The Specification and Execution of
Heter ogeneous Synchronous Reactive Systems

Copyright 0 1997
by

Stephen Anthony Edwards

Please cite as

Stephen Anthony Edwards.

The Specification and Execution of Synchronous Reactive Systems.

PhD thesis, University of California, Berkeley, 1997.

Available as UCB/ERL M97/31.

http://ptol eny. eecs. berkel ey. edu/ paper s/ 97/ sedwar dsThesi s/

Abstract

The Specification and Execution of
Heter ogeneous Synchronous Reactive Systems

by
Stephen Anthony Edwards

Doctor of Philosophy in Engineering
University of California, Berkeley
Professor Edward A. Lee, Chair

The need for new languages and paradigmsfor designing software
for embedded computing systems continuesto grow as general-pur-
pose microcontrollersbecomefaster and cheaper. Many of these sys-
tem need precise control over when things happen, yet few languages
provide thisfacility. Another major challengeis handling the grow-
ing complexity of these systems.

In this dissertation, | present anew model of computation for em-
bedded system software that is the first to fuse precise control over
timing with theability to build systemsfrom heterogeneouspieces. It
combines the synchronous model of time (used in languages such as
Esterel) with the hierarchical heterogeneity of the Ptolemy system.
Heterogeneity addresses the complexity problem by allowing each
subsystem to be designed using the best language.

My two major contributionsaretheformal semanticsof thismodel
and an efficient, predictable execution scheme for it. Dealing with
zero-delay feedback |oops, aside-effect of the zero-delay assumption
needed for synchrony, isthe semantic challenge, and | solve it with
afixed-point scheme that guaranteesall systems are deterministic by
construction. The execution schemel presentisprovably correct and

eliminatesrun-time scheduling overhead by making all decisionsbe-
forethe system isrun.

| present results that show my model of computation is both effi-
cient and can be used to implement practical systems. It is my hope
that theseideaswill be used in the future to make designing complex
time-critical embedded software easier and less error-prone.

Chapter 1

Chapter 2

Contents

Preface iX
Acknowledgements Xi
Introduction 1
11 Synchrony.........cooeeiiiiiieiiiii i, 3
12 Heterogenaityooveiiiieiii i 5
13 SRSystems ...t 6
131 Challengesof ZeroDelay 7
132 EXeCUtion..........ccoooviiiiiiiiiiiiiniiinn. 9
Specification 1
2.1 Synchrony and Finite-State Machines................ 11
2.2 SUCCINCINESS ...ttt 13
2.3 SynchronousLanguagescccooveviinnnn... 14
231 TabularForm ..., 15
232 StateDiagrams...........ccoooviiiiiiiiiiinn.. 15
233 TheOCFormatccoovviiiiiiieiinnn.. 17
234 AIQOS ... 18
235 Esterd ... 21
236 LUSIre......coiiiii i 24
24 HeterogeneousLanguagescceeveiineienn. 26
24.1 KahnProcessNetworks...................... 26
24.2 SynchronousDataFlow...................... 27

CONTENTS

Chapter 3 Semantics 31

31 MoOtvation ... 32

3.1.1 Denotational Semantics...................... 32

3.1.2 CircuitSimulation 34

3.2 Mathematical Foundation 38

321 CompletePartial Orders 39

3.2.2 Monotonic and Continuous Functions 43

323 LeastFixedPoints........................... a7

3.3 TheSemanticsof SR Systems........................ 49

Chapter 4 Execution 53

41 Related WOrk...... ... 56

4.2 FindingthelLeast FixedPoint 58

421 IterativeEvaluation.......................... 59

422 Chaoticlteration...................ooooeun... 62

423 SeriedParallel Decomposition 66

424 Partitioned Evaluation 67
4.25 The Divide-and-Conquer Least Fixed Point

Algorithm............ooo 70

4.3 Devising Efficient Schedules......................... 72

431 TheMinimum Evauation Cost 76

4.3.2 Finding Good Partitions...................... 84

4.3.3 TheBranch and Bound Algorithm 89

434 ChoosingtheHeadof anSCC 91

435 Schedule Transformations 92

43.6 Experimental Results 95

Chapter 5 Implementation 101

51 Ptolemy ... 102

511 TheSRDomain...............ccooiiiiinn... 103

512 SRBIlocksinC++........coooiiiiiiiiin . 104

513 SRBlocksinltcl ...l 109

514 SRBlocksfrom Other Languages............. 111

CONTENTS

5.2 A Digital AddressBook .

53 A MIDI Synthesizer.....

531 TheMIDI Protocol....................o.....
532 FM Sound Synthesis.........................
5.3.3 Implementation of the Synthesizer

Chapter 6 Conclusions

6.1 Implicationsof ThisWork............................

6.2 FutureWork.............
6.2.1 Execution Issues
6.2.2 Language Issues

Bibliography

Index

131
132
135
135
137

139

146

List of Definitions and Theorems

Definition 1 Partialy-ordered set (poSet).........covvvvvviiiieiineiin. 39
Definition 2 Leastupperboundcoooiiiiiiiiiiiii 39
Proposition 1 Least upper boundisunique..................cooivvenn... 40
Definition 3 Chain ... 40
Definition 4 Complete partial order (CPO)..........ccooiiiiiiiiiin 40
Proposition 2 LUB of afinitechaincooiiiiiii, 41
Corollary 1 PosetwithfinitechainsisaCPO.......................... 41
Definition 5 Bottomelement................oii 41
Proposition 3 Bottomelementunique ... 41
Proposition 4 Product spaceisaCPO 41
Proposition 5 Partial order onfunctions........................lLL. 43
Definition 6 Monotonicfunction...................ooiiiiiin. L. 43
Definition 7 Continuousfunctionooiiiiiiiiiiiinn... 43
Proposition 6 Continuousfunctionismonotonic 44
Proposition 7 Monotonic function with finite chainsis continuous 44
Proposition 8 Composition of continuous functionsis continuous. 44
Proposition 9 Composition of monotonic functionsis monotonic 45
Proposition 10 Cross product of continuous functionsis continuous. 45
Proposition 11 Chains of continuous functions have aleast upper bound . 45
Theorem 1 ContinuousfunctionsformaCPO 46
Definition 8 Prefixed points, fixed pointsoooeiiiieiin. 47
Theorem 2 A continuousfunctiononapointed CPO hasauniqueleast

fIXed POINt ... 48
Definition 9 BIOCKo 49
Definition 10 Connectedblock ... 49

Vi

Definition
Definition
Lemma
Lemma
Lemma
Theorem
Definition
Theorem
Corollary
Theorem
Definition
Theorem
Theorem
Theorem

Theorem
Definition
Corollary
Theorem

Definition
Definition
Theorem
Theorem
Corollary
Theorem
Theorem
Definition
Definition
Definition
Definition

LIST OF DEFINITIONSAND THEOREMS

1n
12

15

10

16
17

12

13
14
18
19
20
21

Open System. ... 50
SRSysteM ... 50
The set of all block functionsformsa pointed CPO....... 50
B preservesblock functions. ... 52
Biscontinuous..............oooooiiiiiii 52
SR Systemsaredeterministic ...l 52
Heightof aCPO 59
Heightof aproduct CPO................ooiiiiin. L. 60
Height of avector isthe sum of itscomponents........... 60
Bounded computation of the least fixed point............. 61
Chaotic Iteration InvariantS.cooooevenn... 64
Chaotic Iteration Invariantsaretruefor L 64
The Chaotic Iteration Invariantsare preserved 65
A seried/parallel decomposition has the same least fixed

POINE ... 66
Beki€'s least fixed point computation..................... 68
Separablepartition..............cooii 69
Least fixed point of aseparable partition.................. 69
Thedivide-and-conquer algorithm computestheleast fixed
POINE. .. 70
Directedgraph ... 73
Dependency grapht 74
Evauation costisat leastlinear........................... 78
Evaluation cost islessthan quadratic 78

Iterative evaluation is non-optimal for non-scalar functions 80

Separable partitioningisawaysoptimal 80
Optimal non-separable partition must be separable 83
A strongly connected digraph ... 84
Anacyclicdigraph..........oooiiii i 84
Border of asetof vertices..............cooooiii i 84
Akerngl of agraphoo 85

vii

LIST OF DEFINITIONSAND THEOREMS

Theorem 15 A graphisnot strongly connected if any only if it has a

Kernelo 85
Theorem 16 A functionhasaseparable partitioniff itsdependency graph

hasakernel 85
Definition 22 Strongly connected component decomposition 86
Theorem 17 Border setsbreak strong connectivity 87
Corollary 5 Removing successor setsor predecessor sets breaksstrong

CONNECHIVILY. ..ottt 88

viii

Preface

EM BEDDED computing systems are everywhere. If you own a
VCR, adigital watch, a microwave oven, or an automobile,
you probably use them daily without realizing it. Thisis amark of
good engineering: it solves aproblem without calling attention to it-
self.

Thisthesisgrew fromadesireto smplify thetask of building these
systems. Their growing use of software makes it natural to attack
the problem of creating softwarefor these systems. Most of itiscur-
rently written using the C language, which was originally designed
for operating systems programming. It is a powerful, flexible lan-
guage, but was not designed for real-time programming where the
correctness of aprogram rests as much on when it performsitsfunc-
tion as on what function it performs.

The designers of digital logic (hardware) have long built such ti-
ming-critical systems, and their techniques have slowly been creep-
ing into the software world. One of their most powerful paradigms
is synchrony, where all parts of a system are synchronized to a pe-
riodic clock. Virtualy al digital hardware systems use this, and it
has recently entered the software world through a group of so-called
synchronous languages that includes Esterel, Lustre, and Argos.

Another challengein designing software systemsis handling their
complexity. Any reasonable scheme needs to address this, and the
heterogeneous approach taken in the Ptolemy system (a system for
designing embedded software systems) is one of the more interest-
ing. Thebasicideaisto treat asystem asacollection of black boxes.
Within each black box there might be a program, a system, or any-
thing. Carefully choosing theinterfaceto these boxesallows systems
built from them to be analyzed and executed without having to un-
derstand their contents.

PREFACE

The research presented hereis the result of combining the idea of
synchrony with the Ptolemy approach to heterogeneity. It presentsa
new model of computation (essentially, away to assemble systems)
that combines both of these ideas. The primary challenge, it turns
out, is dealing with instantaneous feedback (the synchronous model
isinherently instantaneous, and feedback appearsin virtualy al in-
teresting systems). The solution | devised followsfrom resultstaken
from both the programming language semantics community and the
circuit simulation community, making it mathematically sound and
based on physical principles.

The other big challenge with this approach is actually running the
systems. The bulk of thisthesisis devoted to making these systems
run quickly, predictably, and correctly.

Some of the resultsin thiswork can be applied more widely. The
problem of dealing with zero-delay feedback in software appearsin
thetwo major languages (VHDL and Verilog) currently used to spec-
ify hardware systems. Both have failings that could be corrected if
some of the techniques presented in this dissertation were adopted.
Also, the execution scheme | devised is essentially a very efficient
solver for a system of equations. Although many of my techniques
are closdly tied to the particular domain | chose towork in, | believe
the general approach is applicable to similar problems.

—Stephen Edwards
Emeryville, California
March 1997

Advisor:
Edward A. Lee

Adnan Aziz
Wendell Baker
Wan-Teh Chang
John Davisl|
Jerry Edwards
Lois Edwards
Dan Engels
Brian Evans
Alain Girault

Michael Goodwin

Lisa Guerra
Nina Huang
Renu Mehra
Praveen Murthy

A. Richard Newton

Arlindo Oliveira
José Luis Pino
Rajeev Ranjan
H. John Reekie
Sanjay Sarma
Tom Shiple
Gitanjali Swamy

Acknowledgements

I N MY EXPERIENCE, most people read the acknowledge-

ments section of adissertation to either learn the name of
the author’s advisor or to see their name in print. For those
inarush, I have summarized thisinformation in the easy-to-
read list on the | eft.

For those still reading, here are more detailed comments:

Of course, | must begin with my advisor, Edward Lee,
without whose help | would never have written this thess.
He gave me just enough direction and advice to get started
in the right direction, then got out of my way. | must also
thank Richard Newton, my previous advisor, who probably
influenced this dissertation morethan he or | realize.

Wendell Baker was instrumental in getting me started
with synchronous languages in the first place. He also gave
me avery useful piece of advice: “your objective should be
towrite aslittle code as possible.” Eventualy (it took afew
years), | agreed with him and actually completed this work.

Gitanjali Swamy and her husband, Sanjay Sarma, were
both great fun to have around. Gitanjali influenced my atti-
tudestowards CAD research and towards cooking. Sanjay’s
advice on being an academic will influence me long after |
have |eft Berkeley.

Dan Engels caustic feedback on an early draft of thisdis-
sertation was invaluable. What you are reading was largely
shaped by his cynicism. | can hardly wait to return the “fa
vor” when he getsready towrite hisdissertation. John Davis
also read through an early draft.

Rajeev Ranjan and hiswife Renu Mehraal so deserve mention, not
just because they fed me, but because Renu and her cubiclemate, Lisa

Xi

ACKNOWLEDGEMENTS

Guerra, were almost completely responsible for getting my qualify-
ing exam presentation into shape.

Tom Shiple's discipline made me redlize | till have along way
to go. Discussions with him about Malik’s work and asynchronous
circuit models greatly clarified my thinking on these matters.

Discussions with Adnan Aziz were a great help, even when they
lead to him writing some unintelligible equation on the blackboard,
something they always seemed to do. He aso made me feel better
about my own graduate student angst after explaining his story.

Arlindo Oliveirareturned hometo Portugal all too soon. Hetaught
me alot about how to approach research.

José Pino welcomed me warmly into Lege's group, and taught me
alot about the Ptolemy philosophy. He also made merealize that no
matter how hard | though graduate school was, it was much harder
with four children.

Discussions with John Reekie were always stimul ating, assuming
he had had enough coffee. Discussions with him about control and
dataflow eventually lead to the scheme | present here, and he was a
great help when | was building my synthesizer example.

Wan-Teh Chang was an excellent cubiclemate. He only seemed to
open his mouth when he had a good suggestion about synchronous
languages. Michagl Goodwin took over his desk and gave me some
good advice about the music synthesis world.

Brian Evans taught me alot about being an academic. In addition
to providing hair styling tips, he perfectly illustrated the attitude one
needs to become a professor, inadvertently convincing me not to.

Praveen Murthy helped me work through some of the more sticky
mathematical points in this dissertation. Without his help, | fear |
would still be stuck.

Alain Girault reinforced my stereotypes of frenchmen. He's arro-
gant, dismissive, clever, and very helpful. I'll miss hisflippant atti-
tude and technical prowess.

Xii

ACKNOWLEDGEMENTS

NinaHuang was both my greatest inspiration and greatest distrac-
tion during thiswork. | thank her for both—her timing was perfect.

Of course, no acknowledgements section in a dissertation would
be complete without some sappy comment about the author’s par-
ents, and unfortunately, this one will be no exception. | have a hard
time imagining a set of parents who could be more supportive and
helpful during such a challenging task. For this, | thank them both
(Jerry and Lois Edwards).

Xiii

Chapter 1

| ntroduction

Art issolving problems

that cannot be formulated
before they have been solved.
The shaping of the question
ispart of the answer.

—Piet Hein

THE NEED for new languages and paradigmsfor designing em-
bedded systems continues to grow. The falling cost of hard-
ware has caused both the ubiquity and complexity of these applica-
tion-specific computing systems to grow, and with more complexity
comes a greater need to contain it. In this dissertation, | present a
new model of computation—essentially a coordination language—
for describing the software inthese systems. It isthefirst to combine
precise control over when things happen with the ability to assemble
systems from pieces described in different languages, away to fight
complexity by allowing each pieceto use the most suitable language.

My focus is on reactive systems,* systems that must respond to
their environment at the environment’s speed. When things happen
in a reactive system is as important as what happens, making tra-
ditional computer programming languages insufficient because they
only provide precise control of function. In contrast, my model of
computation alows precise synchronization of events by assuming
computation is infinitely fast. Familiar to designers of synchronous

*A term due to Harel and Pneuli [34].

Chapter 1 Introduction

digital logic, thisdividestimeinto asequence of discrete“ticks’ and
allowsthe designer to control thetick in which an action takes place.

Software is becoming dominant in embedded system design be-
cause fast hardware is becoming cheaper. Earlier, custom hardware
might have been required because of performance requirements, but
now cheap, fast general-purpose microcontrollers are adequate for
many of these jobs.

Fast, cheap hardware leads to greater system complexity since it
allows larger, more powerful systems to be built. With complexity,
however, comes the challenge of designing it correctly. Extensive
simulation, and, currently to alesser extent, formal verification can
help in this process, but the easiest way to design acorrect system s
to design asimple system.

My Synchronous Reactive (SR) model of computation facilitates
the design of simple systems because it can combine subsystems de-
scribedinavariety of languages. For any particular problem, thereis
usually alanguage in which it can be solved elegantly. However, the
variety of problemsin alarge system makesno onelanguageideal, so
the need arises for away to combine different languages. My model
supports such heterogeneity by using coarse atomic units of compu-
tation: functionsthat can be as big as entire programs.

| made the SR model deterministic to smplify the design process.
It is much more difficult to design and test a system with inherently
unpredictable behavior* because both designers and analysis tools
need to consider many more possible behaviors.

This model is the first to fuse the idea of instantaneous compu-
tation with support for heterogeneous system design. The primary
challengeisto maintain the determinacy of such systemsinthe pres-
ence of zero-delay feedback loops. | discuss these problems infor-
mally in Section 1.3, and rigorously deal with the problemin Chap-

*This can occasionally be a good thing—nondeterminismis useful for model-
ing unpredictable environments.

11

Chapter 1 Introduction

ter 3, where | prove that my model of computation is deterministic.

A reasonable system description language should be defined for-
mally, have a compilation procedure that produces efficient synthe-
sized code (or, equivalently, have a very efficient smulation proce-
dure), and be able to describe practical designs. A formal definition
is necessary so that everything that manipulates the design, includ-
ing the designer, can agree on what a design means. An elegant lan-
guage that cannot be executed efficiently is not useful by itself, and
an elegant language that cannot be used to describe anything useful
issimilarly useless.

My thesisisthat my Synchronous Reactive model of computation
is reasonable in this sense. In this dissertation, | present its formal
definition and show it is consistent (Chapter 3), present an efficient
way to execute it (Chapter 4), and exhibit apractical implementation
along with some real examples (Chapter 5). In Chapter 2, | discuss
some related system description languages and the final chapter is
devoted to conclusions and speculation on future work.

Synchrony

Using digital circuitry to build logically correct systems has been ex-
tremely successful becauseit allowsfor abstraction. Theideaissim-
ple: using discrete values allows noise below a certain threshold to
be filtered out completely. The result is an effectively noise-freecir-
cuit with behavior that is predictable and reproducible. This allows
it to be treated as an ideal mathematical entity.
Synchronouscircuitsuse thesame ideato ensuretemporal correct-
ness. They discretize time to filter out “time noise” brought on by
unpredictable, unmatched, and uncontrollable delays.
Synchronizing an outgoing event with an incoming one isthe key
ability here. Synchronousdigial circuitsgenerally have one synchro-
nizing input: aperiodic global clock signal. The synchronous model
of time used in SR, which | adopted from the so-called synchronous

Chapter 1 Introduction

languages,* isageneralization of thiswhereevery signal fromtheen-
vironment is effectively aclock. All output events are synchronized
to the input events; none are produced without outside stimulus.

The ability to synchronize output eventsto any input event allows
for great flexibility. In general, it ispossible to make something hap-
pen on the nth occurrence of an event, such as on the tenth second
(which requiresa periodic “second” input), on the count of three, or
on the fifth floor (e.g., for an elevator).

Concurrency is afundamental requirement for synchrony. Tradi-
tional sequential languages such as C are not synchronous because
they have no notion of concurrency. For things to be synchronized,
they must happen simultaneoudly, yet alanguage like C is executed
one statement at atime.

The synchronous model of time has aphysical interpretation:

The Synchrony Hypothesis The system computesinfinitely
quickly. Each reaction isinstantaneous and atomic, dividing
timeinto asequence of discreteinstants. A system’sreaction
to an input appears at the same instant as the input. (After
Berry [3])

A system can behave synchronoudly if it is fast enough. Specifi-
caly, it must aways finish its computations before more events ar-
rive. Testing this amounts to testing the synchrony hypothesis, and
requires knowing both the minimum inter-event time and the maxi-
mum computation time.

The synchronous model of time makes correct systems easier to
design and build. It hides temporal details and simplifies the task of
synchronizing parts of the system. Activity is easier to specify and
understand because the behavior of the system issimplified. More-
over, the technique actually requiresless control over the behavior of

*| discuss these in Section 2.3.

1.2

Chapter 1 Introduction

a system’s components. Their exact speed does not matter provided
it is above a certain threshold.

Unfortunately, it is not always practical to build synchronous sys-
tems. For example, physically distributed systems with long intra-
system communi cation times are difficult to make synchronous. But
for many applications, especially small embedded ones, synchrony
makes sense.

Heter ogeneity

Cheap hardwareisenabling designersto createlarger systems. These
big systems are usually responsible for a wide variety of subtasks,
such as a user interface, high-speed digital signal processing, com-
munication, process control, and so forth.

Rarely isasingle language ideal for describing each of these sub-
tasks. A C program, for instance, is an excellent way to describe
something like a database, but there are better aternatives for de-
scribing, say, signal processing. A poor choice of language—onefar
from the task or the implementation technol ogy—often leads to an
inefficient implementation, longer design time, and more design er-
rors.

Oneapproachisa“kitchen sink” language (such asthe VHDL lan-
guage[45], whichincludesbehavioral and structural models), formed
by forcibly combining a variety of computational models. Unfortu-
nately, thisislimited to using only those modelsincluded in the lan-
guage and generally precludes|ater expansion. Moreover, analyzing
systems described in such alanguage is harder because of the need
to consider many models at once.

A moreflexibleaternativeisto use alanguagethat can coordinate
the execution of and communication among subsystems described in
a variety of languages. The challenge here is for the coordination
language to cope with subsystems it does not understand compl etely.
This approach can be summarized as follows.

1.3

Chapter 1 Introduction

— -t

: :

-l

Figurel.l A simple SR systemcomposed of threeblockscommunicating
over three channels. The dangling channel on the left is an input from the
environment. Some of theinternal channels may be outputsto the environ-
ment.

The Black Box Approach to Heterogeneity A system is
treated as a set of “black boxes’ whose contents may be ar-
bitrary, but whose interfaces conform to a standard. A coor-
dination language controls their execution and all communi-
cation between boxes.

When chosen correctly, a black box approach simplifies system
analysis because it allows details such as the contents of the boxesto
be safely ignored. By contrast analyzing a “kitchen sink” language
is harder because the language is complex.

Unfortunately, the black box approach can prohibit the complete
anaysis of a system. When subsystems are treated too abstractly,
certain properties about them cannot be determined. Unfortunately,
the heterogeneous approach presented here precludes proving many
correctness properties of systems. However, thisis not necessarily a
drawback because the systemsin question are often so large that even
if they were specified using aunified scheme, their analysiswould be
computationally intractable.

SR Systems

An SR system (one described using the SR model of computation)
is composed of communicating blocks, as shown in Figure1.1. The
synchrony hypothesis assumes the inputs arrive as asequence of dis-
crete values and each block’s computation isinstantaneous. Asare-
sult, timeinan SR systemisasequence of discrete“ticks,” eachiniti-

Chapter 1 Introduction

| |

Y

A

B 4

A

1.3.1

(@ (b) (©)

Figure 1.2 Praoblems with zero-delay and feedback. (@) Co-dependent:
Which should be evaluated first? (b) Paradoxical: Appearsto have no so-
lution. () Ambiguous: Appears to have many solutions.

ated by the environment. In each tick, each block observesitsinpuits,
instantly computes its outputs (which other blocks see in that same
instant), and preparesitself (i.e., changes state) for the next tick.

Blocks communicate among themsel ves and with the environment
through unbuffered unidirectional communication channels. In each
tick, each channel takes on exactly one value; thereis no buffering.
Each channel isdriven by either an output of some block or the envi-
ronment, and may drive any number of block inputs. These connec-
tions, along with the number and type of all block inputs and outputs,
do not change while the system is running.

Challenges of Zero Delay

Aside from the single-driver rule, no restrictions are placed on the
topology of communication in SR systems. In particular, feedback,
including self-loops, is permitted; some synchronous languages dis-
allow them. Maintaining determinism (i.e., for each input there is
exactly one reaction) with zero-delay blocks in the presence of feed-
back is the primary challenge in defining the behavior of these sys-
tems. Below, | describe the typical problems that arise in a zero-
delay world and how | deal with them.

Chapter 1 Introduction

Ordering

To run the software system in Figure 1.2a, one of the blocks needs
to be executed first. However, Block A depends on an output from
Block B, so it needs to be evaluated later, yet Block B similarly de-
pends on Block A, so which should be evaluated first?

| solve the ordering problem by separating the semantics of SR
systems from their implementation. | treat an SR system as equa-
tionsto be solved rather than as a sequence of functionsto evaluate.
Thus, it isthe responsibility of the scheduler, not the designer, to en-
sure the blocksin such a system are evaluated in asensible order. A
scheduler based on the results of Chapter 4 might evaluate the blocks
in the order ABA, but the designer has no control over this. Instead,
the scheduler guarantees an order that produces a predictable result
consistent with the formal semantics.

Par adoxes

Thesystemin Figure1.2bisparadoxical. The block ontheleft wants
the two channels to take opposite values, yet the block on the right
wants them to be equal, so what values should the channels take?

| solve such paradoxes by making “undefined” one of the possi-
ble values for the channels and restricting the class of functions the
blocks may compute. The behavior of thesysteminFigurel.2bisfor
both channelsto be “undefined.” This works because, for the block
ontheleft, the opposite of undefined isundefined (thisturnsout to be
the only reasonable choice), and for the block on the right, undefined
is the same as undefined.

Nondeter minism

The system in Figure 1.2c appears to be ambiguous. The block only
requires that its input and output take the same value, so it appears
that the system may have any of a number of possible behaviors.

1.3.2

Chapter 1 Introduction

| deal with such ambiguity by choosing the | east-defined solution.
For Figure 1.2c, thismeansthe channel will take the undefined value.
Restricting the blocks to behave monotonically guarantees the least
solution is unique. Moreover, this solution is the only one that does
not require assumptions to be made about system behavior, making
it more intuitive. The alternative would be a difficult-to-understand
“guess-and-test” procedurethat would form, test, and refine hypothe-
ses about the values on each channel.

Here, monotonicity means a block will not recant or change its
mind about aresult. Given amore defined input, it will always pro-
duce a consistent output that may be more defined. Fortunately, any
function that requires all its inputs to be defined before it produces
any outputsis monotonic, making it easy to embed an arbitrary func-
tionin an SR system. Many familiar imperative languages (e.g., C,
C++, and most assembly languages) implicitly compute such strict
functions, so importing blocks from such languages is straightfor-
ward.

Chapter 3isdevoted to an extensive, rigorousdiscussion of the se-
mantics of SR systems, including precise definitions of monotonic-
ity, “undefined,” least solutions, and the like.

Execution

My execution procedure for SR systems* is based on the idea of re-
laxation. | calculate the behavior of the system by repeatedly choos-
ing and evaluating blocksuntil the system has converged to whereno
block would change the value on any channel. Requiring the blocks
to behave monotonically ensures this procedure will aways termi-
nate with a unique result. The convergence time is bounded since
each channel may become defined at most once in an instant, and
there are afixed, finite number of channels. It can be shown that the

*Othersare possible since the semantics in Chapter 3 say nothing about the ex-
ecution procedure.

Chapter 1 Introduction

result is the same regardless of which blocks are chosen.

Carefully choosing the block evaluation order makes this execu-
tion scheme efficient and predictable. Resultsin Section 4.3.6 show
that in practice the worst-case execution time grows slower than n'®,
wherenisthenumber of block outputs. Thechallengeisdealing with
feedback loops, which | do through a recursive divide-and-conquer
strategy that systematically breaks certain feedback loops, iterating
them to convergence. Although others have taken the same generd
approach, mineisthe only one that is provably optimum. All of this
isdiscussed in great detail in Chapter 4.

For a block to work within an SR system, it must have an SR in-
terface and be able to compute amonotonic function of itsinputson
demand. Beyond that, the “guts’ of an SR block can be described
and implemented in any way, allowing for heterogeneity. The algo-
rithmsin Chapter 4 only needs to know the communication structure
of the blocks; not their contents.

A useful side-effect of the heterogeneity of SR systems is their
support of truly hierarchical designs. Any group of SR blocks can be
encapsulated in a single block without affecting the behavior of the
system (although this sometimesaffects performance), alowing sub-
systems to be compiled separately. Currently, al other synchronous
languages are “flattened” beforethey are executed, prohibiting sepa-
rable compilation and limiting the size and complexity of designs.

10

2.1

Chapter 2

Specification

A specification that will not fit

on one page of 8.5 x 11 inch paper
cannot be understood.

—Mark Ardis

A NY SYNCHRONOUS system with bounded resources behaves
likeafinite-state machine (FSM), awell-understood and con-
ceptualy smple entity, yet in practice such a system is rarely de-
scribed as an FSM. In this chapter, | discuss why thisis and argue
the need for a coordination language such as SR to combine subsys-
tems described using application-specific languages. | aso discuss
some of the languages that inspired SR.

Synchrony and Finite-State Machines

A synchronous system with bounded resources behaveslike afinite-
state machine. In each instant, the system receives a block of input
and produces a block of output based on it. The behavior of such
a system is usually time-varying, meaning the output in an instant
is afunction of both the input in that particular instant and the his-
tory of the system—the inputsin all earlier instants. The history of
the system can be thought of as its state—an internal configuration
that affects the output function and changes from instant to instant.
Bounded memory resources can only distinguish a finite number of
these histories, hence the machine has afinite number of states.

11

Chapter 2 Specification

A synchronous finite-state machine consists of issix things:*
(Q,Z,4,8,A,qo)
where
e Qisthefinite set of states

e 2 isthefiniteinput alphabet: a set of symbols

A isthefinite output alphabet: a set of symbols

d isthe transition function mapping Q x 2 to Q

A isthe output function” mapping Q x = to A

e (pistheinitia state (in Q)

When a state machine is in state q and input a arrives, it produces
output A(g,a) € A and goesto state (g, a) € Q. It startsin state qp.

Thisis the complete story for every synchronous system. In the-
ory, only these six things need to be described; in practice, each can
easily become unmanageably complex.

Describing the input and output alphabetsis often the easiest task.
Sometimes they are small enough to be listed directly, or they may
be asimple subset of afamiliar set such astheintegers. More often,
they are sets of vectors described using a complex data type from a
programming language such as C or Pascal.

In contrast, describing the state set, the transition function, and
the output function is difficult because of the sheer size of the do-
mainsinvolved. A vector-valued input al phabet growsexponentially
with the width of its vectors, so even small vectors can render an
enumeration-based description of the output or transition functions

*This notation is taken from Hopcroft and Ullman [35], a standard reference
on the subject of automata theory.
TNote that for reactivity, the output depends on both the state and the input.

12

2.2

Chapter 2 Specification

impractical. Clearly, a useful specification scheme must allow ade-
signer to succinctly specify exponentially large sections of these. In
generd, thisis the problem of succinctness.

Succinctness

Succinct description isagoal of all languages. It is generally easier
to make a short description correct because there are fewer placesto
make mistakes. Similarly, analyzing asuccinct descriptionisusually
easier because solving asmall problemisusually easier than solving
alargeone.

Anideal design language would allow succinct descriptions of all
designs, but this is theoretically impossible because there are sim-
ply too many possible designs. Real languages try instead to make
the description of some reasonable subset of designs succinct; other
systems have either a verbose description or none at all.

This fundamental barrier is partly responsible for the enormous
number of design languages that have been developed. Designers
and design tools alike crave succinct descriptions, so many applica-
tion areas have had special-purpose languages designed for them.

As systems grow larger and more diverse, however, it becomes
less likely that a single language will be able to succinctly describe
all parts of agiven system. Although for each subsystem, there will
be alanguage that can describeit succinctly, no onelanguage will be
the best for all subsystems.

One solution to this problem is the ability to connect and coor-
dinate heterogeneoudy-specified subsystems. In this way, existing
work on specification languages can be leveraged to provide more
powerful waysto specify systems. Thisisthe heterogeneous philos-
ophy behind SR.

In thisthesis, | concentrate on one way of combining subsystems
(i.e., concurrently) that appearsto beavery natural way for designers
tothink. It canbefoundinvirtually al higher-level languagesfor de-

13

2.3

Chapter 2 Specification

The system has two inputs, reset and next, and three outputs,
a, b, and c. Whenever reset appears, a is emitted. After this,
the first next signal produces a b, and the second next signal
produces ac.

Figure2.1 Thesequencer example, asimplereactive system, describedin
English.

scribing reactive systems (e.g., those presented in the next section),
and is often the hardest aspect of these languages to design correctly
because of the sometimes paradoxical implications of zero delay.

Synchronous L anguages

In thissection, | present a collection of synchronouslanguages® that
illustrate some of the issuesthat arisein specifying synchronous sys-
tems. All rely on the synchrony hypothesis, and all are capable of
specifying arbitrary finite-state machines, yet for a particular design,
one is usually better than the others. To contrast the languages and
illustrate this point, | have implemented a smple reactive system in
each language, described in Figure 2.1 and heresfter called the se-
guencer example.

The description in Figure 2.1 is deliberately vague to illustrate a
point. Especially in synchronousdesigns, itiseasy to overlook apar-
ticular case, yet the system must handle all cases. When next and re-
set appear together, what should happen? The description suggests a
is emitted, but what about the other outputs? | have chosen to make
a take precedence, but other choices are possible. The right one usu-
ally depends on the system’s environment.

The languages | present in this section range from the obvious to
the subtle. The most obviousliststhe output and next-state functions

*Habwachs sbook [32] and aspecia issue of Proceedings of the IEEE [3] pro-
vide a more comprehensive summary of these.

14

231

2.3.2

Chapter 2 Specification

inatable. Traditional state diagramsare essentially these tableswith
agraphical syntax and input predicates. Derived from these are the
textual OC format, which introduces more sophisticated predicates
and actions, and the graphical Argos, which just adds hierarchy and
concurrency. The imperative language Esterel departs completely
from an explicit list of states. Lustre is an even greater departure,
concentrating almost exclusively on arithmetic and having very lit-
tle notion of state.

Each language needs some procedure for checking the validity of
adescription. The difficulty of this varieswith the language and the
level of validity to be verified, but in general the more succinct the
descriptions, theharder itis. Thisisunfortunate, butisanatural side-
effect of languages that allow a succinct description of complex be-
havior.

Tabular Form

Themost obviousway to describe asynchronousfinite-statemachine
isto list the output and next state functions for each possible input
and present state, e.g., Figure 2.2. Even such a small system illus-
trates the problem with this approach—the number of rowsintheta-
ble grows exponentially with the number of inputs.

Checking that atableisconsistentissimple: there must be exactly
one row for each state/input combination, and each output and next
state must be an allowed output or state.

State Diagrams

State diagrams (e.g., Figure 2.3) are a dight improvement over ta-
bles. These are graphs where each node represents a state. Each arc
islabeled with an input that causes atransition from one state to an-
other and the output produced when this happens. The labelstakethe
form “input predicate/outputs.” The input predicate is a conjunction
of true and complemented signal's, and the outputsare smply alist of

15

Chapter 2 Specification

reset next PS|NS|a b c
0 O |A||A|O0O OO
0 A|A|O0O OO
1 0 A B|1 0O
1 1 A B|1 0O
0 O | B|B|O OO
0 1 B|C|0O 10
1 0 B B|1 0O
1 1 B B|1 0O
0 O |C||C|O0OO0DO
0 1 |[C|A |0 01
1 O |C||lA|[1 00O
1 1 C|lA|1 00

Figure 2.2 The sequencer example described with atable. Inputsare on
the left; outputs are on theright. PSis“present state;” NSis“Next State.”

Figure 2.3 The sequencer example described using a state diagram

16

2.3.3

Chapter 2 Specification

signalsto emit. By convention, if no arc from the current state has a
true predicate, the machine staysin that state and emitsnothing. The
initial stateis marked with a short arrow leading to it.

State diagrams are usually preferable to tables, since the multi-
dimensional nature of the transitions are more easily visualized, but
they are not much more compact. The only advantage comes when
the predicates are smple relative to the number of cases, or when
most actions are “do nothing.”

Using predicates instead of an explicit representation makes con-
sistency checking moredifficult. A state diagramisnondeterministic
if there are ever two arcsfrom asingle state with simultaneoudly true
predicates, something that requires knowing all possible inputs.

The OC Format

The OC (“Object Code”) format [68] (see dso Caspi et al. [19]) was
developed as a common intermediate language for the synchronous
languages Esterel, Lustre, and Argos. Of the synchronous languages
| present in this section, OC code is the easiest to execute on a se-
quential processor. It iswell-suited to describing sequential control
processes, but does not have any of the concurrency or preemption
of some higher-level languages.

An OC program describes asinglefinite-state machine. Each state
has an attached decision tree whose nodes are indices into an action
table and whose leaves are pointers to next states. The action table
isalist of atomic behaviorsthat include testing asignal or variable,
emitting a signal, computing the new value of avariable, or calling
an external function.

Figure 2.4 depicts the sequencer example described in a stylized
OC format. For such asimple example, it is comparatively verbose,
but it allows much more complex predicates and actions, including
arithmetic.

Representing concurrent behavior with an OC programisdifficult

17

234

Chapter 2

Specification

Action Tabl e:
0: if Rthen
if N then
emt A
emt B
emt C

howonR

State O:
(0) if Rthen
(2) emt A

State 1:
(0) if Rthen
(2) emt A

State 2:
(0) if Rthen
(2) emt A

goto 1 goto 1 goto 1
goto O (1) if N then (1) if N then
(3) emit B (4) emit C
goto 2 goto O

goto 1 goto 2

Figure2.4 The sequencer example described in OC

because it only describes a single FSM. For example, in the Esterel
program of Figure 2.5a, it isfairly easy to see that signal B only de-
pends on signal A, yet if the program is compiled into OC, B may
also appear to depend on C in the resulting program (Figure 2.5b),
incorrectly causing the system in Figure 2.6ato deadlock. Thereare
other waysto compile this program, but all suffer from this problem
of artificial dependencies. The problem, fundamentally, is that OC
forces two events that could happen simultaneoudy to happen in a
particular order.

Argos

Maraninchi’s hierarchical finite-state machine language Argos [48,
49, 30] isapurely synchronousderivativeof Harel’sinformal but in-
fluential Statecharts[33]. Later attemptsto formalizethe Statecharts
semantics [56, 36] were somewhat successful, but the confusion has

18

Chapter 2 Specification
Act i ons:
0: if Cthen
1. if Athen
2: emt B
nodul e TWOW RES: 3: emt D
i nput A C
out put B, D State O:
every A do enmt B end (0) if Cthen
|] (3) emt D
every C do emit D end (1) if A then
end nodul e (2) emt B
goto O
(1) if Athen
(2) emt B
goto O
€Y (b)

Figure 25 (a) A simple Esterel program. (b) Its OC representation.

Parentheses surround action numbers.

A B
I [.
C D

A B

C D

o EEREERRREE >
(@

(b)

Figure2.6 The problemwith flattening concurrency. If theorder inwhich
the module processes its inputs is fixed, one of these systems will incor-

rectly deadlock.

19

Chapter 2 Specification

4
r/a

r.n/br.n/c b la
B

Figure 2.7 The sequencer example described in Argos

resulted in some twenty-two variants of the language [72], of which
Argosis perhaps the cleanest.

An Argos specification is a hierarchical state diagram. When a
state encloses one or more states, there are two possibilities. If the
inner states are “OR” states (e.g., those in State B in Figure 2.7), ex-
actly one of the inner states is active when the enclosing state is ac-
tive; if the inner states are “AND” states (drawn with dashed lines
separating them, asin Figure 2.8), all of the inner states will be ac-
tive.

Figure2.7 showsan Argosimplementation of the sequencer exam-
ple. It startsin State A and waitsfor ther signal. Whenr is present,
the system emitsthe a signal and enters States B and C, since StateC
istheinitia state (denoted by its sourceless arrow) in the collection
of OR-states in State B.

The Argos semantics requirethe ability to partially evaluate input
predicates. Figure 2.8 illustrates this. When the signal x is present,
neither x. ¥ nor x. y holds since the status of y has not been estab-
lished, but a is emitted anyway since it is the action in both cases.
This allows the self-loop on State C to fire, emitting y, and causing
the arc to State B to fire completely.

Checking an Argos program for consistency is more difficult than
checking a state diagram. Again, determinism requiresthat no more
than one arc from astate have atrue predicate. Thisrequiresat least
some boolean analysis, but a more precise check might take into ac-

20

Chapter 2 Specification

Figure2.8 Incrementa behavior in an Argos program. Whenin State A,
X arriving causes a and y to be emitted and the system to enter State B.

nodul e RESTART:
i nput RESET, NEXT;
output A B, C

every RESET do
emt A;
await NEXT ; emt B ;
await NEXT ; emt C
end

end nodul e

Figure2.9 The sequencer example described in Esterel

count which states (actually, combinations of states) of the system
can be reached through some sequence of inputs. Solving this prob-
lemfor large systemsiscurrently at thefrontier of formal verification
research.

2.35 Esterel

Berry’s synchronous language Esterel [7, 4] is textual, imperative,
and well-suited for specifying sequential control-dominated tasks. It
is concurrent and deterministic, and supports preemption and excep-
tions. An Esterel programisagroup of concurrently-executing mod-

21

Chapter 2 Specification
Statement Meaning
not hi ng Do nothing.
pause Pause until the next instant.
signal Sins; end Introduce local signal Sand execute s;.
emtS Make S present in this instant.
S S Execute s,. When it terminates, execute s,.
SRS Execute s, and s, until both terminate.
| oop s, end Execute s; and restart it when it terminates.

present Sthens elses,

If Sis present, execute s;, otherwise execute s,.

suspend s; when S

Execute s, in the current instant and in later in-
stants where Sis absent.

trapEins end

Introduce the local exception E and execute s;.

exit E

Terminatetheenclosing t r ap E statement.

Table2.1 Esterel kernel statements. s; and s, are statements, Sisasigna
name, and E isan exception name.

ulesthat communicate through signals that in each instant are either
absent or present with avalue.

Figure 2.9 shows Esterel can be very succinct in specifying se-
guential behavior. Essentially, athree-state machinethat emitsA, B,
and C isenclosed by aloop that restarts it whenever reset appears.

The language consists of a set of kernel statements from which
other, more complex control structuresare built. Thiskernel,* which
dealsonly with pure (non-valued) signals, isshown in Table 2.1. For
example, the derived statement awai t S which terminates in the
next instant in which Sis present, can be built from kernel statements
asfollows:

*Thekernel has continued to evolve sinceitsfirst incarnation. The kernel pre-
sented here isfrom Berry’s book [6].

22

Chapter 2 Specification

trap T in
| oop
pause ;
present S then exit T end
end
end

The full Esterel language also has smple arithmetic operations and
variables along with a host of higher-level control constructs built
from kernel statements.

Reincarnation is an odd aspect of the Esterel language. In certain
cases, such asthe one below, asignal may appear to taketwo or more
valuesin asingle instant.

| oop
signal Sin
present S then emt O else nothing end ;
pause ;
emt S
end signal
end | oop

In the second instant, the signal Sisemitted, thesi gnal statement
terminates, and the loop resets with afresh, absent copy of the Ssig-
nal. Signal O isnot emitted. Detecting these cases and correctly ex-
panding them into aformat like OC has been a challenge for those
writing compilersfor the language.

Checking the consistency of an Esterel program is more difficult
than any of the other languages presented here. It is easy to write
paradoxes (see Section 1.3.1) in the language, and exactly checking
for them involvesexploring every possible execution of the program.
Thelatest compiler (V4, as of thiswriting) doesthis symbolically af-
ter converting the program to acircuit. See Section 3.1.2 and Shiple
et a. [64] for more details.

23

Chapter 2 Specification

Constants true 0 -5 5.3e-2
Variables a x isset
Arithmeticoperators | + - * / div nod
Boolean operators and or not

Relational operators | = < <= > >=
Conditional if then el se
Delay pre
Initialization ->
Downsampling when
Upsampling current

Table2.2 Components of Lustre flow expressions.

2.3.6 Lustre

Caspi et d.’s Lustre language [20, 31] is a declarative, textual syn-
chronouslanguage with adataflow flavor. A Lustre program consists
mainly of expressionsthat defineflows—a possibly infinite sequence
of values of a particular type along with a clock, a sequence of times
for the sequence of values. All of these expressions are running con-
currently and are order-independent.

Lustre flow expressions are built from the components shown in
Table2.2. Operatorswork pointwiseon flowswithidentical clocks, a
compiler-enforcedrestriction. For example, if x andy areflowswith
values (Xg, X, ...) and (Y1, Yo, ...) and identical clocks, then x+y =
(X +Y1, X+ Y2, -).

Delay and initialization operators add sequentia behavior to the
language. The pr e operator adds memory—it delays a flow by one
clock cycle. Specifically, pre x = (nil,xg, Xz, ...) (nil denotes un-
defined). The - > (“followed by”) operator makes it possible to ini-
tialize memory by changing the first value of a flow. Specificaly,

X ->Yy= (X17YZ7Y37---)-

24

Chapter 2 Specification

C 0O 101 0 0 1 0
X X1 X2 X3 X4 X5 Xg X7 Xg
Y = X when C Xo Xa X7

current Y nil X X X4 X4 X4 X7 X7

Figure2.10 Therelationshipbetweenthewhen andcur r ent operators.

node RESTART(reset, next: bool)
returns (a, b, c: bool);
var clock: bool;

| et
clock = reset or next;
(a, b, ¢) =
current (COUNTABC(reset when cl ock))
and cl ock;
tel.

node COUNTABC(reset: bool)
return a, b, c: bool;

| et
a = reset;
b = (false -> pre(a)) and not reset;
c = (false -> pre(b)) and not reset;
tel.

Figure2.11 The sequencer example described in Lustre

Two sampling operators impose a tree structure to the clocks in
alLustre program. The downsampling when operator creates a flow
whose clock is defined by aboolean flow; the upsamplingcur r ent
operator interpolatesaflow so that its clock isthe one on the boolean
flow that generated the clock. Figure 2.10 illustrates the relationship
between these two operators. The compiler uses a simple syntactic
unification algorithm to tell when clocks on signals areidentical.

Figure 2.11 shows the sequencer example written in Lustre. The
specification is clumsy because the exampleis sequential—L ustreis
better-suited to specifying multirate dataflow systems.

Consistency checking is fairly easy for Lustre. Feedback loops

25

2.4

24.1

Chapter 2 Specification

without a pr e operator are prohibited, something easily checked.
The other challenge is checking clock consistency, which amounts
to verifying the clocks on the signals feeding to an operator are the
same.

Heter ogeneous L anguages

In thissection, | review two languages supporting heterogeneity that
inspired my own. Unlike SR, both are targeted toward data-centric
applications, but they illustrate the heterogeneous approach to sys-
tem specification.

In Kahn's programming language, the restrictionson the interface
and contents of the blocks ensure determinacy. Further restrictions
give Lee's Synchronous Data Flow, which trades some of the flexi-
bility of Kahn's scheme for nearly complete compile-time anaysis,
including memory usage, termination, and run-time behavior.

Kahn Process Networ ks

Kahn, inan early influential paper [38], presented asimple language
for parallel programming based on aprocess model. It definesasys-
tem as a set of parallel-executing processes that communicate exclu-
sively through single-input, single-output FIFOs. When a process
reads a data token from one of these FIFOs, it blocks until one is
available. Kahn showed that this restriction was sufficient to make
these systems determinate, rendering the sequence of data tokenson
each FIFO independent of process execution order or speed.

Figure 2.12 shows a simple process in Kahn's language that acts
asaswitch. Integerson input U are aternately sent through outputs
V and W Asitsname suggests, thewai t statement waitsfor the next
valueto arrive on an input.

Executing these networks without doing unnecessary work or us-
ing more memory than needed is challenging. Compile-time analy-
sisisimpossiblein general, since each process can be described in a

26

24.2

Chapter 2 Specification

Process g(integer in U, integer out V, W;

Begin integer |; |ogical B;
B := true;
Repeat Begin
I = wait(U);
if Bthen send |l on V else send | on W
B : = not B;
End;
End;

Figure2.12 A processin Kahn'slanguage.

Turing-complete language. Kahn and MacQueen [39] discussed this
problem in a later paper, and Parks [54] solves the problem with a
scheduling scheme that runs one of these networksin bounded mem-
ory and timeif possible.

Synchronous Data Flow

Lee and Messerschmitt’s Synchronous Data Flow (SDF) [43, 42] is
another block diagramlanguagethat takes a heterogeneous approach.
Itiswell-suited for describing multiratedigital signal processing sys-
temsand can be compiled to producevery efficient, predictable code.
Figure 2.13 shows atypical SDF application—a modem.

SDF is a subclass of the class of dataflow process network lan-
guages,* which are themselves a subclass of the Kahn process net-
work languages. SDF givesup Turing-completenessin returnfor ex-
tensive compile-timepredictability. In particular, it can be scheduled
statically, removing al run-time scheduling decisions and alowing
memory consumption to be predicted exactly.

An SDF systemiscomposed of acollection of blocksthat commu-
nicate through single-driver, single-receiver FIFO buffers. The exe-

*see Lee and Parks [44] for agood summary of these

27

Chapter 2 Specification

cutionof ablock isdividedinto atomic*“firings’ wheretheblock con-
sumes and produces a fixed number of tokens on each FIFO. In exe-
cuting the system, all blocks arefired in a sequence that periodically
returnsthe number of tokenson each buffer toitsinitial value. Inthis
way, the system can run forever without over- or under-flowing any
communication buffer.

Knowing such a sequence of block firingsat compiletimeleadsto
a ssmple compilation technique known as block code generation. In
it, the code for each block’ sfiring is concatenated together according
to thefiring sequence. The advantage of thisisthat the code for each
block firing can be optimized by hand—a boon for programmable
DSPs, whose code is often difficult to optimize automatically.

An SDF system is deterministic because it is a Kahn process net-
work. The sequence of tokens that appear on each FIFO is guaran-
teed to be the same for any valid execution of the system.

One problem with SDF is that it is not compositional. Coalesc-
ing two blocks into one can cause deadlock where none would exist
in the original system. This does not always happen, and there are
heuristics for avoiding it (see Bhattacharyya et al.’s work on sched-
uling SDF graphs [8]), but it cannot be avoided in general. Itisdis-
turbing, however, that something as simple as two wires cannot be
modeled asan SDF block. This diminishesthe heterogeneous nature
of SDF, implying thereisaclass of subsystems whose behavior can-
not be encapsulated. Furthermore, designs cannot be truly hierarchi-
cal; al hierarchy must be flattened completely to avoid introducing
artifical deadlock.

SR avoids SDF's compositionality problem by effectively allow-
ing partial or incremental firing of blocks. It is SDF sinability to do
thisthat preventsit frommodeling awire. SDF sfiring rulesimpose
more synchronization at block boundariesthan is present in the rest
of the system. Since SR systems are completely synchronous, this
problem does not arise.

28

Chapter 2 Specification

Input tokens consumed

—— Output tokens produced

Delay tokens
/

2
. Complex multiplier

Figure2.13 An SDF description of a modem, adapted from Lee [41].

29

Chapter 2 Specification
Scheme Blocks Communication Concurrency
SR Monotonic functions Single-driver, Each block computes a
selected by a state multiple-receiver function in each instant
machine channels, one value and advances its state
per instant
Argos | Hierarchically-nested | Broadcast signals Each FSM produces
finite-state machines present or absent in output and advancesits
each instant state each instant
Esterel | Sequential and parallel | Broadcast signals In each instant, each
imperative statements | present or absent in block runsuntil it is
each instant waiting for the next
instant
Lustre | Arithmetic & boolean | Broadcast flows: Each operator
operators, delays, sequences of datawith | computes once each
down- and up-samplers | an associated clock instant
Kahn Sequential imperative | Unbounded Each process runs
statements unidirectional FIFOs unless blocked by a
with blocking reads read from an empty
FIFO
SDF Produce and consume | Unidirectional FIFOs; | Processesfireina

afixed number of
tokens each firing

Size computable at
compiletime

repeating sequence

Table2.3 A comparison of some system specification schemes

30

Chapter 3

Semantics

Thetest of a first-rate intelligence
isthe ability to hold two opposed ideas
in the mind at the same time,

and still retain the ability to function.
—F. Scott Fitzgerald

I N THIS CHAPTER, | formally definethe semanticsof the SR model

of computation. The main problem is unambiguoudly interpret-
ing systems with zero-delay feedback loops, which | do by treating
the blocks of a system as a system of equations. | use awell-known
theorem from discrete mathematics to show the system has exactly
one solution. To my knowledge, these are the first formal semantics
for heterogeneous synchronous systems.

The meaning of an SR system in an instant is the least solution of
f(x) = X, where x isthe valuesin the communication channelsand f
is the function computed by the blocks for a particular set of inputs.
By restricting the blocks' behavior to be monotonic and making cer-
tain values of x more defined than others, there is always a unique
least x for any input, making SR systems deterministic.

| take a fixed point approach because both the programming lan-
guage semantics community and the digital circuit simulation com-
munity useit to give meaning to recursive or self-referential entities.
As such, it is both mathematically sound and physically realitic.

The semantics | present say nothing about how to execute these
systems. Thiswas deliberate—by not addressing the problem, it be-

31

3.1

311

Chapter 3 Semantics

comes easier to devise new ways to execute these systems. For ex-
ample, ascheduler for simulation might minimize average execution
time, whereasascheduler for implementation might minimizeworst-
case execution time. Any approach whose result adheres to the se-
mantics is acceptable.

This chapter containsthree sections. Inthefirst, | further motivate
the fixed-point approach by reviewing the approachestwo communi-
ties have taken to similar problems. In the second, | review the dis-
crete mathematics of complete partial orders and continuous func-
tions, which | use in the third section to define the semantics of SR
Systems, ultimately showing they are unambiguous and thus deter-
ministic.

M otivation

It is surprising that both the programming language semantics and
the digital circuit smulation community arrived at nearly the same
solution to assigning meaning to recursive or self-referential entities.
After all, the smulation community had to choose something that
matched physical reality, whereas the semantics community wasfree
to choose any mathematically sound approach. Despite these differ-
ences, the solution isroughly the same, suggesting it issomehow nat-
ural.

In the remainder of this section, | present the solution to this prob-
lem from each community’ sviewpoint. Thecoreideasformthebasis
for the formal semantics| present in Section 3.3.

Denotational Semantics

In the denotational approach to programming language semantics,
pioneered by Dana Scott and Christopher Strachey [62, 61, 65] inthe
early 1970s, the meaning of a program fragment is defined by map-
ping it to an element, often afunction, in a semantic domain. For ex-
ample, therecursively-defined factorial functionin Figure3.1amight

32

Chapter 3 Semantics

f(—2) = L

int fact(int x) { f(-1) = 1
if (x ==0) return 1; f(o) = 1
el se return x * fact(x-1); f(1) = 1

} f(2) = 2
f(3) = 6

f(4) = 24

(@ (b)

Figure3.1 (&) A recursivedefinition of thefactoria function. (b) The de-
notational meaning of thisfunction. 1 denotes non-termination.

be mapped to the function f in Figure 3.1b. The ideais to abstract
away details of a program, such as the names of variables or the al-
gorithm and concentrate purely on the effects of the fragment.

A denotational way of looking at afunction definitionisasafixed-
point equation. For example, the recursive definition of the f act
function in Figure 3.1a can be thought of as an equation,

f(x):{ 1 ifx=0 31)

x- f(x—1) otherwise,

and the meaning of the recursive function definition is a function f
that satisfies (3.1). More abstractly, arecursive function definitionis
afunction Fthat transformsafunctionto afunction. Inthisway, (3.1)
can be written moresimply as

f = F(f). (3.2)

An obvious question to ask is whether (3.2) has a solution and,
if so, isit unique? It turns out that when f is a member of a com-

33

3.1.2

Chapter 3 Semantics

plete partial order, a particular form of ordered set discussed in Sec-
tion 3.2.1, and the function F is continuous, a concept discussed in
Section 3.2.2, (3.2) always has a unique least solution, making thisa
reasonable way to interpret a function definition.

Zero-delay feedback lookslikerecursion, so | usethisapproachto
handling recursive definitions to define SR systems with feedback.
In my case, f isavector-valued function defining the values on the
communication channels, and F corresponds to evaluating all of the
blocksin parallel. | present the detailsin Section 3.3.

Kahn’'sformal semanticsfor hisconcurrent datafl ow language[38]
(see Section 2.4.1) also use the fixed-point approach. He interprets
each process as a function defined on potentially infinite streams of
data, which represent the contents of the FIFOs his processes use to
communicate. The semantics of a system with feedback is the solu-
tion to afixed point equation defined on these streams.

Kahn's fixed point considers the whole execution history of the
system. The values on the streams form a complete partial order—a
set whose elements have a notion of “definedness’—under a prefix
ordering. E.g., the stream 01 is less defined than the stream 01101.
Under this prefix ordering, any processthat waitswhen reading from
an empty FIFO computes a continuous function, meaning that when
moreinput is presented to aprocess, it may not change or reduce the
amount of data it has already produced, nor may it wait forever. By
requiring all processes to use such blocking reads, Kahn's systems
are provably deterministic.

There is much more to denotational semantics. See the books by
Winskel [73], Gunter [29], Stoy [65], Schmidt [60], and Allison [1].

Circuit Smulation

Circuit smulation hastraditionally proceeded along two paths. Ana-
log simulation attempts to model virtually all circuits, whereas digi-
tal or switch-level smulation treats only arestricted class of circuits

34

Chapter 3 Semantics

out In | Out
0|1
> ak P
€Y (b) (c)

Figure3.2 (a) Anideal binary inverter and itstruth table. (b) A feedback
circuit with no stable states. (c) A feedback circuit with two stable states.

in exchange for simulation speed. Progress along each path has of -
ten come from borrowing ideas from the other. Simpler models and
the use of digital approximations has expedited analog smulation;
more realistic models and other analog simulation techniques have
improved digital ssimulation accuracy.

Analog simulation techniques are based on models from applied
physics and use continuous mathematics. Pederson [55] providesan
excellent historical review. A circuit istypicaly modeled as a sys-
tem of ordinary non-linear differential equations and solved by anu-
merical integration method such the Trapezoidal Rule or a Runge-
Kutta method. Newton’s method is used on the resulting nonlinear
systems, and LU decomposition or a sparse linear system solver is
applied to the resulting linear systems.

By contrast, digital circuit ssimulators work with circuits that |ook
very much like my SR systems: idea (zero-delay) gates with an as-
sociated discrete function and well-defined inputs and outputs. Sim-
ulation consists of evaluating each gate (computing its outputs as a
function of itsinputs) in atopological order starting at the inputs to
the circuit. Circuits with feedback, however, present a problem be-
cause their gates have no topological order.

Feedback in ideal zero-delay digital circuits present some of the
same problems as it does in any zero-delay environment, including
SR (see Section 1.3.1). The two major problems, contradiction and
ambiguity, are shown in Figure 3.2. What value should the wire in
Figure3.2b take? Theinverter makesitsoutput the oppositeof itsin-

35

Chapter 3 Semantics

put, but thewireforcesall itsconnectionsto thesamevalue. A physi-
cal realization of thiscircuit might find a stable intermediate voltage
that is neither clearly O nor 1, or it might oscillate, but neither be-
havior fits into the ideal world of Os and 1s. By contrast, there are
two obvious possible states for the feedback circuit in Figure 3.2c.
Node A could be either 0 or 1, and the circuit would be stable pro-
vided Node B is the opposite. Such behavior can be useful—this
is how state-holding elements, such as static RAM cells, are built.
However, this also deviates from the zero-delay digital model since
the behavior of such circuitsisafunction of time aswell astheir in-
puts.

These problems have been addressed by making the digital cir-
cuit model more closely approximate the analog circuit model of a
system of ordinary differential equations that must be solved rather
than smply evaluated. Bryant’sswitch-level model [13] typifiesthis
approach. He treats MOS transistors as bidirectional switches and
treats a circuit as a network of nodes and switches. Each node has
aweight to model its capacitance; switches have strengths to model
their on-state conductance. To model asituation such as Figure 3.2b,
he introduces a third node value, X, that “represents an uncertain or
invalid node logic level or transistor conductance” and worksin a-
most the same way as the undefined valuesin SR. He formulatesthe
circuit asa sparse system of linear equations on arestricted, discrete
domain and solves the resulting fixed-point equation using a relax-
ation method. Hislater work [11, 12] showed how this model can be
cast purely as binary equations that can be solved even more rapidly
on digital computers, producing the efficient switch-level s mulator
COSMOS[14].

Such three-valued logic has long been used in the study of asyn-
chronouscircuits. Here, the primary challengeisanalyzing race con-
ditions, where the behavior of acircuit isgoverned by unpredictable
gate delays. Brzozowski and Seger [15] present a comprehensive

36

Figure3.3 (&) A simplecyclic combinational circuit in which o followsi.
(b) Mdik’s procedure for simulating the circuit, showing the output is 1
with when theinputis1.

theory. They start with asimple, conservative model of circuits that
consist of ideal zero-delay binary gates and delay elements. These
elements use an up-bounded inertial model in which the maximum
delay isbounded, the minimum delay isnot, and incoming transients
shorter than the delay may beignored. Next, they show that a model

called General Multiple-Winner (GMW), which models the circuit
asanondeterministic* finite-state machi ne whose statesrepresent the
output of all delay elements, accurately capturesthebehavior of acir-

cuit represented with themore detailed model. Finally, they show [63]
that ternary ssimulation, based on Eichelberger’s algorithm [26], ac-

curately capturesthe behavior of a GMW circuit. In hisalgorithm, a
third value modelsasignal that could be O or 1, effectively represent-

ing sets of statesin the GMW model. This third value is essentialy

the same as the “undefined” valuein SR.

Malik [46, 47] givesan agorithm based onternary (X-valued) Ssm-
ulationthat showswhen acombinational circuit (i.e., onewithout ex-
plicit state-holding elements) with feedback is stateless. For exam-
ple, thecircuit in Figure 3.3ais combinational and cyclic. He applies
ternary smulation after breaking all feedback arcs. A stable state of
the circuit is found by first applying X’s to the feedback arc inputs,
simulating the (acyclic) circuit, and feeding the feedback outputsto

*The model uses nondeterminism to capture how unpredictable delays may
produce varying behavior.

37

3.2

Chapter 3 Semantics

the inputs before smulating again. This process continues until the
values on the feedback arcs are stable. Figure 3.3b illustrates this
procedure. Malik shows that the monotonic nature of the gates en-
sures that this process will converge, aresult almost identical to the
one | present in Chapter 4.

Shiple, Berry, and Touati [64] extend Malik’s work to sequential
circuits—thosewith latches. They observethat athough acyclic cir-
cuit may not bewell-behaved for certain inputs, if these inputs never
appear the circuit should be considered well-behaved. To determine
whichinputscould appear, they useaBinary Decision Diagram-based
state-space exploration scheme. Initially, they assume only the re-
set state is reachable and check if any of the possible inputs leads
to acircuit in which an X remains (i.e., is not well-behaved). Then
they repeat the procedure, adding all newly-discovered states to the
reachable state list. The procedure terminates when either a poorly-
behaved configurationisreached, or when the set of reachable states
remains unchanged.

Berry first observed the connection between cyclic combinational
circuitsand causality problemsinhisEsterel programminglanguage.
The latest Esterel compiler (v5) uses thistechnique to test whether a
program contains a paradox. Esterel isdiscussed in Section 2.3.5.

M athematical Foundation

In thissection, | present a series of well-known definitions and theo-
remsthat set the stage, mathematically, for Section 3.3, where | show
SR systems aredeterministic. Here, | present three main concepts. A
complete partial orders, or CPO, is a set with an abstract notion of
the amount of “information” in each element. Applying amonotonic
function to an element of such a set always increases the amount of
information unlessit isafixed point, in which case the element isun-
changed.

Davey and Priestley’s textbook on order in mathematics [23] is

38

321

Definition 1

Definition 2

Chapter 3 Semantics

perhaps the best general introduction to this subject. The program-
ming language semantics community isthe other main source. | rec-
ommend the books by Winskel [73] (my primary source of notation)
and Gunter [29]. Othersinclude Allison [1], the very readable un-
published book by Turbak, Gifford, and Reistad [70], and chapters
in the second volume of the Handbook of Theoretical Computer Sci-
ence [71].

Complete Partial Orders

Apartially-ordered set or poset isa set Switha partial order relation
C that satisfies

oX C X (Reflexive)
oxC yandy L ximpliesx =y (Antisymmetric)
exC yandyLC zimpliesx C z (Trangitive)

The partial order relation C can be pronounced “ approximates’ or
“isweaker than.” It imposes some order on the membersof S butis
lessrestrictivethan atotal order suchas <. Inparticular, itispossible
for two members of Sto be incomparable, i.e., for neither x C y nor
y C x to hold.

Virtually everything in this remainder of this chapter is a mem-
ber of some partially-ordered set. The valuesin SR communication
channels and even the block functions are members of posets.

A poset can be depicted with a Hasse diagram, such asthat in Fig-
ure 3.4. An upward lineis drawn between apair of membersx andy
when x C y, but linesimplied by the transitive or reflexiverules are
not drawn to simplify the diagram.

An upper bound of a set T is an element u such that t C u for all
t e T. Aleast upper boundof a T, denoted LT, isan element | such
that | C u for all upper bounds u.

39

Proposition 1

Pr oof

Definition 3

Definition 4

Chapter 3 Semantics
F G

E
X

A/ B C

Figure3.4 A Hassediagram for apartialy-ordered set. Here, ACD,D C
E,DCF,BCF,BCGCLCF,CL G. By thetransitiverule, AC E, but
no lineisdrawn. A and B are incomparable.

Theleast upper bound of a set can bethought of asitslimit. It will
help define continuous functions, which are limit-preserving. Also,
a later theorem will show that the solution to afixed point equation
isthe least upper bound of acertain set.

The least upper bound of a set, if it exists, is unique.

Let u and v be two least upper bounds of aset S For thisto be true,
uC v, sinceuisaleast upper bound, and smilarly vC u. SinceC is
antisymmetric, we must haveu = v. u

In Figure 3.4, the set {A, D} has upper bounds D, E, and F, and
aleast upper bound D. The set {B,C} has upper bounds F and G,
but no least upper bound. The set {F, G} has no upper bounds since
there is no element above both.

Achainisatotally-ordered set C, i.e., for all x,y € C, either xC y or
yLC x

Intuitively, achainisasequence of elementsthat aregrowing more
defined. It appears as an upward path in a Hasse diagram. In Fig-
ure3.4, {A E} and {A,D,F} arechains. Although the members of
{A F,C} arealong apath, it is not achain because neither AC C nor
CCA

A poset in which every chain in Shas a least upper bound in Sisa
complete partially-ordered set or CPO.

40

Proposition 2

Pr oof

Corollary 1

Definition 5

Proposition 3

Pr oof

Chapter 3 Semantics

Complete partia orders are a class of well-behaved posets where
ascending sequences aways have limits. The posets in this chapter
areal CPOs.

Theleast upper bound of afinite chain alwaysexistsand isitsunique
largest element.

The elements of a finite chain can be writtenc; C ¢, C --- C Cp.
Clearly, c C ¢y for al cin the chain. Moreover, since C is antisym-
metric, if there were asmaller c, it would satisfy ¢c C ¢, and ¢, C c,
SO C = Cp. Thus, ¢, isthe unique least upper bound. u

A poset with only finite chainsis a CPO.

| use thiscorollary frequently to ensure my posets are CPOs. This
finite-chain restriction will also beinstrumental in efficiently evalu-
ating systems, apoint | defer to Chapter 4.

A bottom element of a poset, denoted L, isa member of Ssuch that
1 C sfor all se S A poset with bottom is pointed.

The bottom element of a poset isits |east-defined member, repre-
senting “undefined.” Chains often start at L.

Although the bottom element of each poset is different, | will use
the single symbol L to represent them all. The meaning should be
clear from context.

A bottom element, if it exists, is unique.

Assume by and b, are bottom elements. By definition b; € Sand
b, € S and since by isabottom element, b; C b,. Similarly, b, = b;.
Since C isantisymmetric, it followsthat by = b,. L

The following proposition shows how vector-valued CPOs can be
constructed from scalar-valued ones. Figure 3.5 shows an example.

41

Proposition 4

Pr oof

Chapter 3 Semantics

1 0O 11 01 10 00

N1 X |
1 11 11 0L 10
€Y (b)

Figure3.5 Using Proposition4 to build avector-valued CPO. (a) A scalar
CPO (b) Its vector-valued extension.

If D1 and D, are CPOs, then D1 x D, isa CPO under the ordering

(X]_7 Xz) (y]_,yz) iff X1 b C Y1 and Xo L C Yo (33)

andif xt = (x},%3), X2 = (x2,%3), ...,

1.2
|_|{X Xy } ('—l{xlvxlv } |_|{X2,X2, })
D1 x Dy isaposet, since the order relation is
o Reflexive: Sincex; C x; and xo C Xy, (X]_,Xz) C (X]_,Xz) .

o Antisymmetric: If (x1,X2) E (y1,Y2) and (y1,Y2) E (X1,%), it
followsthat x; = y1 and X = Y2, SO (X1,X%2) = (Y1,Y2).

e Trangtive: If (x3,%2) C (y1,Y2) C (z1,2), then X, C 7 and
X2 E 2 and (X1, %) E (21, 2).

It is a CPO since a least upper bound exists for all chains. Let
(x%,x%) C (x%,x%) -be achainin Dy x D,. It follows that x}
X2 C .- and x5 C x% C --- are chains in Dy and D, and that X —
(xl,xz) (l_l{xl,xl, 3, |_|{x2,x2, .}) exists. By definition, for all
[(xl,xz) C X, so X isan upper bound. AssumeY = (yj,Y») iSsome
other upper bound, so x| C y; and X, C y,. By the definition of X,
X1 Cyrandxo Cyo, 0 XC Y. Thus, X istheleast upper bound. =

Thefollowing proposition presents away to build a poset of func-
tions. Basicaly, if f(x) C g(x) for al possiblevaluesof x, then f C g.

42

Proposition 5

Pr oof

322

Definition 6

Chapter 3 Semantics

It ismore difficult to build a CPO of functions, as Theorem 1 will il-
lustrate.

Let D and E be posets, and let f : D —+ E and g : D — E be two
functions. If
fCgiffvxeD. f(x) C g(x), (34)

then C (defined on themembersof D — E) isa partial order relation.

TherelationC is
e Reflexive: Since f(x) C f(x) foral f(x), itfollowsthat f C f.

e Antisymmetric: If f TgandgC f, f(x) C g(x) and g(x) T
f(x) for al x. It followsthat f(x) = g(x) for all x, implying
f=g

e Trangtive: If f C gand gC h, then f(x) C g(x) = h(x), so
f(x) C h(x), implying f C h.

soitisapartia order relation. u
Monotonic and Continuous Functions

In this section, | introduce order- and limit-preserving functions on
posets. Equationswith such well-behaved functionsusually have so-
lutions, apoint | discussin Section 3.2.3.

Afunction f : D — E between posets D and E ismonotonicif for all
X,y € D suchthatxCy, f(x) C f(y).

A monotonic function isorder-preserving. If presented with more
information, it responds with additional, non-contradictory informa-
tion. Note that if D has no comparable members, any f istrivially
monotonic.

| introduce a shorthand for applying a function to every member
ofaset: {f(C)} ={f(c)|ceC}.

43

Definition 7

Proposition 6

Pr oof

Proposition 7

Pr oof

Proposition 8

Chapter 3 Semantics

Afunction f : D — E between CPOs D and E iscontinuousif for all
all chainsCCD, f(LC)=U{ f(c)|ceC},or equivalently f(LIC) =
U{f(C)}.

Since D iscomplete, we know LIC exists. Thisdefinitionissaying,
as aside effect, that LI{ f(C)} aso exists for a continuous function.

A continuous function is limit-preserving. The limit of a continu-
ous function evaluated on a chain is equal to the function evaluated
at the limit of the chain. The following proposition shows that con-
tinuous functions are a strict subset of the monotonic functions.

A continuous function is monotonic.

Let f : D — E be continuous, and let x C y € D. Since U{x,y} =
y, and since f iscontinuous, f(x) C L{f(x), f(y)} = f(LU{xy}) =
f(y). SoxC yimplies f(x) C f(y) and f is monotonic. u

The following proposition provides a way to ensure a monotonic
functionis continuous. Thisis useful because monotonicity is more
intuitive and easier to check.

A monotonic function on a CPO with only finite chainsis continuous.

Let f : D — E beamonotonicfunction, andletC= {c;,....cn} CD
beachanwherec; C c, C --- C ¢y Because f is monotonic, we
have f(c1) C f(cy) C --- C f(cn). From Proposition 2, LIC = f(cp),
andso f(LC) = f(cy) = L{f(C)}. Itfollowsthat f iscontinuous. =

Thefollowing two propositionsshow continuity and monotonicity
are closed under composition.

The composition go f of two continuous functions f : D — E and
g: E — F iscontinuous.

Pr oof

Proposition 9

Pr oof

Proposition 10

Pr oof

Chapter 3 Semantics

Let C beachaininD. Since f is continuous, f(LUC) = U{f(C)}.
Moreover, since Cisachain and f is continuous, {f(C)} isalso a
chain. Since g is continuous, g(L{ f(C)}) = U{g(f(C))}, and also
g(f(LUC)) =u{g(f(C))}. Hencego f isalso continuous. n

The composition go f of two monotonic functionsf : D — Eand g:
E — F ismonotonic.

Since f is monotonic, x C y implies f(x) T f(y). Since g is mono-
tonic, it followsthat g(f(x)) C g(f(y)). u

Thefollowing proposition providesaway to build avector-valued
continuous function from two continuous functions. Compare with
Proposition 4, which builds vector-valued CPOs in asimilar way.

LetD,E,andF beCPOs. If f : D — Eandg: D — F are continuous,
then f x g is continuous

Since E and F are CPOs, then E x F isa CPO by Proposition 4.
Letx; Ex, C---beachaininD. Because f and g are continuous,
f x giscontinuous because

(fxg)(U{xe, %, })
(FUxa, %2, 1), 9(U{x, %, 1))
(U{F(xa), FO2), -1, U{g(xa), 90%2); - -})
= U{(f(x1),9(x)), (T0x2),9(%2)); - -}

= U{(fxg)(xa), (F x9) (%), .}

The following proposition provides a way to take the least upper
bound of achain of functions, which will be useful for working with
higher-order functions (those functions whose domain and range are
themselves functions).

45

Proposition 11

Pr oof

Theorem 1

Pr oof

Chapter 3 Semantics

Let D and E be CPOs, let f, : D — E becontinuous, andlet f; C fo C
. Theng=U{fq, fp,...} existsand g(x) = U{ f1(x), fa(x),...}.

From (3.4), f1(x) C fa(x) C ---isachain. SinceE isaCPO, g(x) =
L f1(x), f2(X),. ..} exists. Thisisan upper bound since fi(x) C g(x)
for al k. Moreover, it is aleast upper bound since if there was an-
other upper bound h, then fi(x) C h(x) for all k, but by definition of

9, 9(x) £ h(x). "

The next fundamental theorem is necessary when working with
higher-order functions. All of the useful resultsrequireworking with
elements of a CPO, and this provides a CPO of functions.

Let D and E be pointed CPOs. The set of all continuous total func-
tions mapping D to E forms a pointed CPO.

Let F denote the set of continuous total functions from D to E. To
show F isapointed CPO, | will show it is apointed poset and show
that each chain of functionsin F has a least upper bound that is a
functionin F, i.e., isa continuous function from D to E.

F isapointed poset. Proposition 5 implies (3.4) isa partial order
relation for F, and its bottom element is L (x) = L. Thisisamem-
ber of F since it is continuous: Let C € D beachain. L(LIC) = L,
andU{ L(c)|ceC} = L. Moreover, it isthe bottom element, since
if there existed another functionb C L, then b(x) T L(x) for al x.
However, by definition of L, it followsthat b(x) = L.

An ascending chain f; C f, C --- in F has aleast upper bound g
from Proposition 11.

Theleast upper bound g of an ascending chain in F isamonotonic
function. If x C y, it follows that fj(x) C fi(y) C g(y) for al i. So
g(y) isan upper bound of {f;(x)}, but since g(x) is the least upper
bound of {fi(x)}, g(x) £ a(y).

The least upper bound of an ascending chain in F is a continuous
function. Let x; C X, C be an ascending chain in D. SinceD isa

46

Chapter 3 Semantics

CPO, LI{X1,Xp,. ..} exists. Moreover, since g is monotonic, g(X;) C
g(x2) CisanascendingchaininE, soLI{g(X1),9(X2), ...} asoexists.
To seethey are equal, | will use the notation

Ui fi(x)} = U{f1(x), fa(x), ...}
From the definition of L,
\V/i,j . fi(Xj)
Vio U {fi(x)}
UdUi{ f(x0) }}

I

Uied fie(X) }
U {Ukd fi(%) 1
U {Ukd fi(%) 1

It

and
\V/i,j . fi(Xj)
Vi Uk f(xj)}
Ui{Ukd f(x) 3

Li{fi(x)}
Ui { fe(x) 3
Ui { f(x) 3

I et

Ui { (@) 3 = Ui {Ukd f(3) 13-

Since the f; are continuous, thisimplies

Ul fiix 1) = Ui{Uid (%) 3}
giui{x}) = ufax)},

which shows g is continuous. u
3.2.3 Least Fixed Points
Definition 8 Let D beaposet, let f : D — D be afunction, and let x € D.
olf f(X) C X, then xis a prefixed point.
olf f(X) =X, then xisalso a fixed point
olf xisa prefixed point and x C p for all prefixed points p, then

xisaleast prefixed point.

a7

Theorem 2

Pr oof

Chapter 3 Semantics

elf xisa fixed point and x C y for all fixed pointsy, then xisa
least fixed point.

The following well-known theorem* is key to everything in this
dissertation. It will be used to show that an SR system always has a
unique behavior, and its proof contains the fundamental ideaused to
evaluate the systems.

Let f : D — D bea continuous function on a pointed CPO D. Then
fix(f) = U{L, f(L), f(F(L)),....fKL),...} (3.5)

exists and is both the unique least fixed point and the unique least
prefixed point of f.

{1, f(L),f?(L),...} isachain since by definition 1. C f(_L) and

f(L) © f(f(L1))
f(f(L) = 31

because f is monotonic by Proposition 6. Since D is complete, the
least upper bound of thischain, fix(f), exists. Furthermore, because
f iscontinuous,

f(fix(f)) = f(U{L, f(L),f3(L),...})
= L{F(L), F(F(L)), F(F(L)),..
= U{L,f(L),f3L),...}
= fix(f)

o fix(f) isafixed point and therefore also a prefixed point.

*Itissimilar to the Knaster-Tarski fixed point theorem, but that result only ap-
pliesto functionsdefined on compl ete | atti ces—posets whose subsets always have
both greatest lower and least upper bounds (See Davey and Priestley [23]). My
CPOs are less structured than this.

48

3.3

Definition 9

Definition 10

Chapter 3 Semantics

Let x be another prefixed point, i.e., f(x) C x. Since f is mono-
tonic,

EE -
AT IrT I
- =h X
N —
X

—h
N —h
N
l_

=

=
=
X

so x is an upper bound of the chain {1, f(L), f(1),...}. How-
ever, since fix(f) isthe least upper bound of this chain, fix(f) C x.
fix(f) isthusthe least prefixed point, and since it is a fixed point, it
is also the least fixed point.

The Semantics of SR Systems

The fundamental piece of computationin an SR systemis a block—
a vector-valued function with afixed number of inputs and outputs.
The meaning of such ablock isobvious, but the meaning of a system
(acomposition of blocks) islessso. The primary result of thissection
isaprocedurethat transforms a system into ablock. It formsavec-
tor composed of inputsto the system and the outputs of every block,
connects all the blocksto thisvector, and finds the least function that
produces consistent values for the outputs. | show this function is
unique and that it behaves like a block.

Letl =13 x---xIpand O = Oy x --- x Oy, be vectors of pointed
CPOs. An n-input, m-output block b is a continuous vector-valued
function from| to O.

Letb:1 — O beablock, let J=J; x --- x J4 be a vector of pointed
CPOs, and let wy, ..., wy bea sequence such that wy € {1,...,a}. If

49

Definition 11

Definition 12

Chapter 3 Semantics

Jw, € I, thenthe block b connected to J with connectionswy, . . ., Wy
isthe function c: J — O such that

C(jlv' SE) Ja) = b(jW17' SE) jWn)v
where (j1,...,ja) € J.
The following definitions are illustrated in Figure 3.6.

Letby: 11 = 0Oq,by: 15— 0y, ..., bs: Is — Os be a collection of
blocks, let| =141 x - - - x 1, beavector of pointed CPOs, let O = O; x
-+ x Og, andlet J =1 x O. The open system d of these blocksisthe
functiond : J — O such that

d(j) = ca(j) x ca(J) x -~ x cs(])-

where ¢ is the block by, connected to the vector J, and j € J.

The SR System of an open system d is the least functione: |1 — O
that satisfies

&(i) = d(i, i) (3.6)

The remainder of this section is devoted to showing that SR sys-
tems are deterministic by showing that (3.6) always has a unique so-
lution. Thisis afixed-point equation with a function e as the argu-
ment, i.e.,

e=B(e), (3.7)
whereB : (I — O) — (I — O) isafunctionthat transformsafunction
to afunction. If f : 1 — O isafunction, then B(f): 1 — O isthe
function

B(f)(i) =d(i, f(i)). (3.8
| will use Theorem 2 to show B has aunique least fixed point. To

dothis, I will show itsdomainisapointed CPO, i.e., block functions
form a complete partial order, and the function B is continuous.

50

Chapter 3 Semantics

Y

Y

0]

(@ (b)

(©)

Figure3.6 (a) AnSR system. (b) Thecorrespondingopen system. (c) The
corresponding block.

51

Lemmal

Pr oof

Lemma?2

Pr oof

Lemma3

Pr oof

Theorem 3

Pr oof

Chapter 3 Semantics

The set of all block functions forms a pointed CPO.

Let bbeablock. By Proposition 4 and induction, both | =17 x - - x
Inand O = Oy x - -+ x Oy are pointed CPOs. Since b is continuous,
Theorem 1 shows these functions form a pointed CPO. u

B(f) isablock functionif f is.

From their definition, the input and output domainsof B(f): 1 — O
are vectors of pointed CPOs. Moreover, since f and cy,...,Cs are
continuous, and B(f)(i) = (c1(i, f(i)),...,cs(i, f(i))), itfollowsfrom
Propositions 8 and 10 that B(f) is continuous. u

B is continuous.

First, note that d is continuous since ¢y, . . ., Cs are continuous since
by,...,bsare.

Next, let F = {f;, f2,...} be achain in the CPO of continuous
functions| — O. B is continuous because

B(UF)(i) = d(i,(UF)(i))
= d(i, (Uk{ fi})(0))
= d(i,U{ f(i)})
= Udd(i, f(i))}

)

= L{B(fi)(i)}

= W{B(F)(i)}
by definition of B, Proposition 11, because d is continuous, and by
Proposition 4. n

R Systems are deterministic, i.e., (3.6) hasa unique solution that is
a block.

From Lemmas 1 and 2, it follows that the domain of blocks and the
range of B(b) isa pointed CPO, and from Lemma 3, B isa continu-
ous function on this CPO. From Theorem 2, it follows that (3.6) has
aunique least solution that satisfies Definition 9. u

52

Chapter 4

Execution

The fundamental qualities for good execution
of a planisfirst; intelligence;

then discernment and judgment,

which enable one to recognize

the best method as to attain it;

the singleness of purpose;

and, lastly, what is most essential of all,
will—stubborn will.

—Ferdinand Foch

Ex ECUTING an SR system for an instant amounts to solving a
fixed-point equation. This is challenging because it needs to
be solved efficiently and predictably, and because of heterogeneity,
itisonly possible to evaluate the function whose least fixed point is
being computed.

| solve this problem by computing a schedule for an SR system—
a fixed execution sequence for its blocks that solves the fixed-point
equation in accordance with the semanticsin Chapter 3. Once sched-
uled, a system can be ssimulated by running the schedule, or synthe-
sized using a block code generation technique where the code for
each block isinlined according to the schedule.

First and foremost, a schedule must make the system behave ac-
cording to the semantics in Chapter 3, but minimizing a schedule's
running time is also important. An SR system must respond to in-
puts before more arrive, so asystem will fail if it istoo slow relative

53

Chapter 4 Execution

to its environment. Hence, only worst-case execution time is worth
optimizing, and | do not consider any techniquesthat could expedite
execution for certain combinations of states and inputs. Besides, the
heterogeneity of the blocks generally precludes most of these tech-
nigues because little is known about their function.

These schedul esare computed by recording the sequence of blocks
evaluated by an algorithm that computes the |east fixed point. Since
thisalgorithm does not make any decisions based on inputs or states,
the schedule is correct for any input or state.

The agorithm uses a divide-and-conquer strategy to find the least
fixed point using a minimum number of function evaluations. Split-
ting afunctioninto pieces, finding the least fixed point of each piece,
and combining them to form the result is usually more efficient than
tackling the whole function.

The algorithm finds efficient schedules by carefully choosing the
place to split the function. Although this choice can greatly affect a
schedul€e’'s execution time, the algorithm produces a correct sched-
ule for any choice of where to split, so efficiency can be optimized
without affecting correctness.

Figure 4.1 shows the compl ete process of computing a schedule.
A dependency graph representing the communication in the system
isfirst derived. It isthen decomposed into strongly connected com-
ponents (atrivial step in this example, since the graph happensto be
strongly connected), and a carefully chosen set of vertices (here, 1
and 2) isremoved from each component and the process is repeated.
The steps in the decomposition are recorded in a schedule, which is
then modified dightly to speak of block, as opposed to block output,
evaluations.

This chapter is divided into three parts. | review related work, in-
cluding chaotic iteration and graph-based function evaluation, in the
first. Inthe second, | present the divide-and-conquer |east fixed point
computation algorithm along with theorems that show it is correct.

54

Chapter 4 Execution

(©)

(12.(4.5)16(0.3)1)? (A.(C.C)IC(A.B))?
(e) ()

CCCCBABACCCCBABACCCCBAB
(9)

Figure4.1 A complete example of schedulingan SR system. (a) The sys-
tem. (b) Its (strongly connected) dependency graph. (c) The vertices re-
moved by the scheduler to break strong connectivity. (d) The graph that
remains. (€) The schedule. Superscripts denote the number of iterations.
(f) The schedule after its transformation to block evaluations. (g) The se-
guence of blocksto evauate each instant.

55

4.1

Chapter 4 Execution

In the third, | consider the problem of finding efficient schedules: |
characterize minimal-cost schedules, present an exact branch-and-
bound algorithm for computing them, present a heuristic that prunes
the number of branches considered, and present experimental results
that show both exact and heuristic splitting algorithms are practical.

Related Work

My agorithm for computing least fixed points can be viewed as a
chaoticiteration scheme. The proof of Theorem 2 fromthelast chap-
ter suggeststhat theleast fixed point can be found by repeatedly eval-
uating the function. Chaotic iteration is a variation that evaluates
individual elements of a vector-valued function in some order. A
schedule is then a chaotic iteration strategy—an order in which to
evauate the parts.

Chaotic iteration has long been used for solving systems of lin-
ear equations. The Gauss-Seidel method is a familiar example that
solves the matrix equation Ax = b by repeatedly evaluating

1
T & [bl R j=1,...z,n,j#ia”XJ]

fori=1,...,n1,....n 1 Suchan evaluation order is achaotic
iteration strategy, and generally does not affect correctness. Assuch,
the technique works well on parallel computers with little synchro-
nization. Chazan and Miranker [21] were two of its early pioneers.
Unfortunately, most of the techniques developed for these continu-
ous problems do not trandate well to the discrete-valued domainsin
SR systems.

Robert’s [58] approach to discrete iteration is very abstract and
general. However, since he places so few restrictions on the func-
tions, his results are not strong enough to be useful here. In partic-
ular, he can only predict convergence rates for systems that can be
topologically ordered.

56

Chapter 4 Execution

Chaotic iteration as an evaluation scheme resembles the delta de-
lay model of the VHDL [45] and Verilog [69] discrete-event simu-
lation languages. In these, each instant of smulated time is broken
into a sequence of delta timesteps to smulate zero delay elements.
The big differenceisthat in these languages, the behavior of the sys-
tem can depend on the order of eventsin these deltatimesteps. These
are not always specified in thelanguage, which can lead to nondeter-
minism. Evenworse, it isimpossible in general to predict how many
delta timesteps are required in a particular instant, or even whether
the number is bounded for all instants. The execution scheme pre-
sented here for SR systems suffers from none of these problems.

In my master’sthesis[25], | had shown these techniquesare appli-
cable to the execution of synchronous languages. There, | presented
a compiler for the Esterel language (see Section 2.3.5 on Page 21)
loosaly based on these techniques. It used a chaotic iteration scheme
to find the fixed point of a monotonic function derived directly from
the program source. It used a dynamic evaluation scheme, and its
scheduler did not attempt to improve efficiency or predictability.

Many researchers have observed that self-referential systems can
be evaluated more efficiently after being decomposed into strongly
connected components. For example, Buhl et al. [18] appliesthisto
nonlinear differential algebraic systemsthat arisein thesimulation of
heating and cooling systems in buildings. Jones [37] applies thisto
evaluating circular attribute grammars used for checking programs
static semantics. However, most of these techniques simply apply a
brute-force eval uation technique to each strongly connected compo-
nent.

Bourdoncle[9] proposes the Weak Topological Order (WTO), es-
sentially arecursive strongly connected component decomposition.
A WTO isaparenthesized linear ordering of the verticesin adirected
graph such that back edges (i.e., those from later to earlier vertices)
only land on thefirst vertex in each parenthesized component, called

57

4.2

Chapter 4 Execution

the head of the component. For example, a WTO for the graph in
Figure4.6is

(7(5213)46).

Here, the head of each component isunderlined. Hisrecursive eval-
uation strategy evaluates each parenthesized component by evaluat-
ing all its contained vertices until its head has converged. Any inner
components are brought to convergence for each evaluation of the
outer component.

Bourdoncle's approach largely inspired mine, but the problem he
solvesisdightly different. Heis not concerned with the predictabil-
ity of the fixed-point evaluation scheme. Moreover, beyond abound,
he does not address the quality of aWTO, nor does he give an algo-
rithm that finds a provably optima WTO.

Since minimizing the execution time of an SR system is critical
for ensuring the synchrony hypothesis holds, Bourdoncle's results
arenot sufficient. A fundamental limitation of hisWTOsisthat their
heads are limited to single vertices, which is sub-optimal for certain
graphs (e.g., Figure 4.15). My algorithms consider both single- and
multiple-vertex heads.

Finding the L east Fixed Point

From Definition 12, executing an SR system requires evaluating a
least fixed point in each instant. This section concentrates on an al-
gorithmfor doing this correctly, and concludeswith aproof of itscor-
rectness. Ultimately, the behavior of thisagorithm will be recorded
to produce a schedule. The next section is devoted to the problem of
making this algorithm find efficient schedules.

0 = &(i) in each instant, where i is the vector of inputs, o is the
vector of outputs, and eistheleast function that satisfies

421

Chapter 4 Execution

where d isthe aggregation of block functionsfrom Definition 10.
Sincel am using the pointwise partial ordering on functions, (3.4),
theleast functionistheonethat takestheleast valueat each valueof i.
Thus, evaluating (i) for aparticular i amountsto finding the least o
such that
o=d(i,o).

For convenience, define F(0) = d(i,0). The objective is now the
least o such that
o=F(o).

By definition of fix, the solution to thisis
o = fix(F). (4.1)

Inlight of Theorem 3, itisnot surprising that (4.1) iswell-defined.
Thisfollows from Theorem 2 since F is continuous (sinced is con-
tinuous) and itsdomain, O, is a pointed CPO that is the vector of all
outpults.

|ter ative Evaluation

In this section, | present away of directly computing the fixed point
of afunction. This approach, described in Theorem 5, isan iterative
approach applicable to any function, inspired by the proof of Theo-
rem 2.

The height of a CPO, as defined below, provides a bound on the
number of function eval uations necessary to find theleast fixed point.
The height is a natural measure since it is additive—the height of a
vector-valued CPO isthe sum of the heights of its components (The-
orem 4 and Corollary 2 show this). Although many useful CPOs
have infinite chains (see Davey and Priestly [23]), | do not consider
them here, as the finite-height assumption is required to make eval-
uation predictable.

59

Chapter 4 Execution

Definition 13 The height of a pointed CPO D, written h(D), is one less than the
length of itslongest chain. If F : D — D isa function, then h(F) =
h(D).

Theorem 4 If Aand B arepointed CPOs, then A x Bisa pointed CPO with height
h(A x B) = h(A) 4+ h(B) under the component-wise ordering (Equa-
tion (3.3)).
Proof From Proposition4, Ax BisaCPO. Itsbhottom elementis(L, L), so
itisaso pointed.
Let LT a; C--- T aya beachaninA andlet LC by - C
by beachainin B. It follows that

(L, L)E (a1, L) E -+ (anay. L) E (ana)b1) T - T (apa), bues))
h(A) elements h(B) elements
isachain of length h(A) + h(B) + 1.
Now assume there exists a chain of length k > h(A) +h(B) + 1in
AxB,i.e,

(a1,81) & (a2, b2) £ - £ (&,).
From(3.3), itfollowsthata; Ca,C---Cacandby Chy C - - - C by.
However, since the height of A ish(A) and the height of B is h(B),
these sequences can have at most h(A) + 1 and h(B) + 1 unique &l-
ements respectively. Moreover, since (&,b;) # (a,1,bi,1) fori =
1,....k—1, therecan beat most (h(A) — 1) 4+ (h(B) — 1) + 1 unique
pairs in the ascending sequence—at least one of the elements must
be different, and there are only h(A) and h(B) possible choices for

each.
There exists a chain of height h(A) + h(B) + 1, and none may be
longer, so the height of A x Bish(A) + h(B). n

Corollary 2 Let A; x Ay x -+ x A beapointed CPO of pointed CPOs A4, Ay, ...,

A¢. Then
k

h(A1><A2><"'><Ak):_Zlh(Ai)- 4.2

60

Theorem 5

Pr oof

Chapter 4 Execution

The following provides a general technique for iterating toward a
fixed point. The iteration may start at any point ¢ below the actual
fixed point where the function is increasing and proceeds by eval-
uating F(c), F(F(c)), ..., FX(c), etc. The number of iterations is
bounded by the height of the CPO on which F is defined.

Let D bea pointed CPO, andlet F : D — D bea continuousfunction.
If cC F(c) and ¢ C fix(F), then F"F)(c) = fix(F).

By Theorem 2, fix(F) exists. Sincec C F(c) and F is monotonic,
C={c,F(c),F(F(c)),...} isachain:

I
L
=)

C
F(c) C F(F(c))

Moreover, the least upper bound of this chain is afixed point since
F is continuous:

F(U{c,F(c),F?(c),...}) = U{F(c),F(F(c)),F(F?(c)),...}
= U{c.F(c),F%(c),...}

By definition, theleast upper bound must approximatethis, sofix(F) C
LIC. Moreover, since ¢ C fix(F), it must be that

o
I

fix(F)
F(fix(F)) = fix(F)
F2(c) C fix(F)

L
=)
I

so LIC C fix(F). Thus, UC = fix(F).
Let the height of D be h = h(F). By definition, C may contain at
most h+ 1 distinct elements. There are two possibilities:

1. Ifc#F(c) #---#F"(c), thenCisachainwith h+ 1 elements
and LIC = F(c) = fix(F).

61

4.2.2

Chapter 4 Execution

2. FK=1(c) = FX(c) for somek < h. ThismeansF¥~1(c) isafixed
point, and since k < h, it followsthat F"(c) = Fk~1(c).

Chaotic Iteration

Inchaoticiteration, theleast fixed point of avector-valuedfunctionis
found through repeated evaluation of parts of the function. This sec-
tion contains some notation that will clarify what | mean by a*part”
of afunction, and concludes with a proof of properties| call the Cha-
otic Iteration Invariants, which shows that iterating to a least fixed
point resultsin amonotonically-increasing sequence that never over-
shoots the least fixed point.

The basic operation in chaotic iteration is the evaluation of some
dimensions of a vector-valued function. To facilitate the discussion
of this, I introduce the following notation. Consider a domain D of
n-dimensional vectors. D = Dy x Dy x -+ x Dp. These will repre-
sent the values on the communication channels. Frequently, | will
be speaking of some group of channels, which | denote by aset S=
{s1,...,&},asubsetof {1,...,n} suchthat1<g < < - <K<
n. | often refer to al the remaining channels, i.e., the complement
({1,...,n} — 9 of thisset, which | writeas S Juxtaposition denotes
set intersection, i.e., AB=ANB.

LetX=(Xq,..., %), Y= (Y1,....Yn),andz=(z, ..., z,) bevectors
inD, and let F : D — D be the function F(x) = (f1(X),..., fa(X)).
Thedimensionof D, x,y, z, and F isn, writtend(D) = d(x) = d(y) =
d(z) = d(F) = n. | will use the following notation:

Ds = Dg, xDs,x - xDg,
Xs = (Xs;,Xsy,- -5 %)
(Ys,:25) = XWherexs=ysandxs=z5
Fs(x) = (F(X))s
FSM) = (Fe(®),%s)

62

Chapter 4 Execution

X< L Fl24] (X)

Y

> fiX{274}F(X)

Y

(©)

Figure4.2 Anillustration of function constructions. (a) F(x) (b) F124(x)
(©) fix(2,4F (%)

63

Definition 14

Theorem 6

Pr oof

Chapter 4 Execution

fixg(F(x)) = fix(G(xg)) where G(xg) = Fs(Xs, X3)

wherexs: Ds, Fs: D — Ds, FI¥ : D — D, andfixs : (D — D) — Ds.
Xs, Dg, and Fg are simple projections. FIS evauates only the ele-
ments of S, leaving the others unchanged, as shown in Figure 4.2(b).
fixgisthe most subtle: it isthe least fixed point of part of afunction
wherethe elementsof Sarethe variablesand the othersare constants.
Figure 4.2(c) depictsthis construction.

Ultimately, wewill befinding asequenceof sets S, S, ..., S (an
iteration strategy) such that

FISI(FSal L (FERIERI L))) = fix(F). (4.3)

When F isamonotonic function, it turnsout that all theintermedi-
ateresultsin such an expression satisfy astrong set of propertiesl call
the Chaotic Iteration Invariants. Theideais that at any point, eval-
uating any subset of elements, i.e., FISI can only increase the result
and it can never passthe least fixed point of any part of the function.
These propertieswill be essential inprovingthat aparticul ar iteration
strategy actually computes the least fixed point.

Avector c € D x - - - x Dy satisfies the Chaotic I teration I nvariants
with respect to a function F : D1 x --- x Dy — Dq x --- x Dy if, for
all subsetsA C {1,...,n},

cC F(c) and ca C fixa(F(c)).

The Chaotic Iteration Invariants hold for c = L.
Trivial, since L C x for any x. u

The following proof provides the inductive step to show the Cha-
otic Iteration Invariants hold for the intermediate results in evaluat-
ing the least fixed point (done by (4.3)). It builds the desired rela
tions by breaking expressions into four sets of indices (AB, AB, AB,

64

Theorem 7

Pr oof

Chapter 4 Execution

and AB) and considering each separately. This uses the pointwise C
relation from Proposition 4 to ensure that if ag E bg_over some set
of subsets S USU...={1,...,n} thenaC b.

If ¢ satisfies the Chaotic Iteration I nvariants with respect to a mono-
tonic function F, then d = FIBl(c) also satisfies theinvariants for all
subsetsB C {1,...,n}.

Let AC {1,...,n} besomesubset and let e= FIA(d). By definition,
dy=ex. (4.4)
Next, by assumption, ¢ C FI®l(c), and F[Bl is monotonic, so
d =FEl(c) C FEI(FEl(c)).
However, eag = (FIB/(FIBl(c)))ap, SO
dag C eng. (4.5)

Similarly, since FI4 is monotonic, F¥(c) C FIA(FBl(c)). More-
over, c C FI¥(c), so c C e. However, d,g = Cp5, O

Together, (4.4), (4.5), and (4.6) imply one of the chaotic iteration
invariantsfor d, i.e.,
dCe=FA(d). (4.7)

To show theother chaotic iterationinvariant, first note dg = Fg(c),
S0

dAB = FAB(C). (48)

Furthermore, since dg = g, dag = Cag, and since ¢ satisfies the
chaotic iteration invariant, cs C Fs(c) foral S

dag = Cag C Fag(©). (4.9)

65

4.2.3

Theorem 8
(Robert)

Chapter 4 Execution

Together, (4.8) and (4.9) imply
da C Fa(c). (4.10)
Second, since ¢ satisfies the chaotic iteration invariants,
ca C fixa(F(c)).
Applying the monotonic function Fa(-, cx) to both sides gives
Fa(Ca, Ca) = Fa(c) C Fa(fixa(F(c)), Cx)-
Theright side of thisisthe application of afunction to itsfixed point,
S¢)
Fa(c) C Fa(fixa(F(c)),cz) = fixa(F(c)). (4.11)
Finally, since c satisfies the chaotic iteration invariant, cs C Fg(c)
foral S cga & Fgal(c) = dga. Moreover, since dgz = Cgp, it follows
that c; C dz. Because F ismonotonic, thisimplies
fixa(F(c)) C fixa(F(d)) (4.12)

Together, (4.10), (4.11), and (4.12) imply the other chaotic itera-
tion invariant, i.e.,
da C fixa(F(d)).

Thisand (4.7) show d satisfies the chaotic iteration invariants,. =
Series/Parallel Decomposition

The following theorem, inspired by Robert [58], shows that you ar-
riveat the sameleast fixed point if you eval uate avector-val ued func-
tionin pieces. Thisresult allowsthe blocksof an SR system be eval-
uated in-place and awholeblock at atime, rather than single outputs.

If F : D — Disacontinuousfunction on afinite-height n-dimensional
pointed CPO D and

Go Sl o2 pll

whereScC {1,...,nfand S U ---USy={1,...,n}, then F and G
have the same unique least fixed point.

66

Pr oof

424

Chapter 4 Execution

F hasauniqueleast fixed point since it continuous on a pointed CPO
(Theorem 2). Furthermore, since F is continuous, FI! is, and G is
(Proposition 8), so G aso hasauniqueleast fixed point (Theorem 2).

Let x = fix(F). Since F(x) = x, it follows from Theorem 6, The-
orem 7, and Theorem 2 that

il

¢

O

°

L
Lo
LU
1 mr1 I
moT X
¥ @
x =
Il Il

fo)
=
n
X

(GoG)(L) C x

fix(G) C x=fix(F)

Since D is a finite-height CPO, fix(G) = G"P) (Theorem 5), so
fix(G) satisfiesthe Chaotic Iteration Invariant. Lety = fix(G). Itfol-
lows that

yC FSl(y)C (FEoFSly) T CGly) =y

so F[Sd(y) = yfor al k. Thus, y must be afixed point of each com-
ponent that appearsinany S. Since S U---USy={1,...,n},yis
afixed point of F, yety C fix(F), theleast fixed point, so it must be
that fix(F) = fix(G) u

Partitioned Evaluation

The following theorem due to Bekic [2]* provides away to find the
fixed point of afunction by partitioningit into ahead (Fy) and atail

*Bekit originally proved thisin a 1969, but was not published until after his
death in 1982. | take the proof from Winskel [73, Chapter 10].

67

Chapter 4 Execution

Theorem 9
(Beki€)

Pr oof

€Y (b)

Figure4.3 A visualizationof Theorem 9. (a) Theleast fixed point of F =
(F4,Fr). (b) The decomposition into H cascaded with T. H combined
with its feedback loop istopologically identical to (a).

(Fr), finding the fixed point of H (the head with an embedded eval-
uation of the fixed point of the tail), and using this to find the fixed
point of thetail, asillustrated in Figure4.3. Evaluating afixed point
thisway is more efficient when cal cul ating the fixed point of thetail
is easy or when the head does not depend on the tail.

If F : D — D isa continuous function on an n-dimensional pointed

CPODandH C{1,...,n},thenfix(F) =X = (fix(H), fix(T)), where

H(XH) = FH(XH,ﬁXT(F(XH,XT))) (413)
T(XT) = Fr()zH,XT) (414)

andT =H.

By definition, % = fix(T), 0 T (%) = &t = Fr(&y, %7). Similarly,
2y = fix(H), so0

H (1) = % = Fu (%o, fixr (F(Ru . %7))) = Foa (81, %),

so X isafixed point of F.

68

Definition 15

Chapter 4 Execution

Now, let y be the least fixed point of F, which exists because of
Theorem 2. Sinceyy isafixed point of F(yy,-), it must be approxi-
mated by the least fixed point, i.e.,

fixt(F(YH,%T)) C YT

SinceF is continuous, Fy(xy,) ismonotonic in xt and therefore

Fi (YH, fixr (F(YH, XT))) © Ry (YH, Y1)

Theleftsideof thisisH (yy), andsince Ry (yn, Y1) = Y, thisimplies
H (y4) C Y4, SO Y4 is aprefixed point of H. From Theorem 2, it
follows that

fix(H) C yy. (4.15)

Since Xy = fix(H), thisimplies X4 C yy, and since Fr(xy, x7) is
continuous and hence monotonic in Xy, it follows that

Fr(X4,¥7) C Fr(YH,y7)-

Since Fr(yn, y7) = yr, thisimplies yr is a prefixed point of T, and
again by Theorem 2,
fix(T) C yy. (4.16)

Sincey istheleast fixed point, and X isafixed point, y C X. How-
ever, from (4.15) and (4.16), X4 C y4 and Xt C yr. It follows that
X=Yy. (]

If F : D — D isan n-dimensional function and (H, T) are a pair of
digoint subsets of {1,...,n}, then the partition (H, T) is separable
if FH(xH,xT,xW), isindependent of xt, i.e., if By (Xy, X1, X7) =

(HT)
FH(xH,x’T,xm) for all X;.

The idea of a separable partition is simple: its head does not de-
pend on itstail. Thismakesit easier to compute the least fixed point
since both halves can be evaluated in isolation. Thisisillustrated in
Figure4.4.

69

Chapter 4 Execution

Corollary 3

4.2.5

(@ (b)

Figure 4.4 A visudization of Corollary 3. (&) The least fixed point of
F = (R4, Fr), aseparable partition since Ry isindependent of xr. (b) The
decompositioninto H cascaded with T.

If F isseparable, thentheleast fixed point of f isX= (fix(H), fix(T)),
where T = H,

HOw) = R, yr)
T(xr) = F(X4,x7),

and yr may be anything.

TheDivide-and-Conquer L east Fixed Point Algorithm

The fixed-point algorithm, Figure 4.5, uses divide-and-conquer. It
divides the problem using Beki¢’'s Theorem (Theorem 9), and eval-
uates the fixed points using iterative evaluation (Theorem 5, whose
conditions are ensured by the Chaotic Iteration Invariants of Defini-
tion 14). Using Beki¢'s Theorem can require fewer function evalu-
ations than using iterative evaluation directly, but choosing a divi-
sion point that actually reduces the number isdifficult. | devote Sec-
tion 4.3 to solving this problem.

70

Chapter 4 Execution
FIx(F, SX)
if Sshould be partitioned
chooseHst. O CHCS Choose a head
T=S—-H The tail isthe remainder
if (H,T)isseparable Separable Partition:
x= FIX(F H,x) fixed point of the head
x= FIX(F,T,x) fixed point of the tail
else Non-separable Partition:
for i=1,....h(Fy) Evaluate H MH) = fix(H)
x=FIX(F,T,x) fixed point of the tail
x = FlHl(x) eval uate the head
x=FIx(F,T,x) Evaluate fix(T)
else Iterative Evaluation:
for i=1,...,h(Fs) Evaluate FQ(FS)
x = F3(x)
return x

Figure 4.5 The divide-and-conguer fixed point algorithm. It computes
(fixs(F(x)),xg). In particular, Fix(F,{1,...,d(F)}, L) = fix(F). When
and how Sis partitioned isthe subject of Section4.3.

Theorem 10

Pr oof

4.3

Chapter 4 Execution

If x satisfies the Chaotic Iteration Invariant, the algorithm in Fig-
ure 4.5 computes

FIX(F,Sx) = (fixg(F(x)),xg) (4.17)

Thisterminates because the cardinality of Sdecreases by at |east one
for each recursive call.

Only two statements modify x, i.e., x = FIM(x) and x = F[3(x). It
follows from Theorem 7 that the Chaotic Iteration Invariant on x is
maintai ned.

When Sisnot partitioned, the second loop computes

(FIS ()M = (fixsF (%), xg)

since x satisfies the Chaotic Iteration Invariant, and hence the condi-
tionsin Theorem 5.

When Sis partitioned, assume the recursive calls of FIX(F, S X)
satisfy (4.17).

When H is separable, thefirst call computesxy = fixy (F(x)), and
the second call computes xr = fixy(F(x)). From Corollary 3, these
satisfy (4.17).

When H is not separable, the first loop computes x = H "(F1) =
fix(H) by Theorem 5, then uses thisto compute x; = fix(T). From
Theorem 9, these also satisfy (4.17). u

Devising Efficient Schedules

The divide-and-conquer agorithm in Figure 4.5 will find the least
fixed point regardless of when and where the functionis partitioned,
but says nothing about how this should be done. Inthissection, | use
thisfreedom to improve the quality of the schedules that come from
recording this algorithm’s behavior.

Minimizing the worst-case execution time of ascheduleisthe pri-
mary objective because SR systems assume the synchrony hypothe-
sis. The worst-case time limits the minimum time between succes-
sive events because to correctly model synchronous behavior, an SR

72

Chapter 4 Execution

Definition 16

Y

Y

€Y (b)

Figure4.6 (a) The system from Figure 3.6. (b) Its dependency graph.

system must finish computing before more inputs arrive. A scheme
that improvesthe average or best-case execution time at the expense
of the worst-case is of no usefor system running in real-time.

More efficient schedules might be possible if detailed information
about thefunctionsor possible dataval uesin the system were known.
However, the assumption of heterogeneity limitswhat can be known
about the functions, and consequently, also limitsknowledge of what
data values might appear.

Having discounted the possibility of function- or data-dependent
partitioning schemes, only the communication structure remains to
select the partitioning scheme. Fortunately, this turns out to be an
effective way to find fast schedules.

| introduce the dependency graph, an abstraction of the communi-
cation structure of a system. It is adirected graph with a vertex for
each communication channel (or equivalently, block output). There
isan edge from each block’sinput channelsto all itsoutputs, indicat-
ing functional dependence or information flow. The edges are essen-
tially the connections of Definition 10 (Page 49). Figure 4.6 shows
a dependency graph.

A directed graph (or digraph) Gisapair (V,E) whereV isa set of
vertices and E isa set of edges. An edgeisan element of V x V with

73

Definition 17

Chapter 4 Execution

(7.(5.213)t46)?

Figure4.7 A schedulefor the dependency graph in Figure 4.6.

distinct vertices. A vertex vy isreachable from v, if thereis a path
fromv, to v: a set of edges such that

{(V17V2)7 (V27V3)7 (V37V4)7 sy (Vn—lavn)} C E.
The dependency graph G = (V, E) of an n-dimensional function F
has

V = {v,...,wn}
E

{(vj, Vi) | if f(x) dependson x; and j # Kk }.

The fixed communication structure in an SR system leads natu-
rally to arecursive partitioning strategy. The unchanging structure
means choosing a single way to partition a given subgraph can be
optimal, suggesting a simple recursive decomposition of the graph.
When the least fixed point algorithm is invoked on a particular sub-
graph, the choice of whether to partition, and if so, how, is the same
each time. The schedule contains exactly thisinformation.

The syntax | adopt for my schedulesfollows naturally from there-
cursivefixed point agorithm. Therearethree cases. | encloseanon-
separable partition in parentheses, writing it (head . tail)", where
nis the height of the head. The halves of a separable partition are
just juxtaposed, e.g., head tail. | denote the evaluating of a single
node with anumber, and | enclose multiple nodesto be evaluated in
brackets. Figure 4.7 shows a schedule for the graph in Figure 4.6. |
formally define the syntax in Backus-Naur form:

74

Chapter 4 Execution

s — i Evaluate the ith component alone
| [i1---ik] Evauateiy,...,ixinparalée
| 519 Evaluate s; then's,
| (s1.-$)" Non-separable partition with
head 5, and tail s,

The meaning of a schedule is a function built from the composi-
tion of a series of function evaluations. | define a schedule’s mean-
ing using adenotational style.* The function E : Sched — (D — D)
transforms a schedule (a syntactical object) into afunction. Expres-
sions within double brackets are written in the syntax of schedules.
Note that function composition reads right-to-left.

E[i] = FW
E[[i1---ik]] = Elizid
Elsi2] = E[s]oE[s]
E[(s1.9)"] = E[2]0(E[st]oE[s])"

For example, the meaning of the schedule in Figure 4.7 is derived
asfollows:

E[(5.213)146]

= FOoFMUE[(5.213)]

= FOFMFRBoFl o Fl o B o FIBl o FlU o F[2
E[(7.(5.213)146)!]

— E[(5.213)'46]0(FcE[(5.213)46])?

= FOoFMoFB ol o FlA o FlS o Fl¥l o FlU o FI2 o Fl7 6

FlO ol o EBl o ElU o FlA o EIBl o B o Bl o EI2

Thisis asimple recursive interpretation that corresponds directly

to the behavior of the algorithmin Figure4.5. A single number cor-
responds to evaluating that component of the function. Juxtaposed

*Such notation is standard in the denotational semantics community. See a
standard text such as Winskel [73].

75

4.3.1

Chapter 4 Execution

schedules, which must be separable, are taken one after the other.
Non-separable partitions are evaluated iteratively.

Each node appears exactly onceinaschedule. Thisisadirect con-
sequence of the recursive nature of optimal partitioning, which splits
aset into digoint sets.

The Minimum Evaluation Cost

In this section, | characterize minimum-cost schedules. | show their
cost alwaysfalls between linear and quadratic (acyclic systems have
linear cost, fully-connected systems have quadratic cost). Another
result, that greedily taking separable partitionsis optimal, seems ob-
vious, butisdifficult to prove. Finding good schedulesbecomesmuch
easier since identifying separable partitionsis easy. The final result
also providesauseful insight: an optimal non-separable partition must
have aseparabletail. Later, thiswill alow metofind good partitions
more efficiently sinceit restricts what sort of partition | should ook
for.

To characterize schedules, | maketwo assumptions about the func-
tions and their domains. First, | assume each wire's CPO is flat—
each hasaheight of one. Interpreted another way, each wireiseither
undefined (= L), or hasavalue. This assumption greatly simplifies
analysis and is reasonable for most applications. The main conse-
guence of thisisthat the height and dimension of afunction (or CPO)
areequdl, i.e.,

h(F) =d(F).

| also assume the cost of evaluating any output is constant. This
greatly smplifies analysis, since the cost of evaluating afunctionis
just itsdimension, but it can be an oversmplification. Especidly in
heterogeneous systems, the cost of evaluating blocks can vary signif-
icantly. However, many of the results arising from this assumption
can be trand ated to systems where this assumption is relaxed.

At each level, the divide-and-conquer algorithm takes one of three

76

Chapter 4 Execution

Type Cost

Separable Partition Cs(H, T)=C(H)+C(T)
Non-Separable Partition | Cp(H, T) = d(H)? + (d(H) + 1)C(T)
|terative Evaluation Ci(S)=d(S)?

Table4.1 Thecost of executionstrategiescompared. C(S) istheminimum
cost of evaluating the fixed point of S. All CPOs are of height one, and the
cost of evaluating afunctionisitsdimension.

approaches, whose cost | discuss below and summarizein Table4.1.
C(S) denotes the minimum cost of evaluating fixs(F(x)). | extend
the d(-) notation to include sets, i.e., d(S) denotes the dimension of
S—itscardinality.

Separable Partition When (H, T) is aseparable partition, the least
fixed points of the head and tail are each evaluated once. The

costis
CH)+C(T) ifHNT =0 and
Cs(H,T) = { (H,T) isseparable
00 otherwise.

Non-Separ able Partition When (H, T) is non-separable, the head
is evaluated h(H) times and the least fixed point of the tail is
evaluated h(H) + 1 times (once outside theloop). The cost is

Co(H, T) = {d(H)2+ (d(H)+1)C(T) ifHNT=0
0 otherwise.

Iterative Evaluation Ittakesh(S) evaluationsof FIS to computeits

fixed point iteratively, so the cost of thisis

The minimum cost of evaluating the least fixed point of a func-
tion, then, is the least cost among all separable partitions, all non-
separable partitions, and iterative evaluation.

C(S)= _min {Cs(H,S—H)UC,(H.S—H)UC(S)}

77

Theorem 11

Pr oof

Chapter 4 Execution

The next two theorems provide tight bounds on the optimal cost
of finding the least fixed point. It falls between linear, which corre-
sponds to evaluating the whole function once, and quadratic, corre-
sponding to evaluating the whole function as many times as it has
outputs. Besides providing insight into the overall cost of running
SR systems, these bounds will be used to speed up the branch-and-
bound scheduling algorithm | present in Section 4.3.3.

The cost of evaluating the least fixed point of Sis at least its dimen-
sion, i.e,
C(S) > d(S). (4.18)

Moreover, it is possible that C(S) = d(S), so the bound is tight.

| will show (4.18) by induction on d(S).

For d(S) = 1, the function can only be evaluated iteratively, so
C(S) = Ci(S) = d(S)? = 1. This satisfies (4.18).

For d(S) > 1, therearethree possibilities. For iterative evaluation,

C(S) > Ci(S) = d(9? > d(9).
For separable partitions,
C(S)>Cs(H,S—H)=C(H)+C(S—H) >d(H)+d(S—H) =d(S).

And for non-separable partitions,

I
o

C(S) > Cp(H,S—H) +1)C(S—H)
+1)d(S—H)

(S—H))+d(S—H)

IV
Q.
T
o — ~—

(1.
o Qo

e T e e
T

IV
o

ThecaseC(S) = d(S) occurswhen there exists separabl e partitions
at each level of the recursion. u

78

Theorem 12

Pr oof

Chapter 4 Execution

The minimum cost of evaluating the least fixed point of S satisfies

C(S) <d(S)2—(d(S)—1). (4.19)

Moreover, when no separable partitions exist,

corresponding to evaluating a partition where d(S— H) = 1, so the
bound is tight.

| will show thisby inductionond(S). For d(S) =1,C(S) =Gi(S) =
1, satisfying (4.19).

When d(S) > 1, theleast fixed point of Scan always be evaluated
asanon-separable partitionwhered(S—H) = 1. SinceC(S—H) =1
inthis case, the overall cost satisfies

C(S) <Cp(H,S—H) = (d(H))*+(d(H)+1)C(S—H)
(d(S)~1)*+d(S)

= d(S2—-(d(S)—-1).

If no separable partitions are possible, C(S) = d(S)? — (d(S) — 1).
Since | have shown (4.19), | will provethis by showing through in-
duction on d(S) that

C(S) > d(9)?—(d(S) - 1). (4.20)

Ford(S) =1, C(S) = Gi(S) = 1, which satisfies (4.20).
For d(S) > 1, there are two possibilities. For the iterative evalua-
tion case, Cj(S) = d(S)?, and for the non-separable partition case,

Cp(H,S—H) = d(H)?+(d(H)+1)C(S—H)
= X+ (x+1)C(S—H)
> X4 (x+1)((n-x)?~(n-x-1))
= —(n—1)+c

Corollary 4

Theorem 13

Pr oof

Chapter 4 Execution

wherec = x(Xx—(n—1))(x—(n—2)). Sincethistermisnon-negative
forthevalidvaluesof x=d(H),i.e,d(H)=1,2,...,n—1,itfollows
that Cp(H,S—H) > d(S)2 — (d(S) — 1).

Since by assumption either C(S) = Gi(S) or C(S) = Cp(H,S—H).
Both are greater than the right side of (4.20), so it followsthat (4.20)
holds. =

Unless d(S) = 1, iterative evaluation is non-optimal, i.e., C(S) <

G(S).

Thenext theorem, in effect, saysthat greedily eval uating separable
partitionsis optimal. Thisisnot avery surprising result, but isfairly
tedious to prove.

When possible, evaluating a separable partition is optimal, i.e., if
(H,S—H) is separable, then

C(S) = Cs(H,S—H). (4.21)

| will show thisthrough induction on d(S).

First, consider the case whered(S) = 2. Let (H,S—H) be separa-
ble. Sinced(H) =d(S—H)=1,C5(H,S—H)=1+1= 2. Thecost
of any non-separablepartitionisCp(H,S—H) =12+ (1+1)- 1= 3.
The cost of iterative evaluation is Ci(S) = 2% = 4. Thusfor d(S) =
2, (4.21) holds.

Now consider d(S) = kfor somek > 2. Assume(4.21) holdsfor all
d(S) < k. From Theorem 12, it followsthat C(S) < Ci(S), so either
C(S) = Cs(H',S—H') or C(S) = Cp(H’,S—H’) for some H'. For
convenience, write T =S—H and T' = S— H'.

Consider Cp(H', T'). The partition (HT', TT') of T' is separable
since (H, T) isseparable (see Figure 4.8, and recall juxtaposition de-
note set intersection). Hence by the inductive assumption,

C(T') = C(HT', TT') = C(HT") + C(TT"). (4.22)

80

Chapter 4 Execution

H T
HH’ TH’ H'
HT' TT T

Figure4.8 A visudizationfor part of Theorem 13. Here (H,T) is separa-
ble and the non-separable (H', T') is assumed to be less costly.

Certainly H and T can each be evaluated as non-separable parti-
tions (HH',HT’) and (TH’, TT') respectively (see Figure 4.8), so it
follows that

C(H) < d(HH)?+(d(HH")+1)C(HT')
C(T) < d(TH)?+(d(TH)+1)C(TT)
CH)+C(T) < d(HH")?+d(TH")?+ (4.23)
(d(HH’)—|—1)C(HT’)—I—
(d(TH) +1)C(TT')

However, since d(HH') + d(TH’) = d(H’) and both quantities are
positive,

d(HH")24-d(TH")2 < d(H")2. (4.24)
Furthermore, from (4.22) andsinced(H’) =d(HH')+d(TH’), itfol-
lows that

(d(HH") + 1)C(HT') + (d(TH) +)C(TT") < (d(H') + L)C(T).
(4.25)
This can be seen visually in Figure 4.9. Together, (4.23), (4.24), and
(4.25) imply

CH)+C(T) < d(H)?+(d(H)+1)C(T)
CS(H,T) < Cp(H’,T’)

S0 no non-separabl e partition can be evaluated more efficiently.

81

Chapter 4 Execution

C(HT") C(TT)

d(HH')

d(H) +1 d(TH") +1

C(T)
Figure4.9 A graphica argument for (4.25). The area of the enclosing box

corresponds to the left hand side; the area of the two shaded boxes corre-
spondsto the right hand side.

Now assume there exists another separable partition (H', T'). It
follows (see Figure 4.10) that

(HH',TH')=H’ (HH,HT')=H
(HT, TT) =T (TH,TT)=T

are separable. By the inductive assumption, thisimplies

C(H) = C(HH)+C(TH')
C(T') = C(HT)+C(TT)
C(H) = C(HH)+C(HT)
C(T) = C(THH+C(TT)

Taken together, theseimply Cs(H, T) = Cs(H’, T'). Thus, all separa-
ble partitions have the same cost.

Sinceaseparable partitionisawayslesscostly than iterative eval-
uation or evaluating any non-separable partition, and all separable
partitions have the same cost, it follows that evaluating any separa-
ble partition is optimal. L]

Certain non-separabl e partitions cost more than simple-minded it-
erative evaluation. This occurs when

d(H)?+ (d(H)+1)C(T) > d(S?

82

Theorem 14

Pr oof

Chapter 4 Execution

H T
f_)%/ A N
HH’ TH’ }H’

HT' TT }T’

Figure4.10 A visualizationfor part of Theorem 13. Here both (H, T) and
(H',T') are separable.

d(S? — d(H)?
dH)+1
d(S)+d(H)
W am1

C(T) >

If C(T) = d(T) thisinequality is not satisfied, but for larger values
of C(T), it can be.

This next theorem is very useful because it restricts the number
of partitionsthat must be considered when looking for optimal non-
separable partitions. The result is not surprising: an optimal non-
separable partition must have an easier-to-evauate tail.

If a non-separable partition isoptimal, then itstail must have a sep-
arable partition. l.e., if S= (H, T) isoptimal and if T has no sepa-
rable partition, then C(S) < Cp(H, T). Theinequality isstrict unless
d(S—H) =2

Assume T has no non-separable partition and C(S) = Cp(H, T), it
followsthat C(T) = Cp(H’, T — H') for some partitionH' C T. Let
x=d(H),andy=d(H'). It follows that

C(S) =Cp(H,T) = X2+ (x+1)C(T)
= X+ X+ 1Y+ (y+)T —H)
= X4+xP+Y?+ (X+1)(y+1)C(T - H')
= ¥+ + Y2+ (X+y+ 14 xy)C(T - H)

83

4.3.2

Definition 18

Definition 19

Chapter 4 Execution

= X4y (x+y+1)C(T—H)+
xy(y+C(T —H")).

However, consider the cost of placing both H and H' in the parti-
tion. Notethat d(H + H') = x+.

Co(H+H . T—H) = (x+y)?+(x+y+1)C(T—H)
= X+ 29+ Y2+ (X+y+ 1)C(T—H)
= X+ Y+ (x+y+1)C(T—H') +2xy

Whend(T)=2,C(T—H')=y=1,andCp(H,T) =Cp(H+H', T—
H’) since xy(y + C(T —H’)) = 2xy = 2. For larger values of y =
d(H) orC(T—H'),C(T—H’)>2,Co(H+H',T—H') <Cp(H,T),
0 C(S) < Cp(H,T). "

Finding Good Partitions

Thelast section showed that optimal schedul es contain separable par-
titions. The results section show that non-separable partitions corre-
spondsto strongly connected components (SCCs) in the dependency
graph, and show how to break an SCC into a separable partition. To-
gether, these lead to an optimal scheduling algorithm that decom-
poses the dependency graph into SCCs and recurses on each compo-
nent after removing a set of vertices (the head) that breaks its strong
connectivity. This follows because Theorem 13 implies a separable
partition is aways optimal when it exists, and it turns out a decom-
position of a graph into strongly connected components is unique.

Adigraph G = (V, E) isstrongly connected if for all verticesv; # v,

Vi isreachable fromyv;.

A digraph G = (V,E) is acyclic if, for all vertices vj # v, if v is
reachable fromv;, then v; is not reachable from v.

Definition 20

Definition 21

Theorem 15

Pr oof

Theorem 16

Pr oof

Chapter 4 Execution

Let G= (V,E) beadigraph, and let SC V be a set of vertices. The
border of Sis the set of all vertices outside Swith an edge from S
ie.,

borderg(S) ={v|vse SveV—-Sand(vsVv) € E}.

Akerndl of adigraph G = (V, E) isa dtrict, non-empty subset of ver-
tices T C V with no border, i.e., such that borderg(T) = .

Adigraph is not strongly connected if and only if it has a kernel.*

(If) AssumeT isakernel of G,andletH =V —T. Sinceitisakernd,
there is no edge from any vertex in T to any vertex in H (both sets
are non-empty, so thisis not vacuous), so there cannot be apath from
any vertex in T to any vertex in H. Hence the graph is not strongly
connected.

(Only If) Assume G = (V, E) is not strongly connected. It follows
that thereisavertex vy, unreachable from another vertex v;. Let T be
thoseverticesinV reachablefrom v, includingw, andletH =V —T.
There cannot be an edge from a vertex in T to a vertex in H since
the vertex in H would then be reachable from v, a contradiction. It
follows, since T is non-empty (it includes ;) and a strict subset of V
(it excludesvy), that T isakernel of G. u

A function has a separable partition if and only if its dependency
graph has a kernel.

(If) Assume T isakernel of adependency graph G, andletH =V —
H. By definition, there is no edge from any vertex in T to any ver-
tex in H. It follows from the definition of a dependency graph that
F (Xn, X7) isindependent of xt.

*| took theterm “kernel” and thistheorem from Frank [27], who describesthem
as “well-known,” but | know of nothing else that uses thisterm or contains this
proof.

85

Definition 22

Chapter 4 Execution

(Only If) Assume (H, T) isaseparable partition. Since Ry (Xy, XT)
isindependent of xt, there cannot be any edge from avertexin T to
avertex in H. By definition, T isakernel. u

Thus a separable partition isisomorphic to akernel of the depen-
dency graph, and these only occur when the graph is not strongly
connected.

Thestrongly connected component decomposition of adigraph G =

(V,E) isapartition of the vertex set VV such that all pairsof verticesin

asinglepartitionaremutually reachable. Each partitionisastrongly
connected component or SCC.

Fortunately, agraph can be decomposed intoitsstrongly connected
componentsin linear time using awell-known algorithm due to Tar-
jan[67].

The primary challenge, then, is to partition a strongly connected
dependency graph. Theorem 14 implies no optimal partition leaves
the tail strongly connected.

Choosing ahead that leavesthetail acyclic would satisfy this. An
acyclic graph is clearly not strongly connected, and furthermore, it
isthe least expensive to evaluate since the SCCs of an acyclic graph
are all single vertices—it can be evaluated in linear time.

However, apartition that producesan acyclic graph may not be op-
timal, asillustrated by the system in Figure 4.11. Removing {1,4},
aminimal set whose removal |eavesthe graph acyclic, does not lead
to an optimal schedule.

Not only can the minimum feedback vertex set | ead to sub-optimal
schedules, identifying it isan NP-complete problem.” Clearly, thisis
not the best solution.

Finding a partition that |eaves the graph acyclic is too strong—
breaking strong connectivity is enough. However, finding a mini-
mum set of vertices that breaks strong connectivity can be donein

*See Garey and Johnson [28], the standard reference for these problems.

86

Theorem 17

Pr oof

Chapter 4 Execution

([14] . 2 35)? uses aminimum
feedback vertex set and has cost 13

(1.23(4.5)H doesnot usea
minimum feedback vertex set and
has cost 11

Figure4.11 A system where partitioning using a minimum feedback ver-
tex set isnot optimal .

polynomial time,* unlike the Minimum Feedback Vertex Set prob-
lem. Unfortunately, using the minimum set of vertices that breaks
strong connectivity is not always optimal.

Thefollowing theorem providesasimpleway to break strong con-
nectivity: pick a set of vertices and remove its border. Figure 4.12
illustratesthis.

Let G = (V,E) be a strongly connected digraph. The graph that re-
sultsfromremoving H, i.e.,

G =V, E)=(V—-H,{(Va,W) | (Va,Vp) € Eand va,Vp € H}),

isnot strongly connected if and only if borderg(K) CH C V andK C
V — H for some non-empty subset K C V.

(If) Assume borderg(K) C H C V. By definition, V' N borderg(K) =
00 since V' =V — H, so borderg(K) = O and K is a kernel since
K C V —H. From Theorem 15, G’ isnot strongly connected.

*Kuller [40] pointed thisout to me. The basic ideais that the maximum flow
between any two pointsin anetwork with vertex capacities of oneisthe minimum
number of verticesthat must be removed to bresk all paths between the two points.
Sinceto break strong connectivity, there must be at least two pointsbetween which
there are no paths, the minimum overall number must be the minimum flow be-
tween al pairs of vertices. Finding the maximum flow can be done using one of
the polynomial -timenetwork flow algorithmsafter splitting al verticesintoan in-
coming and outgoing vertex, placing an edge with unit capacity between them, and
setting all other vertex capacities to infinity.

87

Corollary 5

Pr oof

Execution

(b)

Figure4.12 Removing aborder to break strong connectivity. (a) The bor-
der of A, B, and C are al vertices with edges coming from A, B, and C.
(b) Removing this border (vertices D, E, F, G) breaks this graph’s strong
connectivity.

Figure4.13 An example where avalid partition {3} is not a predecessor
or successor set of any single vertex.

(Only If) Assume G’ isnot strongly connected. By Theorem 15, it
must have akernel K, i.e., borderg (K) = 0. For thisto be the case,
the border of K in G must have been removed, i.e., borderg(K) C H.

Removing the successor or predecessor set of any vertexinastrongly
connected graph breaks its strong connectivity.

The successor set of a vertex v is exactly borderg({v}), and its pre-
decessor set isborderg(V — {v}). Both sets satisfy the conditionsin
Theorem 17.]

Corollary 5 provides one way to find partitions that break strong
connectivity, but not all valid partitions are the predecessor or suc-
cessor of any vertex. Figure 4.13 depicts an example where amini-
mal vertex set is not of thisform.

88

4.3.3

Chapter 4 Execution

The Branch and Bound Algorithm

The resultsin the last two sections suggest a recursive branch-and-
bound strategy for finding the optimal schedule. Theorem 13 sug-
gestsgreedily using separabl e partitionsisoptimal, and Theorems 15
and 16 imply the SCCsof agraph are exactly the separable partitions.
Strongly connected components must be evaluated as non-separable
partitions, and Theorems 14 and 17 imply the optimal choice of head
must break the tail’s strong connectivity, requiring the partition to
contain the border of some group of vertices.

Figure 4.14 shows an algorithm based on this strategy. It recur-
sively decomposes a graph into strongly connected components and
searches for agood partition of each.

Thealgorithmfirst uses Theorem 12 to compute agross (quadratic)
bound on the cost using the size of each strongly connected compo-
nent. The bound B is forced to be no greater than thisto avoid con-
sidering any grossy sub-optimal partitions.

The agorithm next considers each strongly connected component.
First, a bound b on the cost of the SCC is computed by subtracting
the minimum possible cost of the remaining SCCs (just their size ac-
cording to Theorem 11) from the remaining cost r. Next, unless the
SCCistrivial (one-dimensional), the algorithm considers some set of
heads. For each head, the optimum cost of evaluating the tail is cal-
culated by calling CosT recursively. The bound for the tail comes
from noting that to achieve the bound on S, the cost of the tail must
satisfy Cp(H, §—H) = d(H)?+(d(H) +1)C(S—H) < b, thebound
on the SCC. Solving thisfor C(H,S.— H) yields

C(H,&—H) < {Z_Hd)(i J

89

Chapter 4 Execution

CosT(S B)
Decompose Sinto strongly connected components S, ..., §,
B=min{B,5}_,d(S)?— (d(S) — 1)} Bound to be met
r=B Remaining cost
foreach strongly connected component S, ..., S,
b=r—3l,1d(S) Bound for this SCC
if b<d(&)
return oo Bound isimpossible to meet
if d(S)=1
r=r—1 One-dimensional function case
else
a=o Minimum achieved for this SCC
foreach head H of S, ,
t = CosT <S<— H, {%J) Optimal tail cost
a=min{a,d(H)2+ (d(H)+ 1)t} Costincludingthe
head
if a<b
b=a-1 Beat it by at least one next time
r=r—a
if r>0
reeurnB—r Bound was met
else
return co Bound was not met

Figure 4.14 A branch-and-bound algorithm for finding the optimal par-
tition. Sis the subgraph to be partitioned, and B is the cost bound. The
algorithmreturnsthe best cost or o if the bound could not be met. See Sec-
tion 4.3.4 for adiscussion of which heads of S, are considered.

90

4.3.4

Chapter 4 Execution

Choosing the Head of an SCC

Which headsto consider and the order in which to consider them for
each strongly connected component is key to the branch-and-bound
algorithm. Considering al possible headswould be correct, but The-
orem 14 impliesthisis overkill—only those partitionsthat |eave the
tail separable can possibly be optimal. Theorem 17 provides a way
to construct any partition that breaks strong connectivity.

The minimum cost of aparticular partition growsrapidly with the
size of the head, providing a way to quickly discount large heads.
From Theorem 11, it followsthat a partition worth cons dering must
satisfy

Cp(H,Sc—H) = d(H)?+(d(H) + 1)C(F«—H) <b,

andC(S,—H) > d(S—H), it followsthat d(H) must satisfy

d(H)*+(d(H)+1)(d(Sc—H)) < b

d(H)*+ (d(H) +1)(d(S) —d(H)) < b

d(H)?+d(H)d(S) +d(S) —d(H) —d(H)* < b
dH) < 72(;)'(?;.

Thisresult al so suggeststaking thepartitionsin order of increasing
d(H). Thiswill tighten the bound faster since the cost grows at least
as quickly asd(H)?.

The best heuristic | have found for reducing the number of heads
to consider comes from Theorem 17, which impliesan optimal head
(i.e., onethat breaks strong connectivity) containsaborder set. Start-
ing with each vertex in the graph, the heuristic “grows’ avertex set
by greedily adding the vertex in its border that increases the size of
the border the least. Since the graph is strongly connected, thereis
always at least one vertex in any border. The heads considered are
the borders of these vertex sets.

91

4.3.5

Chapter 4 Execution

For example, running this on the graph in Figure 4.13 produces,
for the set that beginswith vertex 10,

Vertex Set Border/Partition Considered
10 1

101 2

1012 39

10129 3

101293 4

1012934 5

10129345 6

101293456 7

| also tried using Corollary 5 to only consider one partition: the
smallest outset (vertices with edges coming from) or inset (vertices
with edges |eading to) of any vertex. Frequently, no schedule based
on these partitions would meet the worst-case quadratic bound—the
best schedules would be worse than using a smple brute-force ap-
proach.

| also tried simply considering al single vertex partitions. This
isfrequently sub-optimal since for many strongly connected graphs,
the removal of a single vertex does not break strong connectivity.
(Seetheexamplein Figure4.15.) Again, it wasoften the case that for
certain systems, the cost of any schedules based on these partitions
exceeded the quadratic upper bound.

Schedule Transfor mations

SR systems are composed of blocks that can only be evaluated as a
whole, but the schedules produced by the branch-and-bound algo-
rithm evaluate a single output at atime. Simply evaluating awhole
block any time a single output needs to be evaluated is correct (this
correspondsto introducing more eval uations, which Theorem 8 says
will not affect the result), but wasteful.

92

Chapter 4 Execution

([12].34)?isan optimal schedule

ove with cost 10.
.A. (1.(4.23)YH! containsonly
© ©

single-vertex heads and has cost 11.

Figure 4.15 A network whose optima schedule has no single-vertex
heads.

In this section, | present an algorithm for restructuring a schedule
to minimize the number of redundant block evaluations. The idea
isssimple: combine outputs on a particular block into a parallel sec-
tion of the schedule by moving them past sections on which they do
not depend. To facilitatethis, | haveidentified five rewrite rules that
can restructureaschedule without affecting itscorrectness. They de-
pend on two main results. Thefirst isthat apart of aschedule can be
moved before a section whose results on which it does not depend.
The second is that introducing additional function evaluations does
not affect correctness (followsfrom Theorem 8).

| present the rewriterulesin adeductive style. The subexpression
above the line can be replaced with the subexpression below if the
predicate to the right is satisfied.

| introduce the following two functionsto describe what inputs a
subexpression depends on and what outputs it affects. Both take a
schedule an return aset of indices. O s] issimply thelist of al in-
dicesthat appear in the subexpression, while | [i] issimply the ver-
tices with edges going to i in the dependency graph.

I[s] = {i|E[s](x) dependson x; }
Ofs] = {i|E[s](x);#x for somex}

sl when I[i]nO[s] =0 (4.26)
%r'r always (4.27)

93

Chapter 4 Execution

-%§?§§%# when I[i]N0[] =0 (4.28)

iisl—'sﬂ:r always (4.29)

(s1.%1)

[—Ei—;:—f whenVj <k.O[ij[nI]ik]=0 (4.30)

The first rule, (4.26), allows an index to be moved before a sub-
schedule when it isindependent. The second, (4.27), alows a later
output to bemovedinto atail. Thisworksbecause thetwo sequences
are

28% S S
Ris i --isgsi

The bottom just has additional i’'s. Similarly, (4.28) alows a later
output to be moved into atail. The sequence on the bottom is

S s

which has moved i to the left of s, and added others. The two se-
guencesin (4.29) are

Sisgpi-isgs
Sisypi-isgsi

which differ only by the addition of atrailing i. When none of the
outputsof agroup affect any later evaluations, the group can be eval-
uated in parallel, leading to (4.30).

Therulesin (4.26)—(4.30) suggest an algorithm for merging block
evaluations. The objectiveisto merge outputsonthe same block into
asingle parallel evaluation. (4.26)—4.28) suggest an index i can be
pushed |exicographically toward the front of the tail until one of its
inputsis encountered. An output in ahead can first be moved to the
end of its tail with (4.29), then pushed toward the front of its tail.
Once two or more independent outputs on the block are pushed to-
gether, they can be merged into a bracket-enclosed parallel evalua-
tion block using (4.30).

94

4.3.6

Chapter 4 Execution

Merge(s)
for each outputiins
Determinei’s “pushable range’
if an output on the same block appears in the range
Find the leftmost acceptable position for i.
Mergei with the nearest output on the same block to the
right, if any.

Figure4.16 An agorithm for merging outputs on the same block.

The heads of non-separable partitions can be restructured freely.
The divide-and-conquer algorithm produces a parallel execution of
all the outputsin the head, but they can be serialized arbitrarily (from
Theorem 8). In particular, each block with an output appearing inthe
head can be executed exactly once, and in any order.

Figure 4.17 shows an example of this algorithm’s behavior.

Experimental Results

To test the efficiency of the branch-and-bound agorithm presented
in Figure 4.14 and the partition selection heuristicsin Section 4.3.4,
| generated 304 SR systems at random and found the minimum cost
schedule for each using the branch-and-bound algorithm using two
algorithmsfor choosing SCC partitions. My exact algorithm consid-
ersall partitions containing one vertex, then al partitions containing
two vertices, etc. My “sweep” heuristic only considers a subset of
all possible partitions (and as such often misses the optimal sched-
ule) by growing a vertex set starting from each vertex in the graph,
as described in Section 4.3.4.

To create the random examples, | generated sixteen systems with
two blocks, sixteen with three blocks, etc., up to twenty blocks. For
each block in a system, | randomly selected a number of inputs and
outputs, each between zero and ten (uniformly distributed), and then

95

Chapter 4 Execution

(7.(5.213) 46)!
€

Output Pushable Range Leftmost Position

1 (7.(5.213)146)! (7.(5.0213)146)1
empty
(7.(5.[21]13)46)' nomatching block (4)
(7.(5.[21]13)146)t (7.(5.[21]1e3) 46)!
(7.(5.[21][34]))*6)! nomatching block
(7.(5.[21][34])'6)! nomatching block (7)
(7.(5.[21]1[34])'6)! (7.(5.213) 46!
(b)

~N o o~ WN

(7.(5.[21]1[34])'6)!
(©)

Figure4.17 (a) Theschedulefrom Figure4.7. (b) The effects of running
the algorithmin Figure 4.16. (c) Thefinal merged schedule.

96

Chapter 4 Execution

= %act
o 100sH » Sweep
R
k5]
3
g
5 10ss
(8 - “a
E 7] a A AAA
8 “a A A 4
8 am a A 4 A AA
49 o . s A:i‘:‘AAA A‘fAA N t: -t
o) B .,:n ™ A ‘m,:.AMAA*A :A A,
& 1s4 ' =" ntE , agta an gty 472 4040 AMI‘.A :
-}: o «"88.8 N Aﬁ‘i‘ﬁ‘f“;ﬂ“k a4 B éﬁ N
Mg“mmm‘ “ a
ﬁ A
O.lS T T T T T 1
0 20 40 60 80 100 120

Number of Outputs
Figure4.18 A comparison of scheduling times for the branch-and-bound
algorithm using the exact and heuristic sweep partition generators. All
times are on a SPARCStation 10.

for each block’sinput, randomly chose a block and an output port on
the block to connect to. If the block I chose had no outpuits, | |eft the
input unconnected.

For reference, all datawere collected on aa SPARCStation 10 with
96M B of main memory, although the program never consumed more
than about 4MB. All timesinclude the time to initialize the program
and load the system, typically afew hundred milliseconds.

Figure 4.18 shows the times it took the branch-and-bound algo-
rithm to compute the schedule for each system using the exact and
sweep heuristics. The number of outputsin the system is plotted hor-
izontally (the sum of the number of outputs on each block—exactly
the number of verticesin the dependency graph). Thetimesare plot-
ted vertically on a logarithmic scale. The exact algorithm required
over 500 seconds to compute a schedul e for 98 systems (out of 304),
but the sweep heuristic always completed in under eight seconds.

97

Speedup Over Exact

Chapter 4 Execution

1000><—E
100 - -
ﬂ'na--
10 4 L
1><—:
0.1x T T T T T T T T T T T T
0.1s 1s 10s 100s

Time to Compute Exact
Figure4.19 The scheduling time speedup arising from using the heuristic
sweep partition generator.

From Figure 4.18, it appears the time to run the exact heuristic
varies substantially and grows quickly. The time it takes to run the
sweep heuristic does appear to be growing exponentially, but very
dowly. Moreover, the time for the heuristic seems much more pre-
dictablein comparison.

Figure 4.19 shows the sweep heuristic is exponentially more ef-
ficient than the exact brute-force solution. Although the speedup is
between 1x and 2x about 40% of thetime, and the heuristicis actu-
ally slower in about 20% of the cases, thisisonly the case when both
the exact and heuristic times are fairly small. For longer times (e.g.,
one second or more), the heuristic partitioner is the clear winner by
an exponentially growing margin.

To savetime, the heuristic partitioner considers only asubset of all
possible partitions. Unfortunately, it can miss the optimal partition,
leading to the cost increases shown in Figure 4.20, but these are not

98

Chapter 4 Execution

o
-150%3
8
)
—100%;
@)
O
LT Ty =
. —50%@
T . L - 0%
25% 20% 15% 10% 5% O 20 40 60 80

Fraction of Runs Number of Outputs
Figure4.20 Theincreasein schedule cost from using the heuristic sweep
partition generator.

awful. Theincreaseisless than 12% for more than an quarter of the
cases. Interestingly, the cost increase does not appear to berelated to
the problem size.

Theorem 11 says the minimum schedule cost must be at least the
number of vertices in the dependency graph (i.e., the total number
of outputsin the system), and Theorem 12 says it must be less than
quadratic. The graph in Figure 4.21 bears this out—the cost of all
schedules falls between the n and n? lines. However, more interest-
ingly, the asymptotic bound appears to be closer to n'->. Of course,
thisafunction of the systems| chose to schedule, and there are sys-
tems whose optimal schedule costs n? — (n— 1), but there do not ap-
pear to be many of them. Moreover, since the random graph con-
struction algorithm | presented above produces something reason-
ably closeto real systems, | expect similar results for real systems.

Fromtheseresults, | concludethat both the exact and heuristic par-
titioning schemes have merit. In many cases, finding the exact an-
swer iscomputationally feasible, but whenitisnot, the heuristic scheme
isfar faster and produces comparableresults—half of thetimewithin
25% of the optimal schedule, and rarely more than twice as bad.

99

Chapter 4 Execution

2 1.5
1000 4 A A
":\
Ld :"..: '
'Us ° o ‘.:
et e N
8100 _: ".:}".‘ ;:
%] .' .,." $
%, o Y
-8 o'{; Uy
< ¢ 5
(% c"..'.-o
= Y
E -
B 10 7 S
S 3
1 T T T T TTTTg T T T mTTTT]
1 10 100

Number of Outputs
Figure4.21 The minimum schedule cost as afunction of graph size.

100

Chapter 5

|mplementation

The management question, then,

is not whether to build

a pilot system and throw it away.

You will do that.

The only question is whether to plan in advance
to build a throwaway, or to promise to deliver
the throwaway to customers.

—F. P. Brooks, The Mythical Man-Month

I IMPLEMENTED the SR model of computation in Ptolemy [16,

17], an environment for heterogeneous system prototyping. Here,
| present the details of how | did this, along with two sizable exam-
plesthat demonstrate how the SR model of computation can be used
to specify reactive systems.

The ideas in Ptolemy, particularly its view of heterogeneity, were
adriving force behind this research. A variety of synchronous lan-
guages have been proposed (see Section 2.3), but none explore the
problem of how to assemble heterogeneous systems. The solution |
devised followed naturally from the Ptolemy philosophy.

Thetwo examples| present illustrate two different applications of
the SR model of computation. Thefirst system, an electronic address
book, isdominated by itsuser interface. The second, aMIDI synthe-
Sizer, isareal-time heterogeneous system that uses adifferent model
of computation to implement some of its behavior.

101

5.1

Chapter 5 Implementation

Ptolemy

Ptolemy [16, 17] is an object-oriented environment for simulating
and synthesizing embedded systems. Ptolemy iswrittenin C++ [66]
and uses the Tcl/Tk language [53] for some user interface duties.

Ptolemy describes its systems as block diagrams. A systemis a
collection of blocks and connections between input and output ports
on those blocks. The blocks may come from one of the existing li-
braries, usersmay writetheir ownin C++ or some other language, or
ablock may contain another block diagram, allowing for hierarchical
designs.

To implement the SR model of computation, | created anew simu-
lation domain in Ptolemy. A Ptolemy domain isan embodiment of a
particular model of computation, and each consists of a set of blocks
that conform to the model and a scheduler responsible for determin-
ing an execution order for the blocks in a system. For example, a
block inthe SynchronousDatafl ow (SDF) domain (see Section 2.4.2)
produces and consumes a fixed number of data tokens from commu-
nication FIFOs each time it executes. A block in my Synchronous
Reactive (SR) domain examines its inputs and writes a value, “ab-
sent,” or “unknown” on each output.

In many Ptolemy domains, including my SR domain, all sched-
uling decisions can be made before the system is run. Such static
scheduling reduces overhead since the run-time scheduler may sim-
ply read off alist of blocks to fire. It aso enables a style of soft-
ware synthesis known as block code generation, in which code for
each block issimply inlined in the order prescribed by the schedule.
This reduces scheduling overhead to aimost nothing—the program
counter of the processor effectively functions as the run-time sched-
uler.

In addition to minimal run-timeoverhead, static scheduling allows
the system to be analyzed in more detail. For example, static SDF

102

Chapter 5 Implementation

absent present(0) --- present(k) --- } “defined”

\\/

1 } “undefined”

Figure5.1 The CPO for the three states of a communication channel: un-
known, absent (no event), and present (valued event). Here, the present
events are integer-valued, but they could be anything.

schedulers are able to determine a bound on the size of each commu-
nication buffer, allowing faster fixed-length buffersto be used. The
static SR scheduler is able to determine the per-tick execution time
of the system (if it knows each block’s execution time), allowing the
synchrony hypothesisto betested without resorting to extensive sim-
ulation.

5.1.1 The SR Domain

The SR domain in Ptolemy simulates systems described with the SR
model of computation. The blocks in the SR domain communicate
among themselves with events sent through single-driver, multiple-
receiver channels. Ineach instant, achannel can either have an event
with avalue, the absence of an event, or be undefined, generally due
to contradictory feedback. Communication isinstantaneous and un-
buffered, so each block connection (port) on achannel seesthe same
event (or absence thereof) in an instant. The three states of a com-
munication channel are ordered as shown in Figure 5.1.

Blocksin SR systems must behave monotonically* to obey the se-
mantics in Chapter 3. This means that when an SR block is given
more-defined inputs (i.e., one or more inputs have changed from un-
defined to present or absent), switching from undefined to defined is
the only way an output isallowed to change. Switching from present
to absent or changing a value is prohibited.

*More precisdly, they must compute continuousfunctions. However, sincethe
values on the communication channelsform aflat CPO, there are no infinitechains
and it follows from Proposition 7 that monotonicity is sufficient.

103

5.1.2

Chapter 5 Implementation

| have written two schedulers for the SR domain. The defaultisa
static scheduler based on the algorithms presented in Chapter 4. The
other isdynamic, executing asystem’sblocksin essentially arandom
order until no outputs change, indicating the system has converged.
Fromtheresultsin Chapter 3, it can be shown that thisa gorithm cor-
rectly ssmulates a system.

SR Blocksin C++

A new C++ block for the SR domain is written by creating a new
classthat inherits from an existing block class and overrides certain
methods. The scheduler, which calls these methods, expects them to
perform functions such as updating the block’s outputs and chang-
ing its state. The C++ programming interfaceis summarized in Ta-
ble5.1.

To create a new block, a designer writesa . pl file. Figure 5.2
isasimple example, Figures 5.13-5.15 on Pages 126-128 isamore
complex example. describing itsinterface and the C++ code for cer-
tain methods. The pt | ang preprocessor digests thisfile and gener-
ates C++ source and header files describing the block, which arethen
compiled and linked into the Ptolemy system.

Communication to and from an SR domain block goes through
instances of the | nSRPor t and Qut SRPor t classes. Each repre-
sents a connection to acommunication channel, and are typically de-
clared as public datamembersof ablock class, each withanameand
atype. Thestate of both input and output portsmay betested with the
known(), present (),andabsent () methods, and if an event
is present, its value may be read with theget () method.

Output ports have additional methods for changing their state. A
valued event can be emitted on aformerly-undefined port by calling
theem t () methodandfillinginthevaueof thereturned Particle, a
Ptolemy class describing a piece of data. Depending on the declared
type of the port, thisvalue might be an integer, a string, or afloating-

104

Chapter 5 Implementation

Block Methods To Be Overridden

voi d setup() Configure the block prior to smulation. Call methods
suchasreacti ve() andi ndependent () here.

voi d begin() Reset the state of the block—called once at the
beginning of asimulation.

voi d go() Update the outputs based on the inputs and state. For

non-strict stars, thismay be called more than once an
instant and should not change the state.

voi d tick() For non-strict stars, advance the block’s state for the
next tick based on its inputs and outputs. Called
exactly once at the end of each instant.

Block Methods To Be Called
voi d reactive() Mark this block as reactive—require at least one
present input before calling go() . Call only in the
set up() method.

I nput/Output Port Methods
voi d i ndependent () Mark the input as independent—not affecting any
outputsin the current instant. Call only in the
set up() method.

int known() TRUE if the port’s state is not undefined
int present() TRUE if the port has an event thisinstant
int absent () TRUE if the port has no event thisinstant
Particle & get() When pr esent () returns TRUE, thisreturnsa

particle representing the value of the event. Calling
thisany other timeisan error.

Output-Specific M ethods
Particle & emt() Mark the port as having an event thisinstant. The
returned particle should be set to the emitted val ue.
Only call thiswhen known(') would return FALSE.

voi d makeAbsent () Mark this port as having no event thisinstant. Only
call thiswhen known() would return FALSE.

Table5.1 C++ interfacesto SR domain stars and portholes.

105

Chapter 5 Implementation

defstar {
nane { Pre }
domain { SR}
derivedFrom { SRNonStrictStar }

i nput {
name { input }
type { int }

}

out put {
nanme { output }
type { int }

}

state {
nane { theState }
type { int }

default { "0" }
desc { Initial output value, state afterwards. }

}

setup {
i nput . i ndependent () ;

}

go {
if (!'output.known()) {
output.emt() << int(theState);

}
}

tick {
if (input.present()) {
theState = int(input.get());
}
}
}

Figure5.2 The SR domain delay block, which delaysitsinput by exactly
one instant. The pt | ang program translates this into C++ source and
header files.

106

Chapter 5 Implementation

point number. The absence of an event in the current instant can be
declared by calling the make Absent () method. All output ports
are set to undefined at the beginning of an instant, and because of
monotonicity, there is never any need for a block to reset a port to
the undefined state.

Strict Blocks

An SR block is strict by default, meaning it will only be executed if
all of itsinputsare defined. Thisguarantees monotonicity and makes
these blocks behave like those in most other Ptolemy domains. Writ-
ing anew block like thisamountsto writingago() method that up-
dates ablock’s outputs and its state for the next instant. There are no
restrictions about the outputs a particular set of inputs may produce.

Such astrict SR block may also be marked as reactive, which fur-
ther requires at least one input to be present. If all the inputs are
absent, all outputs will be marked as absent and go() will not be
caled. This further smplifies coding since many blocks in the SR
domain are often reactive in this sense.

Non-Strict Blocks

The problem with strict blocks is that they do not work well in feed-
back loops. A feedback |oop containing nothing but strict blockswill
deadlock (all their outputswill remain undefined) because each block
will be waiting for the others. The alternativeisto write anon-strict
block that is able to produce some outputs even when some inputs
remain undefined.

The ability to partially evaluate outputs requires splitting output
calculation and state updates into two methods, go() andti ck(),
because the SR schedulers may evaluate the outputs of a non-strict
block multipletimeswithin aninstant to resolvethe channelsin feed-
back loops. In generdl, it isimpossible to predict how many times

107

Chapter 5 Implementation
go() {

if output 1 isunknown
if theinputsare enough to decide on output 1'svalue
emit output 1 or make output 1 absent
if output 2 isunknown

if output nisunknown

Figure 5.3 A standard idiom for writing the go() method of non-strict
blocks. The schedulers guarantee that once an output is decided upon, the
inputswill only become more defined.

go() may be called, so its function must not change until t i ck()
iscalled.

A non-strict block must behave monotonically, restricting the out-
puts that may be produced by a particular set of inputs. Specifically,
thego() method must compute a monotonic function of itsinputs,
meaning that if it iscalled with more-defined inputs(i.e., oneor more
have switched from undefined to either present or absent) it may ei-
ther leaveits outputs untouched or change some of its undefined out-
puts to defined, either present or absent. In particular, it may not
change an output back to undefined or switch an event’s value.

Schedulersfor the SR domain guarantee a block’sinputs follow a
monotonically increasing sequence during execution in an instant.*
Thissmplifiesthe task of ensuring monotonicity, sinceit meansthat
each output can be assigned a known value exactly once during the
series of evaluations in an instant. This suggests the form for the
go() method of ablock shownin Figure5.3.

*This follows from Theorem 7, which shows the Chaotic Iteration Invariants
are preserved when blocks are eval uated.

108

Chapter 5 Implementation

Block Methods To Be Overridden

go Update the outputs based on the inputs and state. This
may be called more than once an instant and should
not not change the state of the block.

tick Update a block’s state based on itsinputs and outputs.
Called exactly once at the end of each instant.

Block Method for Input/Output Ports

read port Returns“unknown,” “absent ,” or astring
representing the present value on the port.

Block Method for Output Portsonly

wite port val ue Writes val ue to the named output port. Thisis
interpreted as astring to emit unless val ueis
“absent.” To ensure monotonicity, this should not
be called unlessr ead would return “unknown.”

Table5.2 lItcl interfacesto SR domain stars and porthol es.

5.1.3 SR Blocksin Itcl

SR blocks can aso be described using McClennan's[i ncr Tcl]
(Itcl) language [50], an object-oriented extension of Ousterhout’s Tcl
language [53] that facilitates rapid development and graphical user
interfaces. One of itsmain benefitsisaccessto the Tk toolkit, ahigh-
level interface to windows, buttons, and so forth.

| designed the Itcl interface as a smplification of the the C++ in-
terface. All Itcl stars are non-strict; the behavior of the ports and the
go() andti ck() methodsremain the same.

Writing a new Itcl block amounts to creating a new ltcl class that
inheritsfrom SRI t ¢l St ar and overridesitsgo and t i ck meth-
ods. Figure 5.4 shows an Itcl specification of alatch.

109

Chapter 5 Implementation

class SRLatch {
i nherit SRItcl Star

constructor {} {
set state "0"

}
nmet hod go {} {
if { [read output] == "unknown" } {
wite output $state
}
}

met hod tick {} {
set input [read input]
if { $input !'= "unknown" &&
$input !'= "absent" } {
set state $i nput

}

vari able state

Figure5.4 An Itcl specification of the delay block in Figure 5.2.

110

5.1.4

5.2

Chapter 5 Implementation

SR Blocksfrom Other Languages

An SR block can aso be a system described in a different Ptolemy
domain. It appears as astrict, reactive block that is executed at most
once in an instant and only when all of its inputs are known and at
least oneis present.

Such embedding is done with a Ptolemy structure called a Worm-
hole. When a design contains a system described in a different do-
main, that design appears as an SR Wormhole—an SR block con-
nected to the foreign system. The ports on this Wormhole block are
special—they trandate the SR communication protocol to and from
auniversal protocol based on single-entry buffers. Since the Worm-
holeisastrict block, it runsthe enclosed system only when all of its
input ports are defined. Present events are copied into their univer-
sal buffers, and portswithout eventsleave their buffersempty. After
the foreign system has run, output buffers containing a single piece
of dataappear as valued events, and empty output buffersappears as
the absence of an event.

A Digital Address Book

In this section, | present a “virtual prototype” of a digital address
book specified in the SR domain to illustrate a user interface appli-
cation. Thisisintended to model asmall hand-held system and pro-
videsthe ability to test the user interface before building the system.
Shown in Figure 5.5, it consists of a small (ten-character) alphanu-
meric display that displays names and phone numbers above asmall
keyboard. In browsing mode, pressing akey with aletter displaysthe
first name starting with that letter, and pressing an arrow key scrolls
through the names alphabetically. In editing mode, the arrow keys
move an editing cursor and the remaining keys change the charac-
ter beneath it. Pushing the Edit key switches between editing and
browsing.

111

Chapter 5 Implementation

1 P 3 4 a 6 ¥ i} 9 0 =

00§ N A o e

n|3|n F G|H|J|I(L|

Z|X|C|V|B|N|M

a— | -=

| Edit |

Figure 55 The Digita Address Book Interface. “EDWARDS’ is cur-
rently being edited.

Thisexampleisfairly primitivebecause thelanguage used to spec-
ify the blocks, Itcl, is not very elegant for describing finite-state be-
havior. Itis, however, very quick to write and test.

The block diagram of the address book is shown in Figure5.6. All
blocks were custom-designed in Itcl and all communication is via
string-valued events. The keyboard sends keys to the ModeSelect
block, which then routesthem to either the Database (responsiblefor
storing the names) or to the Editor (responsible for controlling the
cursor and modifyingthe name entries). Thelatch maintainsindex of
the name being displayed or edited, and the counter is used to scroll
through the entries while browsing.

The Keyboard Block

When a key is pressed, this emits output with the label on the key,
and sets it absent otherwise.

To create this, | first wrote a more general Itcl keyboard class in-
herited from the i t k: : Topl evel class, meaning an instance of
it appears as an isolated window as shown in Figure 5.5. Its con-
structor takes alist of keycaps and builds a button for each. The ac-

112

Chapter 5 Implementation

M odeSdl ect Editor Display
output || key itk o e o G
PUt—= % & Y string [string
jump count write read

A
L Counter Latch

command in {=— out

out in
Y . v . Y
char index indexOut in out
Database

Figure5.6 A block diagram of the Digital Address Book.

tual keyboard class inherits this and the SRItclStar class and over-
rides the pr ess method, called whenever akey is pressed. Itsgo
method emits the currently-pressed key on the output and resets the
currently-pressed key variable.

The M odeSelect Block

This switches between editing and browsing modeswhen it receives
“Edit.” In browse mode, alphabetic key events are copied to jump,
and thearrow keysemit Down or Up on count. Key eventsarecopied
to editKey in edit mode. When switching from editing to browsing,
“Write” is emitted on editKey. When changing from either mode,
count is“Hold.”

Thisisessentially alarge state machineimplemented with aswitch
statement in the go method. Each case writes values to each out-
put and sets the nextState variable appropriately. Thet i ck method
copies nextState to the current state variable.

113

Chapter 5 Implementation

The Counter Block

When commandis*Up,” “Down,” or “Hold,” out isrespectively one
more, one less, or the same asin. All this is implemented with a
switch statement in the go method.

The Latch Block

Emitted on out isthevalue of inin thelast instant. The codefor this
simple block is shown in Figure 5.2. It is a non-strict block since
out is emitted without regard to the current state of in. This breaks
the feedback loop including the latch, counter, and database by in-
troducing a delay.

The Database Block

The most complex of the blocks, the database maintains a sorted list
of strings. Anevent on char causesthe databaseto search for thefirst
entry beginning with that character and emit its index on indexOut,
itsvalueonout. If bothindex and in havean event, thestring valueon
iniswrittenintothelist at theindex value, the databaseis sorted, and
the new index is emitted on indexOut. If an event arrives on index
and in isabsent, astring isfetched from the database and emitted on
out; itsindex emitted on indexOut.
The code of the database block is shown in Figures 5.7 and 5.8.

The Editor Block

This block maintains the string being edited, which isread and writ-
ten through read and write. 1t also maintains the current location of
the edit cursor, emitted through cursor, and an index of the leftmost
character to be displayed, emitted through leftmost.

Whenthekey input is*“Edit” and read is present, read becomesthe
string to edit. When key is an alphanumeric character, the character

114

#
#
#
#
#
#
#

Chapter 5

Implementation

cl ass SRDat abase

I NPUTS char - Selects the first iteminthe list starting with this
i ndex - The requested index val ue
in- Astring to wite into index
QUTPUTS i ndexQut - The current index out
out - The string stored at the current index
cl ass SRDat abase {

inherit SRItcl Star
constructor {} {

set contents "Ann Bet
}

met hod go {} {

h Carol Debby Elizabeth Francine "

set index [read index]
set char [read character]

set in [read in]

if { [read out] == "unknown" &&
$i ndex ! = "unknown" && $char != "unknown" } {
if { $index == "absent" && $char == "absent" } {

Bot h i ndex

and char absent--don’t respond

wite out absent
wite i ndexQut absent

} else {
if { $char != "absent" } {

char present--search for the first entry

set length [Ilength $contents]

for {set index 0} {$index < $length} {incr index} {
if { [lindex $contents $index] >= $char } {

br eak;

}

}

wite out [lindex $contents $index]

write indexQut $index

} else {

Figure5.7 Itcl code for the Database block of the Digital Address Book,

first part

115

Chapter 5 Implementation

if { $in !="unknown" } {
if { $in!= "absent" } {

index and in present--insert new val ue,
sort the database, and find the entry
if { $index >= [llength $contents] } {
| append contents $in
set contents [lsort $contents]
} else {
set contents [lsort \
[Irepl ace $contents $index \
$i ndex $in]]
}
set index [lsearch $contents $in]
wite out $in
wite indexQut $index
} else {

index present, in absent--fetch
the value fromthe database
if { $index <0 } {

set index [Ilength $contents]

}

if { $index > [Ilength $contents] } {
set index O

}

wite out [lindex $contents $i ndex]
wite indexQut $index

}
}
A list containing the database entries
vari abl e contents

Figure 5.8 Itcl code for the Database block of the Digital Address Book,
last part

116

5.3

Chapter 5 Implementation

at the cursor position is overwritten and the cursor moved right.

This block is non-strict to break the feedback loop involving the
database. Thevaueof thewrite output isbased only onthe key input,
not on read, which is dependent on the value of in.

The Display Block

This displays the value of the most-recent event on string, starting
from the leftmost index. When cursor is present, the character at its
index is underlined.

The code for the Display block is shown in Figure 5.9, and illus-
trates how many output-only blockswork. All the action takes place
inthet i ck method, which examinesits inputs and sends their val-
ues to some I/O device, in this case, the screen via Tk “widgets.”

A MIDI Synthesizer

In this section, | present another application implemented in the SR
domain—aMIDI (Musical Instrument Digital Interface) sound syn-
thesizer. This example illustrates many features of the SR domain,
including itsability to handleboth control and data, incorporate other
models of computation, one-to-many communication, and feedback.

The synthesizer decodes a serial MIDI stream and usesiit to pro-
duce sound using adigital-to-analog converter. All the decoding and
control is done by custom SR blocks written in C++; the waveform
synthesisis done with existing SDF blocks using an FM (frequency
modul ation) algorithm.

In this section, | describethe MIDI protocol, the technique of FM
synthesis, and how | implemented the synthesizer in Ptolemy.

117

Chapter 5 Implementation

cl ass SRDi spl ay

#

INPUTS | eftmost - The index of the | eftnost character to display
cursor - The index of the cursor position

string - The string to display

cl ass SRDi spl ay {
inherit SRItcl Star itk:: Topl evel
constructor {args} {
set displayWdth 10
itk_component add display {
| abel $itk interior.display -width $di splayWdth \
-justify left
}
pack $itk _conponent (di spl ay)
set displayText ""
set | eftnostChar 0O
set cursorPos -1
eval itk initialize $args
}
met hod tick {} {
set string [read string]
if { $string != "absent" && $string != "unknown" } {
set displayText $string
set cursor [read cursor]
set leftnost [read | eftnost]

if { $cursor != "unknown" && $cursor != "absent" } {
set cursorPos $cursor
} else {

set cursorPos -1

if { $leftnost !'= "unknown" && $leftnmpst !'= "absent" } {
set | eftnost Char $Ieftnost

}

$i t k_conmponent (di spl ay) configure -text \

[string range "$di spl ayText "
$l ef t nost Char \
[expr $l eftnost Char + $di spl ayW dt h]]
$i t k_component (di spl ay) configure -underline \
[expr $cursorPos - $l eftnostChar]
}
}

vari abl e cursor Pos
vari abl e | ef t nost Char
vari abl e di spl ayText
vari abl e di splayWdth

Figure5.9 Itcl code for the Display block of the Digital Address Book

118

531

5.3.2

Chapter 5 Implementation

The MIDI Protocol

The MIDI protocol* was designed to allow a single musician to con-
trol multiple synthesizers with asingle keyboard. Primarily, it sends
note-on and note-off messages that include a note's pitch and how
hard it was struck. It is areal-time protocol, so a note-on message
causes a note to begin sounding immediately and held until the cor-
responding note-off message arrives.

MIDI is aunidirectional asynchronous byte-oriented serial proto-
col that resembles RS-232. In my implementation, | used akeyboard
that sends MIDI messages at 38.4 kBaud at RS-232 levels, so it con-
nected directly to the serial port of a Sun workstation.

MIDI definesaseries of messages, summarizedin Table5.3. Each
begins with a status byte indicating the message type followed by a
sequence of data bytes. The most significant bit of each transmitted
byteis set for status bytes, cleared for data.

To save bandwidth, MIDI uses something called “running status”
where a message's status byte is omitted when the last message had
the same status. For example, to send a series of note on commands
to Channel 0, asingle 90 status byte can be transmitted, followed by
pairs of data bytesindicating the pitch and velocity of each note.

My synthesizer responds to Note On, Note Off, Control Change,
and Channel Pitch Wheel messages. Control Change messages af -
fect parameters controlling the timbre of the notes. Channel Pitch
Wheel messages shift the frequencies of all sounding voices by up
to two half-stepsin either direction.

FM Sound Synthesis

A natural-sounding musical tone, such as a note struck on a piano,
generaly consists of afundamental frequency accompanied by har-

*MIDI isdefined by thestill-evolvingMIDI 1.0 Detailed Specification[51], but
books such as Rothstein [59] or Roads [57] have more readabl e descriptions.

119

Chapter 5 Implementation

Meaning Status Datal Data 2
Note Off 8ct Pitch® | Velocity®
Note On oct Pitch® | Velocity®
Note Aftertouch Act Pitch? Value
_g Control Change Bct | Controller | Value
> Program Change Ccl | Program
Channel Aftertouch Dct Value
Channel Pitch Wheel Ect LSB* MSB
System Exclusive FO | Mfg. ID®
é MTC Quarter Frame F1 | TimeCode
g Song Position Pointer® F2 LSB MSB
%) Song Select® F3 Number
14 Tune Request F6
@ End of System Exclusive | F7
% Timing Clock’ F8
£ Start® FA
% Continue® FB
o Stop® FC
§; Active Sensing® FE
@ System Reset FF

1 The lower four bitsindicates the channel .

2 The pitchin halfsteps. Middle C is 60.

3 A velocity of 64 isneural. A velocity of 0 is equivalent to note off.

4 The first data byte contains the seven least significant bits; the second con-
tains the next seven bits. Hex 2000 is neutral.

5 The manufacturer 1D byte provides away to interpret the arbitrary number
of data bytesthat follow. An F7 status terminates the sequence.

6 Used for sequencer control.

” May be sent out at arate of 24 per quarter note for synchronization.

8 Sent out every 300 msif there has been no other activity toindicate the pres-
ence of aMIDI connection.

9 System Redltime messages may “interrupt” any data stream.

Table 5.3 MIDI messages. All numbers are in hexadecimal.

120

Chapter 5 Implementation

monics at integer multiples. Although the overall loudness of the
note generally decays after it isfirst struck, the relative strengths of
the harmonics usually evolve over time in more complex ways.

It is achallenge to synthesize natural-sounding musical tones be-
cause of their need for dynamically-changing harmonics. Additive
synthesis,* wherethewaveformiscreated by summing sinewaves, is
an obvious approach, but is both computationally intensive and de-
mands a lot of difficult-to-obtain data. Subtractive synthesis takes a
complementary approach by sending an easy-to-generate, harmoni-
cally rich waveform (such as a square or sawtooth wave) through fil-
tersto producethefinal sound. While closaly resembling many real-
world mechanisms for generating sounds (e.g., brassinstrumentsfil-
ter the sound of vibrating lips), interesting sounds require complex
time-varying filters.

In 1973, John Chowning introduced theidea of FM synthesis[22]
for synthesizing tones. His key observation was that FM waveforms
are easy to produce and have the characteristics of natural sound. In
particular, their harmonics can be madeto fall at integer multiples of
the fundamental and the relative amplitudes of these harmonics can
be controlled in complex ways by varying a single parameter.

All of these effects can be seen in the FM equation and its sine
expansion,

y(nT) = sn(Bc+18Nn(6m)) (5.1)
= J0| sin(ec)—l—
J(1)(sin(Bc+ Bm) — SiN(Bc — Bm)) +

(h

(h
J(1)(Sin(Bc + 26m) + Sin(Bc — 26m)
J3(1)(sin(Bc + 36m) — sin(Bc — 36m)

)+
)+

*For moreinformation about additivesynthesisand computer musicingeneral,
see Roads' extensivetutorial [57]. Moore' sbook [52] has amore detail ed descrip-
tion of FM synthesis.

121

Chapter 5 Implementation

Figure5.10 Thefirst seven Bessel functions. For a given index of modu-
lation, |, the amplitude of the kth harmonic comes from Jc(1).

where

The carrier frequency, fc, isthefundamental, and when the modulat-
ingfreguency fm equals f, theharmonicsfall at fe, 2fc, 3fc, etc. The
modulation index | affects the relative amplitudes of the harmonics
through Bessel functionsof thefirst kind. In general, the higher har-
monicsdie out and larger I means more harmonics, but the behavior
of lower harmonics is more complex—see Figure 5.10.

Two morethingsare needed to produceatoneusing FM synthesis.
The FM equation (5.1) needs to be scaled by a time-varying enve-
lope function, and the index of modul ation needsto be controlled for
the duration of the note. A typical envelope function starts suddenly
when the note is first struck (its attack), then decays to zero when

122

5.3.3

Chapter 5 Implementation

A four-voice MIDI synthesizer

This demo requires a MIDI keyboard connected
to /dev/ttya at 38400 baud. Use the keyboard'’s
"to Host" port set to PC-2 mode for this baud rate.

Serialln synthesizer

Figure5.11 Thetop level of the MIDI synthesizer. The output of the Se-
rialln block is either the character on the serial port, or absent. The synthe-
sizer block isshownin Figure 5.12.

the noteisreleased (Figure 5.16 shows an example). It isreasonable
to make the index of modulation proportional to the envelope, since
many natural sounds increase their bandwidth when the note is first
struck, then lowly decay into a pure tone (note that when | is zero,
the FM equation produces a sinewave).

| mplementation of the Synthesizer

| implemented the synthesi zer in Ptolemy using both the SR and SDF
domains. The top two levels of hierarchy (Figures 5.11 and 5.12),
are implemented in the SR domain, and are responsible for decod-
ing the MIDI stream, keeping track of which voices are sounding,
and generating the envelopes for the notes. The bottom two levels,
Figures 5.17 and 5.18, are implemented in the SDF domain and are
responsible for synthesizing the FM waveforms, summing them, and
sending them to the speaker. The synthesizer runsin real time with
four voices running at 8 kHz on a SPARCStation 10.
Atthetoplevel (Figure5.11), the singleinput to the system—a se-
rial MIDI stream—entersviathe Serialln block. This block’s output
emits either the most-recently-sent MIDI byte, or is absent when no

123

Chapter 5 Implementation

urSDFVoices

A four-voice MIDI synthesizer.
Input is a serial MIDI stream.

Figure5.12 The synthesizer block. Starting from the input, the MIDlin
block translates the serial MIDI stream into commands for the polyphony
controller, the SynthControl block. This sends frequencies to the sound
synthesisblock and vel ocities to the four Envel opeGen blocks.

124

Chapter 5 Implementation

new byte has arrived.

TheMIDIin Block

The MIDIin block decodes a MIDI stream by keeping track of the
running status and recent data bytesto produce note on, note off, con-
trol change, and reset events. Itsprimary functionisserial-to-parallel
conversion; when a complete note-on message arrives, its channel,
pitch, and velocity are emitted in a single instant. Note off, pitch
bend, and control change messages are handled similarly. | coded
thisasastrict block in C++, and it is essentially a state machine, al-
beit one with a significant need to handle data. See Figures 5.13—
5.15.

The SynthControl Block

The SynthControl block is responsible for handling polyphony and
the effects of the pitch wheel. Its main inputs are onPitch, on\eloc-
ity and offPitch, which receive events from the MIDIin block. The
block maintainsan array of pitchesof currently-sounding voicesand
distributes this information to the various sound synthesis blocks.

The voices are controlled through frequency, velocity, and done
ports. The frequencies of sounding voices come from a look-up ta-
ble and are each multiplied by aconstant derived from the pitchBend
port that can shift them up or down at most two half steps. The ve-
locity of a voice comes directly from the note-on event and is held
until the corresponding note-off event arrives, at which time it be-
comes absent. There isusually some delay between when a note-off
event arrives and when the voice actually stops sounding. An event
on adone channel signalsthis. These do not take effect until the next
instant to avoid an instantanenous feedback problem.

125

Chapter 5

Implementation

def star {
name { MDin }
domain { SR}

input { name { in}

out put { nane { channel }
output { nane { onPitch }

out put { name { onVelocity }
output { nane { offPitch }
output { name { offVelocity }
out put { nanme { pitchBend }
output { nanme { controller }
out put { name { control Val ue }
out put { name { reset }

state { name { lastStatus }
state { name { byteNum}
state { nane { l|astByte }

private { int nextStatus; int nextByteNum }

public {
inline int isRealtine(int i

inline int isStatus(int i) const {
inline int isSystem(int i) const {

type

type
type
type
type
type
type
type
type
type

type
type
type

~

latn Nt Nt Nate Wate W Wos We Wo !

{
{
{

nt

nt
nt
nt
nt
nt
nt
nt
nt
nt

nt
nt
nt

) const {
returni >= Oxf8 & & i <= Oxff;

returni >= OxfO &% i <= Oxff;

enum st at usBytes {

NoteOFf Pitch = Ox80, NoteOffVelocity = 0x81,
Not eOnPit ch = 0x90, NoteOnVel ocity = 0x91

return

—

e e e e o e o

}
}
}

e e e e o e o —

—

& 0x80; }

Cont r ol ChangeControl | er = 0xb0, Control ChangeVal ue = 0xbl
Channel Pi t chwheel LSB = 0xe0, Channel Pitchwheel MSB = Oxel

SystenmReset = Oxff

b

}

begi n {
next St at us = | ast St at us;
next Byt eNum = byt eNum

}

Figure5.13 C++ codefor the MIDIIn block, first part

126

Chapter 5 Implementation

go {
if (in.present()) {
int inval = int(in.get());
if (isStatus(inval)) {
if (isRealtime(inval)) {
if (invVal == SystenReset) {
reset.emt() << int(TRUE);

} else {
next Status = inVal;
next Byt eNum = 0O;
}
} else {
int status = int(lastStatus);
if (isSystem(status)) {
} else {
int byte = int(byteNunj;

switch (status & OxfO | byte) {

case NoteOFfPitch:
case NoteOnPitch:
case Control ChangeController:
case Channel Pi t chwheel LSB:
| astByte = inVal;
next Byt eNum = 1;
br eak;

case NoteOf f Vel ocity:
offPitch.emt() << int(lastByte);
of fVelocity.emt() << inVal;
channel .emt() << int(status & Oxf);
next Byt eNum = 0O;
br eak;

case NoteOnVel ocity:

channel .emt () << int(status & Oxf);

if (inval == 0) {
offPitch.emt() << int(lastByte);
of fVelocity.emt() << 64,

} else {
onPitch.emt() << int(lastByte);
onVelocity.emt() << inVal;

}

next Byt eNum = O;

br eak;

Figure5.14 C++ codefor the MIDIIn block, second part

127

Chapter 5 Implementation

case Control ChangeVal ue:
controller.emt() << int(lastByte);
control Value.enm t() << inVal
channel .emit() << int(status & Oxf);
next Byt eNum = 0O;
br eak;

case Channel Pi t chwheel VBB
pitchBend.emt() << ((int(inVal) << 7) | |astByte);
channel .emt() << int(status & Oxf);
next Byt eNum = 0O;

br eak;
}
}
}
}
if (!channel.known()) { channel . makeAbsent (); }
if ('onPitch.known()) { onPitch. makeAbsent(); }
if (!'onVelocity. known()) { onVel ocity. makeAbsent (); }
if ('offPitch.known()) { of fPitch. makeAbsent (); }
if ('offVelocity.known()) { offVelocity. mkeAbsent (); }
if (!'pitchBend. known()) { pitchBend. nakeAbsent(); }
if (!'controller.know()) { controller.mkeAbsent(); }
if (!control Val ue. known()) { control Val ue. nakeAbsent (); }
if (!reset.known()) { reset. makeAbsent(); }
}
tick {
| ast St at us = next St at us;
byt eNum = next Byt eNum
}

Figure5.15 C++ codefor the MIDIIn block, last part

128

Chapter 5 Implementation

Decay rate

Attack rate
................ Sustain level
: Release rate
Notc'a On Nottla Off

Figure5.16 An envelope generated by an EnvelopeGen block.

The EnvelopeGen Block

An Envel opeGen blocks control s both the amplitude and modul ation
index of each FM synthesis block. The envelopes it generates are
controlled by four parameters, shown in Figure5.16. The attack and
release behaviors are both linear; the decay is an exponential fadeto
the sustain level. These can be set by MIDI Control Change mes-
sagesthat enter through the controller and control Value ports, which
are connected bus-style to the MIDIin decoder. A knob on the MIDI
keyboard can be programmed to generate control change messages
for different controllers.

The block behaves as a state machine, looking for velocity events
signaling the beginning of anote and the absence of velocity events,
signaling the end of a note. The machine has four states, quiet, at-
tack, decay, and release. It changes from quiet to attack and release
because of velocity events; it changes from attack to decay and re-
lease to quiet based on the envelope state.

The overall amplitude of the envelopeis scaled by the velocity of
the note. The modulationindex isascaled version of the overall en-
velope, controlled by a parameter. A larger scaling constant makes
the tones sound richer because they have more harmonics.

TheFM SynthesisBlocks

Each FM synthesis block (shown in Figure 5.18) has an amplitude,
a fundamental frequency, and a modulation index input. The mod-

129

Chapter 5 Implementation

B A JARY

/Add Gain MonoOut

Figure5.17 Thesound synthesisblock of theMIDI synthesizer, described
using SDF. Four FM synthesis blocks feed their outputsinto an adder that
sendsits output to a speaker.

1 =

Renel Gail
ReDe] Gain

Figure5.18 An FM synthesisblock. The inputs are an amplitude, a cen-
ter frequency, and anindex of modulation. Themodulating frequency isthe
same as the carrier. The repeat blocks (upward arrows) on each input con-
trol the number of samples generated per tick of the enclosing SR domain.

e

>
Mpy oscillator Add ’

Y Y

V'V

ulating frequency is the same as the fundamental, so the harmonics
fal at 2f, 3f, 4f, etc.

The FM synthesis blocks are described in Synchronous Datafl ow,
and take advantage of its ability to describe multi-rate systems. Re-
peat blocks on each input control how many samples are sent to the
digital-to-analog converter per instant. In each instant, exactly one
token isplaced on each input, so therepeat block copiesthisas many
times as necessary to increase the number of samples per tick. By
adjusting this number, the fraction of time the system spends dealing
with control versus dataflow can be controlled.

130

Chapter 6

Conclusions

Films are never completed,
they’ re only abandoned.
— Anonymous

I N THIS DISSERTATION, | presented anew model of computation
for reactive software systems. Called SR, it is the first to com-
bine precise control over when things happen with the ability to as-
sembl e systems from heterogeneous pieces. To demonstrateits prac-
ticality, | have defined its semantics formally, proven it determinis-
tic, devised an agorithm capable of executing it efficiently and pre-
dictably, shown it has a straightforward implementation, and used it
to describe some useful, realistic systems.

The formal semantics presented in Chapter 3 showed that SR sys-
tems are deterministic and compositional. Introducing an undefined
value to the communication channels allows seemingly paradoxical
systemsto be handled, and requiring the blocks to behave monoton-
icaly with respect to this showed these systems are deterministic:
they react in exactly one way to any particular input. The seman-
tics also show that any group of SR blocks can be treated asasingle
block, allowing any part of an SR system to be encapsulated into ali-
brary component without loss of expressiveness. Thisisthe primary
mechanism for handling complexity through abstraction.

The execution scheme in Chapter 4 determines an order for exe-
cuting the blocks. The resulting schedule works for al possible in-
puts, and because all scheduling-related decisions are made before

131

6.1

Chapter 6 Conclusions

the system isrunning, thereisvirtually no run-time scheduling over-
head, making execution efficient and predictable. | proved this ex-
ecution scheme complies with the formal semantics and presented
some experimental results that show it is practical for reasonable-
Sized examples.

Finally, in Chapter 5, | presented a practical implementation of the
SR model of computation in Ptolemy, an environment for prototyp-
ing heterogeneous systems. In addition to showing the programming
interfaceis fairly straightforward, | presented two examples of real
systems specified using SR. Onewasadigital addressbook that illus-
trated SR’s suitability for specifying user-interface-dominated sys-
tems, the other a MIDI music synthesizer that showed SR’s ability
to handle control-dominated systems and to assembl e heterogeneous
subsystems. Both runin real-time thanksto SR’s efficient execution
algorithm.

| mplications of ThisWork

Many of the resultsin thiswork are very-SR specific (e.g., the the-
orems in Chapter 4), but some apply more generally. Here are the
more far-reaching implications of my work:

Fixed-point semantics are the “right thing” for zero-delay sys
temswith feedback.

Instantaneous feedback loops often cause strange behavior in lan-
guages without fixed-point semantics. The VHDL language [45] is
typical. To handle zero delay situations, it uses* deltatimesteps’ that
resemble the iterations in my execution scheme, but the number of
these steps are unpredictable in general, and may be unbounded, so
the ssimulator can effectively deadlock. Moreover, the s mulator has
some freedom over the timestep in which a thing occurs, which can
lead to nondeterminism.

132

Chapter 6 Conclusions

0 T
@ (b)

Figure6.1 Anexampleof non-compositionalityin SDF. () A correct sys-
tem. (b) One that deadlocks after blocks A and B have been encapsulated.

As | argued in Chapter 3, fixed-point semantics are both physi-
cally realistic and mathematically well-founded, making them an ex-
cellent theoretical model of zero-delay systems. Furthermore, Chap-
ter 4 showed that systems having such semantics can be executed ef-
ficiently, making them reasonable in practice.

It it my hope that future languages with the need for zero-delay
feedback are placed on this firmer theoretical ground.

Partial evaluation solves certain compositionality problems

Many languages impede abstraction by preventing certain kinds of
subsystems from being encapsulated, making it harder to build com-
plex systems. A common source of problemsis the introduction of
unwanted dependencies. Often, encapsulating a subsystem requires
itsinterfaceto be more synchronized that an unencapsul ated version,
and this can lead to different behavior, perhaps even deadlock. Lee's
Synchronous Dataflow* hasthisproblem, asillustrated in Figure6.1.

More traditional languages without feedback also have this prob-
lem. In the C language, the effect of the AND operator cannot be
encapsul ated because it does not require al itsargumentsto be eval-
uated before it can produce aresult. In an expression like

i >= 0 && c[i] > 1,

theright expressionisnot evaluated if theleft oneisfalse. If thiswas
encapsulated in a C function, both would have to be evaluated every
time, which might lead to a memory access violation.

*See Section 2.4.2 on Page 27.

133

Chapter 6 Conclusions

An SR block avoids these problems by being able to execute with
only partial information about itsinputs. Incompleteinputsgenerally
produce incomplete outputs, but this avoids the needless addition of
synchronization that causes these problems.

Chaoticiteration can be a practical way to execute systems

At first glance, chaotic iteration appearstoo unpredictableto execute
practical systems. Whether it convergesat al, let alone predictably,
is the obvious concern.

My resultsin Chapter 4 resolve these questions. When chaotic it-
eration operates on simple, discrete domains with monotonic func-
tions, it ispredictable and practical. Using simple dependency infor-
mation improves the scheme’s efficiency, which, on average, seems
to be quite a bit better than the theoretical worst case. Of course,
executing a system more directly will usually be more efficient, but
when thisisnot possible, such aswhen asystemisassembled hetero-
geneoudly, the speed penalty caused by chaotic iteration is not pro-
hibitive.

Recur sive strongly-connected component decompaosition can pro-
duce superior results

Strongly-connected component (SCC) decomposition is a powerful
technique for decomposing a graph, but many algorithms stop after
applying it once. By contrast, the recursive decomposition scheme
| presented in Chapter 4 uses SCC decomposition to ultimately re-
duce a graph to single nodes. There are many examples where this
produces superior results. Bourdoncle's weak topological order* is
also arecursive decomposition scheme, but it limitstheway an SCC
can be further decomposed, diminishing the quality of itsresults.

*See Page 57

134

6.2
6.2.1

Chapter 6 Conclusions

Itit my hopethat thistechniquewill find application in other prob-
lems where a system of equations needs to be solved rapidly. Al-
though it may be less predictable in other domains (e.g., when deal-
ing with real numbers), | expect it will still give better results.

Future Work
Execution I ssues

Synthesizing software from SR system descriptionsisan obviousap-
plication of thiswork. The block code generation technique, where
code for each block is ssmply inlined in the order prescribed by the
schedule, could be used to synthesize code for a sequential impera-
tive language such as C.

Avoiding the need to explicitly represent “ undefined” or “ absent”
would be an interesting possible optimization. Using more informa-
tion about the blocks, it might be possible to prove that “undefined”
would never appear in acyclic sections of asystem. The effect of ab-
sent might be possible to reproduce by simply not executing certain
reactive blocks.

Since the semantics of SR are not directly tied to a particular ex-
ecution style, others are possible. Distributed execution is an obvi-
ous aternative. A good starting point would be the work of Caspi
et a., [19] which executes OC programs (see Section 2.3.3) on dis-
tributed processors communicating through FIFO buffers. Their al-
gorithm copiesthe program, removesredundant sections, and inserts
communication that sends variable values to where they are needed
and, as a side effect, synchronizes the system. Using the same ap-
proach with SR would be easier since there are no decision pointsin
SR schedules.

More work can be done with execution time estimation. Execu-
tion time of an SR system was designed to befairly easy to estimate
by smply adding the worst-case times for each block according to

135

Chapter 6 Conclusions

the schedul e, but thismay be too pessimistic. Thetimesfor multiple
invocations of the same block in an instant may differ substantially
yet predictably. Even better boundswould probably haveto take data
dependencies into account.

Making more information about SR blocks available to the sched-
uler might improve execution speed. Currently, | only have arather
heavy-handed “this input does not matter” flag. It might be better
to supply “thisinput does not affect these outputs’ information. In-
formation like “these two outputs are always going to be defined si-
multaneoudy” might further speed convergence. In all cases, these
merely give the scheduler a better idea about how fast the network
will converge without affecting the semantics.

Although grouping a set of SR blocksinto asingle block does not
affect the behavior of a system, it may reduce execution efficiency.
The problemisthat the execution scheme| devised wantsto evaluate
blocksan output at atime, yet blocks generally evaluate all their out-
puts at once, usually because of sharing of intermediate results. For
example, when a block containing a subsystem is evaluated, only a
few outputs may be needed, yet the schedule for the subsystem will
evaluate all of them.

Thealternativewould beto ask blocksto only evaluate certain out-
puts to avoid needless computation. One danger is enumerating the
exponentially many possible sets of outputs (presumably, thereisan
optimal schedule for each), but there are probably ways to consider
only as many different schedules as there are outputs or blocksin a
subsystem.

All of the blocksin an SR system compute monotonic functions,
but what isthe most efficient way to evaluate these? If they are spec-
ified asa C++ or Itcl method, then the most efficient way isto smply
execute the method, but if they are specified in some other language,
say Esterel or Verilog, then the answer isless obvious. The most ef-
ficient way might be to synthesize efficient code using variations of

136

6.2.2

Chapter 6 Conclusions

—=a a ifs=0
—=b —<b ifs=1
—C g M{a,b,c} ifs=_1

|

Figure 6.2 The universal monotonic multiplexer for the binary CPO
{L,0,1} . It ismonotonic, so a system constructed solely from these will
be monotonic. Moreover, any monotonic function can be built with it.

traditional logic synthesisalgorithmsdeveloped for digital logic.* A
starting point might be the universal monotonic multiplexer shown
in Figure 6.2. With this, it might be possible to apply binary deci-
sion diagram (BDD') ideas to manipulate these functions, as BDDs
can be thought of as being decompositions of functions into multi-
plexers.

L anguage I ssues

The biggest open questionishow best to describe* native” SR blocks.
Strict blocks may be imported from just about any language, and in
many cases, thisisthebest solution, but non-strict blocksaredifficult
to import. My current solution, using C++ or Itcl, is functional, but
not very elegant. | believe some sort of FSM description style would
work well, but it would have to be quite a bit more sophisticated than
the simple state diagrams of Section 2.3.2. None of the blocksin my
MIDI synthesizer could be succinctly described as state diagrams.
An dternative would be to use an FSM language like Esterel [7] or
even asmplified subset of something like the popular Verilog [69]
or VHDL [45] languages. All of these could be given non-strict se-
mantics. The biggest challenge in “solving” this problem is that it
is not quantitative—the best solution is the one that people like the
most.

*DeMicheli [24] isagood starting point for thisfield.
TAttributed to Bryant [10], these efficient representations of binary functions
are currently the rage in the logic synthesis community.

137

Chapter 6 Conclusions

The semantics of SR are sufficiently abstract to alow for many
language variations. One possible variation would be to use non-flat
CPOs in the communication channels, although their height would
have to remain finite to ensure convergence. Thiswould require mi-
nor modificationsto the execution scheme, but might ultimately lead
to more efficient schedules. Such CPOs could model thingsthat take
on asequence of valuesin an instant, such as bounded-length FIFOs,
program counters, etc., although all of these can be simulated | ess ef -
ficiently with multiple wires. Another application would beto layer
clocks on the channels more elegantly.* The first level of the CPOs
would contain only clock information; the second would have val-
ues. Execution would first establish the presence or absence of all
the signals, then establish their values.

SR, asit stands, does not providefacilities for preempting or con-
trolling the execution of subsystems, but this could be added without
changing the semantics. The research done on Esterel™ has shown
that the ability to start, stop, and reset asubsystem is both useful and
sufficient. Since subsystems appear as SR blocks, the semantics are
clear: thefunction computed by the block is either the function com-
puted by the subsystem or “all outputs absent” if the system is not
being run. The wormhole already has a facility resembling this: if
all its outputs are absent, the enclosed subsystem is not executed.

*Gérard Berry pointed thisout to me.
TSee Section 2.3.5 on Page 21.

138

(1]

(2]

(3]

[4]

(5]

6]

(8]

[9]

Bibliography

The pages on which each citation appears are listed in parentheses
on theright. The text setin Cour i er isaworld-wideweb address.

Lloyd Allison. (34, 38)
A Practical Introduction to Denotational Semantics.
Cambridge University Press, 1986.
H. Bekic. (67)
Definable operationsin general algebras, and the theory of automata and flowcharts.
In C. B. Jones, editor, Programming Languages and Their Definition, volume 177 of

Lecture Notesin Computer Science, pages 30-55. Springer-Verlag, 1984.

Albert Benveniste and Gérard Berry. (19
The synchronous approach to reactive real -time systems.
Proceedings of the IEEE, 79(9):1270-1282, September 1991.
Glérard] Berry. (21)
The constructive semantics of pure Esterel.
Book in preparation, 1996.
ftp://cma.cma. fr/esterel/constructiveness. ps. gz
Glérard] Berry and L. Cosserat. (4)
The ESTEREL synchronous programming language and its mathematical semantics.
In S. D. Brooks, A. W. Roscoe, and G. Winskel, editors, Seminar on Concurrency,

pages 389-448. Springer-Verlag, 1984.
Gérard Berry and Alain Girault. (22)
Circuit generation for verification of Esterel programs.
Conference paper in preparation.
Gérard Berry and Georges Gonthier. (21, 137)
TheEsterel synchronousprogramminglanguage: Design, semantics, implementation.
Science of Computer Programming, 19(2):87-152, November 1992.
ftp://cma. cma. fr/esterel/BerryGont hi er SCP. ps. Z

Shuvra S. Bhattacharyya, Praveen K. Murthy, and Edward A[shford] Lee. (28)
Software Synthesis from Dataflow Graphs.

Kluwer, 1996.

Francois Bourdoncle. (57)

Efficient chaotic iteration strategies with widenings.

In Formal Methods in Programming and Their Applications: International Confer-
ence Proceedings, volume 735 of Lecture Notes in Computer Science, Novosi-
birsk, Russia, June 1993. Springer-Verlag.

139

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

BIBLIOGRAPHY

http://ww. ensnp. fr/~bourdonc/f npa93. ps. Z

Randal E. Bryant.
Graph-based a gorithmsfor bool ean function manipulation.
| EEE Transactions on Computers, C-35(8):677-691, August 1986.

Randd E. Bryant.
Algorithmic aspects of symbolic switch network analysis.
| EEE Transactions on Computer-Aided Design, CAD-6(4):618-633, July 1987.

Randd E. Bryant.
Boolean anaysis of MOS circuits.
| EEE Transactions on Computer-Aided Design, CAD-6(4):634-649, July 1987.

Randd E. Bryant.
A switch-level model and simulator for MOS digita systems.
| EEE Transactions on Computers, C-33(2):160-177, February 1987.

Randd E. Bryant, Derek Beatty, Karl Brace, Kyeongsoon Cho, and Thomas Sheffler.
COSMOS: A compiled simulator for MOS circuits.
In Proceedings of the 24th Design Automation Conference, pages 9-16, 1987.

Janusz A. Brzozowski and Carl-Johan H. Seger.

Asynchronous Circuits.

Springer-Verlag, 1995.

Joseph] [Tobin] Buck, S[oonhoi] Ha, E[dward] A[shford] Lee, and D[avid] G.
Messerschmitt.

Ptolemy: A mixed-paradigm simulation/prototyping platform in C++.

In Proceedings of the C++ At Work Conference, Santa Clara, CA, November 1991.

http://ptol eny. berkel ey. edu/

Joseph [Tobin] Buck, Soonhoi Ha, Edward A[shford] Lee, and David G. Messer-
schmitt.

Ptolemy: A framework for simulating and prototyping heterogeneous systems.

International Journal of Computer Smulation, 4:155-182, April 1994,

http://ptol eny. eecs. berkel ey. edu/ paper s/ JEur Si n1i ndex. ht m

W. F. Buhl, A. E. Erdem, F. C. Winkelmann, and E. F. Sowell.

Recent improvementsin SPARK: Strong component decomposition, multival ued ob-
jects, and graphicd interface.

Technical Report LBL-33906, Lawrence Berkeley Laboratory, August 1993.

Paul Caspi, Alain Girault, and Daniel Pilaud.

Distributing reactive systems.

In Seventh International Conference on Parallel and Distributed Computing Systems,
PDCS 94, Las Vegas, October 1994. ISCA.

(136)

(36)

(36)

(36)

(36)

(36)

(101, 101)

(101, 101)

(57)

(17, 135)

http://ptol eny. eecs. berkel ey. edu/ “gi raul t/ Publ i cati ons/Pdcs94/

Plaul] Caspi, D[anidl] Pilaud, N[icholas] Halbwachs, and J. Plaice.

LUSTRE: A declarative language for programming synchronous systems.

In ACM Symposium on Principles of Programming Languages, Munich, January
1987. ACM.

D. Chazan and W. Miranker.

Chaotic relaxation.

Linear Algebra and Its Applications, 2(2):199-222, 1969.

140

(23)

(56)

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

BIBLIOGRAPHY

John M. Chowning.

The synthesis of complex audio spectra by means of frequency modulation.
Journal of the Audio Engineering Society, 21(7):526-534, September 1973.

B. A. Davey and H. A. Priestley.
Introduction to Lattices and Order.
Cambridge University Press, 1990.

G. De Michdli.
Synthesis and Optimization of Digital Circuits.
McGraw-Hill, 1994.

Stephen Edwards.

An Esterel compiler for a synchronous/reactive devel opment system.
Master’sthesis, University of California, Berkeley, June 1994,
Availableas UCB/ERL M94/43.

E. B. Eichelberger.

Hazard detection in combinational and sequentia switching circuits.
IBM Journal of Research and Development, 9(2):90-99, March 1965.
Andrés Frank.

How to make adigraph strongly connected.

Combinatorica, 1(2):145-153, 1981.

Michad R. Garey and David S. Johnson.

Computersand Intractability: A Guideto the Theory of NP-Compl eteness.
W. H. Freeman and Company, 1979.

Carl A. Gunter.

Semantics of Programming Languages.

MIT Press, 1992.

N[icholas] Halbwachs.

Synchronous Programming of Reactive Systems.

Kluwer, 1993.

Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Danid Pilaud.
The synchronous data flow programming language LUSTRE.
Proceedings of the |EEE, 79(9):1305-1320, September 1991.

(121)

(38, 47, 59)

(136)

(57)

(36)

(85)

(86)

(34, 38)

(18)

(23)

ftp://ftp.img. fr/ pub/ SPECTRE/ LUSTRE/ PAPERS/ | ustre. i eee. ps. gz

Nicholas Halbwachs, Fabienne Lagnier, and Christophe Ratel.

Programming and verifying rea -time systems by means of the synchronousdata-flow

languages LUSTRE.

| EEE Transactions on Software Engineering, 18(9):786—793, September 1992.

(14)

ftp://ftp.img.fr/pub/ SPECTRE/ LUSTRE/ PAPERS/ | ustre. tse. ps. gz

D. Hardl.
Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3):231-274, June 1987.

D. Harel and A. Pnudli.

On the Devel opment of Reactive Systems, volume 13 of NATO ASl Series. Series F,

Computer and Systems Sciences, pages 477-498.
Springer-Verlag, 1985.

141

(18)

D

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

BIBLIOGRAPHY

J. Hopcroft and J. Ullman.

Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley, 1979.
C. Huizing, R. Gerth, and W. P. de Roever.

Modelling Statecharts behavior in afully abstract way.

In CAAP ' 88: 13th Colloquiumon Treesin Algebra and Programming, volume 299 of
Lecture Notesin Computer Science, pages 271-294, Nancy, France, March 1988.

Springer-Verlag.
Larry G. Jones.
Efficient evaluation of circular attribute grammars.

ACM Transactions on Programming Languages and Systems, 12(3):429-462, July

1990.
GillesKahn.

The semantics of asimplelanguage for parallel programming.
In Information Processing 74: Proceedings of IFIP Congress 74, pages 471-475,

Stockholm, Sweden, August 1974. North-Holland.

GillesKahn and David B. MacQueen.
Coroutinesand networks of parallel processes.

In Information Processing 77: Proceedings of IFIP Congress 77, pages 993-998,

Toronto, Canada, August 1977. North-Holland.

Samit Kuller, October 1996.
Personal communication.
http://ww. cs. und. edu/ " samir/

Edward Ashford Lee.

A Coupled Hardware and Software Architecture for Programmable Digital Sgnal

Processors.

PhD thesis, University of California, Berkeley, 1986.

Availableas UCB/ERL M86/54.
Edward Ashford Lee and David G. Messerschmitt.

Static scheduling of synchronous data flow programs for digital signal processing.
| EEE Transactions on Computers, C-36(1):24-35, January 1987.

Edward A[shford] Lee and David G. Messerschmitt.

Synchronous data flow.

Proceedings of the |EEE, 75(9):1235-1245, September 1987.

Edward A[shford] Lee and Thomas M. Parks.
Dataflow process networks.

Proceedings of the |EEE, 83(5):773-801, May 1995.

http://ptol eny. eecs. berkel ey. edu/ paper s/ processNet s

Roger Lipsett, Carl F. Schaefer, and Cary Ussery.
VHDL: Hardware Description and Design.
Kluwer, 1989.

Sharad Malik.

Analysisof cyclic combinationa circuits.

In 1993 IEEE/ACM International Conference on Computer-Aided Design: Digest of
Technical Papers, pages618-625, Santa Clara, CA, November 1993. |[EEE Com-

puter Society Press.

142

(11)

(18)

(57)

(26, 34)

(26)

(86)

(28)

(27)

(27)

(27)

(5, 56, 132, 137)

(37)

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

BIBLIOGRAPHY

Sharad Malik. (37)
Analysisof cyclic combinationa circuits.
| EEE Transactions on Computer-Aided Design, 13(7):950-956, July 1994.

F. Maraninchi. (18)
The Argoslanguage: Graphical representation of automataand description of reactive
systems.
In Proceedings of the IEEE Workshop on Misual Languages, Kobe, Japan, October
1991.
ftp://ftp.img.fr/ pub/ SPECTRE/ ARGONAUTE/ Ar gosl EEEVi sual . ps. gz

F. Maraninchi. (18)
Operationa and compositiona semantics of synchronous automaton compositions.
In CONCUR ’92. Third International Conference on Concurrency Theory., volume
630 of Lecture Notes in Computer Science, pages 550-564, Stony Brook, NY,
August 1992. Springer-Verlag.
ftp://ftp.img.fr/pub/ SPECTRE/ ARGCONAUTE/ README. ht m
Michagl J. McLennan. (108)
[incr Tcl],1993.
http://ww. tcltk.comitcl/
MIDI Manufacturers Association, Los Angeles, Caifornia (117)
MIDI 1.0 Detailed Specification, 1984—present.
http://home. earthlink. net/™ mma/
F. Richard Moore. (121)
Elements of Computer Music.
Prentice Hall, 1990.

J. K. Ousterhout. (101, 108)

Tcl and the Tk Toolkit.
Addison-Wesley, 1994,

Thomas M. Parks. (26)
Bounded Scheduling of Process Networks.

PhD thesis, University of California, Berkeley, 1995.

Available as UCB/ERL M95/105.

http://ptol eny. eecs. berkel ey. edu/

Donald O. Pederson. (35)
A historical review of circuit simulation.
|EEE Transactionson Circuitsand Systems, CAS-31(1):103-111, January 1984.

A. Pnueli and M. Shalev. (18)

What isin astep: On the semantics of Statecharts.

In TACS 91: Theoretical Aspects of Computer Software: International Conference,
volume 526 of Lecture Notes in Computer Science, pages 244-264, Sendai,
Japan, September 1991. Springer-Verlag.

CurtisRoads. (117, 1212)

The Computer Music Tutorial.
MIT Press, 1996.

Francois Robert. (56, 66)
Discrete Iterations: A Metric Sudy, volume 6 of Springer Series in Computational
Mathematics.

143

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

BIBLIOGRAPHY

Springer-Verlag, 1986.

Joseph Rothstein. (117)
MIDI: A Comprehensive Introduction.

A-R Editions, Madison, Wisconsin, 1992.

David A. Schmidt. (34)
Denotational Semantics: A Methodology for Language Devel opment.

Allyn and Bacon, 1986.

Dana Scott. (32
L attice theory, data types and semantics.
In Randall Rustin, editor, Formal Semantics of Programming Languages, pages 65—

106. Prentice Hall, 1972.

Dana Scott and Christopher Strachey. (32
Toward a mathematical semantics for computer languages.
In Proceedings of the Symposium on Computers and Automata, pages 19-46. Poly-

technic Ingtitute of Brooklyn, April 1971.
Clarl]-Johan] [H.] Seger and Janusz] A. Brzozowski. (36)
Generdized ternary simulation of sequentia circuits.
Informatique théorique et Applications, 28(3-4):159-186, 1994.
Thomas R. Shiple, Gérard Berry, and Hervé Touati. (23, 38)
Constructiveanaysis of cyclic circuits.
In Proceedings of the European Design and Test Conference, March 1996.
ftp://ic.eecs. berkel ey. edu/ pub/ Menos_Conf er ence/ edt c96. SBT. ps. Z

Joseph Stoy. (32, 34)
Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory.
MIT Press, 1977.
Bjarne Stroustrup. (101)

The C++ Programming Language.
Addison-Wesley, second edition, 1991.

Robert Tarjan. (86)
Depth-first search and linear graph agorithms.
S AM Journal on Computing, 1(2):146-160, June 1972.

The C2A Group. a7)
Projet synchrone: Les formats communs des languages synchrones (common formats
for the synchronous languages).
Technica Report 157, INRIA, June 1993.
Trand ated from the French by Wendell Baker.
htt p: // ww. baker. conf wbaker/ publ i cati ons/index. htm

Donald E. Thomas and Philip R. Moorby. (56, 137)
The \erilog Hardware Description Language.

Kluwer, 1991.

Franklyn Turbak, David Gifford, and Brian Reistad. (38)

Applied semantics of programming languages.
Unpublished textbook, 1995.

144

BIBLIOGRAPHY

[71] Jan van Leeuwen, editor. (38)
Handbook of Theoretical Computer Science.
Elsevier/MIT Press, 1990.

[72] Michael von der Beeck. (18)
A comparison of Statecharts variants.
In Formal Techniquesin Real-Time and Fault-Tolerant Systems: Third International
Symposium Proceedings, volume 863 of Lecture Notes in Computer Science.
Springer-Verlag, 1994.
[73] G.Winskel. (34, 38, 67, 75)
The Formal Semantics of Programming Languages. An Introduction.
Foundationsof Computing. MIT Press, 1993.

145

| ndex

The C2A Group, 17, 144

1 (bottom), 41, 103

LI (least upper bound), 39
C (approximates), 39

- > (followed by), 24

; (sequencing operator), 22
| | (parallel operator), 22

absent, 103
absent, 104, 105, 109
abstraction, 3
acyclic graph, 84, 86
non-optimality of, 86
additive synthesis, 121
Allison, Lloyd, 34, 39, 139
aphabets, 12
ambiguity, 8
arising from zero-delay, 35
analog circuit simulation, see circuit
simulation, analog
analysis of systems, 5, 6, 102
Anonymous, , 131
antisymmetric relation, 39, 42
Ardis, Mark, 11
Argos, 14, 17-21
asynchronous circuits, 36
attack, 129
automata theory, 11
Aziz, Adnan, xii

Baker, Wendell, xi

BDD, see binary decision diagram

Beatty, Derek, 36, 140

begi n, 105

Bekic, H., 67, 139

Beki€'s Theorem, 68, 70

Benveniste, Albert, 14, 139

Berry, Gérard, 4, 14, 21-23, 38,
137,139, 144

146

Bessdl functions, 121
graph of, 122
Bhattacharyya, ShuvraS,, 28, 139
bidirectiona switches, 36
binary decision diagram, 38, 136
binary eguations, 36
block, 49
connected, 49
definition, 49
functionsform a CPO, 50
partial evaluation of, 133
block code generation, 28, 53, 135
in Ptolemy, 102
block diagrams, 102
blocking reads, 34
border
definition, 84
for akernd, 85
illustration of, 88
in choosing optimal heads, 91
removing to break strong
connectivity, 87, 89
usein heuritic, 91
bottom, 41
bounded resources, 11, 26
Bourdoncle, Frangois, 57, 139
Brace, Karl, 36, 140
branch-and-bound agorithm, 89
Brooks, F. P, 101
browsing mode, 111
Bryant, Randal E., 36, 137, 140
Brzozowski, Janusz A., 36, 37, 140,
144
Buck, Joseph Tobin, 101, 102, 140
buffer
computing sizes of, 102
first-infirst-out, 27, 34, 135,
137
wormhole communication, 111

INDEX

Buhl, W. F,, 57, 140
bus, 129

C,4,5912,135
non-compositionality of, 133
C++, 9, 102, 104, 117, 125, 136,
137
capacitance in switch-level
simulation, 36
carrier frequency, 121
Caspi, Paul, 17, 24, 135, 140, 141
chain, 4042, 45, 46, 48, 52
and monotonic function, 44
definition, 40
least upper bound of functions,
45
limit of, 44
role in continuousfunctions,
43
gtarting at bottom, 41
Chang, Wan-Teh, xii
Channel Pitch Wheel message, 119
Chaotic Iteration, 134
chaotic iteration, 62—66
for computing fixed points, 56
for parallel computers, 56
notation for, 62—64
Chaotic Iteration Invariants, 64—66,
70, 108
definition, 64
Chazan, D., 56, 140
Cho, Kyeongsoon, 36, 140
Chowning, John M., 121, 141
circuit smulation, 31, 32, 34-39
analog, 35
digital, 35-37
circular attribute grammars, 57
clock, 3
clocks, 137
in Lustre, 24
communication
between domains, 111
in SDF systems, 27
in SR systems, 7
in the SR domain, 103
times, 5
unbuffered, 7, 103
use in scheduling, 10

147

compiler
for Esterel, 57
for synchronous languages, 10
restrictionsin, 24
compiling
a system description language,
3
anaysisduring, 26-28
dealing with reincarnation, 23
Esterel, 23, 38
Esterel into OC, 17
Lustre, 24
Ptolemy blocks, 104
SDF, 27
separately, 10
complete partia order, 103
as an information ordering, 38
bottom element of, 41
chainsin, 40
definition, 40
finitechainsin, 41
from prefix order, 34
Hasse diagram for, 39
height in SR systems, 76
height of, 59-61, 137
of functions, 43, 59
pointed, 41, 49
use in denotational semantics,
33
vector-valued, 41
with finite chains, 41
complexity, 2, 10
compositionality, 133
of SDF, 28
of SR systems, 131
concurrency, 4, 13, 34
inLustre, 24
connected block, 49
consistency checking
of astate diagram, 17
of atabular FSM, 15
of Argos, 20
of Esterel, 23
of Lustre, 25
problem, 15
continuous function, 4347, 50
as alimit preserver, 44
closure under composition, 44

INDEX

closure under cross product, 45
complete partial orders of, 46
definition, 43
least fixed point of, 48
least upper bound as alimit, 40
least upper bound of a chain,
45
monotonicity of, 44
use in denotationa semantics,
33
control change, 129
Control Change message, 119
convergence, 9
coordination language, 1, 5, 13
COSMOS, 36
Cosserat, L., 4, 139
cost
minimizing, 76-84
of evaluating an output, 76
theoretical maximum, 78
theoretical minimum, 78
counter, 112
Counter block, 114
CPO, see complete partial order
cross product, 45
current,24
cyclic combinational circuits, 37

data bytes, 119
Database block, 114
dataflow
in Lustre, 24
synchronous, see synchronous
data flow
dataflow process network, 27
Davey, B. A., 38, 48, 59, 141
Davis, John, xi
De Michdi, G., 137, 141
de Roever, W. P, 18, 142
deadlock, 28, 107
from unwanted dependencies,
133
definedness, 34
delay
delta, 56
inalatch, 114
indigital circuit simulation, 35
operator in Lustre, 24

148

unpredictable, 3, 36
zero, 2,7, 8, 13, 31, 34-36, 56,
125,132
deltatimesteps, 132
denotational semantics, see
semantics, denotational
dependencies, 136
unwanted, 133
dependency graph, 54, 73-74
definition, 74
design languages, 13
determinism, 2, 8, 9, 31
of SR systems, 131
differentia eguations, 35, 57
digital address book example, 101,
111117, 132
digital circuit simulation, see circuit
simulation, digital
digital circuits, 3
digital signa processing, 5, 27
digital signal processor, 28
digraph, see directed graph
directed graph
acyclic, 84
definition, 73
kernd of, 85
strongly connected, 84, 85
discrete functions
indigital circuit simulation, 35
display, 111
Display block, 117
distributed execution, 135
divide-and-conquer, 54
fixed point algorithm, 71
proof of correctness, 70-72
domain
in Ptolemy, 102
of SR communication
channels, 50
downsampling, 24
DSP, see digital signal processor

edge, 73

Edit key, 111

Editor block, 112, 114
Edwards, Jerry, xiii
Edwards, Lois, xiii
Edwards, Stephen, 57, 141

INDEX

efficiency
execution, 136
of execution scheme, 10
Eichelberger, E. B., 37, 141
embedded systems, 1, 5
em t, 22,104, 105
encapsulation, 131, 133
Engels, Dan, xi
envelope, 122, 129
EnvelopeGen block, 129
Erdem, A. E., 57, 140
Esterd, 14, 17, 21-23, 136-138
and cyclic combinational
circuits, 38
causality in, 38
compiler for, 57
kernd of, 22
reincarnationin, 23
estimation, 135
Evans, Brian, xii
execution
distributed, 135
of SR systems, 9, 131
order of blocks, 10
exit,22
experimenta results, 95-99

factorial function, 32-33
feedback, 2, 34, 35, 37, 107, 117,
125,132
and zero delay, 7
in Kahn Process Networks, 34
in the SR domain, 103
feedback vertex set, 86
FIFO, seefirg-in first-out buffer
filters, time-varying, 121
finite-state machine, 11, 129, 137
definition of, 11-12
describing, 1213
in digital address book, 113
in MIDI synthesizer, 125
rolein asynchronouslogic, 36
state diagram for, 14-17
tabular representation of, 15
first-in first-out buffer, 27, 34, 135,
137
Fitzgerad, F. Scott, 31
fixed point, 8, 38, 4849

approach for SR, 31
as aleast upper bound, 40
computation by Bekit’'s
theorem, 68, 70
computation by
divide-and-conquer,
70-72
computation through iteration,
59-62
computation through
partitioned eva uation,
67-70
computation through
series/paralel
decomposition, 6667
computing, 58-72
definition, 47
equation from SR systems, 50
in denotational semantics, 33
in Kahn Process Networks, 34
in switch-level simulation, 36
meaning of SR system as, 31
semantics, 132
flattening, 10
flow expressions, 24
FM, see frequency modulation
Foch, Ferdinand, 53
foreign functions, 9, 111
formal definition, 3
Frank, Andras, 85, 141
frequency modulation, 117
blocksfor, 129
synthesis of soundswith,
119-123
FSM, seefinite-state machine
function
complete partial order of, 43,
59
continuous, see continuous
function
monotonic, see monotonic
function
output, 12
transition, 12
fundamental frequency, 119

Garey, Michael R., 86, 141
Gauss-Seidel method, 56

INDEX

Genera Multiple-Winner, 36

Gerth, R,, 18, 142

get, 104, 105

Gifford, David, 39, 144

Girault, Alain, xii, 17, 22, 135, 139,
140

go, 105, 107, 109, 113

Gonthier, Georges, 21, 137, 139

Goodwin, Michadl, xii

graph, 73

Guerra, Lisa, xi

Gunter, Carl A., 34, 39, 141

Ha, Soonhoi, 101, 102, 140
Halbwachs, Nicholas, 14, 18, 24,
140, 141
half-step, 119
hardware
cheap, 2,5
custom, 2
faling cost of, 1
Hard, D., 1, 18, 141
harmonics, 119
Hasse diagram, 39, 40
head, 67
inaWTO, 57
optimal choice of, 86-88
height
affect on schedules, 74
asiteration bound, 61
of communication channels, 76
of complete partia order,
59-61, 137
rolein seried/parallel
decomposition, 66
Hein, Piet, 1
heterogeneity, 2, 5
black box approach, 5
in Ptolemy, 101
inSR, 13
of SR blocks, 10
heterogeneous languages, 2628
hierarchy, 10
in Ptolemy, 102
history
in Kahn'sformalism, 34
of asystem, 11
Hopcroft, J.,, 12, 142

150

Huang, Nina, xii
Huizing, C., 18, 142
hypothesis
synchrony, see synchrony
hypothesis
testing for execution, 8

implications, 132—135
importing functions, 9
incomparable, 39
index of modulation, 121
infinite streams, 34
initialization
operator in Lustre, 24
input a phabet, 12
I nSRPor t , 104
instant, 125
absence of an event in, 104
behaviorin, 11
channel vauesin, 103
delay of, 114, 125
execution in, 53
input and output in, 4
least fixed point in, 58
meaning in, 31
monotonic behavior in, 108
multiple evaluation in, 107
multiple evaluationsin, 135
multiplevauesin, 137
of simulated time, 56
samples per, 130
single execution in, 111
terminationin, 22
updating statein, 107
valuesin, 21
inverter, 35
Itcl, 109112, 115, 116, 118, 136,
137
Itcl language, 109
iteration strategy, 64

Johnson, David S,, 86, 141
Jones, Larry G., 57, 142

Kahn Process Networks, 26-27
formal semanticsfor, 34
scheduling, 26

Kahn, Gilles, 26, 27, 34, 142

INDEX

kernel
equivalence to separable
partition, 85
of agraph, 85
of Esterel, 22
keyboard, 111
kitchen sink language, 5
Knaster-Tarski fixed point theorem,
48
known, 104, 105
Kuller, Samit, 87, 142

Lagnier, Fabienne, 14, 141

latch, 38, 112

Latch block, 114

lattice, 48

least fixed point, see fixed point

least upper bound, 39

Lee, Edward, xi

Lee, Edward Ashford, 27-29, 101,
102, 139, 140, 142

limit, 40, 44

linear system, 35

Lipsett, Roger, 5, 57, 132, 137, 142

Logic Synthesis, 136

| oop, 22

LU Decomposition, 35

Lustre, 14, 17, 24-26

MacQueen, David B., 27, 142
makeAbsent , 104, 105
Malik, Sharad, 37, 142, 143
Maraninchi, F., 18, 143
maximum flow, 87
McLennan, Michad J., 109, 143
Mehra, Renu, Xi
messages, MIDI, 119
Messerschmitt, David G., 27, 101,
102, 140, 142
MIDI, 117, 119, 137
data bytesin, 119
messages in, 119
running statusin, 119
status bytesin, 119
MIDI synthesizer example, 101,
117-130, 132
implementation of, 123-130
MIDIlinblock, 125

151

minimum feedback vertex set
problem, 86
Miranker, W., 56, 140
model of computation, 1
multiple, 5
ModeSelect block, 112, 113
modul ating frequency, 121
monotonic function, 31, 38, 43-47
closure under composition, 45
continuity of, 44
definition, 43
evaluating, 136
monotonic multiplexer, 136, 137
monotonicity, 8, 9, 37, 108
in SR domain blocks, 103
Moorby, PhilipR., 57, 137, 144
Moore, F. Richard, 121, 143
Murthy, Praveen, xii
Murthy, Praveen K., 28, 139
Musicd Instrument Digital
Interface, see MIDI

native blocks, 137

Newton's method, 35

Newton, Richard, xi

noise, 3

non-separabl e partition, 77
optimality of, 83-84

non-strict, 117

non-strict block, 107, 109

nondeterminism, 2, 8, 36

note-off, 119

note-on, 119

not hi ng, 22

object code, see OC format

OC format, 14, 17-18

OC format, the, 135

Oliveira, Arlindo, xii

open system, 50

order, 38

oscillation, 35

Qusterhout, J. K., 102, 109, 143
output al phabet, 12

Qut SRPor t , 104

paradox, 131
Parks, Thomas M., 27, 142, 143

INDEX

partial evaluation, 20, 133
partial order relation, 39
partially-ordered set, 39
partition, 67
optimal, 91-92
separable, 69, 80
Pascal, 12
path, 73
pause, 22
Pederson, Donald O., 35, 143
Pilaud, Danid, 17, 24, 135, 140,
141
Pino, Jost Luis, Xii
pitch, 119
pitch whedl, 125
Plaice, J., 24, 140
Pnudi, A., 1, 18, 141, 143
pointed, see complete partid order,
pointed
pointed poset, 41
polyphony, 125
poset, see partialy-ordered set, 39
pre,24
preemption, 138
prefix order, 34
prefixed point, 47
present, 22, 104, 105
Priestley, H. A., 38, 48, 59, 141
process
in a Kahn Process Network, 34
program counter, 137
pt | ang, 104
Ptolemy, 101-111, 117, 132
wormhole, 111

race conditions, 36

Ranjan, Rajeev, Xi

Ratel, Christophe, 14, 141

Raymond, Pascal, 24, 141

reactive, 105

reactive systems, 135
definition, 1
languages for, 13

r ead, 109

real numbers, 134

real-time protocol, 119

recursion, 10, 32-34, 134

Reekie, John, xii

152

reflexive rdation, 39, 42
reincarnation, 23
Reistad, Brian, 39, 144
relaxation, 9, 36
release, 129
resources

bounded, 11, 26
Roads, Curtis, 119, 121, 143
Robert, Francois, 56, 66, 143
Rothstein, Joseph, 119, 144
RS-232 protocol, 119
Runge-KuttaMethod, 35
running status, 119

sampling
operatorsin Lustre, 24
Sarma, Sanjay, Xi
SCC, see strongly connected
component
Schaefer, Carl F, 5, 57, 132, 137,
142
schedule, 53
branch-and-bound algorithm
for computing, 89
calculation of, 54
interpretation of, 75
minimizing cost of, 76-84
syntax of, 74-76
transformations, 92-95
scheduler
for SR domain, 103
in Ptolemy, 102
scheduling, 7295
exact, 95
experimenta results, 95-99
for an SR system, 53
of Kahn Process Networks, 26
of SR systems, 131
of subsystems, 136
run-time, 131
dtatic, 27, 102
sweep heuristic for, 91-92, 95
with less heterogeneity, 136
Schmidt, David A., 34, 144
Scott, Dana, 32, 144
scrolling, 111
SDF, see synchronous data flow

INDEX

Seger, Carl Johan H., 36, 37, 140,
144
salf-reference, 31, 32
semantics
denotationa, 32-34
of programming languages, 31,
32,38
of SR systems, see SR
systems, semantics of
separable partition, 77
definition, 69
equivaenceto kernel, 85
optimality of, 80-82
seria protocol, 119
series/parallel decomposition,
66-67
set up, 105
Shalev, M., 18, 143
Sheffler, Thomas, 36, 140
Shiple, ThomasR., 23, 38, 144
Shiple, Tom, xii
signal ,22
simulation, 2
circuit, 34-39
sinewave, 121, 122
software, 1, 2, 131
synthesis, 3, 135
Sowdll, E. F,, 57, 140
SR domain, 103-111
C++ blocksin, 104-108
foreign blocksin, 111
Itcl blocksin, 109
use for MIDI synthesizer, 123
SR systems, 2
connectivity of, 49
definition, 50
description of, 67
determinism of, 52
evaluating least fixed point of,
58
execution of, 9, 53-99, 134
finding least fixed point of, 53
in Ptolemy, 103
least fixed point of, 50
open, 50
scheduling of, 72-99
semantics of, 8, 49-52, 135,
137

153

unambiguity of, 32
SRitcl Star, 109
stability
finding, 37
of zero-delay circuit, 35
State
asahistory, 11
changing, 104
changing output ports’, 104
diagram, 14, 17, 137
finite, 11, 111
function, next, 15
hierarchical, 20
holding e ements, 37
in counter block, 114
list of, 14
machine, 11, 14, 15, 113, 125,
129
machine, definition, 11
machine, nondeterministic, 36
not basing decisions on, 54
of asystem, 11
of communication channels,
103, 104
of the envelope generator
block, 129
possible, 35
reachable, 38
separating procedure for
updating, 107
set, describing, 12
space exploration, 38
stable, 35, 37
updating, 107
using information for faster
execution, 53
state diagram, 14-17
state machine, see finite-state
machine
state space exploration, 38
status bytes, 119
Stoy, Joseph, 32, 34, 144
Strachey, Christopher, 32, 144
stream
infinitein Kahn Process
Networks, 34
MIDI, 117, 123, 125
strict blocks, 107, 137

INDEX

strong connectivity
breaking, 87-88
strongly connected component
decomposition, 54, 57, 86, 134
definition, 86
rolein optimal schedules, 84
strongly connected graph, 84
Stroustrup, Bjarne, 102, 144
subtractive synthesis, 121
succinctness, 13
Sun workstation, 119, 123
suspend, 22
sustain, 129
Swamy, Gitanjdi, xi
switch-level simulation, 34, 36
synchronization, 3, 135
synchronous data flow, 26-28, 117,
130, 133
compositionality of, 28
deadlock in, 28
domain in Ptolemy, 102
non-compositionality in, 133
use for MIDI synthesizer, 123
synchronous finite-state machine,
11
synchronous languages, 3, 14-26
compilersfor, 10
synchronous systems, 3-5
synchrony, 1, 3-5
synchrony hypothesis, 4, 6, 14, 58,
72,102
SynthControl block, 125
synthesis of software, 3
system analysis, 5, 6
systems
paradoxical, 131
reactive, 13
systems of equations, 8

tail, 67
Tarjan, Robert, 86, 144
Tcl language, 109
ternary simulation, 36, 37
Thomas, Donald E., 57, 137, 144
three-valued logic, 36
tick, 1,7
execution timein, 102
inan SR system, 6

154

sampl es per, 130
tick, 105, 107, 109, 113
time
behavior as afunction of, 35
communication, 5
design, 5
discretization of, 3
divisonintoticks, 1
estimation of execution, 135
evolution of harmonics, 119
execution, 10, 31
experimentally measured, 97
fraction spent on control, 130
inan SR system, 6
linear execution of acyclic
graphs, 86
linear for SCC decomposition,
86
minimizing execution, 58
polynomial for breaking strong
connectivity, 86
schedule running, 53, 54, 102
simulated, 56
synchronous mode! of, 3, 4
to converge, 9
varying behavior, 11
varying envelope, 122
worst-case execution, 72
time-varying filters, 121
Tk toolkit, 109
topologica order, 56
for digital circuit simulation,
35
total order, 39
Touati, Hervé, 23, 38, 144
transition function, 12
transitivereation, 39, 42
trap, 22
Trapezoidal Rule, 35
Turbak, Franklyn, 39, 144
Turing-complete, 27

Ullman, J.,, 12, 142

undefined, 103, 107
inSR, 131
interpretation of bottom, 41
utility of, 8

unknown, 109

INDEX

unpredictable delay, 36

upper bound, 39

upsampling, 24

user interface, 5, 101, 111

Ussery, Cary, 5, 57, 132, 137, 142

vector, 41

verbose descriptions, 13

Verilog, 136, 137
deltatimestepsin, 56

vertex capacities, 87

VHDL, 5, 132, 137
deltatimestepsin, 56

virtual prototype, 111

von der Beeck, Michadl, 20, 145

Wesak Topological Order, 57, 134
when, 24

Winkelmann, F. C., 57, 140
Winskd, G., 34, 39, 67, 75, 145
wormhole, 111, 138

write, 109

WTO, see Weak Topological Order

X-valued simulation, 36, 37

zero delay, 2, 34-36, 125, 132
and feedback, 31
challenges of, 7
indigital circuit simulation, 35
ordering problemswith, 8
paradoxesin, 8, 13

155

Colophon

| typeset thisin Times Roman and Courier using IATEX 2¢ on a Sun
workstation. The figures were done using gpic. The graphs were
done by pstricks macros generated by a Perl script. The block dia-
gramsin Chapter 5 are Postscript generated from Ptolemy.

Thedesignisaresult of thetension between theuniversity’slayout
rulesfor dissertations and my desireto make it readable. Their most
draconian ruleisthat the body must be double-spaced, which would
look fineif | were using atypewriter.

Most people, when first seeing the design of this dissertation, ask
why the columns are so thin. My choice of column width was based
onthetypographically ideal linewidth of sixty-six characters, anum-
ber based on hundreds of years of typographic experience. This ap-
pearsnarrow on | etter-sized paper for twelve point Times Roman be-
cause letter-sized paper, again, was designed for typewriters. Well-
typeset books are either physically smaller or use multiple columns.

Typography is actually quite a bit like engineering. When done
properly, it should go unnoticed.

156

