
The Specification and Execution of

Heterogeneous Synchronous Reactive Systems

Copyright  1997

by

Stephen Anthony Edwards

Please cite as

Stephen Anthony Edwards.

The Specification and Execution of Synchronous Reactive Systems.

PhD thesis, University of California, Berkeley, 1997.

Available as UCB/ERL M97/31.

http://ptolemy.eecs.berkeley.edu/papers/97/sedwardsThesis/



Abstract

The Specification and Execution of

Heterogeneous Synchronous Reactive Systems

by

Stephen Anthony Edwards

Doctor of Philosophy in Engineering

University of California, Berkeley

Professor Edward A. Lee, Chair

The need for new languages and paradigms for designing software

for embedded computing systems continues to grow as general-pur-

pose microcontrollers become faster and cheaper. Many of these sys-

tem need precise control over when things happen, yet few languages

provide this facility. Another major challenge is handling the grow-

ing complexity of these systems.

In this dissertation, I present a new model of computation for em-

bedded system software that is the first to fuse precise control over

timing with the ability to build systems from heterogeneous pieces. It

combines the synchronous model of time (used in languages such as

Esterel) with the hierarchical heterogeneity of the Ptolemy system.

Heterogeneity addresses the complexity problem by allowing each

subsystem to be designed using the best language.

My two major contributions are the formal semantics of this model

and an efficient, predictable execution scheme for it. Dealing with

zero-delay feedback loops, a side-effect of the zero-delay assumption

needed for synchrony, is the semantic challenge, and I solve it with

a fixed-point scheme that guarantees all systems are deterministic by

construction. The execution scheme I present is provably correct and
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eliminates run-time scheduling overhead by making all decisions be-

fore the system is run.

I present results that show my model of computation is both effi-

cient and can be used to implement practical systems. It is my hope

that these ideas will be used in the future to make designing complex

time-critical embedded software easier and less error-prone.
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Preface

EMBEDDED computing systems are everywhere. If you own a

VCR, a digital watch, a microwave oven, or an automobile,

you probably use them daily without realizing it. This is a mark of

good engineering: it solves a problem without calling attention to it-

self.

This thesis grew from a desire to simplify the task of building these

systems. Their growing use of software makes it natural to attack

the problem of creating software for these systems. Most of it is cur-

rently written using the C language, which was originally designed

for operating systems programming. It is a powerful, flexible lan-

guage, but was not designed for real-time programming where the

correctness of a program rests as much on when it performs its func-

tion as on what function it performs.

The designers of digital logic (hardware) have long built such ti-

ming-critical systems, and their techniques have slowly been creep-

ing into the software world. One of their most powerful paradigms

is synchrony, where all parts of a system are synchronized to a pe-

riodic clock. Virtually all digital hardware systems use this, and it

has recently entered the software world through a group of so-called

synchronous languages that includes Esterel, Lustre, and Argos.

Another challenge in designing software systems is handling their

complexity. Any reasonable scheme needs to address this, and the

heterogeneous approach taken in the Ptolemy system (a system for

designing embedded software systems) is one of the more interest-

ing. The basic idea is to treat a system as a collection of black boxes.

Within each black box there might be a program, a system, or any-

thing. Carefully choosing the interface to these boxes allows systems

built from them to be analyzed and executed without having to un-

derstand their contents.
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PREFACE

The research presented here is the result of combining the idea of

synchrony with the Ptolemy approach to heterogeneity. It presents a

new model of computation (essentially, a way to assemble systems)

that combines both of these ideas. The primary challenge, it turns

out, is dealing with instantaneous feedback (the synchronous model

is inherently instantaneous, and feedback appears in virtually all in-

teresting systems). The solution I devised follows from results taken

from both the programming language semantics community and the

circuit simulation community, making it mathematically sound and

based on physical principles.

The other big challenge with this approach is actually running the

systems. The bulk of this thesis is devoted to making these systems

run quickly, predictably, and correctly.

Some of the results in this work can be applied more widely. The

problem of dealing with zero-delay feedback in software appears in

the two major languages (VHDL and Verilog) currently used to spec-

ify hardware systems. Both have failings that could be corrected if

some of the techniques presented in this dissertation were adopted.

Also, the execution scheme I devised is essentially a very efficient

solver for a system of equations. Although many of my techniques

are closely tied to the particular domain I chose to work in, I believe

the general approach is applicable to similar problems.

—Stephen Edwards

Emeryville, California

March 1997
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Chapter 1

Introduction

Art is solving problems

that cannot be formulated

before they have been solved.

The shaping of the question

is part of the answer.

—Piet Hein

THE NEED for new languages and paradigms for designing em-

bedded systems continues to grow. The falling cost of hard-

ware has caused both the ubiquity and complexity of these applica-

tion-specific computing systems to grow, and with more complexity

comes a greater need to contain it. In this dissertation, I present a

new model of computation—essentially a coordination language—

for describing the software in these systems. It is the first to combine

precise control over when things happen with the ability to assemble

systems from pieces described in different languages, a way to fight

complexity by allowing each piece to use the most suitable language.

My focus is on reactive systems,� systems that must respond to

their environment at the environment’s speed. When things happen

in a reactive system is as important as what happens, making tra-

ditional computer programming languages insufficient because they

only provide precise control of function. In contrast, my model of

computation allows precise synchronization of events by assuming

computation is infinitely fast. Familiar to designers of synchronous

�A term due to Harel and Pneuli [34].
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Chapter 1 Introduction

digital logic, this divides time into a sequence of discrete “ticks” and

allows the designer to control the tick in which an action takes place.

Software is becoming dominant in embedded system design be-

cause fast hardware is becoming cheaper. Earlier, custom hardware

might have been required because of performance requirements, but

now cheap, fast general-purpose microcontrollers are adequate for

many of these jobs.

Fast, cheap hardware leads to greater system complexity since it

allows larger, more powerful systems to be built. With complexity,

however, comes the challenge of designing it correctly. Extensive

simulation, and, currently to a lesser extent, formal verification can

help in this process, but the easiest way to design a correct system is

to design a simple system.

My Synchronous Reactive (SR) model of computation facilitates

the design of simple systems because it can combine subsystems de-

scribed in a variety of languages. For any particular problem, there is

usually a language in which it can be solved elegantly. However, the

variety of problems in a large system makes no one language ideal, so

the need arises for a way to combine different languages. My model

supports such heterogeneity by using coarse atomic units of compu-

tation: functions that can be as big as entire programs.

I made the SR model deterministic to simplify the design process.

It is much more difficult to design and test a system with inherently

unpredictable behavior� because both designers and analysis tools

need to consider many more possible behaviors.

This model is the first to fuse the idea of instantaneous compu-

tation with support for heterogeneous system design. The primary

challenge is to maintain the determinacy of such systems in the pres-

ence of zero-delay feedback loops. I discuss these problems infor-

mally in Section 1.3, and rigorously deal with the problem in Chap-

�This can occasionally be a good thing—nondeterminism is useful for model-
ing unpredictable environments.
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Chapter 1 Introduction

ter 3, where I prove that my model of computation is deterministic.

A reasonable system description language should be defined for-

mally, have a compilation procedure that produces efficient synthe-

sized code (or, equivalently, have a very efficient simulation proce-

dure), and be able to describe practical designs. A formal definition

is necessary so that everything that manipulates the design, includ-

ing the designer, can agree on what a design means. An elegant lan-

guage that cannot be executed efficiently is not useful by itself, and

an elegant language that cannot be used to describe anything useful

is similarly useless.

My thesis is that my Synchronous Reactive model of computation

is reasonable in this sense. In this dissertation, I present its formal

definition and show it is consistent (Chapter 3), present an efficient

way to execute it (Chapter 4), and exhibit a practical implementation

along with some real examples (Chapter 5). In Chapter 2, I discuss

some related system description languages and the final chapter is

devoted to conclusions and speculation on future work.

1.1 Synchrony

Using digital circuitry to build logically correct systems has been ex-

tremely successful because it allows for abstraction. The idea is sim-

ple: using discrete values allows noise below a certain threshold to

be filtered out completely. The result is an effectively noise-free cir-

cuit with behavior that is predictable and reproducible. This allows

it to be treated as an ideal mathematical entity.

Synchronous circuits use the same idea to ensure temporal correct-

ness. They discretize time to filter out “time noise” brought on by

unpredictable, unmatched, and uncontrollable delays.

Synchronizing an outgoing event with an incoming one is the key

ability here. Synchronous digial circuits generally have one synchro-

nizing input: a periodic global clock signal. The synchronous model

of time used in SR, which I adopted from the so-called synchronous
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languages,� is a generalization of this where every signal from the en-

vironment is effectively a clock. All output events are synchronized

to the input events; none are produced without outside stimulus.

The ability to synchronize output events to any input event allows

for great flexibility. In general, it is possible to make something hap-

pen on the nth occurrence of an event, such as on the tenth second

(which requires a periodic “second” input), on the count of three, or

on the fifth floor (e.g., for an elevator).

Concurrency is a fundamental requirement for synchrony. Tradi-

tional sequential languages such as C are not synchronous because

they have no notion of concurrency. For things to be synchronized,

they must happen simultaneously, yet a language like C is executed

one statement at a time.

The synchronous model of time has a physical interpretation:

The Synchrony Hypothesis The system computes infinitely

quickly. Each reaction is instantaneous and atomic, dividing

time into a sequence of discrete instants. A system’s reaction

to an input appears at the same instant as the input. (After

Berry [5])

A system can behave synchronously if it is fast enough. Specifi-

cally, it must always finish its computations before more events ar-

rive. Testing this amounts to testing the synchrony hypothesis, and

requires knowing both the minimum inter-event time and the maxi-

mum computation time.

The synchronous model of time makes correct systems easier to

design and build. It hides temporal details and simplifies the task of

synchronizing parts of the system. Activity is easier to specify and

understand because the behavior of the system is simplified. More-

over, the technique actually requires less control over the behavior of

�I discuss these in Section 2.3.
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a system’s components. Their exact speed does not matter provided

it is above a certain threshold.

Unfortunately, it is not always practical to build synchronous sys-

tems. For example, physically distributed systems with long intra-

system communication times are difficult to make synchronous. But

for many applications, especially small embedded ones, synchrony

makes sense.

1.2 Heterogeneity

Cheap hardware is enabling designers to create larger systems. These

big systems are usually responsible for a wide variety of subtasks,

such as a user interface, high-speed digital signal processing, com-

munication, process control, and so forth.

Rarely is a single language ideal for describing each of these sub-

tasks. A C program, for instance, is an excellent way to describe

something like a database, but there are better alternatives for de-

scribing, say, signal processing. A poor choice of language—one far

from the task or the implementation technology—often leads to an

inefficient implementation, longer design time, and more design er-

rors.

One approach is a “kitchen sink” language (such as the VHDL lan-

guage [45], which includes behavioral and structural models), formed

by forcibly combining a variety of computational models. Unfortu-

nately, this is limited to using only those models included in the lan-

guage and generally precludes later expansion. Moreover, analyzing

systems described in such a language is harder because of the need

to consider many models at once.

A more flexible alternative is to use a language that can coordinate

the execution of and communication among subsystems described in

a variety of languages. The challenge here is for the coordination

language to cope with subsystems it does not understand completely.

This approach can be summarized as follows.

5
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Figure 1.1 A simple SR system composed of three blocks communicating
over three channels. The dangling channel on the left is an input from the
environment. Some of the internal channels may be outputs to the environ-
ment.

The Black Box Approach to Heterogeneity A system is

treated as a set of “black boxes” whose contents may be ar-

bitrary, but whose interfaces conform to a standard. A coor-

dination language controls their execution and all communi-

cation between boxes.

When chosen correctly, a black box approach simplifies system

analysis because it allows details such as the contents of the boxes to

be safely ignored. By contrast analyzing a “kitchen sink” language

is harder because the language is complex.

Unfortunately, the black box approach can prohibit the complete

analysis of a system. When subsystems are treated too abstractly,

certain properties about them cannot be determined. Unfortunately,

the heterogeneous approach presented here precludes proving many

correctness properties of systems. However, this is not necessarily a

drawback because the systems in question are often so large that even

if they were specified using a unified scheme, their analysis would be

computationally intractable.

1.3 SR Systems

An SR system (one described using the SR model of computation)

is composed of communicating blocks, as shown in Figure 1.1. The

synchrony hypothesis assumes the inputs arrive as a sequence of dis-

crete values and each block’s computation is instantaneous. As a re-

sult, time in an SR system is a sequence of discrete “ticks,” each initi-

6
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A B

(a) (b) (c)

Figure 1.2 Problems with zero-delay and feedback. (a) Co-dependent:
Which should be evaluated first? (b) Paradoxical: Appears to have no so-
lution. (c) Ambiguous: Appears to have many solutions.

ated by the environment. In each tick, each block observes its inputs,

instantly computes its outputs (which other blocks see in that same

instant), and prepares itself (i.e., changes state) for the next tick.

Blocks communicate among themselves and with the environment

through unbuffered unidirectional communication channels. In each

tick, each channel takes on exactly one value; there is no buffering.

Each channel is driven by either an output of some block or the envi-

ronment, and may drive any number of block inputs. These connec-

tions, along with the number and type of all block inputs and outputs,

do not change while the system is running.

1.3.1 Challenges of Zero Delay

Aside from the single-driver rule, no restrictions are placed on the

topology of communication in SR systems. In particular, feedback,

including self-loops, is permitted; some synchronous languages dis-

allow them. Maintaining determinism (i.e., for each input there is

exactly one reaction) with zero-delay blocks in the presence of feed-

back is the primary challenge in defining the behavior of these sys-

tems. Below, I describe the typical problems that arise in a zero-

delay world and how I deal with them.
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Ordering

To run the software system in Figure 1.2a, one of the blocks needs

to be executed first. However, Block A depends on an output from

Block B, so it needs to be evaluated later, yet Block B similarly de-

pends on Block A, so which should be evaluated first?

I solve the ordering problem by separating the semantics of SR

systems from their implementation. I treat an SR system as equa-

tions to be solved rather than as a sequence of functions to evaluate.

Thus, it is the responsibility of the scheduler, not the designer, to en-

sure the blocks in such a system are evaluated in a sensible order. A

scheduler based on the results of Chapter 4 might evaluate the blocks

in the order ABA, but the designer has no control over this. Instead,

the scheduler guarantees an order that produces a predictable result

consistent with the formal semantics.

Paradoxes

The system in Figure 1.2b is paradoxical. The block on the left wants

the two channels to take opposite values, yet the block on the right

wants them to be equal, so what values should the channels take?

I solve such paradoxes by making “undefined” one of the possi-

ble values for the channels and restricting the class of functions the

blocks may compute. The behavior of the system in Figure 1.2b is for

both channels to be “undefined.” This works because, for the block

on the left, the opposite of undefined is undefined (this turns out to be

the only reasonable choice), and for the block on the right, undefined

is the same as undefined.

Nondeterminism

The system in Figure 1.2c appears to be ambiguous. The block only

requires that its input and output take the same value, so it appears

that the system may have any of a number of possible behaviors.

8
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I deal with such ambiguity by choosing the least-defined solution.

For Figure 1.2c, this means the channel will take the undefined value.

Restricting the blocks to behave monotonically guarantees the least

solution is unique. Moreover, this solution is the only one that does

not require assumptions to be made about system behavior, making

it more intuitive. The alternative would be a difficult-to-understand

“guess-and-test” procedure that would form, test, and refine hypothe-

ses about the values on each channel.

Here, monotonicity means a block will not recant or change its

mind about a result. Given a more defined input, it will always pro-

duce a consistent output that may be more defined. Fortunately, any

function that requires all its inputs to be defined before it produces

any outputs is monotonic, making it easy to embed an arbitrary func-

tion in an SR system. Many familiar imperative languages (e.g., C,

C++, and most assembly languages) implicitly compute such strict

functions, so importing blocks from such languages is straightfor-

ward.

Chapter 3 is devoted to an extensive, rigorous discussion of the se-

mantics of SR systems, including precise definitions of monotonic-

ity, “undefined,” least solutions, and the like.

1.3.2 Execution

My execution procedure for SR systems� is based on the idea of re-

laxation. I calculate the behavior of the system by repeatedly choos-

ing and evaluating blocks until the system has converged to where no

block would change the value on any channel. Requiring the blocks

to behave monotonically ensures this procedure will always termi-

nate with a unique result. The convergence time is bounded since

each channel may become defined at most once in an instant, and

there are a fixed, finite number of channels. It can be shown that the

�Others are possible since the semantics in Chapter 3 say nothing about the ex-
ecution procedure.
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result is the same regardless of which blocks are chosen.

Carefully choosing the block evaluation order makes this execu-

tion scheme efficient and predictable. Results in Section 4.3.6 show

that in practice the worst-case execution time grows slower than n1:5,

where n is the number of block outputs. The challenge is dealing with

feedback loops, which I do through a recursive divide-and-conquer

strategy that systematically breaks certain feedback loops, iterating

them to convergence. Although others have taken the same general

approach, mine is the only one that is provably optimum. All of this

is discussed in great detail in Chapter 4.

For a block to work within an SR system, it must have an SR in-

terface and be able to compute a monotonic function of its inputs on

demand. Beyond that, the “guts” of an SR block can be described

and implemented in any way, allowing for heterogeneity. The algo-

rithms in Chapter 4 only needs to know the communication structure

of the blocks; not their contents.

A useful side-effect of the heterogeneity of SR systems is their

support of truly hierarchical designs. Any group of SR blocks can be

encapsulated in a single block without affecting the behavior of the

system (although this sometimes affects performance), allowing sub-

systems to be compiled separately. Currently, all other synchronous

languages are “flattened” before they are executed, prohibiting sepa-

rable compilation and limiting the size and complexity of designs.
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Specification

A specification that will not fit

on one page of 8.5 � 11 inch paper

cannot be understood.

—Mark Ardis

ANY SYNCHRONOUS system with bounded resources behaves

like a finite-state machine (FSM), a well-understood and con-

ceptually simple entity, yet in practice such a system is rarely de-

scribed as an FSM. In this chapter, I discuss why this is and argue

the need for a coordination language such as SR to combine subsys-

tems described using application-specific languages. I also discuss

some of the languages that inspired SR.

2.1 Synchrony and Finite-State Machines

A synchronous system with bounded resources behaves like a finite-

state machine. In each instant, the system receives a block of input

and produces a block of output based on it. The behavior of such

a system is usually time-varying, meaning the output in an instant

is a function of both the input in that particular instant and the his-

tory of the system—the inputs in all earlier instants. The history of

the system can be thought of as its state—an internal configuration

that affects the output function and changes from instant to instant.

Bounded memory resources can only distinguish a finite number of

these histories, hence the machine has a finite number of states.
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A synchronous finite-state machine consists of is six things:�

(Q;Σ;∆;δ;λ;q0)

where

� Q is the finite set of states

� Σ is the finite input alphabet: a set of symbols

� ∆ is the finite output alphabet: a set of symbols

� δ is the transition function mapping Q�Σ to Q

� λ is the output function† mapping Q�Σ to ∆

� q0 is the initial state (in Q)

When a state machine is in state q and input a arrives, it produces

output λ(q;a) 2 ∆ and goes to state δ(q;a) 2 Q. It starts in state q0.

This is the complete story for every synchronous system. In the-

ory, only these six things need to be described; in practice, each can

easily become unmanageably complex.

Describing the input and output alphabets is often the easiest task.

Sometimes they are small enough to be listed directly, or they may

be a simple subset of a familiar set such as the integers. More often,

they are sets of vectors described using a complex data type from a

programming language such as C or Pascal.

In contrast, describing the state set, the transition function, and

the output function is difficult because of the sheer size of the do-

mains involved. A vector-valued input alphabet grows exponentially

with the width of its vectors, so even small vectors can render an

enumeration-based description of the output or transition functions

�This notation is taken from Hopcroft and Ullman [35], a standard reference
on the subject of automata theory.

†Note that for reactivity, the output depends on both the state and the input.
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impractical. Clearly, a useful specification scheme must allow a de-

signer to succinctly specify exponentially large sections of these. In

general, this is the problem of succinctness.

2.2 Succinctness

Succinct description is a goal of all languages. It is generally easier

to make a short description correct because there are fewer places to

make mistakes. Similarly, analyzing a succinct description is usually

easier because solving a small problem is usually easier than solving

a large one.

An ideal design language would allow succinct descriptions of all

designs, but this is theoretically impossible because there are sim-

ply too many possible designs. Real languages try instead to make

the description of some reasonable subset of designs succinct; other

systems have either a verbose description or none at all.

This fundamental barrier is partly responsible for the enormous

number of design languages that have been developed. Designers

and design tools alike crave succinct descriptions, so many applica-

tion areas have had special-purpose languages designed for them.

As systems grow larger and more diverse, however, it becomes

less likely that a single language will be able to succinctly describe

all parts of a given system. Although for each subsystem, there will

be a language that can describe it succinctly, no one language will be

the best for all subsystems.

One solution to this problem is the ability to connect and coor-

dinate heterogeneously-specified subsystems. In this way, existing

work on specification languages can be leveraged to provide more

powerful ways to specify systems. This is the heterogeneous philos-

ophy behind SR.

In this thesis, I concentrate on one way of combining subsystems

(i.e., concurrently) that appears to be a very natural way for designers

to think. It can be found in virtually all higher-level languages for de-
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The system has two inputs, reset and next, and three outputs,

a, b, and c. Whenever reset appears, a is emitted. After this,

the first next signal produces a b, and the second next signal

produces a c.

Figure 2.1 The sequencer example, a simple reactive system, described in
English.

scribing reactive systems (e.g., those presented in the next section),

and is often the hardest aspect of these languages to design correctly

because of the sometimes paradoxical implications of zero delay.

2.3 Synchronous Languages

In this section, I present a collection of synchronous languages� that

illustrate some of the issues that arise in specifying synchronous sys-

tems. All rely on the synchrony hypothesis, and all are capable of

specifying arbitrary finite-state machines, yet for a particular design,

one is usually better than the others. To contrast the languages and

illustrate this point, I have implemented a simple reactive system in

each language, described in Figure 2.1 and hereafter called the se-

quencer example.

The description in Figure 2.1 is deliberately vague to illustrate a

point. Especially in synchronous designs, it is easy to overlook a par-

ticular case, yet the system must handle all cases. When next and re-

set appear together, what should happen? The description suggests a

is emitted, but what about the other outputs? I have chosen to make

a take precedence, but other choices are possible. The right one usu-

ally depends on the system’s environment.

The languages I present in this section range from the obvious to

the subtle. The most obvious lists the output and next-state functions

�Halbwachs’s book [32] and a special issue of Proceedings of the IEEE [3] pro-
vide a more comprehensive summary of these.
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in a table. Traditional state diagrams are essentially these tables with

a graphical syntax and input predicates. Derived from these are the

textual OC format, which introduces more sophisticated predicates

and actions, and the graphical Argos, which just adds hierarchy and

concurrency. The imperative language Esterel departs completely

from an explicit list of states. Lustre is an even greater departure,

concentrating almost exclusively on arithmetic and having very lit-

tle notion of state.

Each language needs some procedure for checking the validity of

a description. The difficulty of this varies with the language and the

level of validity to be verified, but in general the more succinct the

descriptions, the harder it is. This is unfortunate, but is a natural side-

effect of languages that allow a succinct description of complex be-

havior.

2.3.1 Tabular Form

The most obvious way to describe a synchronous finite-state machine

is to list the output and next state functions for each possible input

and present state, e.g., Figure 2.2. Even such a small system illus-

trates the problem with this approach—the number of rows in the ta-

ble grows exponentially with the number of inputs.

Checking that a table is consistent is simple: there must be exactly

one row for each state/input combination, and each output and next

state must be an allowed output or state.

2.3.2 State Diagrams

State diagrams (e.g., Figure 2.3) are a slight improvement over ta-

bles. These are graphs where each node represents a state. Each arc

is labeled with an input that causes a transition from one state to an-

other and the output produced when this happens. The labels take the

form “input predicate/outputs.” The input predicate is a conjunction

of true and complemented signals, and the outputs are simply a list of
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reset next PS NS a b c

0 0 A A 0 0 0

0 1 A A 0 0 0

1 0 A B 1 0 0

1 1 A B 1 0 0

0 0 B B 0 0 0

0 1 B C 0 1 0

1 0 B B 1 0 0

1 1 B B 1 0 0

0 0 C C 0 0 0

0 1 C A 0 0 1

1 0 C A 1 0 0

1 1 C A 1 0 0

Figure 2.2 The sequencer example described with a table. Inputs are on
the left; outputs are on the right. PS is “present state;” NS is “Next State.”

R/A

RN/B

R/A

RN/C

R/A

Figure 2.3 The sequencer example described using a state diagram
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signals to emit. By convention, if no arc from the current state has a

true predicate, the machine stays in that state and emits nothing. The

initial state is marked with a short arrow leading to it.

State diagrams are usually preferable to tables, since the multi-

dimensional nature of the transitions are more easily visualized, but

they are not much more compact. The only advantage comes when

the predicates are simple relative to the number of cases, or when

most actions are “do nothing.”

Using predicates instead of an explicit representation makes con-

sistency checking more difficult. A state diagram is nondeterministic

if there are ever two arcs from a single state with simultaneously true

predicates, something that requires knowing all possible inputs.

2.3.3 The OC Format

The OC (“Object Code”) format [68] (see also Caspi et al. [19]) was

developed as a common intermediate language for the synchronous

languages Esterel, Lustre, and Argos. Of the synchronous languages

I present in this section, OC code is the easiest to execute on a se-

quential processor. It is well-suited to describing sequential control

processes, but does not have any of the concurrency or preemption

of some higher-level languages.

An OC program describes a single finite-state machine. Each state

has an attached decision tree whose nodes are indices into an action

table and whose leaves are pointers to next states. The action table

is a list of atomic behaviors that include testing a signal or variable,

emitting a signal, computing the new value of a variable, or calling

an external function.

Figure 2.4 depicts the sequencer example described in a stylized

OC format. For such a simple example, it is comparatively verbose,

but it allows much more complex predicates and actions, including

arithmetic.

Representing concurrent behavior with an OC program is difficult
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Action Table:

0: if R then

1: if N then

2: emit A

3: emit B

4: emit C

State 0:

(0) if R then

(2) emit A

goto 1

goto 0

State 1:

(0) if R then

(2) emit A

goto 1

(1) if N then

(3) emit B

goto 2

goto 1

State 2:

(0) if R then

(2) emit A

goto 1

(1) if N then

(4) emit C

goto 0

goto 2

Figure 2.4 The sequencer example described in OC

because it only describes a single FSM. For example, in the Esterel

program of Figure 2.5a, it is fairly easy to see that signal B only de-

pends on signal A, yet if the program is compiled into OC, B may

also appear to depend on C in the resulting program (Figure 2.5b),

incorrectly causing the system in Figure 2.6a to deadlock. There are

other ways to compile this program, but all suffer from this problem

of artificial dependencies. The problem, fundamentally, is that OC

forces two events that could happen simultaneously to happen in a

particular order.

2.3.4 Argos

Maraninchi’s hierarchical finite-state machine language Argos [48,

49, 30] is a purely synchronous derivative of Harel’s informal but in-

fluential Statecharts [33]. Later attempts to formalize the Statecharts

semantics [56, 36] were somewhat successful, but the confusion has
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module TWOWIRES:

input A, C;

output B, D;

every A do emit B end

||

every C do emit D end

end module

Actions:

0: if C then

1: if A then

2: emit B

3: emit D

State 0:

(0) if C then

(3) emit D

(1) if A then

(2) emit B

goto 0

(1) if A then

(2) emit B

goto 0
(a) (b)

Figure 2.5 (a) A simple Esterel program. (b) Its OC representation.
Parentheses surround action numbers.

A

C

B

D

(a)

A

C

B

D

(b)

Figure 2.6 The problem with flattening concurrency. If the order in which
the module processes its inputs is fixed, one of these systems will incor-
rectly deadlock.
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C
r.n/b

D
r.n/c

E

B

r/a

r/a

A

Figure 2.7 The sequencer example described in Argos

resulted in some twenty-two variants of the language [72], of which

Argos is perhaps the cleanest.

An Argos specification is a hierarchical state diagram. When a

state encloses one or more states, there are two possibilities. If the

inner states are “OR” states (e.g., those in State B in Figure 2.7), ex-

actly one of the inner states is active when the enclosing state is ac-

tive; if the inner states are “AND” states (drawn with dashed lines

separating them, as in Figure 2.8), all of the inner states will be ac-

tive.

Figure 2.7 shows an Argos implementation of the sequencer exam-

ple. It starts in State A and waits for the r signal. When r is present,

the system emits the a signal and enters States B and C, since State C

is the initial state (denoted by its sourceless arrow) in the collection

of OR-states in State B.

The Argos semantics require the ability to partially evaluate input

predicates. Figure 2.8 illustrates this. When the signal x is present,

neither x.y nor x.y holds since the status of y has not been estab-

lished, but a is emitted anyway since it is the action in both cases.

This allows the self-loop on State C to fire, emitting y, and causing

the arc to State B to fire completely.

Checking an Argos program for consistency is more difficult than

checking a state diagram. Again, determinism requires that no more

than one arc from a state have a true predicate. This requires at least

some boolean analysis, but a more precise check might take into ac-
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A

x.y/a

B

x.y/a

C a/y

Figure 2.8 Incremental behavior in an Argos program. When in State A,
x arriving causes a and y to be emitted and the system to enter State B.

module RESTART:

input RESET, NEXT;

output A, B, C;

every RESET do

emit A ;

await NEXT ; emit B ;

await NEXT ; emit C

end

end module

Figure 2.9 The sequencer example described in Esterel

count which states (actually, combinations of states) of the system

can be reached through some sequence of inputs. Solving this prob-

lem for large systems is currently at the frontier of formal verification

research.

2.3.5 Esterel

Berry’s synchronous language Esterel [7, 4] is textual, imperative,

and well-suited for specifying sequential control-dominated tasks. It

is concurrent and deterministic, and supports preemption and excep-

tions. An Esterel program is a group of concurrently-executing mod-
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Statement Meaning

nothing Do nothing.

pause Pause until the next instant.

signal S in s1 end Introduce local signal S and execute s1.

emit S Make S present in this instant.

s1 ; s2 Execute s1. When it terminates, execute s2.

s1 || s2 Execute s1 and s2 until both terminate.

loop s1 end Execute s1 and restart it when it terminates.

present S then s1 else s2 If S is present, execute s1, otherwise execute s2.

suspend s1 when S Execute s1 in the current instant and in later in-

stants where S is absent.

trap E in s1 end Introduce the local exception E and execute s1.

exit E Terminate the enclosing trap E statement.

Table 2.1 Esterel kernel statements. s1 and s2 are statements, S is a signal
name, and E is an exception name.

ules that communicate through signals that in each instant are either

absent or present with a value.

Figure 2.9 shows Esterel can be very succinct in specifying se-

quential behavior. Essentially, a three-state machine that emits A, B,

and C is enclosed by a loop that restarts it whenever reset appears.

The language consists of a set of kernel statements from which

other, more complex control structures are built. This kernel,� which

deals only with pure (non-valued) signals, is shown in Table 2.1. For

example, the derived statement await S, which terminates in the

next instant in which S is present, can be built from kernel statements

as follows:

�The kernel has continued to evolve since its first incarnation. The kernel pre-
sented here is from Berry’s book [6].
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trap T in

loop

pause ;

present S then exit T end

end

end

The full Esterel language also has simple arithmetic operations and

variables along with a host of higher-level control constructs built

from kernel statements.

Reincarnation is an odd aspect of the Esterel language. In certain

cases, such as the one below, a signal may appear to take two or more

values in a single instant.

loop

signal S in

present S then emit O else nothing end ;

pause ;

emit S

end signal

end loop

In the second instant, the signal S is emitted, the signal statement

terminates, and the loop resets with a fresh, absent copy of the S sig-

nal. Signal O is not emitted. Detecting these cases and correctly ex-

panding them into a format like OC has been a challenge for those

writing compilers for the language.

Checking the consistency of an Esterel program is more difficult

than any of the other languages presented here. It is easy to write

paradoxes (see Section 1.3.1) in the language, and exactly checking

for them involves exploring every possible execution of the program.

The latest compiler (V4, as of this writing) does this symbolically af-

ter converting the program to a circuit. See Section 3.1.2 and Shiple

et al. [64] for more details.
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Constants true 0 -5 5.3e-2

Variables a x is set

Arithmetic operators + - * / div mod

Boolean operators and or not

Relational operators = < <= > >=

Conditional if then else

Delay pre

Initialization ->

Downsampling when

Upsampling current

Table 2.2 Components of Lustre flow expressions.

2.3.6 Lustre

Caspi et al.’s Lustre language [20, 31] is a declarative, textual syn-

chronous language with a dataflow flavor. A Lustre program consists

mainly of expressions that define flows—a possibly infinite sequence

of values of a particular type along with a clock, a sequence of times

for the sequence of values. All of these expressions are running con-

currently and are order-independent.

Lustre flow expressions are built from the components shown in

Table 2.2. Operators work pointwise on flows with identical clocks, a

compiler-enforced restriction. For example, if x andy are flows with

values (x1;x2; : : :) and (y1;y2; : : :) and identical clocks, then x+y =

(x1 + y1;x2+ y2; : : :).

Delay and initialization operators add sequential behavior to the

language. The pre operator adds memory—it delays a flow by one

clock cycle. Specifically, pre x = (nil;x1;x2; : : :) (nil denotes un-

defined). The -> (“followed by”) operator makes it possible to ini-

tialize memory by changing the first value of a flow. Specifically,

x -> y= (x1;y2;y3; : : :).
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C 0 1 0 1 0 0 1 0

X x1 x2 x3 x4 x5 x6 x7 x8

Y = X when C x2 x4 x7

current Y nil x2 x2 x4 x4 x4 x7 x7

Figure 2.10 The relationship between thewhen and current operators.

node RESTART(reset, next: bool)
returns (a, b, c: bool);

var clock: bool;
let
clock = reset or next;
(a, b, c) =

current( COUNTABC(reset when clock) )
and clock;

tel.

node COUNTABC(reset: bool)
return a, b, c: bool;

let
a = reset;
b = (false -> pre(a)) and not reset;
c = (false -> pre(b)) and not reset;

tel.

Figure 2.11 The sequencer example described in Lustre

Two sampling operators impose a tree structure to the clocks in

a Lustre program. The downsampling when operator creates a flow

whose clock is defined by a boolean flow; the upsamplingcurrent

operator interpolates a flow so that its clock is the one on the boolean

flow that generated the clock. Figure 2.10 illustrates the relationship

between these two operators. The compiler uses a simple syntactic

unification algorithm to tell when clocks on signals are identical.

Figure 2.11 shows the sequencer example written in Lustre. The

specification is clumsy because the example is sequential—Lustre is

better-suited to specifying multirate dataflow systems.

Consistency checking is fairly easy for Lustre. Feedback loops
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without a pre operator are prohibited, something easily checked.

The other challenge is checking clock consistency, which amounts

to verifying the clocks on the signals feeding to an operator are the

same.

2.4 Heterogeneous Languages

In this section, I review two languages supporting heterogeneity that

inspired my own. Unlike SR, both are targeted toward data-centric

applications, but they illustrate the heterogeneous approach to sys-

tem specification.

In Kahn’s programming language, the restrictions on the interface

and contents of the blocks ensure determinacy. Further restrictions

give Lee’s Synchronous Data Flow, which trades some of the flexi-

bility of Kahn’s scheme for nearly complete compile-time analysis,

including memory usage, termination, and run-time behavior.

2.4.1 Kahn Process Networks

Kahn, in an early influential paper [38], presented a simple language

for parallel programming based on a process model. It defines a sys-

tem as a set of parallel-executing processes that communicate exclu-

sively through single-input, single-output FIFOs. When a process

reads a data token from one of these FIFOs, it blocks until one is

available. Kahn showed that this restriction was sufficient to make

these systems determinate, rendering the sequence of data tokens on

each FIFO independent of process execution order or speed.

Figure 2.12 shows a simple process in Kahn’s language that acts

as a switch. Integers on input U are alternately sent through outputs

V and W. As its name suggests, the wait statement waits for the next

value to arrive on an input.

Executing these networks without doing unnecessary work or us-

ing more memory than needed is challenging. Compile-time analy-

sis is impossible in general, since each process can be described in a
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Process g(integer in U; integer out V, W);

Begin integer I; logical B;

B := true;

Repeat Begin

I := wait(U);

if B then send I on V else send I on W;

B := not B;

End;

End;

Figure 2.12 A process in Kahn’s language.

Turing-complete language. Kahn and MacQueen [39] discussed this

problem in a later paper, and Parks [54] solves the problem with a

scheduling scheme that runs one of these networks in bounded mem-

ory and time if possible.

2.4.2 Synchronous Data Flow

Lee and Messerschmitt’s Synchronous Data Flow (SDF) [43, 42] is

another block diagram language that takes a heterogeneous approach.

It is well-suited for describing multirate digital signal processing sys-

tems and can be compiled to produce very efficient, predictable code.

Figure 2.13 shows a typical SDF application—a modem.

SDF is a subclass of the class of dataflow process network lan-

guages,� which are themselves a subclass of the Kahn process net-

work languages. SDF gives up Turing-completeness in return for ex-

tensive compile-time predictability. In particular, it can be scheduled

statically, removing all run-time scheduling decisions and allowing

memory consumption to be predicted exactly.

An SDF system is composed of a collection of blocks that commu-

nicate through single-driver, single-receiver FIFO buffers. The exe-

�see Lee and Parks [44] for a good summary of these
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cution of a block is divided into atomic “firings” where the block con-

sumes and produces a fixed number of tokens on each FIFO. In exe-

cuting the system, all blocks are fired in a sequence that periodically

returns the number of tokens on each buffer to its initial value. In this

way, the system can run forever without over- or under-flowing any

communication buffer.

Knowing such a sequence of block firings at compile time leads to

a simple compilation technique known as block code generation. In

it, the code for each block’s firing is concatenated together according

to the firing sequence. The advantage of this is that the code for each

block firing can be optimized by hand—a boon for programmable

DSPs, whose code is often difficult to optimize automatically.

An SDF system is deterministic because it is a Kahn process net-

work. The sequence of tokens that appear on each FIFO is guaran-

teed to be the same for any valid execution of the system.

One problem with SDF is that it is not compositional. Coalesc-

ing two blocks into one can cause deadlock where none would exist

in the original system. This does not always happen, and there are

heuristics for avoiding it (see Bhattacharyya et al.’s work on sched-

uling SDF graphs [8]), but it cannot be avoided in general. It is dis-

turbing, however, that something as simple as two wires cannot be

modeled as an SDF block. This diminishes the heterogeneous nature

of SDF, implying there is a class of subsystems whose behavior can-

not be encapsulated. Furthermore, designs cannot be truly hierarchi-

cal; all hierarchy must be flattened completely to avoid introducing

artifical deadlock.

SR avoids SDF’s compositionality problem by effectively allow-

ing partial or incremental firing of blocks. It is SDF’s inability to do

this that prevents it from modeling a wire. SDF’s firing rules impose

more synchronization at block boundaries than is present in the rest

of the system. Since SR systems are completely synchronous, this

problem does not arise.
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Input Block
1

1

Bandsplitting Filter
1

8

Hilbert Filter
2

4

Adaptive Equalizer
2

2

Phase-Locked Loop
2

2

Detector w/ Error Outputs
2

2

Decoder
1

1

Output Block

Complex multiplier

2

2

2 2
2

2

1

1

Delay tokens

Input tokens consumed

Output tokens produced

Figure 2.13 An SDF description of a modem, adapted from Lee [41].
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Scheme Blocks Communication Concurrency

SR Monotonic functions

selected by a state

machine

Single-driver,

multiple-receiver

channels, one value

per instant

Each block computes a

function in each instant

and advances its state

Argos Hierarchically-nested

finite-state machines

Broadcast signals

present or absent in

each instant

Each FSM produces

output and advances its

state each instant

Esterel Sequential and parallel

imperative statements

Broadcast signals

present or absent in

each instant

In each instant, each

block runs until it is

waiting for the next

instant

Lustre Arithmetic & boolean

operators, delays,

down- and up-samplers

Broadcast flows:

sequences of data with

an associated clock

Each operator

computes once each

instant

Kahn Sequential imperative

statements

Unbounded

unidirectional FIFOs

with blocking reads

Each process runs

unless blocked by a

read from an empty

FIFO

SDF Produce and consume

a fixed number of

tokens each firing

Unidirectional FIFOs;

size computable at

compile time

Processes fire in a

repeating sequence

Table 2.3 A comparison of some system specification schemes
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Semantics

The test of a first-rate intelligence

is the ability to hold two opposed ideas

in the mind at the same time,

and still retain the ability to function.

—F. Scott Fitzgerald

IN THIS CHAPTER, I formally define the semantics of the SR model

of computation. The main problem is unambiguously interpret-

ing systems with zero-delay feedback loops, which I do by treating

the blocks of a system as a system of equations. I use a well-known

theorem from discrete mathematics to show the system has exactly

one solution. To my knowledge, these are the first formal semantics

for heterogeneous synchronous systems.

The meaning of an SR system in an instant is the least solution of

f (x) = x, where x is the values in the communication channels and f

is the function computed by the blocks for a particular set of inputs.

By restricting the blocks’ behavior to be monotonic and making cer-

tain values of x more defined than others, there is always a unique

least x for any input, making SR systems deterministic.

I take a fixed point approach because both the programming lan-

guage semantics community and the digital circuit simulation com-

munity use it to give meaning to recursive or self-referential entities.

As such, it is both mathematically sound and physically realistic.

The semantics I present say nothing about how to execute these

systems. This was deliberate—by not addressing the problem, it be-

31



Chapter 3 Semantics

comes easier to devise new ways to execute these systems. For ex-

ample, a scheduler for simulation might minimize average execution

time, whereas a scheduler for implementation might minimize worst-

case execution time. Any approach whose result adheres to the se-

mantics is acceptable.

This chapter contains three sections. In the first, I further motivate

the fixed-point approach by reviewing the approaches two communi-

ties have taken to similar problems. In the second, I review the dis-

crete mathematics of complete partial orders and continuous func-

tions, which I use in the third section to define the semantics of SR

Systems, ultimately showing they are unambiguous and thus deter-

ministic.

3.1 Motivation

It is surprising that both the programming language semantics and

the digital circuit simulation community arrived at nearly the same

solution to assigning meaning to recursive or self-referential entities.

After all, the simulation community had to choose something that

matched physical reality, whereas the semantics community was free

to choose any mathematically sound approach. Despite these differ-

ences, the solution is roughly the same, suggesting it is somehow nat-

ural.

In the remainder of this section, I present the solution to this prob-

lem from each community’s viewpoint. The core ideas form the basis

for the formal semantics I present in Section 3.3.

3.1.1 Denotational Semantics

In the denotational approach to programming language semantics,

pioneered by Dana Scott and Christopher Strachey [62, 61, 65] in the

early 1970s, the meaning of a program fragment is defined by map-

ping it to an element, often a function, in a semantic domain. For ex-

ample, the recursively-defined factorial function in Figure 3.1a might
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int fact(int x) {

if ( x == 0 ) return 1;

else return x * fact(x-1);

}

...

f (�2) = ?

f (�1) = ?

f (0) = 1

f (1) = 1

f (2) = 2

f (3) = 6

f (4) = 24
...

(a) (b)

Figure 3.1 (a) A recursive definition of the factorial function. (b) The de-
notational meaning of this function. ? denotes non-termination.

be mapped to the function f in Figure 3.1b. The idea is to abstract

away details of a program, such as the names of variables or the al-

gorithm and concentrate purely on the effects of the fragment.

A denotational way of looking at a function definition is as a fixed-

point equation. For example, the recursive definition of the fact

function in Figure 3.1a can be thought of as an equation,

f (x) =

(
1 if x = 0

x � f (x�1) otherwise;
(3.1)

and the meaning of the recursive function definition is a function f

that satisfies (3.1). More abstractly, a recursive function definition is

a function F that transforms a function to a function. In this way, (3.1)

can be written more simply as

f = F( f ): (3.2)

An obvious question to ask is whether (3.2) has a solution and,

if so, is it unique? It turns out that when f is a member of a com-
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plete partial order, a particular form of ordered set discussed in Sec-

tion 3.2.1, and the function F is continuous, a concept discussed in

Section 3.2.2, (3.2) always has a unique least solution, making this a

reasonable way to interpret a function definition.

Zero-delay feedback looks like recursion, so I use this approach to

handling recursive definitions to define SR systems with feedback.

In my case, f is a vector-valued function defining the values on the

communication channels, and F corresponds to evaluating all of the

blocks in parallel. I present the details in Section 3.3.

Kahn’s formal semantics for his concurrent dataflow language [38]

(see Section 2.4.1) also use the fixed-point approach. He interprets

each process as a function defined on potentially infinite streams of

data, which represent the contents of the FIFOs his processes use to

communicate. The semantics of a system with feedback is the solu-

tion to a fixed point equation defined on these streams.

Kahn’s fixed point considers the whole execution history of the

system. The values on the streams form a complete partial order—a

set whose elements have a notion of “definedness”—under a prefix

ordering. E.g., the stream 01 is less defined than the stream 01101.

Under this prefix ordering, any process that waits when reading from

an empty FIFO computes a continuous function, meaning that when

more input is presented to a process, it may not change or reduce the

amount of data it has already produced, nor may it wait forever. By

requiring all processes to use such blocking reads, Kahn’s systems

are provably deterministic.

There is much more to denotational semantics. See the books by

Winskel [73], Gunter [29], Stoy [65], Schmidt [60], and Allison [1].

3.1.2 Circuit Simulation

Circuit simulation has traditionally proceeded along two paths. Ana-

log simulation attempts to model virtually all circuits, whereas digi-

tal or switch-level simulation treats only a restricted class of circuits
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In Out
In Out

0 1

1 0
BA

(a) (b) (c)

Figure 3.2 (a) An ideal binary inverter and its truth table. (b) A feedback
circuit with no stable states. (c) A feedback circuit with two stable states.

in exchange for simulation speed. Progress along each path has of-

ten come from borrowing ideas from the other. Simpler models and

the use of digital approximations has expedited analog simulation;

more realistic models and other analog simulation techniques have

improved digital simulation accuracy.

Analog simulation techniques are based on models from applied

physics and use continuous mathematics. Pederson [55] provides an

excellent historical review. A circuit is typically modeled as a sys-

tem of ordinary non-linear differential equations and solved by a nu-

merical integration method such the Trapezoidal Rule or a Runge-

Kutta method. Newton’s method is used on the resulting nonlinear

systems, and LU decomposition or a sparse linear system solver is

applied to the resulting linear systems.

By contrast, digital circuit simulators work with circuits that look

very much like my SR systems: ideal (zero-delay) gates with an as-

sociated discrete function and well-defined inputs and outputs. Sim-

ulation consists of evaluating each gate (computing its outputs as a

function of its inputs) in a topological order starting at the inputs to

the circuit. Circuits with feedback, however, present a problem be-

cause their gates have no topological order.

Feedback in ideal zero-delay digital circuits present some of the

same problems as it does in any zero-delay environment, including

SR (see Section 1.3.1). The two major problems, contradiction and

ambiguity, are shown in Figure 3.2. What value should the wire in

Figure 3.2b take? The inverter makes its output the opposite of its in-
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put, but the wire forces all its connections to the same value. A physi-

cal realization of this circuit might find a stable intermediate voltage

that is neither clearly 0 nor 1, or it might oscillate, but neither be-

havior fits into the ideal world of 0s and 1s. By contrast, there are

two obvious possible states for the feedback circuit in Figure 3.2c.

Node A could be either 0 or 1, and the circuit would be stable pro-

vided Node B is the opposite. Such behavior can be useful—this

is how state-holding elements, such as static RAM cells, are built.

However, this also deviates from the zero-delay digital model since

the behavior of such circuits is a function of time as well as their in-

puts.

These problems have been addressed by making the digital cir-

cuit model more closely approximate the analog circuit model of a

system of ordinary differential equations that must be solved rather

than simply evaluated. Bryant’s switch-level model [13] typifies this

approach. He treats MOS transistors as bidirectional switches and

treats a circuit as a network of nodes and switches. Each node has

a weight to model its capacitance; switches have strengths to model

their on-state conductance. To model a situation such as Figure 3.2b,

he introduces a third node value, X, that “represents an uncertain or

invalid node logic level or transistor conductance” and works in al-

most the same way as the undefined values in SR. He formulates the

circuit as a sparse system of linear equations on a restricted, discrete

domain and solves the resulting fixed-point equation using a relax-

ation method. His later work [11, 12] showed how this model can be

cast purely as binary equations that can be solved even more rapidly

on digital computers, producing the efficient switch-level simulator

COSMOS [14].

Such three-valued logic has long been used in the study of asyn-

chronous circuits. Here, the primary challenge is analyzing race con-

ditions, where the behavior of a circuit is governed by unpredictable

gate delays. Brzozowski and Seger [15] present a comprehensive
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i o 1

X

X

1 1

1 1

1

(a) (b)

Figure 3.3 (a) A simple cyclic combinational circuit in which o follows i.
(b) Malik’s procedure for simulating the circuit, showing the output is 1
with when the input is 1.

theory. They start with a simple, conservative model of circuits that

consist of ideal zero-delay binary gates and delay elements. These

elements use an up-bounded inertial model in which the maximum

delay is bounded, the minimum delay is not, and incoming transients

shorter than the delay may be ignored. Next, they show that a model

called General Multiple-Winner (GMW), which models the circuit

as a nondeterministic� finite-state machine whose states represent the

output of all delay elements, accurately captures the behavior of a cir-

cuit represented with the more detailed model. Finally, they show [63]

that ternary simulation, based on Eichelberger’s algorithm [26], ac-

curately captures the behavior of a GMW circuit. In his algorithm, a

third value models a signal that could be 0 or 1, effectively represent-

ing sets of states in the GMW model. This third value is essentially

the same as the “undefined” value in SR.

Malik [46, 47] gives an algorithm based on ternary (X-valued) sim-

ulation that shows when a combinational circuit (i.e., one without ex-

plicit state-holding elements) with feedback is stateless. For exam-

ple, the circuit in Figure 3.3a is combinational and cyclic. He applies

ternary simulation after breaking all feedback arcs. A stable state of

the circuit is found by first applying X’s to the feedback arc inputs,

simulating the (acyclic) circuit, and feeding the feedback outputs to

�The model uses nondeterminism to capture how unpredictable delays may
produce varying behavior.
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the inputs before simulating again. This process continues until the

values on the feedback arcs are stable. Figure 3.3b illustrates this

procedure. Malik shows that the monotonic nature of the gates en-

sures that this process will converge, a result almost identical to the

one I present in Chapter 4.

Shiple, Berry, and Touati [64] extend Malik’s work to sequential

circuits—those with latches. They observe that although a cyclic cir-

cuit may not be well-behaved for certain inputs, if these inputs never

appear the circuit should be considered well-behaved. To determine

which inputs could appear, they use a Binary Decision Diagram-based

state-space exploration scheme. Initially, they assume only the re-

set state is reachable and check if any of the possible inputs leads

to a circuit in which an X remains (i.e., is not well-behaved). Then

they repeat the procedure, adding all newly-discovered states to the

reachable state list. The procedure terminates when either a poorly-

behaved configuration is reached, or when the set of reachable states

remains unchanged.

Berry first observed the connection between cyclic combinational

circuits and causality problems in his Esterel programming language.

The latest Esterel compiler (v5) uses this technique to test whether a

program contains a paradox. Esterel is discussed in Section 2.3.5.

3.2 Mathematical Foundation

In this section, I present a series of well-known definitions and theo-

rems that set the stage, mathematically, for Section 3.3, where I show

SR systems are deterministic. Here, I present three main concepts. A

complete partial orders, or CPO, is a set with an abstract notion of

the amount of “information” in each element. Applying a monotonic

function to an element of such a set always increases the amount of

information unless it is a fixed point, in which case the element is un-

changed.

Davey and Priestley’s textbook on order in mathematics [23] is
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perhaps the best general introduction to this subject. The program-

ming language semantics community is the other main source. I rec-

ommend the books by Winskel [73] (my primary source of notation)

and Gunter [29]. Others include Allison [1], the very readable un-

published book by Turbak, Gifford, and Reistad [70], and chapters

in the second volume of the Handbook of Theoretical Computer Sci-

ence [71].

3.2.1 Complete Partial Orders

Definition 1 A partially-ordered set or poset is a set S with a partial order relation

v that satisfies

�xv x (Reflexive)

�xv y and yv x implies x = y (Antisymmetric)

�xv y and yv z implies x v z (Transitive)

The partial order relationv can be pronounced “approximates” or

“is weaker than.” It imposes some order on the members of S, but is

less restrictive than a total order such as�. In particular, it is possible

for two members of S to be incomparable, i.e., for neither x v y nor

yv x to hold.

Virtually everything in this remainder of this chapter is a mem-

ber of some partially-ordered set. The values in SR communication

channels and even the block functions are members of posets.

A poset can be depicted with a Hasse diagram, such as that in Fig-

ure 3.4. An upward line is drawn between a pair of members x and y

when x v y, but lines implied by the transitive or reflexive rules are

not drawn to simplify the diagram.

Definition 2 An upper bound of a set T is an element u such that t v u for all

t 2 T. A least upper bound of a T, denoted tT, is an element l such

that l v u for all upper bounds u.
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A B C

D

E F G

Figure 3.4 A Hasse diagram for a partially-ordered set. Here, AvD, Dv

E, Dv F, B v F, B v G, C v F, Cv G. By the transitive rule, A v E, but
no line is drawn. A and B are incomparable.

The least upper bound of a set can be thought of as its limit. It will

help define continuous functions, which are limit-preserving. Also,

a later theorem will show that the solution to a fixed point equation

is the least upper bound of a certain set.

Proposition 1 The least upper bound of a set, if it exists, is unique.

Proof Let u and v be two least upper bounds of a set S. For this to be true,

uv v, since u is a least upper bound, and similarly vv u. Since v is

antisymmetric, we must have u = v.

In Figure 3.4, the set fA;Dg has upper bounds D, E, and F, and

a least upper bound D. The set fB;Cg has upper bounds F and G,

but no least upper bound. The set fF;Gg has no upper bounds since

there is no element above both.

Definition 3 A chain is a totally-ordered set C, i.e., for all x;y2C, either xv y or

yv x.

Intuitively, a chain is a sequence of elements that are growing more

defined. It appears as an upward path in a Hasse diagram. In Fig-

ure 3.4, fA;Eg and fA;D;Fg are chains. Although the members of

fA;F;Cg are along a path, it is not a chain because neither AvC nor

Cv A.

Definition 4 A poset in which every chain in S has a least upper bound in S is a

complete partially-ordered set or CPO.
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Complete partial orders are a class of well-behaved posets where

ascending sequences always have limits. The posets in this chapter

are all CPOs.

Proposition 2 The least upper bound of a finite chain always exists and is its unique

largest element.

Proof The elements of a finite chain can be written c1 v c2 v �� � v cn.

Clearly, c v cn for all c in the chain. Moreover, since v is antisym-

metric, if there were a smaller c, it would satisfy c v cn and cn v c,

so c = cn. Thus, cn is the unique least upper bound.

Corollary 1 A poset with only finite chains is a CPO.

I use this corollary frequently to ensure my posets are CPOs. This

finite-chain restriction will also be instrumental in efficiently evalu-

ating systems, a point I defer to Chapter 4.

Definition 5 A bottom element of a poset, denoted ?, is a member of S such that

?v s for all s 2 S. A poset with bottom is pointed.

The bottom element of a poset is its least-defined member, repre-

senting “undefined.” Chains often start at ?.

Although the bottom element of each poset is different, I will use

the single symbol ? to represent them all. The meaning should be

clear from context.

Proposition 3 A bottom element, if it exists, is unique.

Proof Assume b1 and b2 are bottom elements. By definition b1 2 S and

b2 2 S, and since b1 is a bottom element, b1 v b2. Similarly, b2 v b1.

Since v is antisymmetric, it follows that b1 = b2.

The following proposition shows how vector-valued CPOs can be

constructed from scalar-valued ones. Figure 3.5 shows an example.
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?

1 0 11 01 10 00

?1 1? 0? ?0

??
(a) (b)

Figure 3.5 Using Proposition 4 to build a vector-valued CPO. (a) A scalar
CPO (b) Its vector-valued extension.

Proposition 4 If D1 and D2 are CPOs, then D1�D2 is a CPO under the ordering

(x1;x2) v (y1;y2) iff x1 v y1 and x2 v y2 (3.3)

and if x1 = (x1
1;x

1
2), x2 = (x2

1;x
2
2), ...,

tfx1
;x2

; : : :g= (tfx1
1;x

2
1; : : :g;tfx1

2;x
2
2; : : :g):

Proof D1�D2 is a poset, since the order relation is

� Reflexive: Since x1 v x1 and x2 v x2, (x1;x2)v (x1;x2) .

� Antisymmetric: If (x1;x2) v (y1;y2) and (y1;y2) v (x1;x2), it

follows that x1 = y1 and x2 = y2, so (x1;x2) = (y1;y2).

� Transitive: If (x1;x2) v (y1;y2) v (z1; z2), then x1 v z1 and

x2 v z2 and (x1;x2)v (z1; z2).

It is a CPO since a least upper bound exists for all chains. Let

(x1
1;x

1
2) v (x2

1;x
2
2) v �� � be a chain in D1�D2. It follows that x1

1 v

x2
1 v �� � and x1

2 v x2
2 v �� � are chains in D1 and D2 and that X =

(x1;x2) = (tfx1
1;x

2
1; : : :g;tfx1

2;x
2
2; : : :g) exists. By definition, for all

i (xi
1;x

i
2)v X, so X is an upper bound. Assume Y = (y1;y2) is some

other upper bound, so xi
1 v y1 and xi

2 v y2. By the definition of X,

x1 v y1 and x2 v y2, so X v Y . Thus, X is the least upper bound.

The following proposition presents a way to build a poset of func-

tions. Basically, if f (x)v g(x) for all possible values of x, then f v g.
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It is more difficult to build a CPO of functions, as Theorem 1 will il-

lustrate.

Proposition 5 Let D and E be posets, and let f : D ! E and g : D ! E be two

functions. If

f v g iff 8x2 D : f (x) v g(x); (3.4)

thenv (defined on the members of D!E) is a partial order relation.

Proof The relation v is

� Reflexive: Since f (x)v f (x) for all f (x), it follows that f v f .

� Antisymmetric: If f v g and g v f , f (x) v g(x) and g(x) v

f (x) for all x. It follows that f (x) = g(x) for all x, implying

f = g.

� Transitive: If f v g and g v h, then f (x) v g(x) v h(x), so

f (x) v h(x), implying f v h.

so it is a partial order relation.

3.2.2 Monotonic and Continuous Functions

In this section, I introduce order- and limit-preserving functions on

posets. Equations with such well-behaved functions usually have so-

lutions, a point I discuss in Section 3.2.3.

Definition 6 A function f : D! E between posets D and E is monotonic if for all

x;y 2 D such that x v y, f (x) v f (y).

A monotonic function is order-preserving. If presented with more

information, it responds with additional, non-contradictory informa-

tion. Note that if D has no comparable members, any f is trivially

monotonic.

I introduce a shorthand for applying a function to every member

of a set: f f (C)g � f f (c) j c 2Cg.
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Definition 7 A function f : D!E between CPOs D and E is continuous if for all

all chainsC�D, f (tC) =tf f (c) j c2Cg, or equivalently f (tC) =

tf f (C)g.

Since D is complete, we knowtC exists. This definition is saying,

as a side effect, that tf f (C)g also exists for a continuous function.

A continuous function is limit-preserving. The limit of a continu-

ous function evaluated on a chain is equal to the function evaluated

at the limit of the chain. The following proposition shows that con-

tinuous functions are a strict subset of the monotonic functions.

Proposition 6 A continuous function is monotonic.

Proof Let f : D ! E be continuous, and let x v y 2 D. Since tfx;yg =

y, and since f is continuous, f (x) v tf f (x); f (y)g = f (tfx;yg) =

f (y). So xv y implies f (x) v f (y) and f is monotonic.

The following proposition provides a way to ensure a monotonic

function is continuous. This is useful because monotonicity is more

intuitive and easier to check.

Proposition 7 A monotonic function on a CPO with only finite chains is continuous.

Proof Let f : D! E be a monotonic function, and let C= fc1; : : :;cng �D

be a chain where c1 v c2 v �� � v cn. Because f is monotonic, we

have f (c1)v f (c2)v �� � v f (cn). From Proposition 2, tC = f (cn),

and so f (tC) = f (cn) = tf f (C)g. It follows that f is continuous.

The following two propositions show continuity and monotonicity

are closed under composition.

Proposition 8 The composition g � f of two continuous functions f : D ! E and

g : E ! F is continuous.
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Proof Let C be a chain in D. Since f is continuous, f (tC) = tf f (C)g.

Moreover, since C is a chain and f is continuous, f f (C)g is also a

chain. Since g is continuous, g(tf f (C)g) = tfg( f (C))g, and also

g( f (tC)) = tfg( f (C))g. Hence g� f is also continuous.

Proposition 9 The composition g� f of two monotonic functions f : D! E and g :

E ! F is monotonic.

Proof Since f is monotonic, x v y implies f (x) v f (y). Since g is mono-

tonic, it follows that g( f (x)) v g( f (y)).

The following proposition provides a way to build a vector-valued

continuous function from two continuous functions. Compare with

Proposition 4, which builds vector-valued CPOs in a similar way.

Proposition 10 Let D, E, and F be CPOs. If f : D!E and g : D!F are continuous,

then f �g is continuous

Proof Since E and F are CPOs, then E�F is a CPO by Proposition 4.

Let x1 v x2 v �� � be a chain in D. Because f and g are continuous,

f �g is continuous because

( f �g)(tfx1;x2; : : :g)

= ( f (tfx1;x2; : : :g);g(tfx1;x2; : : :g))

= (tf f (x1); f (x2); : : :g;tfg(x1);g(x2); : : :g)

= tf( f (x1);g(x1)); ( f (x2);g(x2)); : : :g

= tf( f �g)(x1); ( f �g)(x2); : : :g:

The following proposition provides a way to take the least upper

bound of a chain of functions, which will be useful for working with

higher-order functions (those functions whose domain and range are

themselves functions).
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Proposition 11 Let D and E be CPOs, let fk : D!E be continuous, and let f1 v f2 v

�� �. Then g = tf f1; f2; : : :g exists and g(x) = tf f1(x); f2(x); : : :g.

Proof From (3.4), f1(x)v f2(x)v �� � is a chain. Since E is a CPO, g(x) =

tf f1(x); f2(x); : : :g exists. This is an upper bound since fk(x)v g(x)

for all k. Moreover, it is a least upper bound since if there was an-

other upper bound h, then fk(x) v h(x) for all k, but by definition of

g, g(x) v h(x).

The next fundamental theorem is necessary when working with

higher-order functions. All of the useful results require working with

elements of a CPO, and this provides a CPO of functions.

Theorem 1 Let D and E be pointed CPOs. The set of all continuous total func-

tions mapping D to E forms a pointed CPO.

Proof Let F denote the set of continuous total functions from D to E. To

show F is a pointed CPO, I will show it is a pointed poset and show

that each chain of functions in F has a least upper bound that is a

function in F, i.e., is a continuous function from D to E.

F is a pointed poset. Proposition 5 implies (3.4) is a partial order

relation for F, and its bottom element is ?(x) = ?. This is a mem-

ber of F since it is continuous: Let C 2 D be a chain. ?(tC) = ?,

and tf?(c) j c2Cg=?. Moreover, it is the bottom element, since

if there existed another function b v ?, then b(x) v ?(x) for all x.

However, by definition of ?, it follows that b(x) =?.

An ascending chain f1 v f2 v �� � in F has a least upper bound g

from Proposition 11.

The least upper bound g of an ascending chain in F is a monotonic

function. If x v y, it follows that fi(x) v fi(y) v g(y) for all i. So

g(y) is an upper bound of f fi(x)g, but since g(x) is the least upper

bound of f fi(x)g, g(x) v g(y).

The least upper bound of an ascending chain in F is a continuous

function. Let x1 v x2 v be an ascending chain in D. Since D is a
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CPO, tfx1;x2; : : :g exists. Moreover, since g is monotonic, g(x1)v

g(x2)v is an ascending chain in E, sotfg(x1);g(x2); : : :g also exists.

To see they are equal, I will use the notation

tif fi(x)g = tf f1(x); f2(x); : : :g:

From the definition of t,

8i; j : fi(x j) v tkf fk(x j)g

8i : tl f fi(xl)g v tlftkf fk(xl)gg

tkftlf fk(xl)gg v tlftkf fk(xl)gg

and

8i; j : fi(x j) v tlf fi(xl)g

8 j : tk f fk(x j)g v tkftlf fk(xl)gg

tlftkf fk(xl)gg v tkftlf fk(xl)gg

so

tkftlf fk(xl)gg= tlftkf fk(xl)gg:

Since the fi are continuous, this implies

tkf fk(tlfxlg)g = tlftkf fk(xl)gg

g(tlfxlg) = tlfg(xl)g;

which shows g is continuous.

3.2.3 Least Fixed Points

Definition 8 Let D be a poset, let f : D! D be a function, and let x 2 D.

�If f (x) v x, then x is a prefixed point.

�If f (x) = x, then x is also a fixed point

�If x is a prefixed point and xv p for all prefixed points p, then

x is a least prefixed point.
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�If x is a fixed point and x v y for all fixed points y, then x is a

least fixed point.

The following well-known theorem� is key to everything in this

dissertation. It will be used to show that an SR system always has a

unique behavior, and its proof contains the fundamental idea used to

evaluate the systems.

Theorem 2 Let f : D! D be a continuous function on a pointed CPO D. Then

fix( f ) � tf?; f (?); f ( f (?)); : : :; f k(?); : : :g (3.5)

exists and is both the unique least fixed point and the unique least

prefixed point of f .

Proof f?; f (?); f 2(?); : : :g is a chain since by definition?v f (?) and

f (?) v f ( f (?))

f ( f (?)) v f 3(?)
...

because f is monotonic by Proposition 6. Since D is complete, the

least upper bound of this chain, fix( f ), exists. Furthermore, because

f is continuous,

f (fix( f )) = f (tf?; f (?); f 2(?); : : :g)

= tf f (?); f ( f (?)); f ( f 2(?)); : : :g

= tf?; f (?); f 2(?); : : :g

= fix( f )

so fix( f ) is a fixed point and therefore also a prefixed point.

�It is similar to the Knaster-Tarski fixed point theorem, but that result only ap-
plies to functions defined on complete lattices—posets whose subsets always have
both greatest lower and least upper bounds (See Davey and Priestley [23]). My
CPOs are less structured than this.
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Let x be another prefixed point, i.e., f (x) v x. Since f is mono-

tonic,
?v x

f (?) v f (x) v x

f 2(?) v f 2(x) v f (x) v x
...

f k(?) v x
...

so x is an upper bound of the chain f?; f (?); f 2(?); : : :g. How-

ever, since fix( f ) is the least upper bound of this chain, fix( f ) v x.

fix( f ) is thus the least prefixed point, and since it is a fixed point, it

is also the least fixed point.

3.3 The Semantics of SR Systems

The fundamental piece of computation in an SR system is a block—

a vector-valued function with a fixed number of inputs and outputs.

The meaning of such a block is obvious, but the meaning of a system

(a composition of blocks) is less so. The primary result of this section

is a procedure that transforms a system into a block. It forms a vec-

tor composed of inputs to the system and the outputs of every block,

connects all the blocks to this vector, and finds the least function that

produces consistent values for the outputs. I show this function is

unique and that it behaves like a block.

Definition 9 Let I = I1� �� �� In and O = O1 � �� ��Om be vectors of pointed

CPOs. An n-input, m-output block b is a continuous vector-valued

function from I to O.

Definition 10 Let b : I!O be a block, let J = J1��� �� Ja be a vector of pointed

CPOs, and let w1; : : :;wn be a sequence such that wk 2 f1; : : :;ag. If
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Jwk � Ik, then the block b connected to J with connections w1; : : :;wn

is the function c : J!O such that

c( j1; : : :; ja) = b( jw1 ; : : :; jwn);

where ( j1; : : :; ja) 2 J.

The following definitions are illustrated in Figure 3.6.

Definition 11 Let b1 : I1 ! O1, b2 : I2 ! O2, ..., bs : Is ! Os be a collection of

blocks, let I = I1��� �� In be a vector of pointed CPOs, let O=O1�

�� ��Os, and let J = I�O. The open system d of these blocks is the

function d : J!O such that

d( j) = c1( j)� c2( j)��� �� cs( j):

where ck is the block bk connected to the vector J, and j 2 J.

Definition 12 The SR System of an open system d is the least function e : I ! O

that satisfies

e(i) = d(i;e(i)): (3.6)

The remainder of this section is devoted to showing that SR sys-

tems are deterministic by showing that (3.6) always has a unique so-

lution. This is a fixed-point equation with a function e as the argu-

ment, i.e.,

e = B(e); (3.7)

where B : (I!O)! (I!O) is a function that transforms a function

to a function. If f : I ! O is a function, then B( f ) : I ! O is the

function

B( f )(i) = d(i; f (i)): (3.8)

I will use Theorem 2 to show B has a unique least fixed point. To

do this, I will show its domain is a pointed CPO, i.e., block functions

form a complete partial order, and the function B is continuous.
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Figure 3.6 (a) An SR system. (b) The corresponding open system. (c) The
corresponding block.
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Lemma 1 The set of all block functions forms a pointed CPO.

Proof Let b be a block. By Proposition 4 and induction, both I = I1��� ��

In and O = O1��� ��Om are pointed CPOs. Since b is continuous,

Theorem 1 shows these functions form a pointed CPO.

Lemma 2 B( f ) is a block function if f is.

Proof From their definition, the input and output domains of B( f ) : I!O

are vectors of pointed CPOs. Moreover, since f and c1; : : :;cs are

continuous, and B( f )(i)= (c1(i; f (i)); : : :;cs(i; f (i))), it follows from

Propositions 8 and 10 that B( f ) is continuous.

Lemma 3 B is continuous.

Proof First, note that d is continuous since c1; : : :;cs are continuous since

b1; : : :;bs are.

Next, let F = f f1; f2; : : :g be a chain in the CPO of continuous

functions I!O. B is continuous because

B(tF)(i) = d(i; (tF)(i))

= d(i; (tkf fkg)(i))

= d(i;tkf fk(i)g)

= tkfd(i; fk(i))g

= tkfB( fk)(i)g

= tfB(F)(i)g

by definition of B, Proposition 11, because d is continuous, and by

Proposition 4.

Theorem 3 SR Systems are deterministic, i.e., (3.6) has a unique solution that is

a block.

Proof From Lemmas 1 and 2, it follows that the domain of blocks and the

range of B(b) is a pointed CPO, and from Lemma 3, B is a continu-

ous function on this CPO. From Theorem 2, it follows that (3.6) has

a unique least solution that satisfies Definition 9.
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Execution

The fundamental qualities for good execution

of a plan is first; intelligence;

then discernment and judgment,

which enable one to recognize

the best method as to attain it;

the singleness of purpose;

and, lastly, what is most essential of all,

will—stubborn will.

—Ferdinand Foch

EXECUTING an SR system for an instant amounts to solving a

fixed-point equation. This is challenging because it needs to

be solved efficiently and predictably, and because of heterogeneity,

it is only possible to evaluate the function whose least fixed point is

being computed.

I solve this problem by computing a schedule for an SR system—

a fixed execution sequence for its blocks that solves the fixed-point

equation in accordance with the semantics in Chapter 3. Once sched-

uled, a system can be simulated by running the schedule, or synthe-

sized using a block code generation technique where the code for

each block is inlined according to the schedule.

First and foremost, a schedule must make the system behave ac-

cording to the semantics in Chapter 3, but minimizing a schedule’s

running time is also important. An SR system must respond to in-

puts before more arrive, so a system will fail if it is too slow relative
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to its environment. Hence, only worst-case execution time is worth

optimizing, and I do not consider any techniques that could expedite

execution for certain combinations of states and inputs. Besides, the

heterogeneity of the blocks generally precludes most of these tech-

niques because little is known about their function.

These schedules are computed by recording the sequence of blocks

evaluated by an algorithm that computes the least fixed point. Since

this algorithm does not make any decisions based on inputs or states,

the schedule is correct for any input or state.

The algorithm uses a divide-and-conquer strategy to find the least

fixed point using a minimum number of function evaluations. Split-

ting a function into pieces, finding the least fixed point of each piece,

and combining them to form the result is usually more efficient than

tackling the whole function.

The algorithm finds efficient schedules by carefully choosing the

place to split the function. Although this choice can greatly affect a

schedule’s execution time, the algorithm produces a correct sched-

ule for any choice of where to split, so efficiency can be optimized

without affecting correctness.

Figure 4.1 shows the complete process of computing a schedule.

A dependency graph representing the communication in the system

is first derived. It is then decomposed into strongly connected com-

ponents (a trivial step in this example, since the graph happens to be

strongly connected), and a carefully chosen set of vertices (here, 1

and 2) is removed from each component and the process is repeated.

The steps in the decomposition are recorded in a schedule, which is

then modified slightly to speak of block, as opposed to block output,

evaluations.

This chapter is divided into three parts. I review related work, in-

cluding chaotic iteration and graph-based function evaluation, in the

first. In the second, I present the divide-and-conquer least fixed point

computation algorithm along with theorems that show it is correct.
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Figure 4.1 A complete example of scheduling an SR system. (a) The sys-
tem. (b) Its (strongly connected) dependency graph. (c) The vertices re-
moved by the scheduler to break strong connectivity. (d) The graph that
remains. (e) The schedule. Superscripts denote the number of iterations.
(f) The schedule after its transformation to block evaluations. (g) The se-
quence of blocks to evaluate each instant.
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In the third, I consider the problem of finding efficient schedules: I

characterize minimal-cost schedules, present an exact branch-and-

bound algorithm for computing them, present a heuristic that prunes

the number of branches considered, and present experimental results

that show both exact and heuristic splitting algorithms are practical.

4.1 Related Work

My algorithm for computing least fixed points can be viewed as a

chaotic iteration scheme. The proof of Theorem 2 from the last chap-

ter suggests that the least fixed point can be found by repeatedly eval-

uating the function. Chaotic iteration is a variation that evaluates

individual elements of a vector-valued function in some order. A

schedule is then a chaotic iteration strategy—an order in which to

evaluate the parts.

Chaotic iteration has long been used for solving systems of lin-

ear equations. The Gauss-Seidel method is a familiar example that

solves the matrix equation Ax = b by repeatedly evaluating

xi :=
1
aii

"
bi� ∑

j=1;:::;n; j 6=i

ai jx j

#

for i = 1; : : :;n;1; : : :;n;1; : : :. Such an evaluation order is a chaotic

iteration strategy, and generally does not affect correctness. As such,

the technique works well on parallel computers with little synchro-

nization. Chazan and Miranker [21] were two of its early pioneers.

Unfortunately, most of the techniques developed for these continu-

ous problems do not translate well to the discrete-valued domains in

SR systems.

Robert’s [58] approach to discrete iteration is very abstract and

general. However, since he places so few restrictions on the func-

tions, his results are not strong enough to be useful here. In partic-

ular, he can only predict convergence rates for systems that can be

topologically ordered.
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Chaotic iteration as an evaluation scheme resembles the delta de-

lay model of the VHDL [45] and Verilog [69] discrete-event simu-

lation languages. In these, each instant of simulated time is broken

into a sequence of delta timesteps to simulate zero delay elements.

The big difference is that in these languages, the behavior of the sys-

tem can depend on the order of events in these delta timesteps. These

are not always specified in the language, which can lead to nondeter-

minism. Even worse, it is impossible in general to predict how many

delta timesteps are required in a particular instant, or even whether

the number is bounded for all instants. The execution scheme pre-

sented here for SR systems suffers from none of these problems.

In my master’s thesis [25], I had shown these techniques are appli-

cable to the execution of synchronous languages. There, I presented

a compiler for the Esterel language (see Section 2.3.5 on Page 21)

loosely based on these techniques. It used a chaotic iteration scheme

to find the fixed point of a monotonic function derived directly from

the program source. It used a dynamic evaluation scheme, and its

scheduler did not attempt to improve efficiency or predictability.

Many researchers have observed that self-referential systems can

be evaluated more efficiently after being decomposed into strongly

connected components. For example, Buhl et al. [18] applies this to

nonlinear differential algebraic systems that arise in the simulation of

heating and cooling systems in buildings. Jones [37] applies this to

evaluating circular attribute grammars used for checking programs’

static semantics. However, most of these techniques simply apply a

brute-force evaluation technique to each strongly connected compo-

nent.

Bourdoncle [9] proposes the Weak Topological Order (WTO), es-

sentially a recursive strongly connected component decomposition.

A WTO is a parenthesized linear ordering of the vertices in a directed

graph such that back edges (i.e., those from later to earlier vertices)

only land on the first vertex in each parenthesized component, called
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the head of the component. For example, a WTO for the graph in

Figure 4.6 is

(7 (5 2 1 3) 4 6).

Here, the head of each component is underlined. His recursive eval-

uation strategy evaluates each parenthesized component by evaluat-

ing all its contained vertices until its head has converged. Any inner

components are brought to convergence for each evaluation of the

outer component.

Bourdoncle’s approach largely inspired mine, but the problem he

solves is slightly different. He is not concerned with the predictabil-

ity of the fixed-point evaluation scheme. Moreover, beyond a bound,

he does not address the quality of a WTO, nor does he give an algo-

rithm that finds a provably optimal WTO.

Since minimizing the execution time of an SR system is critical

for ensuring the synchrony hypothesis holds, Bourdoncle’s results

are not sufficient. A fundamental limitation of his WTOs is that their

heads are limited to single vertices, which is sub-optimal for certain

graphs (e.g., Figure 4.15). My algorithms consider both single- and

multiple-vertex heads.

4.2 Finding the Least Fixed Point

From Definition 12, executing an SR system requires evaluating a

least fixed point in each instant. This section concentrates on an al-

gorithm for doing this correctly, and concludes with a proof of its cor-

rectness. Ultimately, the behavior of this algorithm will be recorded

to produce a schedule. The next section is devoted to the problem of

making this algorithm find efficient schedules.

o = e(i) in each instant, where i is the vector of inputs, o is the

vector of outputs, and e is the least function that satisfies

e(i) = d(i;e(i));
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where d is the aggregation of block functions from Definition 10.

Since I am using the pointwise partial ordering on functions, (3.4),

the least function is the one that takes the least value at each value of i.

Thus, evaluating e(i) for a particular i amounts to finding the least o

such that

o = d(i;o):

For convenience, define F(o) = d(i;o). The objective is now the

least o such that

o = F(o):

By definition of fix, the solution to this is

o = fix(F): (4.1)

In light of Theorem 3, it is not surprising that (4.1) is well-defined.

This follows from Theorem 2 since F is continuous (since d is con-

tinuous) and its domain, O, is a pointed CPO that is the vector of all

outputs.

4.2.1 Iterative Evaluation

In this section, I present a way of directly computing the fixed point

of a function. This approach, described in Theorem 5, is an iterative

approach applicable to any function, inspired by the proof of Theo-

rem 2.

The height of a CPO, as defined below, provides a bound on the

number of function evaluations necessary to find the least fixed point.

The height is a natural measure since it is additive—the height of a

vector-valued CPO is the sum of the heights of its components (The-

orem 4 and Corollary 2 show this). Although many useful CPOs

have infinite chains (see Davey and Priestly [23]), I do not consider

them here, as the finite-height assumption is required to make eval-

uation predictable.
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Definition 13 The height of a pointed CPO D, written h(D), is one less than the

length of its longest chain. If F : D ! D is a function, then h(F) =

h(D).

Theorem 4 If A and B are pointed CPOs, then A�B is a pointed CPO with height

h(A�B) = h(A)+h(B) under the component-wise ordering (Equa-

tion (3.3)).

Proof From Proposition 4, A�B is a CPO. Its bottom element is (?;?), so

it is also pointed.

Let ? v a1 v �� � v ah(A) be a chain in A, and let ?v b1 v �� � v

bh(B) be a chain in B. It follows that

(?;?)v (a1;?)v �� � v (ah(A);?)| {z }
h(A) elements

v (ah(A);b1) v �� � v (ah(A);bh(B))| {z }
h(B) elements

is a chain of length h(A)+h(B)+1.

Now assume there exists a chain of length k > h(A)+h(B)+1 in

A�B, i.e.,

(a1;a1)v (a2;b2)v �� � v (ak;bk):

From (3.3), it follows that a1 v a2 v �� �v ak and b1 v b2 v �� �v bk.

However, since the height of A is h(A) and the height of B is h(B),

these sequences can have at most h(A)+ 1 and h(B)+ 1 unique el-

ements respectively. Moreover, since (ai;bi) 6= (ai+1;bi+1) for i =

1; : : :;k�1, there can be at most (h(A)�1)+(h(B)�1)+1 unique

pairs in the ascending sequence—at least one of the elements must

be different, and there are only h(A) and h(B) possible choices for

each.

There exists a chain of height h(A)+ h(B)+ 1, and none may be

longer, so the height of A�B is h(A)+h(B).

Corollary 2 Let A1�A2��� ��Ak be a pointed CPO of pointed CPOs A1, A2, ...,

Ak. Then

h(A1�A2��� ��Ak) =
k

∑
i=1

h(Ai): (4.2)
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The following provides a general technique for iterating toward a

fixed point. The iteration may start at any point c below the actual

fixed point where the function is increasing and proceeds by eval-

uating F(c), F(F(c)), ..., Fk(c), etc. The number of iterations is

bounded by the height of the CPO on which F is defined.

Theorem 5 Let D be a pointed CPO, and let F : D!D be a continuous function.

If cv F(c) and cv fix(F), then Fh(F)(c) = fix(F).

Proof By Theorem 2, fix(F) exists. Since c v F(c) and F is monotonic,

C = fc;F(c);F(F(c)); : : :g is a chain:

c v F(c)

F(c) v F(F(c))
...

Moreover, the least upper bound of this chain is a fixed point since

F is continuous:

F(tfc;F(c);F2(c); : : :g) = tfF(c);F(F(c));F(F2(c)); : : :g

= tfc;F(c);F2(c); : : :g

By definition, the least upper bound must approximate this, so fix(F)v

tC. Moreover, since cv fix(F), it must be that

c v fix(F)

F(c) v F(fix(F)) = fix(F)

F2(c) v fix(F)
...

so tCv fix(F). Thus, tC = fix(F).

Let the height of D be h = h(F). By definition, C may contain at

most h+1 distinct elements. There are two possibilities:

1. If c 6=F(c) 6= � � � 6=Fh(c), then C is a chain with h+1 elements

and tC = Fh(c) = fix(F).
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2. Fk�1(c) =Fk(c) for some k� h. This means Fk�1(c) is a fixed

point, and since k � h, it follows that Fh(c) = Fk�1(c).

4.2.2 Chaotic Iteration

In chaotic iteration, the least fixed point of a vector-valued function is

found through repeated evaluation of parts of the function. This sec-

tion contains some notation that will clarify what I mean by a “part”

of a function, and concludes with a proof of properties I call the Cha-

otic Iteration Invariants, which shows that iterating to a least fixed

point results in a monotonically-increasing sequence that never over-

shoots the least fixed point.

The basic operation in chaotic iteration is the evaluation of some

dimensions of a vector-valued function. To facilitate the discussion

of this, I introduce the following notation. Consider a domain D of

n-dimensional vectors: D = D1�D2� �� ��Dn. These will repre-

sent the values on the communication channels. Frequently, I will

be speaking of some group of channels, which I denote by a set S =

fs1; : : :; skg, a subset of f1; : : :;ng such that 1� s1 < s2 < � � �< sk �

n. I often refer to all the remaining channels, i.e., the complement

(f1; : : :;ng�S) of this set, which I write as S̄. Juxtaposition denotes

set intersection, i.e., AB = A\B.

Let x= (x1; : : :;xn), y= (y1; : : :;yn), and z= (z1; : : :; zn) be vectors

in D, and let F : D ! D be the function F(x) = ( f1(x); : : : ; fn(x)).

The dimension of D, x, y, z, and F is n, written d(D) = d(x) = d(y) =

d(z) = d(F) = n. I will use the following notation:

DS � Ds1 �Ds2��� ��Dsk

xS � (xs1;xs2; : : :;xsk)

(yS; zS̄) � x where xS = yS and xS̄ = zS̄

FS(x) � (F(x))S

F[S](x) � (FS(x);xS̄)
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f1

f2

f3

f4

x F(x)
f2

f4

x F[2;4](x)

(a) (b)

f2

f4

x fixf2;4gF(x)

G

(c)

Figure 4.2 An illustration of function constructions. (a) F(x) (b) F[2;4](x)
(c) fixf2;4gF(x)
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fixS(F(x)) � fix(G(xS)) where G(xS) = FS(xS;xS̄)

where xS : DS, FS : D!DS, F[S] : D!D, and fixS : (D!D)!DS.

xS, DS, and FS are simple projections. F[S] evaluates only the ele-

ments of S, leaving the others unchanged, as shown in Figure 4.2(b).

fixS is the most subtle: it is the least fixed point of part of a function

where the elements of S are the variables and the others are constants.

Figure 4.2(c) depicts this construction.

Ultimately, we will be finding a sequence of sets S1, S2, ..., Sk (an

iteration strategy) such that

F[Sk ](F[Sk�1](� � �(F[S2 ](F[S1](?))) � � �)) = fix(F): (4.3)

When F is a monotonic function, it turns out that all the intermedi-

ate results in such an expression satisfy a strong set of properties I call

the Chaotic Iteration Invariants. The idea is that at any point, eval-

uating any subset of elements, i.e., F[Si] can only increase the result

and it can never pass the least fixed point of any part of the function.

These properties will be essential in proving that a particular iteration

strategy actually computes the least fixed point.

Definition 14 A vector c 2D1��� ��Dn satisfies the Chaotic Iteration Invariants

with respect to a function F : D1� �� ��Dn ! D1� �� ��Dn if, for

all subsets A � f1; : : :;ng,

cv F[A](c) and cA v fixA(F(c)):

Theorem 6 The Chaotic Iteration Invariants hold for c =?.

Proof Trivial, since ?v x for any x.

The following proof provides the inductive step to show the Cha-

otic Iteration Invariants hold for the intermediate results in evaluat-

ing the least fixed point (done by (4.3)). It builds the desired rela-

tions by breaking expressions into four sets of indices (AB, AB̄, ĀB,
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and ĀB̄) and considering each separately. This uses the pointwisev

relation from Proposition 4 to ensure that if aSk
v bSk

over some set

of subsets S1[S2[ : : := f1; : : :;ng then av b.

Theorem 7 If c satisfies the Chaotic Iteration Invariants with respect to a mono-

tonic function F, then d = F[B](c) also satisfies the invariants for all

subsets B � f1; : : :;ng.

Proof Let A� f1; : : :;ng be some subset and let e =F[A](d). By definition,

dĀ = eĀ: (4.4)

Next, by assumption, cv F[B](c), and F[B] is monotonic, so

d = F[B](c) v F[B](F[B](c)):

However, eAB = (F[B](F[B](c)))AB, so

dAB v eAB: (4.5)

Similarly, since F[A] is monotonic, F[A](c) v F[A](F[B](c)). More-

over, c v F[A](c), so c v e. However, dAB̄ = cAB̄, so

dAB̄ v eAB̄: (4.6)

Together, (4.4), (4.5), and (4.6) imply one of the chaotic iteration

invariants for d, i.e.,

d v e = F[A](d): (4.7)

To show the other chaotic iteration invariant, first note dB =FB(c),

so

dAB = FAB(c): (4.8)

Furthermore, since dB̄ = cB̄, dAB̄ = cAB̄, and since c satisfies the

chaotic iteration invariant, cS v FS(c) for all S,

dAB̄ = cAB̄ v FAB̄(c): (4.9)
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Together, (4.8) and (4.9) imply

dA v FA(c): (4.10)

Second, since c satisfies the chaotic iteration invariants,

cA v fixA(F(c)):

Applying the monotonic function FA(�;cĀ) to both sides gives

FA(cA;cĀ) = FA(c) v FA(fixA(F(c));cĀ):

The right side of this is the application of a function to its fixed point,

so

FA(c) v FA(fixA(F(c));cĀ) = fixA(F(c)): (4.11)

Finally, since c satisfies the chaotic iteration invariant, cS v FS(c)

for all S, cBĀ v FBĀ(c) = dBĀ. Moreover, since dB̄Ā = cB̄Ā, it follows

that cĀ v dĀ. Because F is monotonic, this implies

fixA(F(c)) v fixA(F(d)) (4.12)

Together, (4.10), (4.11), and (4.12) imply the other chaotic itera-

tion invariant, i.e.,

dA v fixA(F(d)):

This and (4.7) show d satisfies the chaotic iteration invariants.

4.2.3 Series/Parallel Decomposition

The following theorem, inspired by Robert [58], shows that you ar-

rive at the same least fixed point if you evaluate a vector-valued func-

tion in pieces. This result allows the blocks of an SR system be eval-

uated in-place and a whole block at a time, rather than single outputs.

Theorem 8

(Robert)

If F : D!D is a continuous function on a finite-height n-dimensional

pointed CPO D and

G = F[Sm] � � � ��F[2] �F[1]

where Sk � f1; : : :;ng and S1[ � � �[ Sm = f1; : : :;ng, then F and G

have the same unique least fixed point.
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Proof F has a unique least fixed point since it continuous on a pointed CPO

(Theorem 2). Furthermore, since F is continuous, F[Sk ] is, and G is

(Proposition 8), so G also has a unique least fixed point (Theorem 2).

Let x = fix(F). Since F(x) = x, it follows from Theorem 6, The-

orem 7, and Theorem 2 that

? v x

F[S1 ](?) v F[S1 ](x) = x

(F[S2 ] �F[S1])(?) v F[S2 ](x) = x
...

G(?) v x
...

(G�G)(?) v x
...

fix(G) v x = fix(F)

Since D is a finite-height CPO, fix(G) = Gh(D) (Theorem 5), so

fix(G) satisfies the Chaotic Iteration Invariant. Let y = fix(G). It fol-

lows that

yv F[S1](y) v (F[S2 ] �F[S1])(y) v �� � v G(y) = y

so F[Sk ](y) = y for all k. Thus, y must be a fixed point of each com-

ponent that appears in any Sk. Since S1[ � � �[ Sm = f1; : : :;ng, y is

a fixed point of F, yet yv fix(F), the least fixed point, so it must be

that fix(F) = fix(G)

4.2.4 Partitioned Evaluation

The following theorem due to Bekić [2]� provides a way to find the

fixed point of a function by partitioning it into a head (FH) and a tail

�Bekić originally proved this in a 1969, but was not published until after his
death in 1982. I take the proof from Winskel [73, Chapter 10].
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FH

FT

F

FT

FH

H

x̂H

FT x̂T

(a) (b)

Figure 4.3 A visualization of Theorem 9. (a) The least fixed point of F =
(FH;FT ). (b) The decomposition into H cascaded with T . H combined
with its feedback loop is topologically identical to (a).

(FT ), finding the fixed point of H (the head with an embedded eval-

uation of the fixed point of the tail), and using this to find the fixed

point of the tail, as illustrated in Figure 4.3. Evaluating a fixed point

this way is more efficient when calculating the fixed point of the tail

is easy or when the head does not depend on the tail.

Theorem 9

(Bekić)

If F : D ! D is a continuous function on an n-dimensional pointed

CPO D and H�f1; : : :;ng, then fix(F)= x̂ =(fix(H );fix(T )), where

H (xH) = FH(xH;fixT (F(xH ;xT))) (4.13)

T (xT ) = FT (x̂H;xT) (4.14)

and T = H̄.

Proof By definition, x̂T = fix(T ), so T (x̂T ) = x̂T = FT (x̂H ; x̂T). Similarly,

x̂H = fix(H ), so

H (x̂H) = x̂H = FH(x̂H;fixT(F(x̂H ;xT))) = FH(x̂H ; x̂T);

so x̂ is a fixed point of F.
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Now, let y be the least fixed point of F, which exists because of

Theorem 2. Since yT is a fixed point of F(yH ; �), it must be approxi-

mated by the least fixed point, i.e.,

fixT(F(yH ;xT)) v yT :

Since F is continuous, FH(xH;xT) is monotonic in xT and therefore

FH(yH;fixT (F(yH ;xT))) v FH(yH;yT):

The left side of this is H (yH), and since FH(yH;yT)= yH , this implies

H (yH) v yH , so yH is a prefixed point of H . From Theorem 2, it

follows that

fix(H )v yH: (4.15)

Since x̂H = fix(H ), this implies x̂H v yH , and since FT (xH;xT) is

continuous and hence monotonic in xH , it follows that

FT (x̂H;yT)v FT (yH;yT):

Since FT (yH;yT) = yT , this implies yT is a prefixed point of T , and

again by Theorem 2,

fix(T ) v yT : (4.16)

Since y is the least fixed point, and x̂ is a fixed point, yv x̂. How-

ever, from (4.15) and (4.16), x̂H v yH and x̂T v yT . It follows that

x̂ = y.

Definition 15 If F : D ! D is an n-dimensional function and (H;T) are a pair of

disjoint subsets of f1; : : :;ng, then the partition (H;T) is separable

if FH(xH;xT ;x(HT)), is independent of xT , i.e., if FH(xH ;xT;x(HT)) =

FH(xH;x0T ;x(HT)) for all x0T .

The idea of a separable partition is simple: its head does not de-

pend on its tail. This makes it easier to compute the least fixed point

since both halves can be evaluated in isolation. This is illustrated in

Figure 4.4.
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FH

FT

F

FH

H

x̂H

FT x̂T

(a) (b)

Figure 4.4 A visualization of Corollary 3. (a) The least fixed point of
F = (FH ;FT), a separable partition since FH is independent of xT . (b) The
decomposition into H cascaded with T .

Corollary 3 If F is separable, then the least fixed point of f is x̂=(fix(H );fix(T )),

where T = H̄,

H (xH) = FH(xH;yT)

T (xT ) = FT (x̂H;xT);

and yT may be anything.

4.2.5 The Divide-and-Conquer Least Fixed Point Algorithm

The fixed-point algorithm, Figure 4.5, uses divide-and-conquer. It

divides the problem using Bekić’s Theorem (Theorem 9), and eval-

uates the fixed points using iterative evaluation (Theorem 5, whose

conditions are ensured by the Chaotic Iteration Invariants of Defini-

tion 14). Using Bekić’s Theorem can require fewer function evalu-

ations than using iterative evaluation directly, but choosing a divi-

sion point that actually reduces the number is difficult. I devote Sec-

tion 4.3 to solving this problem.

70



Chapter 4 Execution

FIX(F;S;x)

if S should be partitioned

choose H s.t. ∅� H � S Choose a head

T = S�H The tail is the remainder

if (H;T) is separable Separable Partition:

x = FIX(F;H;x) fixed point of the head

x = FIX(F;T;x) fixed point of the tail

else Non-separable Partition:

for i = 1; : : :;h(FH) Evaluate H h(H) = fix(H )

x = FIX(F;T;x) fixed point of the tail

x = F[H](x) evaluate the head

x = FIX(F;T;x) Evaluate fix(T )

else Iterative Evaluation:

for i = 1; : : :;h(FS) Evaluate Fh(FS)

S

x = F[S](x)

return x

Figure 4.5 The divide-and-conquer fixed point algorithm. It computes
(fixS(F(x));xS̄). In particular, FIX(F;f1; : : :;d(F)g;?) = fix(F). When
and how S is partitioned is the subject of Section 4.3.
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Theorem 10 If x satisfies the Chaotic Iteration Invariant, the algorithm in Fig-

ure 4.5 computes

FIX(F;S;x) = (fixS(F(x));xS̄) (4.17)

Proof This terminates because the cardinality of S decreases by at least one

for each recursive call.

Only two statements modify x, i.e., x = F[H](x) and x = F[S](x). It

follows from Theorem 7 that the Chaotic Iteration Invariant on x is

maintained.

When S is not partitioned, the second loop computes

(F[S](x))h(FS) = (fixSF(x);xS̄)

since x satisfies the Chaotic Iteration Invariant, and hence the condi-

tions in Theorem 5.

When S is partitioned, assume the recursive calls of FIX(F;S;x)

satisfy (4.17).

When H is separable, the first call computes xH = fixH(F(x)), and

the second call computes xT = fixT (F(x)). From Corollary 3, these

satisfy (4.17).

When H is not separable, the first loop computes xH = H h(FH) =

fix(H ) by Theorem 5, then uses this to compute xT = fix(T ). From

Theorem 9, these also satisfy (4.17).

4.3 Devising Efficient Schedules

The divide-and-conquer algorithm in Figure 4.5 will find the least

fixed point regardless of when and where the function is partitioned,

but says nothing about how this should be done. In this section, I use

this freedom to improve the quality of the schedules that come from

recording this algorithm’s behavior.

Minimizing the worst-case execution time of a schedule is the pri-

mary objective because SR systems assume the synchrony hypothe-

sis. The worst-case time limits the minimum time between succes-

sive events because to correctly model synchronous behavior, an SR
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Figure 4.6 (a) The system from Figure 3.6. (b) Its dependency graph.

system must finish computing before more inputs arrive. A scheme

that improves the average or best-case execution time at the expense

of the worst-case is of no use for system running in real-time.

More efficient schedules might be possible if detailed information

about the functions or possible data values in the system were known.

However, the assumption of heterogeneity limits what can be known

about the functions, and consequently, also limits knowledge of what

data values might appear.

Having discounted the possibility of function- or data-dependent

partitioning schemes, only the communication structure remains to

select the partitioning scheme. Fortunately, this turns out to be an

effective way to find fast schedules.

I introduce the dependency graph, an abstraction of the communi-

cation structure of a system. It is a directed graph with a vertex for

each communication channel (or equivalently, block output). There

is an edge from each block’s input channels to all its outputs, indicat-

ing functional dependence or information flow. The edges are essen-

tially the connections of Definition 10 (Page 49). Figure 4.6 shows

a dependency graph.

Definition 16 A directed graph (or digraph) G is a pair (V;E) where V is a set of

vertices and E is a set of edges. An edge is an element of V�V with
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( 7 . ( 5 . 2 1 3 )1 4 6 )1

Figure 4.7 A schedule for the dependency graph in Figure 4.6.

distinct vertices. A vertex vn is reachable from v1 if there is a path

from v1 to vn: a set of edges such that

f(v1;v2); (v2;v3); (v3;v4); : : :; (vn�1;vn)g � E:

Definition 17 The dependency graph G = (V;E) of an n-dimensional function F

has

V = fv1; : : :;vng

E = f (v j;vk) j if fk(x) depends on x j and j 6= kg:

The fixed communication structure in an SR system leads natu-

rally to a recursive partitioning strategy. The unchanging structure

means choosing a single way to partition a given subgraph can be

optimal, suggesting a simple recursive decomposition of the graph.

When the least fixed point algorithm is invoked on a particular sub-

graph, the choice of whether to partition, and if so, how, is the same

each time. The schedule contains exactly this information.

The syntax I adopt for my schedules follows naturally from the re-

cursive fixed point algorithm. There are three cases. I enclose a non-

separable partition in parentheses, writing it ( head . tail )n, where

n is the height of the head. The halves of a separable partition are

just juxtaposed, e.g., head tail. I denote the evaluating of a single

node with a number, and I enclose multiple nodes to be evaluated in

brackets. Figure 4.7 shows a schedule for the graph in Figure 4.6. I

formally define the syntax in Backus-Naur form:
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s ! i Evaluate the ith component alone

j [ i1 � � � ik ] Evaluate i1; : : :; ik in parallel

j s1 s2 Evaluate s1 then s2

j ( s1 . s2 )n Non-separable partition with

head s1 and tail s2

The meaning of a schedule is a function built from the composi-

tion of a series of function evaluations. I define a schedule’s mean-

ing using a denotational style.� The function E : Sched! (D! D)

transforms a schedule (a syntactical object) into a function. Expres-

sions within double brackets are written in the syntax of schedules.

Note that function composition reads right-to-left.

E[[ i ]] = F[i]

E[[ [ i1 � � � ik ] ]] = F[i1 ;:::;ik ]

E[[ s1 s2 ]] = E[[ s2 ]]�E[[ s1 ]]

E[[ ( s1 . s2 )n ]] = E[[ s2 ]]� (E[[ s1 ]]�E[[ s2 ]])n

For example, the meaning of the schedule in Figure 4.7 is derived

as follows:

E[[(5 . 2 1 3 )1 4 6]]

= F[6] �F[4] �E[[(5 . 2 1 3 )1]]

= F[6] �F[4] �F[3] �F[1] �F[2] �F[5] �F[3] �F[1] �F[2]

E[[( 7 . ( 5 . 2 1 3 )1 4 6 )1]]

= E[[(5 . 2 1 3 )1 4 6]]� (F[7] �E[[(5 . 2 1 3 )1 4 6]])1

= F[6] �F[4] �F[3] �F[1] �F[2] �F[5] �F[3] �F[1] �F[2] �F[7] �

F[6] �F[4] �F[3] �F[1] �F[2] �F[5] �F[3] �F[1] �F[2]

This is a simple recursive interpretation that corresponds directly

to the behavior of the algorithm in Figure 4.5. A single number cor-

responds to evaluating that component of the function. Juxtaposed

�Such notation is standard in the denotational semantics community. See a
standard text such as Winskel [73].

75



Chapter 4 Execution

schedules, which must be separable, are taken one after the other.

Non-separable partitions are evaluated iteratively.

Each node appears exactly once in a schedule. This is a direct con-

sequence of the recursive nature of optimal partitioning, which splits

a set into disjoint sets.

4.3.1 The Minimum Evaluation Cost

In this section, I characterize minimum-cost schedules. I show their

cost always falls between linear and quadratic (acyclic systems have

linear cost, fully-connected systems have quadratic cost). Another

result, that greedily taking separable partitions is optimal, seems ob-

vious, but is difficult to prove. Finding good schedules becomes much

easier since identifying separable partitions is easy. The final result

also provides a useful insight: an optimal non-separable partition must

have a separable tail. Later, this will allow me to find good partitions

more efficiently since it restricts what sort of partition I should look

for.

To characterize schedules, I make two assumptions about the func-

tions and their domains. First, I assume each wire’s CPO is flat—

each has a height of one. Interpreted another way, each wire is either

undefined (=?), or has a value. This assumption greatly simplifies

analysis and is reasonable for most applications. The main conse-

quence of this is that the height and dimension of a function (or CPO)

are equal, i.e.,

h(F) = d(F):

I also assume the cost of evaluating any output is constant. This

greatly simplifies analysis, since the cost of evaluating a function is

just its dimension, but it can be an oversimplification. Especially in

heterogeneous systems, the cost of evaluating blocks can vary signif-

icantly. However, many of the results arising from this assumption

can be translated to systems where this assumption is relaxed.

At each level, the divide-and-conquer algorithm takes one of three
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Type Cost

Separable Partition Cs(H;T) =C(H)+C(T)

Non-Separable Partition Cp(H;T) = d(H)2 +(d(H)+1)C(T )

Iterative Evaluation Ci(S) = d(S)2

Table 4.1 The cost of execution strategies compared. C(S) is the minimum
cost of evaluating the fixed point of S. All CPOs are of height one, and the
cost of evaluating a function is its dimension.

approaches, whose cost I discuss below and summarize in Table 4.1.

C(S) denotes the minimum cost of evaluating fixS(F(x)). I extend

the d(�) notation to include sets, i.e., d(S) denotes the dimension of

S—its cardinality.

Separable Partition When (H;T) is a separable partition, the least

fixed points of the head and tail are each evaluated once. The

cost is

Cs(H;T) =

8<
:

C(H)+C(T) if H\T = ∅ and

(H;T) is separable

∞ otherwise.

Non-Separable Partition When (H;T) is non-separable, the head

is evaluated h(H) times and the least fixed point of the tail is

evaluated h(H)+1 times (once outside the loop). The cost is

Cp(H;T) =

�
d(H)2 +(d(H)+1)C(T ) if H\T = ∅
∞ otherwise.

Iterative Evaluation It takes h(S) evaluations of F[S] to compute its

fixed point iteratively, so the cost of this is

Ci(S) = d(S)2
:

The minimum cost of evaluating the least fixed point of a func-

tion, then, is the least cost among all separable partitions, all non-

separable partitions, and iterative evaluation.

C(S) = min
∅�H�S

fCs(H;S�H)[Cp(H;S�H)[Ci(S)g
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The next two theorems provide tight bounds on the optimal cost

of finding the least fixed point. It falls between linear, which corre-

sponds to evaluating the whole function once, and quadratic, corre-

sponding to evaluating the whole function as many times as it has

outputs. Besides providing insight into the overall cost of running

SR systems, these bounds will be used to speed up the branch-and-

bound scheduling algorithm I present in Section 4.3.3.

Theorem 11 The cost of evaluating the least fixed point of S is at least its dimen-

sion, i.e.,

C(S)� d(S): (4.18)

Moreover, it is possible that C(S) = d(S), so the bound is tight.

Proof I will show (4.18) by induction on d(S).

For d(S) = 1, the function can only be evaluated iteratively, so

C(S) =Ci(S) = d(S)2 = 1. This satisfies (4.18).

For d(S)> 1, there are three possibilities. For iterative evaluation,

C(S) �Ci(S) = d(S)2
> d(S):

For separable partitions,

C(S)�Cs(H;S�H) =C(H)+C(S�H)� d(H)+d(S�H) = d(S):

And for non-separable partitions,

C(S) �Cp(H;S�H) = d(H)2 +(d(H)+1)C(S�H)

� d(H)2 +(d(H)+1)d(S�H)

= d(H)(d(H)+d(S�H))+d(S�H)

= d(H)d(S)+d(S�H)

� d(S):

The case C(S) = d(S) occurs when there exists separable partitions

at each level of the recursion.
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Theorem 12 The minimum cost of evaluating the least fixed point of S satisfies

C(S)� d(S)2� (d(S)�1): (4.19)

Moreover, when no separable partitions exist,

C(S) = d(S)2� (d(S)�1);

corresponding to evaluating a partition where d(S�H) = 1, so the

bound is tight.

Proof I will show this by induction on d(S). For d(S) = 1, C(S) =Ci(S) =

1, satisfying (4.19).

When d(S) > 1, the least fixed point of S can always be evaluated

as a non-separable partition where d(S�H) = 1. Since C(S�H) = 1

in this case, the overall cost satisfies

C(S)�Cp(H;S�H) = (d(H))2 +(d(H)+1)C(S�H)

= (d(S)�1)2 +d(S)

= d(S)2� (d(S)�1):

If no separable partitions are possible, C(S) = d(S)2� (d(S)�1).

Since I have shown (4.19), I will prove this by showing through in-

duction on d(S) that

C(S)� d(S)2� (d(S)�1): (4.20)

For d(S) = 1, C(S) =Ci(S) = 1, which satisfies (4.20).

For d(S) > 1, there are two possibilities. For the iterative evalua-

tion case, Ci(S) = d(S)2, and for the non-separable partition case,

Cp(H;S�H) = d(H)2 +(d(H)+1)C(S�H)

= x2 +(x+1)C(S�H)

� x2 +(x+1)((n� x)2� (n� x�1))

= n2� (n�1)+ c
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where c= x(x�(n�1))(x�(n�2)). Since this term is non-negative

for the valid values of x= d(H), i.e., d(H) = 1;2; : : :;n�1, it follows

that Cp(H;S�H)� d(S)2� (d(S)�1).

Since by assumption either C(S) =Ci(S) or C(S) =Cp(H;S�H).

Both are greater than the right side of (4.20), so it follows that (4.20)

holds.

Corollary 4 Unless d(S) = 1, iterative evaluation is non-optimal, i.e., C(S) <

Ci(S).

The next theorem, in effect, says that greedily evaluating separable

partitions is optimal. This is not a very surprising result, but is fairly

tedious to prove.

Theorem 13 When possible, evaluating a separable partition is optimal, i.e., if

(H;S�H) is separable, then

C(S) =Cs(H;S�H): (4.21)

Proof I will show this through induction on d(S).

First, consider the case where d(S) = 2. Let (H;S�H) be separa-

ble. Since d(H) = d(S�H) = 1, Cs(H;S�H) = 1+1= 2. The cost

of any non-separable partition is Cp(H;S�H) = 12+(1+1) �1= 3.

The cost of iterative evaluation is Ci(S) = 22 = 4. Thus for d(S) =

2, (4.21) holds.

Now consider d(S) = k for some k > 2. Assume (4.21) holds for all

d(S) < k. From Theorem 12, it follows that C(S) < Ci(S), so either

C(S) = Cs(H0;S�H0) or C(S) = Cp(H0;S�H0) for some H0. For

convenience, write T = S�H and T 0 = S�H0.

Consider Cp(H0;T 0). The partition (HT 0;TT 0) of T 0 is separable

since (H;T) is separable (see Figure 4.8, and recall juxtaposition de-

note set intersection). Hence by the inductive assumption,

C(T 0) =Cs(HT 0
;TT 0) =C(HT 0)+C(TT 0): (4.22)
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HH0 TH0

HT 0 TT 0

H T

H0

T 0

Figure 4.8 A visualization for part of Theorem 13. Here (H;T) is separa-
ble and the non-separable (H0

;T 0) is assumed to be less costly.

Certainly H and T can each be evaluated as non-separable parti-

tions (HH0;HT 0) and (TH0;TT 0) respectively (see Figure 4.8), so it

follows that

C(H) � d(HH0)2 +(d(HH0)+1)C(HT 0)

C(T) � d(TH0)2 +(d(TH0)+1)C(TT 0)

C(H)+C(T) � d(HH0)2 +d(TH0)2+

(d(HH0)+1)C(HT 0)+

(d(TH0)+1)C(TT 0):

(4.23)

However, since d(HH0) + d(TH0) = d(H0) and both quantities are

positive,

d(HH0)2 +d(TH0)2 � d(H0)2
: (4.24)

Furthermore, from (4.22) and since d(H0) = d(HH0)+d(TH0), it fol-

lows that

(d(HH0)+1)C(HT 0)+(d(TH0)+1)C(TT 0) � (d(H0)+1)C(T 0):

(4.25)

This can be seen visually in Figure 4.9. Together, (4.23), (4.24), and

(4.25) imply

C(H)+C(T) � d(H0)2 +(d(H0)+1)C(T 0)

Cs(H;T) � Cp(H0
;T 0)

So no non-separable partition can be evaluated more efficiently.
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C(HT 0) C(TT 0)

C(T 0)

d(HH0)

d(TH0)+1
d(H0)+1

Figure 4.9 A graphical argument for (4.25). The area of the enclosing box
corresponds to the left hand side; the area of the two shaded boxes corre-
sponds to the right hand side.

Now assume there exists another separable partition (H0;T 0). It

follows (see Figure 4.10) that

(HH0;TH0) = H0 (HH0;HT 0) = H

(HT 0;TT 0) = T 0 (TH0;TT 0) = T

are separable. By the inductive assumption, this implies

C(H0) = C(HH0)+C(TH0)

C(T 0) = C(HT 0)+C(TT 0)

C(H) = C(HH0)+C(HT 0)

C(T) = C(TH0)+C(TT 0):

Taken together, these imply Cs(H;T) =Cs(H0;T 0). Thus, all separa-

ble partitions have the same cost.

Since a separable partition is always less costly than iterative eval-

uation or evaluating any non-separable partition, and all separable

partitions have the same cost, it follows that evaluating any separa-

ble partition is optimal.

Certain non-separable partitions cost more than simple-minded it-

erative evaluation. This occurs when

d(H)2 +(d(H)+1)C(T) > d(S)2
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HH0 TH0

HT 0 TT 0

H T

H0

T 0

Figure 4.10 A visualization for part of Theorem 13. Here both (H;T) and
(H0

;T 0) are separable.

C(T) >
d(S)2�d(H)2

d(H)+1

= d(T)
d(S)+d(H)

d(H)+1
:

If C(T) = d(T) this inequality is not satisfied, but for larger values

of C(T), it can be.

This next theorem is very useful because it restricts the number

of partitions that must be considered when looking for optimal non-

separable partitions. The result is not surprising: an optimal non-

separable partition must have an easier-to-evaluate tail.

Theorem 14 If a non-separable partition is optimal, then its tail must have a sep-

arable partition. I.e., if S = (H;T) is optimal and if T has no sepa-

rable partition, then C(S)�Cp(H;T). The inequality is strict unless

d(S�H) = 2.

Proof Assume T has no non-separable partition and C(S) = Cp(H;T), it

follows that C(T) = Cp(H0;T �H0) for some partition H0 � T . Let

x = d(H), and y = d(H0). It follows that

C(S) =Cp(H;T) = x2 +(x+1)C(T)

= x2 +(x+1)(y2 +(y+1)C(T�H0))

= x2 + xy2 + y2+(x+1)(y+1)C(T �H0)

= x2 + xy2 + y2+(x+ y+1+ xy)C(T�H0)
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= x2 + y2+(x+ y+1)C(T �H0)+

xy(y+C(T �H0)):

However, consider the cost of placing both H and H0 in the parti-

tion. Note that d(H +H0) = x+ y.

Cp(H +H0
;T�H0) = (x+ y)2 +(x+ y+1)C(T�H0)

= x2 +2xy+ y2+(x+ y+1)C(T�H0)

= x2 + y2+(x+ y+1)C(T �H0)+2xy

When d(T)= 2, C(T�H0)= y= 1, andCp(H;T)=Cp(H+H0;T�

H0) since xy(y +C(T �H0)) = 2xy = 2. For larger values of y =

d(H0) or C(T�H0), C(T�H0)� 2, Cp(H+H0;T�H0)<Cp(H;T),

so C(S)<Cp(H;T).

4.3.2 Finding Good Partitions

The last section showed that optimal schedules contain separable par-

titions. The results section show that non-separable partitions corre-

sponds to strongly connected components (SCCs) in the dependency

graph, and show how to break an SCC into a separable partition. To-

gether, these lead to an optimal scheduling algorithm that decom-

poses the dependency graph into SCCs and recurses on each compo-

nent after removing a set of vertices (the head) that breaks its strong

connectivity. This follows because Theorem 13 implies a separable

partition is always optimal when it exists, and it turns out a decom-

position of a graph into strongly connected components is unique.

Definition 18 A digraph G= (V;E) is strongly connected if for all vertices v j 6= vk,

vk is reachable from v j.

Definition 19 A digraph G = (V;E) is acyclic if, for all vertices v j 6= vk, if vk is

reachable from v j, then v j is not reachable from vk.
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Definition 20 Let G = (V;E) be a digraph, and let S �V be a set of vertices. The

border of S is the set of all vertices outside S with an edge from S,

i.e.,

borderG(S) = fv j vs 2 S, v 2V �S, and (vs;v) 2 Eg:

Definition 21 A kernel of a digraph G = (V;E) is a strict, non-empty subset of ver-

tices T �V with no border, i.e., such that borderG(T) = ∅.

Theorem 15 A digraph is not strongly connected if and only if it has a kernel.�

Proof (If) Assume T is a kernel of G, and let H =V�T . Since it is a kernel,

there is no edge from any vertex in T to any vertex in H (both sets

are non-empty, so this is not vacuous), so there cannot be a path from

any vertex in T to any vertex in H. Hence the graph is not strongly

connected.

(Only If) Assume G = (V;E) is not strongly connected. It follows

that there is a vertex vh unreachable from another vertex vt . Let T be

those vertices in V reachable from vt, including vt , and let H =V�T .

There cannot be an edge from a vertex in T to a vertex in H since

the vertex in H would then be reachable from vt , a contradiction. It

follows, since T is non-empty (it includes vt) and a strict subset of V

(it excludes vh), that T is a kernel of G.

Theorem 16 A function has a separable partition if and only if its dependency

graph has a kernel.

Proof (If) Assume T is a kernel of a dependency graph G, and let H =V�

H. By definition, there is no edge from any vertex in T to any ver-

tex in H. It follows from the definition of a dependency graph that

FH(xH;xT) is independent of xT .

�I took the term “kernel” and this theorem from Frank [27], who describes them
as “well-known,” but I know of nothing else that uses this term or contains this
proof.

85



Chapter 4 Execution

(Only If) Assume (H;T) is a separable partition. Since FH(xH;xT)

is independent of xT , there cannot be any edge from a vertex in T to

a vertex in H. By definition, T is a kernel.

Thus a separable partition is isomorphic to a kernel of the depen-

dency graph, and these only occur when the graph is not strongly

connected.

Definition 22 The strongly connected component decomposition of a digraph G=

(V;E) is a partition of the vertex set V such that all pairs of vertices in

a single partition are mutually reachable. Each partition is a strongly

connected component or SCC.

Fortunately, a graph can be decomposed into its strongly connected

components in linear time using a well-known algorithm due to Tar-

jan [67].

The primary challenge, then, is to partition a strongly connected

dependency graph. Theorem 14 implies no optimal partition leaves

the tail strongly connected.

Choosing a head that leaves the tail acyclic would satisfy this. An

acyclic graph is clearly not strongly connected, and furthermore, it

is the least expensive to evaluate since the SCCs of an acyclic graph

are all single vertices—it can be evaluated in linear time.

However, a partition that produces an acyclic graph may not be op-

timal, as illustrated by the system in Figure 4.11. Removing f1;4g,

a minimal set whose removal leaves the graph acyclic, does not lead

to an optimal schedule.

Not only can the minimum feedback vertex set lead to sub-optimal

schedules, identifying it is an NP-complete problem.� Clearly, this is

not the best solution.

Finding a partition that leaves the graph acyclic is too strong—

breaking strong connectivity is enough. However, finding a mini-

mum set of vertices that breaks strong connectivity can be done in

�See Garey and Johnson [28], the standard reference for these problems.
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1

2 3 4

5

([1 4] . 2 3 5)2 uses a minimum

feedback vertex set and has cost 13

( 1 . 2 3 ( 4 . 5 )1)1 does not use a

minimum feedback vertex set and

has cost 11

Figure 4.11 A system where partitioning using a minimum feedback ver-
tex set is not optimal.

polynomial time,� unlike the Minimum Feedback Vertex Set prob-

lem. Unfortunately, using the minimum set of vertices that breaks

strong connectivity is not always optimal.

The following theorem provides a simple way to break strong con-

nectivity: pick a set of vertices and remove its border. Figure 4.12

illustrates this.

Theorem 17 Let G = (V;E) be a strongly connected digraph. The graph that re-

sults from removing H, i.e.,

G0 = (V 0
;E0) = (V �H;f (va;vb) j (va;vb) 2 E and va;vb 62 H g);

is not strongly connected if and only if borderG(K)�H�V and K�

V �H for some non-empty subset K �V.

Proof (If) Assume borderG(K)�H �V . By definition, V 0\borderG(K) =

∅ since V 0 = V �H, so borderG0(K) = ∅ and K is a kernel since

K �V �H. From Theorem 15, G0 is not strongly connected.

�Kuller [40] pointed this out to me. The basic idea is that the maximum flow
between any two points in a network with vertex capacities of one is the minimum
number of vertices that must be removed to break all paths between the two points.
Since to break strong connectivity, there must be at least two points between which
there are no paths, the minimum overall number must be the minimum flow be-
tween all pairs of vertices. Finding the maximum flow can be done using one of
the polynomial-time network flow algorithms after splitting all vertices into an in-
coming and outgoing vertex, placing an edge with unit capacity between them, and
setting all other vertex capacities to infinity.
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A
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D

E

F

G

H

I
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B

C

H

I

(a) (b)

Figure 4.12 Removing a border to break strong connectivity. (a) The bor-
der of A, B, and C are all vertices with edges coming from A, B, and C.
(b) Removing this border (vertices D, E, F, G) breaks this graph’s strong
connectivity.

1 2 3 4 5

678910

Figure 4.13 An example where a valid partition f3g is not a predecessor
or successor set of any single vertex.

(Only If) Assume G0 is not strongly connected. By Theorem 15, it

must have a kernel K, i.e., borderG0(K) = ∅. For this to be the case,

the border of K in G must have been removed, i.e., borderG(K)�H.

Corollary 5 Removing the successor or predecessor set of any vertex in a strongly

connected graph breaks its strong connectivity.

Proof The successor set of a vertex v is exactly borderG(fvg), and its pre-

decessor set is borderG(V �fvg). Both sets satisfy the conditions in

Theorem 17.

Corollary 5 provides one way to find partitions that break strong

connectivity, but not all valid partitions are the predecessor or suc-

cessor of any vertex. Figure 4.13 depicts an example where a mini-

mal vertex set is not of this form.
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4.3.3 The Branch and Bound Algorithm

The results in the last two sections suggest a recursive branch-and-

bound strategy for finding the optimal schedule. Theorem 13 sug-

gests greedily using separable partitions is optimal, and Theorems 15

and 16 imply the SCCs of a graph are exactly the separable partitions.

Strongly connected components must be evaluated as non-separable

partitions, and Theorems 14 and 17 imply the optimal choice of head

must break the tail’s strong connectivity, requiring the partition to

contain the border of some group of vertices.

Figure 4.14 shows an algorithm based on this strategy. It recur-

sively decomposes a graph into strongly connected components and

searches for a good partition of each.

The algorithm first uses Theorem 12 to compute a gross (quadratic)

bound on the cost using the size of each strongly connected compo-

nent. The bound B is forced to be no greater than this to avoid con-

sidering any grossly sub-optimal partitions.

The algorithm next considers each strongly connected component.

First, a bound b on the cost of the SCC is computed by subtracting

the minimum possible cost of the remaining SCCs (just their size ac-

cording to Theorem 11) from the remaining cost r. Next, unless the

SCC is trivial (one-dimensional), the algorithm considers some set of

heads. For each head, the optimum cost of evaluating the tail is cal-

culated by calling COST recursively. The bound for the tail comes

from noting that to achieve the bound on Sk, the cost of the tail must

satisfyCp(H;Sk�H)= d(H)2+(d(H)+1)C(Sk�H)� b, the bound

on the SCC. Solving this for C(H;Sk�H) yields

C(H;Sk�H)�

�
b�d(H)2

d(H)+1

�
:
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COST(S;B)

Decompose S into strongly connected components S1; : : :;Sn

B = minfB;∑n
k=1 d(Sk)

2� (d(Sk)�1)g Bound to be met

r = B Remaining cost

foreach strongly connected component S1; : : :;Sn

b = r�∑n
i=k+1 d(Si) Bound for this SCC

if b < d(Sk)

return ∞ Bound is impossible to meet

if d(Sk) = 1

r = r�1 One-dimensional function case

else

a = ∞ Minimum achieved for this SCC

foreach head H of Sk

t = COST

�
Sk�H;

�
b�d(H)2

d(H)+1

��
Optimal tail cost

a = minfa;d(H)2 +(d(H)+1)tg Cost including the

head

if a < b

b = a�1 Beat it by at least one next time

r = r�a

if r > 0

return B� r Bound was met

else

return ∞ Bound was not met

Figure 4.14 A branch-and-bound algorithm for finding the optimal par-
tition. S is the subgraph to be partitioned, and B is the cost bound. The
algorithm returns the best cost or ∞ if the bound could not be met. See Sec-
tion 4.3.4 for a discussion of which heads of Sk are considered.
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4.3.4 Choosing the Head of an SCC

Which heads to consider and the order in which to consider them for

each strongly connected component is key to the branch-and-bound

algorithm. Considering all possible heads would be correct, but The-

orem 14 implies this is overkill—only those partitions that leave the

tail separable can possibly be optimal. Theorem 17 provides a way

to construct any partition that breaks strong connectivity.

The minimum cost of a particular partition grows rapidly with the

size of the head, providing a way to quickly discount large heads.

From Theorem 11, it follows that a partition worth considering must

satisfy

Cp(H;Sk�H) = d(H)2 +(d(H)+1)C(Fk�H) � b;

and C(Sk�H)� d(Sk�H), it follows that d(H) must satisfy

d(H)2 +(d(H)+1)(d(Sk �H)) � b

d(H)2 +(d(H)+1)(d(Sk)�d(H)) � b

d(H)2 +d(H)d(Sk)+d(Sk)�d(H)�d(H)2 � b

d(H) �
b�d(Sk)

d(Sk)�1
:

This result also suggests taking the partitions in order of increasing

d(H). This will tighten the bound faster since the cost grows at least

as quickly as d(H)2.

The best heuristic I have found for reducing the number of heads

to consider comes from Theorem 17, which implies an optimal head

(i.e., one that breaks strong connectivity) contains a border set. Start-

ing with each vertex in the graph, the heuristic “grows” a vertex set

by greedily adding the vertex in its border that increases the size of

the border the least. Since the graph is strongly connected, there is

always at least one vertex in any border. The heads considered are

the borders of these vertex sets.
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For example, running this on the graph in Figure 4.13 produces,

for the set that begins with vertex 10,

Vertex Set Border/Partition Considered

10 1

10 1 2

10 1 2 3 9

10 1 2 9 3

10 1 2 9 3 4

10 1 2 9 3 4 5

10 1 2 9 3 4 5 6

10 1 2 9 3 4 5 6 7

I also tried using Corollary 5 to only consider one partition: the

smallest outset (vertices with edges coming from) or inset (vertices

with edges leading to) of any vertex. Frequently, no schedule based

on these partitions would meet the worst-case quadratic bound—the

best schedules would be worse than using a simple brute-force ap-

proach.

I also tried simply considering all single vertex partitions. This

is frequently sub-optimal since for many strongly connected graphs,

the removal of a single vertex does not break strong connectivity.

(See the example in Figure 4.15.) Again, it was often the case that for

certain systems, the cost of any schedules based on these partitions

exceeded the quadratic upper bound.

4.3.5 Schedule Transformations

SR systems are composed of blocks that can only be evaluated as a

whole, but the schedules produced by the branch-and-bound algo-

rithm evaluate a single output at a time. Simply evaluating a whole

block any time a single output needs to be evaluated is correct (this

corresponds to introducing more evaluations, which Theorem 8 says

will not affect the result), but wasteful.
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1 2

3 4

( [ 1 2 ]. 3 4 )2 is an optimal schedule

with cost 10.

(1 . ( 4 . 2 3 )1)1 contains only

single-vertex heads and has cost 11.

Figure 4.15 A network whose optimal schedule has no single-vertex
heads.

In this section, I present an algorithm for restructuring a schedule

to minimize the number of redundant block evaluations. The idea

is simple: combine outputs on a particular block into a parallel sec-

tion of the schedule by moving them past sections on which they do

not depend. To facilitate this, I have identified five rewrite rules that

can restructure a schedule without affecting its correctness. They de-

pend on two main results. The first is that a part of a schedule can be

moved before a section whose results on which it does not depend.

The second is that introducing additional function evaluations does

not affect correctness (follows from Theorem 8).

I present the rewrite rules in a deductive style. The subexpression

above the line can be replaced with the subexpression below if the

predicate to the right is satisfied.

I introduce the following two functions to describe what inputs a

subexpression depends on and what outputs it affects. Both take a

schedule an return a set of indices. O[[ s ]] is simply the list of all in-

dices that appear in the subexpression, while I [[ i ]] is simply the ver-

tices with edges going to i in the dependency graph.

I [[ s ]] = f i j E[[ s ]](x) depends on xi g

O[[ s ]] = f i j E[[ s ]](x)i 6= xi for some xg

s i
i s when I [[ i ]]\O[[ s ]] = ∅ (4.26)

( s1 . s2 )n i
( s1 . s2 i )n always (4.27)
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( s1 . s2 )n i
( s1 i . s2 )n when I [[ i ]]\O[[ s2 ]] = ∅ (4.28)

( i s1 . s2 )n

( s1 . s2 i )n always (4.29)

i1 � � � in
[ i1 � � � in ] when 8 j < k : O[[ i j ]]\ I [[ ik ]] = ∅ (4.30)

The first rule, (4.26), allows an index to be moved before a sub-

schedule when it is independent. The second, (4.27), allows a later

output to be moved into a tail. This works because the two sequences

are

s2 s1 s2 � � � s1 s2 i

s2 i s1 s2 i � � � i s1 s2 i:

The bottom just has additional i’s. Similarly, (4.28) allows a later

output to be moved into a tail. The sequence on the bottom is

s2 s1 i s2 � � � s1 i s2

which has moved i to the left of s2 and added others. The two se-

quences in (4.29) are

s2 i s1 s2 i � � � i s1 s2

s2 i s1 s2 i � � � i s1 s2 i:

which differ only by the addition of a trailing i. When none of the

outputs of a group affect any later evaluations, the group can be eval-

uated in parallel, leading to (4.30).

The rules in (4.26)–(4.30) suggest an algorithm for merging block

evaluations. The objective is to merge outputs on the same block into

a single parallel evaluation. (4.26)–(4.28) suggest an index i can be

pushed lexicographically toward the front of the tail until one of its

inputs is encountered. An output in a head can first be moved to the

end of its tail with (4.29), then pushed toward the front of its tail.

Once two or more independent outputs on the block are pushed to-

gether, they can be merged into a bracket-enclosed parallel evalua-

tion block using (4.30).
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Merge(s)

for each output i in s

Determine i’s “pushable range”

if an output on the same block appears in the range

Find the leftmost acceptable position for i.

Merge i with the nearest output on the same block to the

right, if any.

Figure 4.16 An algorithm for merging outputs on the same block.

The heads of non-separable partitions can be restructured freely.

The divide-and-conquer algorithm produces a parallel execution of

all the outputs in the head, but they can be serialized arbitrarily (from

Theorem 8). In particular, each block with an output appearing in the

head can be executed exactly once, and in any order.

Figure 4.17 shows an example of this algorithm’s behavior.

4.3.6 Experimental Results

To test the efficiency of the branch-and-bound algorithm presented

in Figure 4.14 and the partition selection heuristics in Section 4.3.4,

I generated 304 SR systems at random and found the minimum cost

schedule for each using the branch-and-bound algorithm using two

algorithms for choosing SCC partitions. My exact algorithm consid-

ers all partitions containing one vertex, then all partitions containing

two vertices, etc. My “sweep” heuristic only considers a subset of

all possible partitions (and as such often misses the optimal sched-

ule) by growing a vertex set starting from each vertex in the graph,

as described in Section 4.3.4.

To create the random examples, I generated sixteen systems with

two blocks, sixteen with three blocks, etc., up to twenty blocks. For

each block in a system, I randomly selected a number of inputs and

outputs, each between zero and ten (uniformly distributed), and then
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( 7 . ( 5 . 2 1 3 )1 4 6 )1

(a)

Output Pushable Range Leftmost Position

1 ( 7 . ( 5 . 2 1 3 )1 4 6 )1 ( 7 . ( 5 . � 2 1 3 )1 4 6 )1

2 empty

3 ( 7 . ( 5 . [ 2 1 ] 3 )1 4 6 )1 no matching block (4)

4 ( 7 . ( 5 . [2 1] 3 )1 4 6 )1 ( 7 . ( 5 . [2 1] � 3 )1 4 6 )1

5 ( 7 . ( 5 . [2 1] [3 4])1 6 )1 no matching block

6 ( 7 . ( 5 . [2 1] [3 4] )1 6 )1 no matching block (7)

7 ( 7 . ( 5 . [2 1] [3 4] )1 6 )1 ( 7 . ( 5 . 2 1 3 )1 4 6 �)1

(b)

( 7 . ( 5 . [2 1] [3 4] )1 6)1

(c)

Figure 4.17 (a) The schedule from Figure 4.7. (b) The effects of running
the algorithm in Figure 4.16. (c) The final merged schedule.
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Figure 4.18 A comparison of scheduling times for the branch-and-bound
algorithm using the exact and heuristic sweep partition generators. All
times are on a SPARCStation 10.

for each block’s input, randomly chose a block and an output port on

the block to connect to. If the block I chose had no outputs, I left the

input unconnected.

For reference, all data were collected on a a SPARCStation 10 with

96MB of main memory, although the program never consumed more

than about 4MB. All times include the time to initialize the program

and load the system, typically a few hundred milliseconds.

Figure 4.18 shows the times it took the branch-and-bound algo-

rithm to compute the schedule for each system using the exact and

sweep heuristics. The number of outputs in the system is plotted hor-

izontally (the sum of the number of outputs on each block—exactly

the number of vertices in the dependency graph). The times are plot-

ted vertically on a logarithmic scale. The exact algorithm required

over 500 seconds to compute a schedule for 98 systems (out of 304),

but the sweep heuristic always completed in under eight seconds.
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Figure 4.19 The scheduling time speedup arising from using the heuristic
sweep partition generator.

From Figure 4.18, it appears the time to run the exact heuristic

varies substantially and grows quickly. The time it takes to run the

sweep heuristic does appear to be growing exponentially, but very

slowly. Moreover, the time for the heuristic seems much more pre-

dictable in comparison.

Figure 4.19 shows the sweep heuristic is exponentially more ef-

ficient than the exact brute-force solution. Although the speedup is

between 1� and 2� about 40% of the time, and the heuristic is actu-

ally slower in about 20% of the cases, this is only the case when both

the exact and heuristic times are fairly small. For longer times (e.g.,

one second or more), the heuristic partitioner is the clear winner by

an exponentially growing margin.

To save time, the heuristic partitioner considers only a subset of all

possible partitions. Unfortunately, it can miss the optimal partition,

leading to the cost increases shown in Figure 4.20, but these are not
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Figure 4.20 The increase in schedule cost from using the heuristic sweep
partition generator.

awful. The increase is less than 12% for more than an quarter of the

cases. Interestingly, the cost increase does not appear to be related to

the problem size.

Theorem 11 says the minimum schedule cost must be at least the

number of vertices in the dependency graph (i.e., the total number

of outputs in the system), and Theorem 12 says it must be less than

quadratic. The graph in Figure 4.21 bears this out—the cost of all

schedules falls between the n and n2 lines. However, more interest-

ingly, the asymptotic bound appears to be closer to n1:5. Of course,

this a function of the systems I chose to schedule, and there are sys-

tems whose optimal schedule costs n2� (n�1), but there do not ap-

pear to be many of them. Moreover, since the random graph con-

struction algorithm I presented above produces something reason-

ably close to real systems, I expect similar results for real systems.

From these results, I conclude that both the exact and heuristic par-

titioning schemes have merit. In many cases, finding the exact an-

swer is computationally feasible, but when it is not, the heuristic scheme

is far faster and produces comparable results—half of the time within

25% of the optimal schedule, and rarely more than twice as bad.
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Figure 4.21 The minimum schedule cost as a function of graph size.
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Implementation

The management question, then,

is not whether to build

a pilot system and throw it away.

You will do that.

The only question is whether to plan in advance

to build a throwaway, or to promise to deliver

the throwaway to customers.

—F. P. Brooks, The Mythical Man-Month

I IMPLEMENTED the SR model of computation in Ptolemy [16,

17], an environment for heterogeneous system prototyping. Here,

I present the details of how I did this, along with two sizable exam-

ples that demonstrate how the SR model of computation can be used

to specify reactive systems.

The ideas in Ptolemy, particularly its view of heterogeneity, were

a driving force behind this research. A variety of synchronous lan-

guages have been proposed (see Section 2.3), but none explore the

problem of how to assemble heterogeneous systems. The solution I

devised followed naturally from the Ptolemy philosophy.

The two examples I present illustrate two different applications of

the SR model of computation. The first system, an electronic address

book, is dominated by its user interface. The second, a MIDI synthe-

sizer, is a real-time heterogeneous system that uses a different model

of computation to implement some of its behavior.
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5.1 Ptolemy

Ptolemy [16, 17] is an object-oriented environment for simulating

and synthesizing embedded systems. Ptolemy is written in C++ [66]

and uses the Tcl/Tk language [53] for some user interface duties.

Ptolemy describes its systems as block diagrams. A system is a

collection of blocks and connections between input and output ports

on those blocks. The blocks may come from one of the existing li-

braries, users may write their own in C++ or some other language, or

a block may contain another block diagram, allowing for hierarchical

designs.

To implement the SR model of computation, I created a new simu-

lation domain in Ptolemy. A Ptolemy domain is an embodiment of a

particular model of computation, and each consists of a set of blocks

that conform to the model and a scheduler responsible for determin-

ing an execution order for the blocks in a system. For example, a

block in the Synchronous Dataflow (SDF) domain (see Section 2.4.2)

produces and consumes a fixed number of data tokens from commu-

nication FIFOs each time it executes. A block in my Synchronous

Reactive (SR) domain examines its inputs and writes a value, “ab-

sent,” or “unknown” on each output.

In many Ptolemy domains, including my SR domain, all sched-

uling decisions can be made before the system is run. Such static

scheduling reduces overhead since the run-time scheduler may sim-

ply read off a list of blocks to fire. It also enables a style of soft-

ware synthesis known as block code generation, in which code for

each block is simply inlined in the order prescribed by the schedule.

This reduces scheduling overhead to almost nothing—the program

counter of the processor effectively functions as the run-time sched-

uler.

In addition to minimal run-time overhead, static scheduling allows

the system to be analyzed in more detail. For example, static SDF
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?

absent present(0) � � � present(k) � � � g “defined”

g “undefined”

Figure 5.1 The CPO for the three states of a communication channel: un-
known, absent (no event), and present (valued event). Here, the present
events are integer-valued, but they could be anything.

schedulers are able to determine a bound on the size of each commu-

nication buffer, allowing faster fixed-length buffers to be used. The

static SR scheduler is able to determine the per-tick execution time

of the system (if it knows each block’s execution time), allowing the

synchrony hypothesis to be tested without resorting to extensive sim-

ulation.

5.1.1 The SR Domain

The SR domain in Ptolemy simulates systems described with the SR

model of computation. The blocks in the SR domain communicate

among themselves with events sent through single-driver, multiple-

receiver channels. In each instant, a channel can either have an event

with a value, the absence of an event, or be undefined, generally due

to contradictory feedback. Communication is instantaneous and un-

buffered, so each block connection (port) on a channel sees the same

event (or absence thereof) in an instant. The three states of a com-

munication channel are ordered as shown in Figure 5.1.

Blocks in SR systems must behave monotonically� to obey the se-

mantics in Chapter 3. This means that when an SR block is given

more-defined inputs (i.e., one or more inputs have changed from un-

defined to present or absent), switching from undefined to defined is

the only way an output is allowed to change. Switching from present

to absent or changing a value is prohibited.

�More precisely, they must compute continuous functions. However, since the
values on the communication channels form a flat CPO, there are no infinite chains
and it follows from Proposition 7 that monotonicity is sufficient.
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I have written two schedulers for the SR domain. The default is a

static scheduler based on the algorithms presented in Chapter 4. The

other is dynamic, executing a system’s blocks in essentially a random

order until no outputs change, indicating the system has converged.

From the results in Chapter 3, it can be shown that this algorithm cor-

rectly simulates a system.

5.1.2 SR Blocks in C++

A new C++ block for the SR domain is written by creating a new

class that inherits from an existing block class and overrides certain

methods. The scheduler, which calls these methods, expects them to

perform functions such as updating the block’s outputs and chang-

ing its state. The C++ programming interface is summarized in Ta-

ble 5.1.

To create a new block, a designer writes a .pl file. Figure 5.2

is a simple example, Figures 5.13–5.15 on Pages 126–128 is a more

complex example. describing its interface and the C++ code for cer-

tain methods. The ptlang preprocessor digests this file and gener-

ates C++ source and header files describing the block, which are then

compiled and linked into the Ptolemy system.

Communication to and from an SR domain block goes through

instances of the InSRPort and OutSRPort classes. Each repre-

sents a connection to a communication channel, and are typically de-

clared as public data members of a block class, each with a name and

a type. The state of both input and output ports may be tested with the

known(), present(), and absent() methods, and if an event

is present, its value may be read with the get() method.

Output ports have additional methods for changing their state. A

valued event can be emitted on a formerly-undefined port by calling

theemit()method and filling in the value of the returned Particle, a

Ptolemy class describing a piece of data. Depending on the declared

type of the port, this value might be an integer, a string, or a floating-
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Block Methods To Be Overridden
void setup() Configure the block prior to simulation. Call methods

such as reactive() and independent() here.

void begin() Reset the state of the block—called once at the
beginning of a simulation.

void go() Update the outputs based on the inputs and state. For
non-strict stars, this may be called more than once an
instant and should not change the state.

void tick() For non-strict stars, advance the block’s state for the
next tick based on its inputs and outputs. Called
exactly once at the end of each instant.

Block Methods To Be Called
void reactive() Mark this block as reactive—require at least one

present input before calling go(). Call only in the
setup() method.

Input/Output Port Methods
void independent() Mark the input as independent—not affecting any

outputs in the current instant. Call only in the
setup() method.

int known() TRUE if the port’s state is not undefined

int present() TRUE if the port has an event this instant

int absent() TRUE if the port has no event this instant

Particle & get() When present() returns TRUE, this returns a
particle representing the value of the event. Calling
this any other time is an error.

Output-Specific Methods
Particle & emit() Mark the port as having an event this instant. The

returned particle should be set to the emitted value.
Only call this when known() would return FALSE.

void makeAbsent() Mark this port as having no event this instant. Only
call this when known() would return FALSE.

Table 5.1 C++ interfaces to SR domain stars and portholes.
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defstar {
name { Pre }
domain { SR }
derivedFrom { SRNonStrictStar }

input {
name { input }
type { int }

}

output {
name { output }
type { int }

}

state {
name { theState }
type { int }
default { "0" }
desc { Initial output value, state afterwards. }

}

setup {
input.independent();

}

go {
if ( !output.known() ) {

output.emit() << int(theState);
}

}

tick {
if ( input.present() ) {

theState = int(input.get());
}

}
}

Figure 5.2 The SR domain delay block, which delays its input by exactly
one instant. The ptlang program translates this into C++ source and
header files.
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point number. The absence of an event in the current instant can be

declared by calling the makeAbsent() method. All output ports

are set to undefined at the beginning of an instant, and because of

monotonicity, there is never any need for a block to reset a port to

the undefined state.

Strict Blocks

An SR block is strict by default, meaning it will only be executed if

all of its inputs are defined. This guarantees monotonicity and makes

these blocks behave like those in most other Ptolemy domains. Writ-

ing a new block like this amounts to writing a go()method that up-

dates a block’s outputs and its state for the next instant. There are no

restrictions about the outputs a particular set of inputs may produce.

Such a strict SR block may also be marked as reactive, which fur-

ther requires at least one input to be present. If all the inputs are

absent, all outputs will be marked as absent and go() will not be

called. This further simplifies coding since many blocks in the SR

domain are often reactive in this sense.

Non-Strict Blocks

The problem with strict blocks is that they do not work well in feed-

back loops. A feedback loop containing nothing but strict blocks will

deadlock (all their outputs will remain undefined) because each block

will be waiting for the others. The alternative is to write a non-strict

block that is able to produce some outputs even when some inputs

remain undefined.

The ability to partially evaluate outputs requires splitting output

calculation and state updates into two methods, go() and tick(),

because the SR schedulers may evaluate the outputs of a non-strict

block multiple times within an instant to resolve the channels in feed-

back loops. In general, it is impossible to predict how many times
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go() f

if output 1 is unknown

if the inputs are enough to decide on output 1’s value

emit output 1 or make output 1 absent

if output 2 is unknown
...

...

if output n is unknown
...

g

Figure 5.3 A standard idiom for writing the go() method of non-strict
blocks. The schedulers guarantee that once an output is decided upon, the
inputs will only become more defined.

go() may be called, so its function must not change until tick()

is called.

A non-strict block must behave monotonically, restricting the out-

puts that may be produced by a particular set of inputs. Specifically,

the go() method must compute a monotonic function of its inputs,

meaning that if it is called with more-defined inputs (i.e., one or more

have switched from undefined to either present or absent) it may ei-

ther leave its outputs untouched or change some of its undefined out-

puts to defined, either present or absent. In particular, it may not

change an output back to undefined or switch an event’s value.

Schedulers for the SR domain guarantee a block’s inputs follow a

monotonically increasing sequence during execution in an instant.�

This simplifies the task of ensuring monotonicity, since it means that

each output can be assigned a known value exactly once during the

series of evaluations in an instant. This suggests the form for the

go() method of a block shown in Figure 5.3.

�This follows from Theorem 7, which shows the Chaotic Iteration Invariants
are preserved when blocks are evaluated.
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Block Methods To Be Overridden
go Update the outputs based on the inputs and state. This

may be called more than once an instant and should
not not change the state of the block.

tick Update a block’s state based on its inputs and outputs.
Called exactly once at the end of each instant.

Block Method for Input/Output Ports
read port Returns “unknown,” “absent,” or a string

representing the present value on the port.

Block Method for Output Ports only
write port value Writes value to the named output port. This is

interpreted as a string to emit unless value is
“absent.” To ensure monotonicity, this should not
be called unless read would return “unknown.”

Table 5.2 Itcl interfaces to SR domain stars and portholes.

5.1.3 SR Blocks in Itcl

SR blocks can also be described using McClennan’s [incr Tcl]

(Itcl) language [50], an object-oriented extension of Ousterhout’s Tcl

language [53] that facilitates rapid development and graphical user

interfaces. One of its main benefits is access to the Tk toolkit, a high-

level interface to windows, buttons, and so forth.

I designed the Itcl interface as a simplification of the the C++ in-

terface. All Itcl stars are non-strict; the behavior of the ports and the

go() and tick() methods remain the same.

Writing a new Itcl block amounts to creating a new Itcl class that

inherits from SRItclStar and overrides its go and tick meth-

ods. Figure 5.4 shows an Itcl specification of a latch.
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class SRLatch {
inherit SRItclStar

constructor {} {
set state "0"

}

method go {} {
if { [read output] == "unknown" } {

write output $state
}

}

method tick {} {
set input [read input]
if { $input != "unknown" &&

$input != "absent" } {
set state $input

}
}

variable state
}

Figure 5.4 An Itcl specification of the delay block in Figure 5.2.
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5.1.4 SR Blocks from Other Languages

An SR block can also be a system described in a different Ptolemy

domain. It appears as a strict, reactive block that is executed at most

once in an instant and only when all of its inputs are known and at

least one is present.

Such embedding is done with a Ptolemy structure called a Worm-

hole. When a design contains a system described in a different do-

main, that design appears as an SR Wormhole—an SR block con-

nected to the foreign system. The ports on this Wormhole block are

special—they translate the SR communication protocol to and from

a universal protocol based on single-entry buffers. Since the Worm-

hole is a strict block, it runs the enclosed system only when all of its

input ports are defined. Present events are copied into their univer-

sal buffers, and ports without events leave their buffers empty. After

the foreign system has run, output buffers containing a single piece

of data appear as valued events, and empty output buffers appears as

the absence of an event.

5.2 A Digital Address Book

In this section, I present a “virtual prototype” of a digital address

book specified in the SR domain to illustrate a user interface appli-

cation. This is intended to model a small hand-held system and pro-

vides the ability to test the user interface before building the system.

Shown in Figure 5.5, it consists of a small (ten-character) alphanu-

meric display that displays names and phone numbers above a small

keyboard. In browsing mode, pressing a key with a letter displays the

first name starting with that letter, and pressing an arrow key scrolls

through the names alphabetically. In editing mode, the arrow keys

move an editing cursor and the remaining keys change the charac-

ter beneath it. Pushing the Edit key switches between editing and

browsing.
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Figure 5.5 The Digital Address Book Interface. “EDWARDS” is cur-
rently being edited.

This example is fairly primitive because the language used to spec-

ify the blocks, Itcl, is not very elegant for describing finite-state be-

havior. It is, however, very quick to write and test.

The block diagram of the address book is shown in Figure 5.6. All

blocks were custom-designed in Itcl and all communication is via

string-valued events. The keyboard sends keys to the ModeSelect

block, which then routes them to either the Database (responsible for

storing the names) or to the Editor (responsible for controlling the

cursor and modifying the name entries). The latch maintains index of

the name being displayed or edited, and the counter is used to scroll

through the entries while browsing.

The Keyboard Block

When a key is pressed, this emits output with the label on the key,

and sets it absent otherwise.

To create this, I first wrote a more general Itcl keyboard class in-

herited from the itk::Toplevel class, meaning an instance of

it appears as an isolated window as shown in Figure 5.5. Its con-

structor takes a list of keycaps and builds a button for each. The ac-
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Keyboard

output

ModeSelect

key

jump count

editKey

Counter

command

out

in

Latch

in

out

Editor

key

write read

leftmost
cursor
string

Display
leftmost
cursor
string

Database

char index indexOut in out

Figure 5.6 A block diagram of the Digital Address Book.

tual keyboard class inherits this and the SRItclStar class and over-

rides the press method, called whenever a key is pressed. Its go

method emits the currently-pressed key on the output and resets the

currently-pressed key variable.

The ModeSelect Block

This switches between editing and browsing modes when it receives

“Edit.” In browse mode, alphabetic key events are copied to jump,

and the arrow keys emit Down or Up on count. Key events are copied

to editKey in edit mode. When switching from editing to browsing,

“Write” is emitted on editKey. When changing from either mode,

count is “Hold.”

This is essentially a large state machine implemented with a switch

statement in the go method. Each case writes values to each out-

put and sets the nextState variable appropriately. The tick method

copies nextState to the current state variable.
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The Counter Block

When command is “Up,” “Down,” or “Hold,” out is respectively one

more, one less, or the same as in. All this is implemented with a

switch statement in the go method.

The Latch Block

Emitted on out is the value of in in the last instant. The code for this

simple block is shown in Figure 5.2. It is a non-strict block since

out is emitted without regard to the current state of in. This breaks

the feedback loop including the latch, counter, and database by in-

troducing a delay.

The Database Block

The most complex of the blocks, the database maintains a sorted list

of strings. An event on char causes the database to search for the first

entry beginning with that character and emit its index on indexOut,

its value on out. If both index and in have an event, the string value on

in is written into the list at the index value, the database is sorted, and

the new index is emitted on indexOut. If an event arrives on index

and in is absent, a string is fetched from the database and emitted on

out; its index emitted on indexOut.

The code of the database block is shown in Figures 5.7 and 5.8.

The Editor Block

This block maintains the string being edited, which is read and writ-

ten through read and write. It also maintains the current location of

the edit cursor, emitted through cursor, and an index of the leftmost

character to be displayed, emitted through leftmost.

When the key input is “Edit” and read is present, read becomes the

string to edit. When key is an alphanumeric character, the character

114



Chapter 5 Implementation

# class SRDatabase
#
# INPUTS char - Selects the first item in the list starting with this
# index - The requested index value
# in - A string to write into index
# OUTPUTS indexOut - The current index out
# out - The string stored at the current index
class SRDatabase {

inherit SRItclStar
constructor {} {

set contents "Ann Beth Carol Debby Elizabeth Francine "
}
method go {} {

set index [read index]
set char [read character]
set in [read in]
if { [read out] == "unknown" &&

$index != "unknown" && $char != "unknown" } {
if { $index == "absent" && $char == "absent" } {

# Both index and char absent--don’t respond
write out absent
write indexOut absent

} else {
if { $char != "absent" } {

# char present--search for the first entry
set length [llength $contents]
for {set index 0} {$index < $length} {incr index} {

if { [lindex $contents $index] >= $char } {
break;

}
}
write out [lindex $contents $index]
write indexOut $index

} else {

Figure 5.7 Itcl code for the Database block of the Digital Address Book,
first part
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if { $in != "unknown" } {
if { $in != "absent" } {

# index and in present--insert new value,
# sort the database, and find the entry
if { $index >= [llength $contents] } {

lappend contents $in
set contents [lsort $contents]

} else {
set contents [lsort \
[lreplace $contents $index \
$index $in] ]

}
set index [lsearch $contents $in]
write out $in
write indexOut $index

} else {

# index present, in absent--fetch
# the value from the database
if { $index < 0 } {

set index [llength $contents]
}
if { $index > [llength $contents] } {

set index 0
}
write out [lindex $contents $index]
write indexOut $index

}
}

}
}

}
}
# A list containing the database entries
variable contents

}

Figure 5.8 Itcl code for the Database block of the Digital Address Book,
last part

116



Chapter 5 Implementation

at the cursor position is overwritten and the cursor moved right.

This block is non-strict to break the feedback loop involving the

database. The value of the write output is based only on the key input,

not on read, which is dependent on the value of in.

The Display Block

This displays the value of the most-recent event on string, starting

from the leftmost index. When cursor is present, the character at its

index is underlined.

The code for the Display block is shown in Figure 5.9, and illus-

trates how many output-only blocks work. All the action takes place

in the tick method, which examines its inputs and sends their val-

ues to some I/O device, in this case, the screen via Tk “widgets.”

5.3 A MIDI Synthesizer

In this section, I present another application implemented in the SR

domain—a MIDI (Musical Instrument Digital Interface) sound syn-

thesizer. This example illustrates many features of the SR domain,

including its ability to handle both control and data, incorporate other

models of computation, one-to-many communication, and feedback.

The synthesizer decodes a serial MIDI stream and uses it to pro-

duce sound using a digital-to-analog converter. All the decoding and

control is done by custom SR blocks written in C++; the waveform

synthesis is done with existing SDF blocks using an FM (frequency

modulation) algorithm.

In this section, I describe the MIDI protocol, the technique of FM

synthesis, and how I implemented the synthesizer in Ptolemy.
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# class SRDisplay
#
# INPUTS leftmost - The index of the leftmost character to display
# cursor - The index of the cursor position
# string - The string to display
class SRDisplay {

inherit SRItclStar itk::Toplevel
constructor {args} {

set displayWidth 10
itk_component add display {

label $itk_interior.display -width $displayWidth \
-justify left

}
pack $itk_component(display)
set displayText ""
set leftmostChar 0
set cursorPos -1
eval itk_initialize $args

}
method tick {} {

set string [read string]
if { $string != "absent" && $string != "unknown" } {

set displayText $string
set cursor [read cursor]
set leftmost [read leftmost]
if { $cursor != "unknown" && $cursor != "absent" } {

set cursorPos $cursor
} else {

set cursorPos -1
}
if { $leftmost != "unknown" && $leftmost != "absent" } {

set leftmostChar $leftmost
}
$itk_component(display) configure -text \

[string range "$displayText " \
$leftmostChar \
[expr $leftmostChar + $displayWidth]]

$itk_component(display) configure -underline \
[expr $cursorPos - $leftmostChar]

}
}
variable cursorPos
variable leftmostChar
variable displayText
variable displayWidth

}

Figure 5.9 Itcl code for the Display block of the Digital Address Book
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5.3.1 The MIDI Protocol

The MIDI protocol� was designed to allow a single musician to con-

trol multiple synthesizers with a single keyboard. Primarily, it sends

note-on and note-off messages that include a note’s pitch and how

hard it was struck. It is a real-time protocol, so a note-on message

causes a note to begin sounding immediately and held until the cor-

responding note-off message arrives.

MIDI is a unidirectional asynchronous byte-oriented serial proto-

col that resembles RS-232. In my implementation, I used a keyboard

that sends MIDI messages at 38.4 kBaud at RS-232 levels, so it con-

nected directly to the serial port of a Sun workstation.

MIDI defines a series of messages, summarized in Table 5.3. Each

begins with a status byte indicating the message type followed by a

sequence of data bytes. The most significant bit of each transmitted

byte is set for status bytes, cleared for data.

To save bandwidth, MIDI uses something called “running status”

where a message’s status byte is omitted when the last message had

the same status. For example, to send a series of note on commands

to Channel 0, a single 90 status byte can be transmitted, followed by

pairs of data bytes indicating the pitch and velocity of each note.

My synthesizer responds to Note On, Note Off, Control Change,

and Channel Pitch Wheel messages. Control Change messages af-

fect parameters controlling the timbre of the notes. Channel Pitch

Wheel messages shift the frequencies of all sounding voices by up

to two half-steps in either direction.

5.3.2 FM Sound Synthesis

A natural-sounding musical tone, such as a note struck on a piano,

generally consists of a fundamental frequency accompanied by har-

�MIDI is defined by the still-evolvingMIDI 1.0 Detailed Specification [51], but
books such as Rothstein [59] or Roads [57] have more readable descriptions.
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Meaning Status Data 1 Data 2

V
oi

ce
s

8>>>>>>>>>>><
>>>>>>>>>>>:

Note Off 8c1 Pitch2 Velocity3

Note On 9c1 Pitch2 Velocity3

Note Aftertouch Ac1 Pitch2 Value

Control Change Bc1 Controller Value

Program Change Cc1 Program

Channel Aftertouch Dc1 Value

Channel Pitch Wheel Ec1 LSB4 MSB

Sy
st

em
C

om
m

on

8>>>>>>>>><
>>>>>>>>>:

System Exclusive F0 Mfg. ID5 � � �

MTC Quarter Frame F1 Time Code

Song Position Pointer6 F2 LSB MSB

Song Select6 F3 Number

Tune Request F6

End of System Exclusive F7

Sy
st

em
R

ea
lt

im
e9

8>>>>>>>>><
>>>>>>>>>:

Timing Clock7 F8

Start6 FA

Continue6 FB

Stop6 FC

Active Sensing8 FE

System Reset FF

1 The lower four bits indicates the channel.
2 The pitch in halfsteps. Middle C is 60.
3 A velocity of 64 is neural. A velocity of 0 is equivalent to note off.
4 The first data byte contains the seven least significant bits; the second con-

tains the next seven bits. Hex 2000 is neutral.
5 The manufacturer ID byte provides a way to interpret the arbitrary number

of data bytes that follow. An F7 status terminates the sequence.
6 Used for sequencer control.
7 May be sent out at a rate of 24 per quarter note for synchronization.
8 Sent out every 300 ms if there has been no other activity to indicate the pres-

ence of a MIDI connection.
9 System Realtime messages may “interrupt” any data stream.

Table 5.3 MIDI messages. All numbers are in hexadecimal.
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monics at integer multiples. Although the overall loudness of the

note generally decays after it is first struck, the relative strengths of

the harmonics usually evolve over time in more complex ways.

It is a challenge to synthesize natural-sounding musical tones be-

cause of their need for dynamically-changing harmonics. Additive

synthesis,� where the waveform is created by summing sinewaves, is

an obvious approach, but is both computationally intensive and de-

mands a lot of difficult-to-obtain data. Subtractive synthesis takes a

complementary approach by sending an easy-to-generate, harmoni-

cally rich waveform (such as a square or sawtooth wave) through fil-

ters to produce the final sound. While closely resembling many real-

world mechanisms for generating sounds (e.g., brass instruments fil-

ter the sound of vibrating lips), interesting sounds require complex

time-varying filters.

In 1973, John Chowning introduced the idea of FM synthesis [22]

for synthesizing tones. His key observation was that FM waveforms

are easy to produce and have the characteristics of natural sound. In

particular, their harmonics can be made to fall at integer multiples of

the fundamental and the relative amplitudes of these harmonics can

be controlled in complex ways by varying a single parameter.

All of these effects can be seen in the FM equation and its sine

expansion,

y(nT) = sin(θc + I sin(θm)) (5.1)

= J0(I) sin(θc)+

J1(I)(sin(θc +θm)� sin(θc�θm))+

J2(I)(sin(θc +2θm)+ sin(θc�2θm))+

J3(I)(sin(θc +3θm)� sin(θc�3θm))+
...

�For more information about additive synthesis and computer music in general,
see Roads’ extensive tutorial [57]. Moore’s book [52] has a more detailed descrip-
tion of FM synthesis.
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Figure 5.10 The first seven Bessel functions. For a given index of modu-
lation, I, the amplitude of the kth harmonic comes from Jk(I).

where

θc = 2π fcnT θm = 2π fmnT:

The carrier frequency, fc, is the fundamental, and when the modulat-

ing frequency fm equals fc, the harmonics fall at fc, 2 fc, 3 fc, etc. The

modulation index I affects the relative amplitudes of the harmonics

through Bessel functions of the first kind. In general, the higher har-

monics die out and larger I means more harmonics, but the behavior

of lower harmonics is more complex—see Figure 5.10.

Two more things are needed to produce a tone using FM synthesis.

The FM equation (5.1) needs to be scaled by a time-varying enve-

lope function, and the index of modulation needs to be controlled for

the duration of the note. A typical envelope function starts suddenly

when the note is first struck (its attack), then decays to zero when
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SerialIn synthesizer

A four-voice MIDI synthesizer
This demo requires a MIDI keyboard connected
to /dev/ttya at 38400 baud.  Use the keyboard’s
"to Host" port set to PC-2 mode for this baud rate.

Figure 5.11 The top level of the MIDI synthesizer. The output of the Se-
rialIn block is either the character on the serial port, or absent. The synthe-
sizer block is shown in Figure 5.12.

the note is released (Figure 5.16 shows an example). It is reasonable

to make the index of modulation proportional to the envelope, since

many natural sounds increase their bandwidth when the note is first

struck, then slowly decay into a pure tone (note that when I is zero,

the FM equation produces a sinewave).

5.3.3 Implementation of the Synthesizer

I implemented the synthesizer in Ptolemy using both the SR and SDF

domains. The top two levels of hierarchy (Figures 5.11 and 5.12),

are implemented in the SR domain, and are responsible for decod-

ing the MIDI stream, keeping track of which voices are sounding,

and generating the envelopes for the notes. The bottom two levels,

Figures 5.17 and 5.18, are implemented in the SDF domain and are

responsible for synthesizing the FM waveforms, summing them, and

sending them to the speaker. The synthesizer runs in real time with

four voices running at 8 kHz on a SPARCStation 10.

At the top level (Figure 5.11), the single input to the system—a se-

rial MIDI stream—enters via the SerialIn block. This block’s output

emits either the most-recently-sent MIDI byte, or is absent when no
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Figure 5.12 The synthesizer block. Starting from the input, the MIDIin
block translates the serial MIDI stream into commands for the polyphony
controller, the SynthControl block. This sends frequencies to the sound
synthesis block and velocities to the four EnvelopeGen blocks.
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new byte has arrived.

The MIDIin Block

The MIDIin block decodes a MIDI stream by keeping track of the

running status and recent data bytes to produce note on, note off, con-

trol change, and reset events. Its primary function is serial-to-parallel

conversion; when a complete note-on message arrives, its channel,

pitch, and velocity are emitted in a single instant. Note off, pitch

bend, and control change messages are handled similarly. I coded

this as a strict block in C++, and it is essentially a state machine, al-

beit one with a significant need to handle data. See Figures 5.13–

5.15.

The SynthControl Block

The SynthControl block is responsible for handling polyphony and

the effects of the pitch wheel. Its main inputs are onPitch, onVeloc-

ity and offPitch, which receive events from the MIDIin block. The

block maintains an array of pitches of currently-sounding voices and

distributes this information to the various sound synthesis blocks.

The voices are controlled through frequency, velocity, and done

ports. The frequencies of sounding voices come from a look-up ta-

ble and are each multiplied by a constant derived from the pitchBend

port that can shift them up or down at most two half steps. The ve-

locity of a voice comes directly from the note-on event and is held

until the corresponding note-off event arrives, at which time it be-

comes absent. There is usually some delay between when a note-off

event arrives and when the voice actually stops sounding. An event

on a done channel signals this. These do not take effect until the next

instant to avoid an instantanenous feedback problem.
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defstar {
name { MIDIin }
domain { SR }

input { name { in } type { int } }

output { name { channel } type { int } }
output { name { onPitch } type { int } }
output { name { onVelocity } type { int } }
output { name { offPitch } type { int } }
output { name { offVelocity } type { int } }
output { name { pitchBend } type { int } }
output { name { controller } type { int } }
output { name { controlValue } type { int } }
output { name { reset } type { int } }

state { name { lastStatus } type { int } }
state { name { byteNum } type { int } }
state { name { lastByte } type { int } }

private { int nextStatus; int nextByteNum; }

public {
inline int isRealtime( int i ) const {
return i >= 0xf8 && i <= 0xff; }

inline int isStatus( int i ) const { return i & 0x80; }
inline int isSystem( int i ) const {
return i >= 0xf0 && i <= 0xff; }

enum statusBytes {

NoteOffPitch = 0x80, NoteOffVelocity = 0x81,
NoteOnPitch = 0x90, NoteOnVelocity = 0x91,
ControlChangeController = 0xb0, ControlChangeValue = 0xb1,
ChannelPitchwheelLSB = 0xe0, ChannelPitchwheelMSB = 0xe1,

SystemReset = 0xff
};

}

begin {
nextStatus = lastStatus;
nextByteNum = byteNum;

}

Figure 5.13 C++ code for the MIDIIn block, first part
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go {
if ( in.present() ) {
int inVal = int(in.get());
if ( isStatus(inVal) ) {
if ( isRealtime(inVal) ) {
if ( inVal == SystemReset ) {
reset.emit() << int(TRUE);

}
} else {
nextStatus = inVal;
nextByteNum = 0;

}
} else {
int status = int(lastStatus);
if ( isSystem(status) ) {
} else {
int byte = int(byteNum);

switch ( status & 0xf0 | byte ) {

case NoteOffPitch:
case NoteOnPitch:
case ControlChangeController:
case ChannelPitchwheelLSB:
lastByte = inVal;
nextByteNum = 1;
break;

case NoteOffVelocity:
offPitch.emit() << int(lastByte);
offVelocity.emit() << inVal;
channel.emit() << int(status & 0xf);
nextByteNum = 0;
break;

case NoteOnVelocity:
channel.emit() << int(status & 0xf);
if ( inVal == 0 ) {
offPitch.emit() << int(lastByte);
offVelocity.emit() << 64;

} else {
onPitch.emit() << int(lastByte);
onVelocity.emit() << inVal;

}
nextByteNum = 0;
break;

Figure 5.14 C++ code for the MIDIIn block, second part
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case ControlChangeValue:
controller.emit() << int(lastByte);
controlValue.emit() << inVal;
channel.emit() << int(status & 0xf);
nextByteNum = 0;
break;

case ChannelPitchwheelMSB:
pitchBend.emit() << ((int(inVal) << 7) | lastByte);
channel.emit() << int(status & 0xf);
nextByteNum = 0;
break;

}
}

}
}

if ( !channel.known() ) { channel.makeAbsent(); }
if ( !onPitch.known() ) { onPitch.makeAbsent(); }
if ( !onVelocity.known() ) { onVelocity.makeAbsent(); }
if ( !offPitch.known() ) { offPitch.makeAbsent(); }
if ( !offVelocity.known() ) { offVelocity.makeAbsent(); }
if ( !pitchBend.known() ) { pitchBend.makeAbsent(); }
if ( !controller.known() ) { controller.makeAbsent(); }
if ( !controlValue.known() ) { controlValue.makeAbsent(); }
if ( !reset.known() ) { reset.makeAbsent(); }

}

tick {
lastStatus = nextStatus;
byteNum = nextByteNum;

}

}

Figure 5.15 C++ code for the MIDIIn block, last part
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Note On Note Off

Attack rate

Decay rate

Sustain level

Release rate

Figure 5.16 An envelope generated by an EnvelopeGen block.

The EnvelopeGen Block

An EnvelopeGen blocks controls both the amplitude and modulation

index of each FM synthesis block. The envelopes it generates are

controlled by four parameters, shown in Figure 5.16. The attack and

release behaviors are both linear; the decay is an exponential fade to

the sustain level. These can be set by MIDI Control Change mes-

sages that enter through the controller and controlValue ports, which

are connected bus-style to the MIDIin decoder. A knob on the MIDI

keyboard can be programmed to generate control change messages

for different controllers.

The block behaves as a state machine, looking for velocity events

signaling the beginning of a note and the absence of velocity events,

signaling the end of a note. The machine has four states, quiet, at-

tack, decay, and release. It changes from quiet to attack and release

because of velocity events; it changes from attack to decay and re-

lease to quiet based on the envelope state.

The overall amplitude of the envelope is scaled by the velocity of

the note. The modulation index is a scaled version of the overall en-

velope, controlled by a parameter. A larger scaling constant makes

the tones sound richer because they have more harmonics.

The FM Synthesis Blocks

Each FM synthesis block (shown in Figure 5.18) has an amplitude,

a fundamental frequency, and a modulation index input. The mod-
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Figure 5.17 The sound synthesis block of the MIDI synthesizer, described
using SDF. Four FM synthesis blocks feed their outputs into an adder that
sends its output to a speaker.

Gain

Gain

Mpy oscillator Add

oscillatorRepeat

Repeat

Repeat

Figure 5.18 An FM synthesis block. The inputs are an amplitude, a cen-
ter frequency, and an index of modulation. The modulating frequency is the
same as the carrier. The repeat blocks (upward arrows) on each input con-
trol the number of samples generated per tick of the enclosing SR domain.

ulating frequency is the same as the fundamental, so the harmonics

fall at 2 f , 3 f , 4 f , etc.

The FM synthesis blocks are described in Synchronous Dataflow,

and take advantage of its ability to describe multi-rate systems. Re-

peat blocks on each input control how many samples are sent to the

digital-to-analog converter per instant. In each instant, exactly one

token is placed on each input, so the repeat block copies this as many

times as necessary to increase the number of samples per tick. By

adjusting this number, the fraction of time the system spends dealing

with control versus dataflow can be controlled.
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Conclusions

Films are never completed,

they’re only abandoned.

— Anonymous

IN THIS DISSERTATION, I presented a new model of computation

for reactive software systems. Called SR, it is the first to com-

bine precise control over when things happen with the ability to as-

semble systems from heterogeneous pieces. To demonstrate its prac-

ticality, I have defined its semantics formally, proven it determinis-

tic, devised an algorithm capable of executing it efficiently and pre-

dictably, shown it has a straightforward implementation, and used it

to describe some useful, realistic systems.

The formal semantics presented in Chapter 3 showed that SR sys-

tems are deterministic and compositional. Introducing an undefined

value to the communication channels allows seemingly paradoxical

systems to be handled, and requiring the blocks to behave monoton-

ically with respect to this showed these systems are deterministic:

they react in exactly one way to any particular input. The seman-

tics also show that any group of SR blocks can be treated as a single

block, allowing any part of an SR system to be encapsulated into a li-

brary component without loss of expressiveness. This is the primary

mechanism for handling complexity through abstraction.

The execution scheme in Chapter 4 determines an order for exe-

cuting the blocks. The resulting schedule works for all possible in-

puts, and because all scheduling-related decisions are made before
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the system is running, there is virtually no run-time scheduling over-

head, making execution efficient and predictable. I proved this ex-

ecution scheme complies with the formal semantics and presented

some experimental results that show it is practical for reasonable-

sized examples.

Finally, in Chapter 5, I presented a practical implementation of the

SR model of computation in Ptolemy, an environment for prototyp-

ing heterogeneous systems. In addition to showing the programming

interface is fairly straightforward, I presented two examples of real

systems specified using SR. One was a digital address book that illus-

trated SR’s suitability for specifying user-interface-dominated sys-

tems; the other a MIDI music synthesizer that showed SR’s ability

to handle control-dominated systems and to assemble heterogeneous

subsystems. Both run in real-time thanks to SR’s efficient execution

algorithm.

6.1 Implications of This Work

Many of the results in this work are very-SR specific (e.g., the the-

orems in Chapter 4), but some apply more generally. Here are the

more far-reaching implications of my work:

Fixed-point semantics are the “right thing” for zero-delay sys-

tems with feedback.

Instantaneous feedback loops often cause strange behavior in lan-

guages without fixed-point semantics. The VHDL language [45] is

typical. To handle zero delay situations, it uses “delta timesteps” that

resemble the iterations in my execution scheme, but the number of

these steps are unpredictable in general, and may be unbounded, so

the simulator can effectively deadlock. Moreover, the simulator has

some freedom over the timestep in which a thing occurs, which can

lead to nondeterminism.
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A

B

(a) (b)

Figure 6.1 An example of non-compositionality in SDF. (a) A correct sys-
tem. (b) One that deadlocks after blocks A and B have been encapsulated.

As I argued in Chapter 3, fixed-point semantics are both physi-

cally realistic and mathematically well-founded, making them an ex-

cellent theoretical model of zero-delay systems. Furthermore, Chap-

ter 4 showed that systems having such semantics can be executed ef-

ficiently, making them reasonable in practice.

It it my hope that future languages with the need for zero-delay

feedback are placed on this firmer theoretical ground.

Partial evaluation solves certain compositionality problems

Many languages impede abstraction by preventing certain kinds of

subsystems from being encapsulated, making it harder to build com-

plex systems. A common source of problems is the introduction of

unwanted dependencies. Often, encapsulating a subsystem requires

its interface to be more synchronized that an unencapsulated version,

and this can lead to different behavior, perhaps even deadlock. Lee’s

Synchronous Dataflow� has this problem, as illustrated in Figure 6.1.

More traditional languages without feedback also have this prob-

lem. In the C language, the effect of the AND operator cannot be

encapsulated because it does not require all its arguments to be eval-

uated before it can produce a result. In an expression like

i >= 0 && c[i] > 1;

the right expression is not evaluated if the left one is false. If this was

encapsulated in a C function, both would have to be evaluated every

time, which might lead to a memory access violation.

�See Section 2.4.2 on Page 27.
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An SR block avoids these problems by being able to execute with

only partial information about its inputs. Incomplete inputs generally

produce incomplete outputs, but this avoids the needless addition of

synchronization that causes these problems.

Chaotic iteration can be a practical way to execute systems

At first glance, chaotic iteration appears too unpredictable to execute

practical systems. Whether it converges at all, let alone predictably,

is the obvious concern.

My results in Chapter 4 resolve these questions. When chaotic it-

eration operates on simple, discrete domains with monotonic func-

tions, it is predictable and practical. Using simple dependency infor-

mation improves the scheme’s efficiency, which, on average, seems

to be quite a bit better than the theoretical worst case. Of course,

executing a system more directly will usually be more efficient, but

when this is not possible, such as when a system is assembled hetero-

geneously, the speed penalty caused by chaotic iteration is not pro-

hibitive.

Recursive strongly-connectedcomponent decomposition can pro-

duce superior results

Strongly-connected component (SCC) decomposition is a powerful

technique for decomposing a graph, but many algorithms stop after

applying it once. By contrast, the recursive decomposition scheme

I presented in Chapter 4 uses SCC decomposition to ultimately re-

duce a graph to single nodes. There are many examples where this

produces superior results. Bourdoncle’s weak topological order� is

also a recursive decomposition scheme, but it limits the way an SCC

can be further decomposed, diminishing the quality of its results.

�See Page 57
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It it my hope that this technique will find application in other prob-

lems where a system of equations needs to be solved rapidly. Al-

though it may be less predictable in other domains (e.g., when deal-

ing with real numbers), I expect it will still give better results.

6.2 Future Work

6.2.1 Execution Issues

Synthesizing software from SR system descriptions is an obvious ap-

plication of this work. The block code generation technique, where

code for each block is simply inlined in the order prescribed by the

schedule, could be used to synthesize code for a sequential impera-

tive language such as C.

Avoiding the need to explicitly represent “undefined” or “absent”

would be an interesting possible optimization. Using more informa-

tion about the blocks, it might be possible to prove that “undefined”

would never appear in acyclic sections of a system. The effect of ab-

sent might be possible to reproduce by simply not executing certain

reactive blocks.

Since the semantics of SR are not directly tied to a particular ex-

ecution style, others are possible. Distributed execution is an obvi-

ous alternative. A good starting point would be the work of Caspi

et al., [19] which executes OC programs (see Section 2.3.3) on dis-

tributed processors communicating through FIFO buffers. Their al-

gorithm copies the program, removes redundant sections, and inserts

communication that sends variable values to where they are needed

and, as a side effect, synchronizes the system. Using the same ap-

proach with SR would be easier since there are no decision points in

SR schedules.

More work can be done with execution time estimation. Execu-

tion time of an SR system was designed to be fairly easy to estimate

by simply adding the worst-case times for each block according to
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the schedule, but this may be too pessimistic. The times for multiple

invocations of the same block in an instant may differ substantially

yet predictably. Even better bounds would probably have to take data

dependencies into account.

Making more information about SR blocks available to the sched-

uler might improve execution speed. Currently, I only have a rather

heavy-handed “this input does not matter” flag. It might be better

to supply “this input does not affect these outputs” information. In-

formation like “these two outputs are always going to be defined si-

multaneously” might further speed convergence. In all cases, these

merely give the scheduler a better idea about how fast the network

will converge without affecting the semantics.

Although grouping a set of SR blocks into a single block does not

affect the behavior of a system, it may reduce execution efficiency.

The problem is that the execution scheme I devised wants to evaluate

blocks an output at a time, yet blocks generally evaluate all their out-

puts at once, usually because of sharing of intermediate results. For

example, when a block containing a subsystem is evaluated, only a

few outputs may be needed, yet the schedule for the subsystem will

evaluate all of them.

The alternative would be to ask blocks to only evaluate certain out-

puts to avoid needless computation. One danger is enumerating the

exponentially many possible sets of outputs (presumably, there is an

optimal schedule for each), but there are probably ways to consider

only as many different schedules as there are outputs or blocks in a

subsystem.

All of the blocks in an SR system compute monotonic functions,

but what is the most efficient way to evaluate these? If they are spec-

ified as a C++ or Itcl method, then the most efficient way is to simply

execute the method, but if they are specified in some other language,

say Esterel or Verilog, then the answer is less obvious. The most ef-

ficient way might be to synthesize efficient code using variations of
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a

b

c s

8<
:

a if s = 0

b if s = 1

ufa;b;cg if s =?

Figure 6.2 The universal monotonic multiplexer for the binary CPO
f?;0;1g . It is monotonic, so a system constructed solely from these will
be monotonic. Moreover, any monotonic function can be built with it.

traditional logic synthesis algorithms developed for digital logic.� A

starting point might be the universal monotonic multiplexer shown

in Figure 6.2. With this, it might be possible to apply binary deci-

sion diagram (BDD†) ideas to manipulate these functions, as BDDs

can be thought of as being decompositions of functions into multi-

plexers.

6.2.2 Language Issues

The biggest open question is how best to describe “native” SR blocks.

Strict blocks may be imported from just about any language, and in

many cases, this is the best solution, but non-strict blocks are difficult

to import. My current solution, using C++ or Itcl, is functional, but

not very elegant. I believe some sort of FSM description style would

work well, but it would have to be quite a bit more sophisticated than

the simple state diagrams of Section 2.3.2. None of the blocks in my

MIDI synthesizer could be succinctly described as state diagrams.

An alternative would be to use an FSM language like Esterel [7] or

even a simplified subset of something like the popular Verilog [69]

or VHDL [45] languages. All of these could be given non-strict se-

mantics. The biggest challenge in “solving” this problem is that it

is not quantitative—the best solution is the one that people like the

most.
�De Micheli [24] is a good starting point for this field.
†Attributed to Bryant [10], these efficient representations of binary functions

are currently the rage in the logic synthesis community.
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The semantics of SR are sufficiently abstract to allow for many

language variations. One possible variation would be to use non-flat

CPOs in the communication channels, although their height would

have to remain finite to ensure convergence. This would require mi-

nor modifications to the execution scheme, but might ultimately lead

to more efficient schedules. Such CPOs could model things that take

on a sequence of values in an instant, such as bounded-length FIFOs,

program counters, etc., although all of these can be simulated less ef-

ficiently with multiple wires. Another application would be to layer

clocks on the channels more elegantly.� The first level of the CPOs

would contain only clock information; the second would have val-

ues. Execution would first establish the presence or absence of all

the signals, then establish their values.

SR, as it stands, does not provide facilities for preempting or con-

trolling the execution of subsystems, but this could be added without

changing the semantics. The research done on Esterel† has shown

that the ability to start, stop, and reset a subsystem is both useful and

sufficient. Since subsystems appear as SR blocks, the semantics are

clear: the function computed by the block is either the function com-

puted by the subsystem or “all outputs absent” if the system is not

being run. The wormhole already has a facility resembling this: if

all its outputs are absent, the enclosed subsystem is not executed.

�Gérard Berry pointed this out to me.
†See Section 2.3.5 on Page 21.
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