the body of the same trap. In this case, the
outermost enclosing trap is executed, necessitating an arbitration mechanism.

3 The Front End

ESsUIF includes a front end that parses Esterel source files and builds a SUIF 2
database for it. The front end is divided into a SUIF-independent parser and
an abstract syntax tree walker that builds a SUIF database. I used the ANTLR
compiler generator® to synthesize the code for the entire front end.

From a grammar file (Fig. 1a shows a fragment), ANTLR builds a recursive-
descent parser that generates an abstract syntax tree (AST). The grammar
for Esterel is clean and sUIF-independent because it uses ANTLR’s ability to
automatically generate code that builds an AST. Single-character annotations
in the grammar direct this process: each symbol normally becomes an AST
node, but a symbol followed by ~ becomes the root of a new subtree, and a
symbol marked with ! does not generate a node (used to avoid generating
unwanted nodes for delimeters such as parentheses). Fig. [Ib shows an AST
fragment generated by the grammar in Fig. 1a.

The second half of the front end, for which ANTLR also generates much of
the code, builds a high-level SUIF database from the AST and performs static
semantic checks. It is specified using a grammar that directs a “walk” of
the AST and contains C++ code for rules invoked during this process. Fig. 1c
shows a fragment of the grammar file that handles the emit statement: it iden-
tifies a subtree rooted at an AST node labeled “emit,” locates the named signal
in a symbol table using the find_signal function, creates a SUIF database
object for the emit statement, and signals an error if a pure signal is emitted
with a value.

4 www.antlr.org

http://www.antlr.org�

EDWARDS

LLemit”
emit

: "emit"" signalldentifier - -» expression |
(LPAREN! expression RPAREND)? 7~ 77777777

(a) (b)
| #("emit"
esig:ID
{
SignalSymbol *ss

= find_signal(c, esig);
Expression * e = 0;

~

e=expression[c])7

EmitStatement *es = create_emit_statement(suif_env, ss, e);
if (e && ss->get_type()->get_base_type() == voidType) {
report_error(esig, "illegal valued emission of pure signal ‘¥%s’",
esig->getText().c_str());

st = es;

()

Fig. 1. (a) A fragment of the Esterel grammar written in ANTLR. The "~ marks
“emit” as a root, and the two !s prevent ANTLR from building AST nodes for the
parentheses. (b) The AST built from the fragment. Dotted lines indicate optional.
(c) ANTLR tree parser code that generates a SUIF object for the fragment.

4 The Database

I built ESUIF using the SUIF 2 compiler infrastructure® developed at Stanford
University so I could take advantage of its persistent, customizable object-
oriented database and existing facilities for compiling imperative programs,
such as a complete database schema for the C language (which ESUIF builds
on) and basic optimizations such as constant propagation. Furthermore, its
modular design is ideal for research because it allows new analysis and trans-
formation passes to be added and tested independently. The result is a very
flexible compiler, although not the smallest or fastest.

The SUIF 2 database is object-oriented and customizable. To add new
object types to the database, a user describes them in an object-oriented
schema language called “hoof” that resembles C++ class definitions. From
the hoof file, a macro processor generates C++ code that is dynamically linked
into the running system.

Fig. 2 shows a fragment of the ESUIF schema that represents Esterel’s
loop and suspend statements. It defines four object classes. A BodyStatement
abstractly represents statements that contain a block of code. The definition of

5 [suif.stanford.edu

http://suif.stanford.edu�

EDWARDS

abstract BodyStatement : Statement {
Statement * owner body in child_statements;

s
concrete LoopStatement : BodyStatement {};

concrete PredicatedStatement : BodyStatement {
Expression * owner predicate in source_ops;

}s;
concrete SuspendStatement : PredicatedStatement {};

Fig. 2. A fragment of the “hoof” file describing SUIF 2 objects for Esterel’s loop and
suspend statements.

the class reads “the field body is a pointer to a Statement object that I own that
is a member of my child_statements array field”. For memory management
purposes, each object in SUIF 2 may be referred to by many objects, but
has exactly one owner. A LoopStatement is a BodyStatement that represents
Esterel’s loop statement. A PredicatedStatement is a BodyStatement with an
expression that controls the execution of its body. The SuspendStatement is
a PredicatedStatement that represents Esterel’s suspend statement.

5 The Intermediate Representation

Fig. 3 lists the primitives used to represent the Esterel program after the first
set of dismantling passes run. They were chosen to be easily translated into C
statements, yet also provide enough of Esterel’s high-level control constructs
so that it is easy to translate Esterel into them. In particular, they provide
facilities for preemption, resumption, exceptions, and concurrency.

These primitives more closely resemble those in traditional programming
languages than those in the 1C format used in the compilers from Berry et
al. (first described in Gonthier’s thesis [9]; I also describe them in a recent
paper [7]). Much like control constructs such as for and while in traditional
languages, each of these has a straightforward translation into sequences of
assignments, conditionals and gotos, making them easy to translate to C.

The assignment statement, if, label, and goto statements have their usual
meaning.

The other primitives in the IR deal with generating, catching, and recov-
ering from exceptions in a way that enables preemption, resumption, and
concurrency. Specifically, these primitives implement a variant of the numeric
encoding of exceptions used in Esterel’s formal semantics [2/3]. Each state-
ment, after it has finished for the cycle, implicitly returns a small integer
completion code that indicates whether it has terminated (0), paused (1),
or exited a trap (2 and higher). This encoding elegantly captures priorities

6

EDWARDS

var = expr
if (expr) { stmts } else { stmts }

Label:

goto Label

break n

continue

try { stmts } catch 2 { stmts } catch 3 { stmts } ...
resume { stmts } catch 1 { stmts } ...

parallel { resumes } catch 1 { stmts } catch 2 { stmts } ...
fork Labell, Label?2, . ..

join

Fig. 3. Statements in the ESUIF intermediate representation, designed to express
Esterel’s facilities for exceptions, concurrency, and pausing between cycles. The try
statement runs its body. Executing an enclosed break statement passes control to a
matching catch clause. Resume is a try that restarts its body after the last break 1
statement when a continue statement is executed within one of its catch clauses.
Parallel is a resume that runs the resume statements in its body concurrently. Fork
and join are low-level initiators and collectors of concurrent behavior.

when concurrently-running statements try to exit multiple traps simultane-
ously. The completion code for concurrent statements is simply the maximum
code from any of the statements.

In ESUIF, statement completion codes are encoded with control flow. Ter-
mination at level 0 is implemented by simply passing control to the next
statement in sequence. When a sequence in a compound statement such as if
terminates, it terminates the compound statement.

The break statement terminates at level 1 or higher, sending control to
the innermost enclosing catch that matches the level. Fig. 4 shows how this
mechanism is used to implement Esterel’s trap statement.

Exception handling in Esterel differs from that in traditional languages in
two ways. First, Esterel does not require “unrolling the call stack” because
there is no stack; Esterel prohibits recursion. Throwing an exception in Esterel
therefore usually becomes a simple unconditional branch; the break keyword
was chosen to suggest this.

The main difference is that Esterel’s concurrency enables two or more
exceptions to be thrown simultaneously. The body of a trap statement may
contain two or more threads, each capable of executing an exit. Esterel’s
semantics state the outermost trap takes precedence over any inner ones. The
parallel statement does this arbitration implicitly and is the main source of
complexity in Esterel’s exception mechanism.

Termination at level 1 is special. It corresponds to Esterel’s pause state-
ment and needs the ability to return control to the statement following it in the
next cycle. Together, the break, continue, and resume statement implement
this behavior in the ESUIF IR as shown in Fig. [5.

7

EDWARDS

trap T1 in try {
exit T1 break 2 goto Catch2;
goto CatchO;
handle T1 do } catch 2 { Catch2:
c:=1 c:=1 c =1;
end } CatchO:

(a) (b) (c)

Fig. 4. (a) An Esterel trap statement with handler. (b) Its translation into the
ESUIF IR. The ezit becomes a break. (b) Its translation into C. The break becomes
a goto.

abort resume { goto Ent
Cont: switch (s) {
case 0: goto StateO;
case 1: goto Statel;

+
pause break 1 Ent: s = 0; goto Catchl; StateO:
pause break 1 s = 1; goto Catchl; Statel:
goto CatchO;
} catch 1 { Catchi:
break 1 sl = 0; goto Catchlo; StateOo:
when A if ('A) continue if (!'A) goto Cont;
} CatchO:

(a) (b) (c)

Fig. 5. (a) An Esterel abort statement with pauses. (b) Its translation into the
ESUIF IR. (c) Its translation into C. Note the unusual placement of labels on the
right to make the translation line-to-line. The Catchlo and StateOo labels belong
to the resume statement that encloses this one (not shown).

The resume statement has an implicit multiway branch, accessed by the
continue statement, that is used to restart sequences of instructions. In C,
each break 1 statement expands into an assignment to the state variable for
the resume, a branch to the catch 1 handler for the resume, and a label.

The implementation of resume is complex but its behavior is simple: a
resume simply runs its body and catches exceptions like a try. The differ-
ence is that a resume’s catch clause may execute a continue statement, which
sends control to just after the last break 1 executed in the body. For exam-
ple, when the resume in Fig. 5b executes, it immediately executes the first
break 1 statement, which sends control to the body of the catch 1 handler
after setting the state variable s. The catch clause immediately executes a
break 1 and sends control to a handler in an enclosing resume (not shown).

8

EDWARDS

trap T1 in try {
trap T2 in try {
parallel {
resume {
exit T1 break 3 }
I resume {
exit T2 break 2 }
} catch 1 { break 1; continue }
handle T2 do emit B end }ecatch2 {B:=1}
handle T1 do emit A end }ecatch3 { A:=1}

(a)

Fig. 6. Exceptions interacting with concurrency. (a) An Esterel program that
emits A only in the first instant because the outermost trap takes priority over the
inner one.

In the next cycle, this outer resume returns control to the handler (to the
StateOo: label). Then signal A is checked and if absent (i.e., the body was
not aborted), continue is executed and sends control to just after the break 1
executed in the last cycle by branching to the switch statement that checks
the s state variable.

When multiple traps are exited simultaneously, such as in Fig. |6, the out-
ermost one takes precedence. As in the formal semantics, the completion code
of a group of threads is defined as the maximum completion code of all the
threads, and the outermost trap is given the highest code.

This behavior is implicit in the IR parallel statement. After all resume
statements (parallel threads) in a parallel have finished for the cycle, the body
of the parallel terminates with the maximum of all the completion codes.

The behavior of ESUIF’s parallel and the numerical encoding of traps differs
slightly from those in 1C. To simplify the semantics and implementation, ESUIF
assigns a completion code to each trap and uncaught completion codes pass
parallel statements unmolested (In 1C, codes decrease if they pass through a
parallel uncaught, so the same trap may use different codes). While 1¢’s encod-
ing keeps completion codes smaller (rarely do they exceed 3 in real programs),
this is irrelevant in hardware and unlikely to be a problem in software.

The fork and join statements in Fig. 3 are only generated by dismantling
parallel statements for software. Their semantics are simple: fork is a multi-
way goto that sends control to all of its labels. These independent threads
of control run separately, subject to Esterel statement ordering rules, until
they all reach a join. A group of Esterel threads have multiple entry points,
corresponding to multiple forks, but only a single join. Fig. 9lillustrates how
these statements arise from the translation of a parallel.

9

EDWARDS

Table 1
List of dismantling passes in the order they run. The first group transforms
preemption statements into abort, the second dismantle statements into Fig. 3s
primitives, and the third dismantle the primitives into C.

Statement Becomes

await S abort halt when S

do b watching S abort b when S

do b upto S abort b; halt when S
loop b each S loop abort b; halt when S end
halt loop pause end

sustain S loop emit S; pause end
present S if ()

if expr if (expr)

abort resume. . .: see Fig. [7
loop b end Again: b; goto Again
emit S S =1

nothing (empty)

|l parallel { }
trap T in b handle T'do h try { b } catch k { h }

exit T break k

pause break 1

break k goto Catchk
continue goto Continue
try { b } catch k { h } see Fig. 4
resume { b } see Fig. 5
parallel see Fig. 9

6 Dismantling

Dismantling is implemented as a collection of passes for flexibility. In general,
each pass replaces each appearance of one type of instruction with a collection
of lower-level instructions. While this is not the most efficient implementation
(time is wasted traversing the program multiple times), it makes changing the
dismantling process easy. This is a reasonable tradeoff for a research platform.

Table 1/ lists the various dismantling passes in the order they run. Most
are trivial, such as the pass that transforms Esterel’s present statement, which
can be a sequence of cases, into cascaded if statements. Dismantling abort,
parallel, trap, and exit statements is more complicated.

6.1 Abort

All preemption statements are first translated into abort statements, which
are then translated into a resume statement with conditionals to check the
conditions, such as in Fig. [7Tb. In the first cycle, immediate conditions are

10

EDWARDS

if (p1) goto S1 parallel {
c3 = €3 resume { body; break 2 }
abort resume { resume {
body body if (p1) { break 5 }
when } catch 1 { c3 =e3
break 1 Again: break 1
case immediate p; do 57 if (p1) { S1: s1 } if (p1) { break 5 }
case py do s else if (pa) { s2 } else if (pa) { break 4 }
case ez p3 do s3 else if (p3) { else if (p3) {
032263—1 032203—1
if (e3<0) {s3} if (e3 <0) { break 3 }
else { goto Next } else { goto Next }
} else { Next: continue } } else { Next: goto Again }
end }

} catch 1 { break 1; continue }
catch 2 { /* body terminated */ }
catch 3 { s3 }

catch 4 { s2 }

catch 5 { s1 }

(a) (b) ()

Fig. 7. Dismantling the abort statement. (a) The general case. (b) Expansion of
(strong) abort. (c) The weak abort variant.

checked first (e.g., p1), followed by the initialization counters for any counted
delays (e.g., p3). Finally, control passes to the resume and the body executes.

The resume implements the abort’s ability to resume execution from a
pause reached at the last cycle. Executing a pause (actually a break 1) in the
body sends control to the catch 1 clause, which starts with a break 1 that sends
control to the surrounding resume (every thread has an outermost resume).
In the next cycle, this resume returns control to the conditionals just after
the break 1 in the catch. These check the preemption conditions and if none
hold, the clause executes the continue statement, which resumes the body by
returning control to just after the break 1 executed last cycle.

Weak abort has a more complex translation (Fig. [7c) that addresses two
challenges: only immediate conditions are tested in the first cycle (the break 1
statement handles this), and preemption conditions are always checked after
the body has terminated for the cycle, either normally or by pausing. The
translation uses completion codes to defer the execution of handlers until the
body has suspended or terminated for the cycle.

A break 2 was added after the body of the first resume in Fig. 7c to allow the
body to terminate. Normally, control reaches the end of a body and implicitly
signals completion code 0, but the the second thread, which checks the pre-
emption conditions, always terminates at code 1 or higher, taking precedence
over a code of 0 from the first thread. Therefore, the first thread signals nor-
mal termination with a break 2, which, unless a preemption condition holds,
sends control to the catch 2 clause to terminate the parallel.

11

EDWARDS

This complex translation, derived by examining the output of the 1c-based
compilers, appears necessary given the semantics of weak abort, but a simpler
one would be possible if the preemption conditions were checked only after
the body has paused, even in the first cycle.

6.2 Trap and Fxit

Esutr dismantles Esterel’s exception constructs trap and exit by first assigning
an integer completion code to each trap so outermost traps—those with higher
priority—have higher codes, then translating each exit into a break and each
trap into a try. Fig. § illustrates this on a small example. With this choice
of completion codes, the arbitration decision made at a parallel is a simple
maximum computation.

A simple recursive calculation assigns a code to each trap statement, i.e.,
the code for a trap is one more than the highest code used by any of the
statements it contains. The superscripts in Fig. |8 show the codes chosen on
an example. Weak abort statements, because they also use the completion
code machinery as explained explained earlier, consume one code for normal
termination of their body plus one code per predicate.

Multiple traps caught by a single trap statement are all given the same
code (e.g., T2 and T3 in Fig. 8). Esterel’s semantics says such traps have
equal priorities and that the handlers are invoked concurrently. Each trap has
an additional flag tested by handlers for multiple traps.

6.3 Parallel

Normally, the effect of a completion code is simply to send control else-
where and can be implemented with a goto, but the arbitration decision at
a parallel—selecting the highest code—is not easily represented using simple
software-like control flow. This behavior is easily synthesized in hardware;
Berry’s translation [3] includes a parallel synchronizer that does exactly this.

Dismantling parallel for software generates code that temporarily places
completion codes into variables (cl and ¢2 in Fig. 9), computes the maxi-
mum code, then performs a multiway branch that effectively translates the
completion codes back into control flow.

The translation first adds catch clauses to each resume in the parallel, one
for each code the resume can generate, that writes the code into a variable
and jumps to a join. Next, an inverse clause is added to the parallel for each
code it can produce. These clauses simply issue a break at the same code,
effectively re-throwing the exception.

Two fork statements start concurrent threads of control in the translation
of Fig. 9. When control reaches these it splits and goes to both labels. The
two threads synchronize when they both reach the matching join statement.

12

trap T1° in
trap T22, T32 in
exit T15;
exit T22;
exit T32

handle T22 do emit A
handle T32 do emit B

end trap;
weak abort?

nothing
when

case? X do emit C
case® Y do emit D

EDWARDS

try {

try { T2 := false; T3 := false
break 5
T2 := true; break 2
T3 := true; break 2
} catch 2 {
parallel {
resume { if (T2) { A :=true } }
resume { if (T3) { B := true } }
} catch 1 { break 1; continue }

parallel {

resume {
break 2

}

resume {
Again: break 1
if (X) { break 4 }
else if (Y) { break 3 }
else { goto Again }

} catch 1 { break 1; continue }
catch 2 { /* body terminated */ }
catch 3 { D := true }

end abort catch 4 { C := true }
} catch 5 {
handle T1° do emit E E := true
end trap }
(a) (b)

Fig. 8. Translating trap, erit, and weak abort. Superscripts indicate assigned com-
pletion codes. The dismantlers transform (a) into (b) the ESUIF IR. Traps T2
and T3 share code 2; the handler distinguishes them with variables. Trap T1 uses
code 5 because the weak abort uses codes 2—4.

7 Conclusions and Future Work

ESUIF is an ongoing project. Currently missing is a backend that generates
sequential C code from the concurrent intermediate representation. While
implementing any of the known methods (e.g., automata or logic networks)
would be straightforward, one of the goals of ESUIF is to provide an environ-
ment for experimenting with new techniques. Plans are underway to provide
backends that statically unroll dynamically causal systems (i.e., those with
apparent causality cycles), synthesize sequential code from a program depen-
dence graph [8] representation, and variations on the event-based approach.
Another project currently underway will fuse the ECL front-end® with the
ESUIF environment to provide integrated compilation flow for that language.

6 lecl.sourceforge.net

13

http://ecl.sourceforge.net/�

EDWARDS

parallel { parallel { fork Startl, Start2
Cont: fork Contl, Cont2
resume { resume { Startl: goto Entryl
Contl: on sl goto St01
break 1 break 1 Entryl: sl := 0; goto C11; St01:
break 2 break 2 goto C21
} } catch 0 { cl := 0; goto Join } CO01: cl := 0; goto Join
catch 1 { cl := 1; goto Join } C11: cl := 1; goto Join
catch 2 { cl := 2; goto Join } C21: ¢l := 2; goto Join
resume { resume { Start2: goto Entry?2
Cont2: on s2 goto St02
break 1 break 1 Entry2: s2 := 0; goto C12; St02:
break 3 break 3 goto C32
} } catch 0 { ¢2 := 0; goto Join } C02: ¢2 := 0; goto Join
catch 1 { ¢2 := 1; goto Join } C12: ¢2 := 1; goto Join
catch 3 { ¢2 := 3; goto Join } C32: ¢2 := 3; goto Join
Join: join
¢ = max(cl, c2)

}ecatch1{ } catch1 { on ¢ goto CO, C1, C2, C3
break 1 break 1 C1: s0 := 0; goto C10; St00:
continue continue goto Cont

} } catch 2 { break 2 } C2: goto C20

catch 3 { break 3 } C3: goto C30
Co:
(a) (b) (©)

Fig. 9. Translating Parallel for software. (a) After dismantling from Esterel. (b) Af-
ter annotation for software: catch clauses that save the completion code in variables
added to the resumes, and clauses that trivially re-throw the completion code added
to the parallel. (c) After dismantling into “parallel C.” The on goto statement is a
shorthand for a switch statement such as that in Fig. 5.

Currently, the C-like portions of the ECL language are forcibly separated from
the Esterel-like portions and later linked, precluding certain optimizations.

I hope ESUIF will further research in these fascinating languages by forming
a flexible platform freely available to the synchronous languages community.

Acknowledgements

Mike Kishinevsky and Ellen Sentovich provided valuable early feedback on
this paper.

14

EDWARDS
References

[1] Berry, G., A hardware implementation of pure Esterel, in: Proceedings of the
International Workshop on Formal Methods in VLSI Design, Miami, Florida,
1991.

[2] Berry, G., Preemption in concurrent systems, in: Proceedings of the 13th
Conference on Foundations of Software Technology and Theoretical Computer
Science, Lecture Notes in Computer Science 761 (1993), pp. 72-93.

URL ftp://cma.cma.fr/esterel/

[3] Berry, G., The constructive semantics of pure Esterel (1999), book in
preparation available at http://www.esterel.org.
URL ftp://cma.cma.fr/esterel/constructiveness.ps.gz

[4] Berry, G., “The Esterel v5 Language Primer,” Centre de Mathématiques
Appliquées (2000), part of the Esterel compiler distribution from
http://www.esterel.org.

[5] Berry, G., “Proof, Language and Interaction: Essays in Honour of Robin
Milner,” MIT Press, 2000 .

[6] Berry, G. and G. Gonthier, The Esterel synchronous programming language:
Design, semantics, implementation, Science of Computer Programming 19
(1992), pp. 87-152.

URL ftp://cma.cma.fr/esterel/BerryGonthierSCP.ps.Z

[7] Edwards, S. A., An Esterel compiler for large control-dominated systems,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 21 (2002).

[8] Ferrante, J., K. J. Ottenstein and J. D. Warren, The program dependence
graph and its use in optimization, ACM Transactions on Programming
Languages and Systems 9 (1987), pp. 319-349.

[9] Gonthier, G., “Sémantiques et modeles d’exécution des langages réactifs
synchrones; application & Esterel. [Semantics and models of execution of the
synchronous reactive languages: application to Esterel],” These
d’informatique, Université d’Orsay (1988).

[10] Lavagno, L. and E. Sentovich, ECL: A specification environment for
system-level design, in: Proceedings of the 36th Design Automation
Conference, New Orleans, Louisana, 1999, pp. 511-516.

[11] Weil, D., V. Bertin, E. Closse, , M. Poize, P. Venier and J. Pulou, Efficient
compilation of Esterel for real-time embedded systems, in: Proceedings of the

International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES), San Jose, California, 2000, pp. 2-8.

Esurtr is available at http://www.cs.columbia.edu/"sedwards/
The SUIF system is available from http://suif.stanford.edu/
The ANTLR system is available from http://www.antlr.org/

15

ftp://cma.cma.fr/esterel/�
ftp://cma.cma.fr/esterel/constructiveness.ps.gz�
ftp://cma.cma.fr/esterel/BerryGonthierSCP.ps.Z�
http://www.cs.columbia.edu/~sedwards/�
http://suif.stanford.edu/�
http://www.antlr.org/�

