
An Esterel Compiler for a Synchronous/ReactiveDevelopment SystemStephen Edwards1June 16, 1994
0This material is based upon work supported under a National Science Founda-tion Graduate Research Fellowship. Additional support provided by Interval ResearchCorporation, Digital Equipment Corporation, and the Semiconductor Research Cor-poration under grant number 94{DC{0081email: sedwards@alumni.caltech.edu

AbstractThe objective of this project was to create a di�erent scheme for compilingthe Esterel synchronous reactive programming language [6, 5, 4, 9] which couldhandle larger programs, facilitates debugging, and could be easily retargeted to-ward di�erent architectures. The approach presented here uses an intermediaterepresentation which is somewhere between a high-level reactive language likeEsterel and assembly code for a traditional processor. This is similar to the icformat used in the Esterel V3 compiler [8] and Baker's NDAM[2, 3]. Compila-tion proceeds by translating this into assembly code for a SPARC processor.This di�ers signi�cantly from the scheme used in the V3 compiler, whichderives a single �nite-state machine representing the behavior of the program.The FSM approach o�ers fast executables and exact causality checking, butsu�ers from exponential growth of compile times and object code sizes.This report describes the Esterel language, the intermediate representationused by this new compiler, and how the format is translated into executableSPARC assembly code. Its intended audience are those who wish to understandthe workings of this Esterel compiler and those simply curious about the Esterellanguage.

Contents1 Introduction 41.1 Reactive Systems : 61.2 Synchrony : 61.3 Signals : 71.4 Previous Work : 81.5 An Alternative : 102 The Esterel Language 122.1 Esterel's Model of Time : 122.2 Signals, Sensors, and Variables : : : : : : : : : : : : : : : : : : : 122.3 Occurrences : 132.4 Structure : 142.5 Core Instructions : 142.5.1 Signal : 142.5.2 Var : 152.5.3 Emit : 152.5.4 Halt : 152.5.5 Preemption and Exceptions : : : : : : : : : : : : : : : : : 152.5.6 Conditionals : 162.5.7 Loop : 182.6 Composite Instructions : 182.6.1 await : 182.6.2 do : : :upto : 192.6.3 loop : : : each : 192.6.4 every : : :do : 192.6.5 sustain : 192.7 A Stopwatch Controller in Esterel : : : : : : : : : : : : : : : : : 202.7.1 Signals : 202.7.2 The Start/Stop Button Handler : : : : : : : : : : : : : : 202.7.3 The Lap/Reset Button Handler : : : : : : : : : : : : : : : 202.7.4 The Frozen Display Handler : : : : : : : : : : : : : : : : : 212.7.5 The Counter : 211

3 The Intermediate Representation 233.1 Data Objects : 243.1.1 Signals : 243.1.2 Variables : 243.1.3 Registers : 253.1.4 Exceptions : 253.1.5 Counters : 253.2 Processes : 253.3 Simple Instructions : 263.3.1 Assignment Statments : 263.3.2 Flow-of-Control Statements : : : : : : : : : : : : : : : : : 263.3.3 emit : 273.3.4 exit : 273.3.5 halt : 273.3.6 require : 273.4 The try Instruction : 283.5 Translating Esterel : 294 Execution 324.1 Causal Interleaving : 324.2 Process Routines : 334.3 Processor Registers : 344.4 Simple Instructions : 344.4.1 Assignment Statements : : : : : : : : : : : : : : : : : : : 364.4.2 Flow-of-Control Statements : : : : : : : : : : : : : : : : : 374.4.3 emit : 374.4.4 exit : 374.4.5 halt : 384.4.6 Require : 384.5 The try Instruction : 394.6 Example : 404.7 Outer Loop : 425 Causality 436 Results and Conclusions 466.1 Results for The Esterel V3 Compiler : : : : : : : : : : : : : : : : 466.2 Results for This Compiler : 486.3 Comments : 486.4 Conclusions : 50A Lexical Aspects of Esterel 51B Syntax of Esterel 522

C A Large Example 56C.1 Testing Scheme : 58C.2 The Main Module : 58C.3 The Time Module : 61C.4 The Time Control Module : 66C.5 The Alarm Module : 68C.6 The Alarm Control Module : 71C.7 The Timer Module : 72C.8 The Timer Control Module : 76C.9 The Stopwatch Module : 78C.10 The Stopwatch Control Module : : : : : : : : : : : : : : : : : : : 81Bibliography 83

3

Chapter 1IntroductionThe synchronous, reactive programming language Esterel was devised by Berryand Cosserat [6] to describe controllers for real-time systems. Esterel resemblesmany high-level languages, but incorporates a model of time.This document describes a compiler that translates Esterel into an inter-mediate form which is an assembly language for an ideal synchronous, reactivemachine, and then translates this into SPARC assembly code. This schemeavoids the problems of rapidly-growing object code size and compilation timesin the Esterel V3 compiler supported by CISI Ingenierie [8].Figure 1.1 illustrates where the compiler presented here �ts into the syn-chronous, reactive development environment being developed at the Universityof California, Berkeley. Baker [2] uses a similar intermediate format to de�nea synchronous, reactive subset of the VHDL language, which is compiled intoEsterel and run with the Esterel V3 compiler. In addition, Baker [3] has alsoshown that the intermediate representation can be compiled into �nite statemachines which can then be forwarded to a model checking or language con-tainment veri�cation system for further analysis.In all development systems, the ability to simulate the system under devel-opment is important. Often, this is done exclusively to catch bugs, but it canbe used for other purposes. For example, the mock-up of the digital watch pre-sented in Appendix C could be used to evaluate the user interface of the watch.However, since this is a reactive system, the utility of a simulator would droprapidly if the simulation was too slow.The path used in [2] (S-VHDL ! NDAM ! Esterel) facilitates such simu-lation, but the Esterel compiler used in that study can have prohibitively longcompilation times and large executables. The compiler presented here compilesquickly and produces a fast, small executable.This document is arranged in roughly the order in which the compiler per-forms its tasks. Chapter 2 presents the Esterel language in some detail. Chap-ter 3 contains a description of the representation used as an intermediate be-4

EsterelIntermediateRepresentationExecutableAssembly Code
SynchronousSubset ofVHDL

Esterel
SynchronousVeri�cationVHDL

FiniteStateMachinesModel Checking orLanguageContainment
Described in [2] This Report Described in [3]

Figure 1.1: Where this compiler �ts in the synchronous/reactive environment.
5

tween Esterel source and assembly code. Chapter 4 discusses the issues in therun-time system. Chapter 5 discusses the important notion of causality in Es-terel. Finally, Chapter 6 presents some experimental results and raises somequestions about the language. Appendices A and B describe the lexical as-pects of Estereland a BNF grammar. Appendix C describes a large Esterelprogram|a digital watch with �ve functions.1.1 Reactive SystemsReactive systems respond continuously to their environment at a speed deter-mined by their environment. These di�er from transformational systems whichhave all input available at the beginning of execution and produce all outputby the end. Between these two extremes are interactive systems, which alsorespond to their environment continuously, but do so at the system's rate, notthe environment's.The C programming language is well-suited to constructing transformationalsystems. The event model employed in the X Window System supports inter-active systems. Neither of these, however, directly supports the strict timerequirements imposed by reactive systems.Many embedded systems are required to be reactive. For example, an anti-lock braking system in a modern automobile would be of little use if it requiredanywhere between a second and a minute to detect and react to a wheel skidding.An elevator controller which occasionally ignores a
oor request would quicklyannoy its users.1.2 SynchronyTo support reactive programming, Esterel adopts the strong synchrony model:1The program reacts instantly to external events. Most instructionstake no time, including control structures. Instructions which dotake time, such as delay instructions, do so explicitly.Adopting this model leads to time being treated as a sequence of discreteinstants between which nothing of interest happens. Events, such as a but-ton being depressed, happen in a particular instant. In the same instant, theprogram computes and presents its reaction to the event.This leads to a straightforward notion of concurrency. When two eventsoccur, either they occur in exactly the same instant (are concurrent), or indi�erent instants.1called the strong synchrony hypothesis elsewhere6

timeACD ABEF ACDE BCFinputeventsoutputeventsinstant module simple:input A, B, C;output D, E, F;loopawait A ; emit D ; await Aend||every B doemit Fend||await B ; emit E ; await C ; emit E.Figure 1.2: Esterel's model of time.Presented the input events shown above the time line, the Esterel programshown produces the events listed below the time line.Figure 1.2 on page 7 illustrates these concepts. An instant is denoted by avertical tick on the time line. The input events for that instant are listed abovethis and the events these produce are shown below.Real machines are not, of course, in�nitely fast. But if the machine alwayshas enough time to compute its reaction before the next event arrives, then theperfect synchrony model is satis�ed.1.3 SignalsA signal is a channel on which events occur. For example, a digital stopwatchwith a button labeled start/stop might have an input signal called START/STOPwhich has an event each time the button is pressed. It might also employsignals called SECOND and MINUTE which have events every second and minute7

respectively. It would be natural to synchronize these so that an event on MINUTEoccured every sixty seconds. Such synchronization can be speci�ed exactly inEsterel:every 60 SECOND doemit MINUTEendEsterel supports two types of signal. A pure signal is only ever presentor absent. A valued signal is either absent, or present with some value. Forexample, in an elevator controller, there might be a pure signal DOORCLOSEDindicating that the door has closed, and a valued signal called FLOOR indicatingon which
oor the car has just arrived.1.4 Previous WorkBerry and Cosserat, the designers of Esterel, write [6]The goal of the ESTEREL project is to develop a real-time lan-guage based on a rigorous formal model, and actually to developsimultaneously the language, its semantics and its implementation.They give the semantics [6] through a set of rewrite rules. These take anEsterel program, a set of input events, and a memory state to produce a set ofoutput events, a new memory state, and a new Esterel program which does inits �rst instant what the old program would do in its second instant.With a program to perform such a rewrite (originally implemented in aLISP-like language), it is a straightforward task to build an interpreter, albeita slow one.Shortly after the interpreter was developed, it was discovered that the rulescould also produce an Esterel compiler. Because Esterel has no dynamic dataallocation (in particular it contains no recursion), every Esterel program can betreated as a �nite-state machine. This is made easier when the data portion(separate from the signal portion) is abstracted away.To compile an Esterel program, an FSM is formed whose states are labeledwith complete Esterel programs and whose transitions are labeled with sets ofinput events. The reset state is labeled with the program to be compiled. Therewrite rules are applied to this program to �nd the program which resultsfrom every possible set of input events. Each of these is a potential new state,which is then rewritten with every possible set of input events which may formnew states. This process continues until all states, when rewritten with everypossible set of input signals, take transitions to other established states. Whenthis process is completed, the state labels can be discarded. At each step, in8

e�ect, the derivative of the state machine with respect to some input symbolsis taken[7].To keep the number of states within reason, all data-dependent actions aretreated separately. When a transition (the execution of a program in an instant)a�ects memory, perhaps by evaluating an expression, the transition is labeledwith that expression. At run-time, the expression is evaluated and the resultstored when that transition is taken.Data-dependent conditional statements (i.e., if statements) complicate things.Every time an if statement is encountered in a transition, it e�ectively splitsthat transition into two branches. At run-time, the if condition is tested andthe appropriate branch is taken. Each if statement can, at worst, double thesize of the state machine.This compilation scheme was used in an earlier Esterel compiler. The latest,the Esterel V3 compiler currently supported by CISI INGENIERIE [8] takesa similar approach: it translates the pure Esterel source into an intermediaterepresentation (called ic) which is then used to form an FSM (represented inthe oc �le format) which captures all behavior of the program.This approach has nice theoretical properties, but has a few shortcomings.In particular, the number of states is potentially exponential in the size of theprogram, and compilation (i.e., determining the FSM) takes time proportionalto the product of the number of states and the number of possible input signalcombinations, which is potentially exponential in the number of input signals.For an example of how bad this can be, see Table 6.1 on page 47.To partially alleviate the explosion in the number of input signal combina-tions, the keyword relation was included, which allows the programmer toreduce the number of possible input combinations by placing constraints oninput signals. For example, signals can be marked as mutually exclusive.The FSM approach allows for the possibility of many instructions beingcompiled away so that they take no time during execution, leading to a programwith a constant response time. Manipulation of pure internal signals can betreated in this manner, but data manipulation cannot, making truly constantresponse time unlikely.The main advantage of compiling Esterel source into an FSM is that itensures the program is causal and actually makes sense as a speci�cation. It iscomparatively easy in Esterel to specify a program which is a paradox, usuallyof the form \if this happened, then it did not." If a FSM can be found, thenthe program is guaranteed, at least, to run. For further discussion of this, seeChapter 5.The V3 compiler attempts to address the problems of large programs withthe -cascade option, but this is limited to cases where the program can bebroken up into modules which have no feedback, i.e., there exists an ordering ofthe modules where module i only depends on the actions of modules 0; : : : ; i�1.However, the correctness of this decomposition is only ensured if the programcan be compiled without the option, which can be simply impossible due to9

memory/disk space constraints.The other problem with the FSM approach is debugging. Since a particularEsterel instruction does not usually map directly to a speci�c section of codein the executable, it's di�cult to say which instructions were executed. Inparticular, \single-stepping" is not practical.1.5 An AlternativeThe approach to compiling Esterel presented here is far more traditional. Thescheme �rst mechanically translates the source text into an intermediate rep-resentation similar to three-address code used in modern optimizing compilers,then translates the intermediate representation directly into assembly code for aprocessor. Currently, this compiler produces code for the SPARC environment.This target was chosen mostly out of convenience|the compiler could easily beadapted to another assembly language, or to produce C code.Calculating the response for each instant is performed as a �xed-point com-putation, e�ectively breaking each instant into a series of steps, as shown inFigure 1.3 on page 11. The compiler produces a routine which, when called,takes one of these steps. This is called by a common outer loop which han-dles signals from the environment and a few housekeeping chores. The issue ofconvergence is subtle, but in practice the number of iterations required is small(< 20) and fairly constant during the execution of a program.This compilation approach works well with larger programs. The e�ortrequired by the compiler, the size of the executable, and its execution time areall approximately linear in the size of the original Esterel source. This advantagebecomes very clear for large programs, where there can be over two orders ofmagnitude di�erence in times/sizes compared to the V3 compiler (see Table 6.2on page 47).Another advantage to this approach is that it is more easily debugged. Sincemost instructions in the source program have a direct manifestation in the �nalexecutable, stepping through the program and observing the e�ects of eachinstruction is feasible.Finally, a slight variant of the intermediate representation used here hasbeen used to compile a synchronous, reactive subset of VHDL (see [2, 3]). Thissuggests that a more general synchronous-reactive compiler could be built byadding additional front ends which use the same intermediate representation.10

AC AB AC BCD EF DE FFigure 1.3: Computing the reaction of an Esterel program.As in Figure 1.2, the input events are shown above the time line. The programcomputes its reaction in a series of steps following each instant. As long asthese steps are completed before the next instant, the perfect synchrony modelis satis�ed.A programmer need not and should not consider this|the program will behaveas if the signals appear as shown in Figure 1.2.
11

Chapter 2The Esterel LanguageEsterel is a block-structured textual language with a syntax similar to manyhigh-level languages. It has nested if-then-else statements, loops, and the fa-miliar in�x expression syntax. It also has constructs for parallel execution,preemption, and exception handling.Esterel's semantics are de�ned by a set of core instructions. The remaininginstructions are convenient shorthands for combinations of these. This schemeis attractive because it simpli�es formal treatments of the language, yet allowsa programmer to write programs whose behavior is much clearer to the humanreader.2.1 Esterel's Model of TimeEsterel's model of time is fundamental to the de�nition of the language. Asdescribed earlier, Esterel invokes the strong synchrony model and assumes theprogram reacts instantly to stimulus. In this framework, the execution of theprogram is divided up into discrete instants. In each instant, some set of inputevents is presented and the program computes a set of output events.2.2 Signals, Sensors, and VariablesA signal is a broadcast channel for events. Esterel supports two varieties� Pure signals are either present or absent in an instant, but never both.� Valued signals are pure signals with an associated value which only changeson event boundaries, but may be read at any time. The ? operator returnsthe value of a signal in an expression. For example, ?A refers to the valueof signal A. 12

Sensors are used to represent continuously-varying environmental inputs.Their values are read in the same manner as valued signals, but there is neveran event on a sensor, even when the value changes. Sensors may only be inputsfrom the environment.Esterel has local variables, but no global variables. These may take booleanor integer values.1 The value of a variable is set by assignment, and may betested by an if-then construct.Signals are used copiously throughout Esterel programs, both for commu-nication with the environment and for internal communication. For most ap-plications, signals are preferred over variables because of their synchronizingability|and instruction which requires the value of a signal is suspended untilthe signal has been emitted by another part of the program. Shared variables(written in one part of the program, read in another section executing in parallelin the same instant) are not guaranteed to contain the correct values.2.3 OccurrencesAn occurrence describes an instant (the instant in which the occurrence is said toelapse) in terms of one or more signal events. Occurrences are used throughoutEsterel for synchronization between signals and instructions. For example, theawait instruction, which simply delays until its occurrence has elapsed, providesa simple form of synchronization.Occurrences take one of three forms:� SimpleThe occurrence elapses in the instant the given signal has an event, ex-cluding any in the current instant.� ImmediateThe occurrence elapses in the instant the given signal has an event, in-cluding any in the current instant.� CountedThe occurrence elapses in the same instant as the nth event on the givensignal, excluding any in the current instant.The three types of occurrences are depicted in Figure 2.1.1The Esterel V3 compiler supports the importation of variables with more complex typesfrom a host language (such as C), which may be used as arguments to functions from thatlanguage. The compiler described herein does not support this.13

Aimmediate Aelapses(Immediate) AAelapses(Simple) A A3 Aelapses(Counted)Occurrences started here Figure 2.1: Illustration of the three types of occurrences.2.4 StructureAn Esterel program is broken into a number of modules that execute in parallel.Each module de�nition contains an interface portion and a body composed ofinstructions.Instructions may be composed in sequence or in parallel. Any instructionmay be such a composition.� i1 ; i2 ; � � � ; inInstructions in a semicolon-delimited sequence are executed in order. First,i1 is executed. When i1 terminates, i2 is executed, and so on. When interminates, the sequence itself terminates.These instructions may terminate instantly, leading to an ordering of in-structions within an instant. However, something like emit A ; emit B isequivalent to emit B ; emit A since there is no ordering of events withinan instant.� i1 || i2 || � � � || inInstructions delimited by double vertical bars are executed in parallel. i1through in are executed immediately. When all instructions have termi-nated, then the parallel construct terminates.2.5 Core Instructions2.5.1 SignalA local signal s is introduced an instruction i by the following constructsignal s iniendThe signal s can only be used within the instruction i (which may be acomposition of instructions), and is not visible outside of the signal construct.14

2.5.2 VarA local variable v with type t (integer or boolean) is introduced into aninstruction i with var v : t iniendAn initializing expression e may be included. This is evaluated when thevar construct is �rst entered.var v := e : t iniendLike the signal construct, the variable v can only be used within the in-struction i, and is not visible elsewhere.2.5.3 EmitThe emit instruction places an event on a signal s in the current instant andterminates instantly. emit sIf the signal s is valued, then the emit instruction includes an expressionwhich is also evaluated instantly.emit s(e)2.5.4 HaltThe halt instruction does nothing and never terminates. This is the fundamen-tal time consumer in Esterel. It appears in many composite instructions, oftenin situations where it can be preempted.2.5.5 Preemption and ExceptionsThe core preemption construct takes the formdoi1watching otimeout i2 end15

The instruction i1 is executed while occurrence o is watched. If i1 terminatesbefore o elapses, then the whole do construct terminates. If o does elapse, i1is terminated before it has a chance to execute for that the instant and i2 isexecuted.Esterel's exception construct istrap E ini1handle E do i2endThe instruction i1, which somewhere contains the instruction exit E, isexecuted while exception E is watched. If i1 terminates without E being raisedby the exit instruction, then the trap construct terminates. If i1 raises E, theni1 is terminated and i2 is executed. However, when E is raised, i1 is allowed to�nish for the instant.Figure 2.2 on page 17 illustrates the di�erences between do and trap. Itemploys the composite instruction await o which is a shorthand for do haltwatching o, which simply waits for the given occurrence to elapse before ter-minating.An exception may be given a value that can be read within the instructioni2 with the ?? operator. For example, ??F refers to the value of exception F,given by the expression e in exit F(e).2.5.6 ConditionalsThe if statement in Esterel has the familiar formif e then i1else i2endThe boolean expression e is evaluated instantly. If true, then instruction i1is executed, otherwise, i2 is executed.The other conditional statement in Esterel checks for the presence of a signal.present s then i1else i2endHere, instruction i1 is executed if signal s is present in the current instant.Otherwise, i2 is executed.For both conditional statements, either the then i1 or the else i2 clausemay be omitted. 16

doawait A ; emit B ; haltwatching C ACdo entered,A, C ignored ABB emitted Cdo terminatedAdo entered,A ignored ACdo terminated,B not emittedtrap E inawait A ; emit B ; halt||await C ; exit Eend ACtrap entered,A, C ignored ABB emitted Ctrap terminatedAtrap entered,A ignored ACBB emitted,trap terminateddoawait immediate A ; emit B ; haltwatching immediate C ACdo entered and terminated,A ignoredAdo entered,B emitted ACdo terminatedFigure 2.2: An illustration of the di�erences between do and trap and the e�ectof the immediate keyword.On the left are the responses of the fragments on the right to two di�erentsequences of input events. 17

2.5.7 LoopEsterel includes an in�nite loop instruction:loopiendThis executes the instruction i, waits for it to �nish, and executes it again.True in�nite loops are often desired in controllers, but when necessary, thesecan be terminated through preemption or an exception. It is an error for theinstruction i to take no time. For example, loop emit S end. This correspondsto the program doing an in�nite amount of work in zero time.2.6 Composite Instructions2.6.1 awaitThe await instruction is one of the most common. It waits for its occurrenceto elapse and then terminates.await o translates to dohaltwatching oawait also comes in the following elaborate form:awaitcase o1 do i1case o2 do i2...case on do inendThis waits for one of the occurrences o1; : : : ; on to elapse, say oj . Then,instruction ij is executed and the await terminates. If two occurrences elapsein the same instant, the one listed �rst takes precedence.This can be built using preemption and exceptions:awaitcase o1 do i1case o2 do i2end translates to trap E1 intrap E2 indo halt watching o1timeout exit E1 end||do halt watching o2timeout exit E2 endhandle E2 do i2 endhandle E1 do i1 end18

2.6.2 do : : :uptodoiupto o translates to doi ; haltwatching oIn e�ect, this forces the duration of instruction i to be exactly the length ofoccurrence o, terminating i early if it does not �nish before o elapses.2.6.3 loop : : :eachThis modi�cation of the loop instruction restarts itself whenever its occurrenceelapses: loopieach o translates to loopdoi ; haltwatching oend2.6.4 every : : :doThis repeatedly synchronizes its instruction with its occurrence:every o doiend translates to await oloopdoi ; haltwatching oend2.6.5 sustainAlthough signals are often thought of as events, the sustain instruction allowsthem to be used as
ags. It uses a special signal, TICK, which is present inevery instant by de�nition. Thus, sustain forces another signal to be presentin every instant.Typically, sustain is used with a do or a trap that de�nes the length oftime that it is executing, and hence, the length of time that its
ag is asserted.sustain s translates to every TICK doemit send19

2.7 A Stopwatch Controller in EsterelFigure 2.3 on page 22 depicts a simple stopwatch controller illustrating manycommon characteristics of Esterel programs. The module consists of four (elab-orate) instructions running in parallel, each responsible for some part of thestopwatch. All communication, both with the outside world and between di�er-ent parts of the program, is done through signals. Preemption and exceptionsare used liberally.2.7.1 SignalsA typical digital stopwatch has two buttons marked start/stop and lap/reset,here conveyed through the SS and LR input signals respectively. SECOND is aperiodic signal assumed to be generated by an external oscillator once a second.When in lap mode, the stopwatch continues to measure time, but the displaydoes not change. The FROZEN output is present when the display is in this mode.The integer-valued output TIME is the value for the display, and does not changewhen the stopwatch is lap mode.The internal signal RESET resets the counter. LAP indicates a switch betweenlap and normal mode. RUN is used as a
ag to indicate that the stopwatch isrunning, and is present in every such instant.2.7.2 The Start/Stop Button HandlerThe �rst process is responsible for the action of the start/stop button, which isa simple toggle. When the stopwatch is running, the RUN signal present in everyinstant, which is enforced by the sustain instruction.This illustrates how simply state information can be incorporated into Es-terel code. Here, there are two states: one which waits for SS, and one whichsustains the RUN signal until the next SS signal.2.7.3 The Lap/Reset Button HandlerThe second process is responsible for decoding the action of the lap/reset button.When lap/reset is pressed and the the stopwatch is running, the stopwatchswitches into or out of lap mode. If the stopwatch is not running and not inlap mode, then the action is to reset. The every construct ensures that theseactions are taken exactly when the lap/reset button is pressed.This behavior could be described by the following boolean equationsLAP = B2 � RUNRESET = B2 � RUN � FROZEN20

Esterel's representation is more
exible than this. Currently this processcontains no state information, but in Esterel, it can be added without a signi�-cant change to the code. The precedence of the operations is made explicit bythe familiar form of the present instruction.2.7.4 The Frozen Display HandlerThe third process keeps track of the lap mode and generates the FROZEN signalaccordingly. Similar to the �rst process, it implements a toggle which sustainsthe FROZEN signal after an odd number of LAP events.This uses the trap construct to ensure that FROZEN is sustained up to andincluding the instant LAP appears. This is in contrast with the �rst processwhich does not emit RUN when the start/stop button is pressed the second time.2.7.5 The CounterThe fourth process, the counter, illustrates the use of a local variable and howthe explicit initialization feature can be used. By enclosing the var declarationand its initialization expression in a loop: : :upto preemption construct, thereset behavior is automatic and straightforward. The way to think about it isthis: A counter is something that starts at zero and goes up every second thatthe stopwatch is running. If the display is not frozen, then this count should bebroadcast to the display. After every reset, this process is restarted.
21

module STOPWATCH:input SS, LR, SECOND;output TIME(integer);signal RESET, LAP, RUN, FROZEN in% Start/Stop Button Handlerloopawait SS;dosustain RUNupto SSend||% Lap/Reset Button Handlerevery LR dopresent RUN then emit LAPelse present FROZENelse emit RESETendendend||

% Frozen Display Handlerloopawait LAP ;trap T insustain FROZEN||await LAP ; exit Tendend||% Counterloopvar second := 0 : integer inemit TIME(second) ;every SECOND dopresent RUN thensecond := second + 1end ;present FROZEN elseemit TIME(second)endendendupto RESETend.Figure 2.3: A stopwatch controller written in Esterel.22

Chapter 3The IntermediateRepresentationLike many compilers, this compiler translates source code into an intermediaterepresentation before generating assembly language for the target processor.The intermediate representation used here was chosen using the following crite-ria:� Completeness|Every construct in Esterel must have a correct translationinto the intermediate representation. In particular, it must support theparallel execution and preemption semantics of Esterel.� Generality|A similar representation has been used in a compilation schemefor a synchronous subset of VHDL [2, 3]. Mimicking this work ensures thatthis intermediate representation could be used in other situations, allowingthe reuse of the code generator.� Simplicity|Keeping the intermediate representation as simple as possiblesimpli�es the �nal code generation phase and makes optimization mucheasier.The result of balancing these sometimes con
icting requirements is presentedbelow. The intermediate representation chosen is very close to the three-addresscode used in modern optimizing compilers [1]. All but one of the instructions are\simple" in some sense|they translate into only a few assembly-language in-structions. The remaining instruction, try, is responsible for parallel executionand preemption and is really the workhorse of the language.The notion of time employed in the intermediate representation is the samesynchronous/reactive one used by Esterel. Only the halt instruction takes anytime|the rest happen instantly, but in an order.23

The following presentation introduces an informal syntax which correspondsdirectly with the data structures used inside the compiler1. This syntax isintended to be illustrative rather than machine-readable, although the compilercan produce it.3.1 Data ObjectsUnlike a typical assembly language, the intermediate representation manipu-lates objects at a higher level than memory and registers. In particular, valuedand pure signals identical to Esterel's are included, as well as valued and pureexceptions.All objects in the intermediate representation are globally accessible|thecorrect scoping is imposed by the structure of the Esterel program.3.1.1 Signalss0, s1, s2, : : :The intermediate representation deals with both pure and valued (with aninteger value) signals. At any time during the execution of the program, eachsignal is in one of the following three states:� present: The signal is present in the current instant.� absent: The signal is absent in the current instant.� unknown: The presence or absence of the signal in the current instant isunknown.All the signals used in the program are listed in the Signals block. Each islisted along with its name from the Esterel program, and its type. For example,s1: RING speci�es that pure signal s1 represents the signal called RING in theEsterel source program. s5: A(int) indicates that signal A in the Esterelsource has been assigned to signal s5.3.1.2 Variablesv0, v1, v2, : : :Variables take integer values. Esterel's booleans are implemented using theinteger values 1 and 0 for true and false respectively. Variable are listed in theLocal Variables block along with their names from the Esterel program. Notype is speci�ed|all are integers.1Processes are classes with variable-sized arrays of instruction objects, an integer denotingthe process's number, and an integer denoting its program counter. Each instruction is asubclass of a general instruction class. For example, the try class contains an array of point-ers to the subprocesses it calls, an array of watch clauses, and an array of handle clauses.Information about data objects is also stored in arrays.24

3.1.3 Registersr0, r1, r2, : : :Like variables, these take integer values, but their values are only guaranteedto persist until the next non-assignment statement. Registers are used primarilyto store intermediate results in evaluating expressions.3.1.4 Exceptionse0, e1, e2, : : :The intermediate representation contains both pure and valued exceptions.At any time during execution, each exception is either� raised: An exit statement has raised the exception� lowered: The exception is being observed, but no corresponding exithas been executed.Like signals, each exception is listed in the Exceptions block along with an(int) designation when the exception is valued, and its name from the Esterelprogram.3.1.5 Countersc0, c1, c2, : : :Counters are used in the intermediate representation to keep track of thenumber of events that have been observed on a particular signal in a countedoccurrence. Like signals, each counter is listed along with its name (the nameof the signal being counted in that occurrence) in the Counters block.3.2 ProcessesThe program of the intermediate format is build from a hierarchically-arrangedgroup of processes|sequences of instructions. A single process behaves like aprogram on a standard processor|each has a program counter pointing to theinstruction currently being executed. Once that instruction has been executed,the program counter is moved to the next instruction to be executed (usuallythe next in the sequence, but branches are allowed) and execution continues.Each instruction in a process is assigned a small integer label used for branchtargets.Execution of a process may not \fall o� the end." The last instruction ofa process is a halt, which makes the process's execution cease but does notterminate it, an exit which terminates the process, or an unconditional goto.Each process is introduced with a line giving its unique name (P0, P1, etc.)and which program counter it uses, e.g., PC1, PC5, etc. Each instruction in25

a process is given an index. (0:, 1:, etc.) These labels are used as branchdestinations and simpli�es correlating assembly language instructions with thosein the intermediate format.3.3 Simple Instructions3.3.1 Assignment StatmentsThe intermediate representation has one all-encompassing assignment statementwhich handles most data manipulation. It may have two or three arguments,each of which may be one of the data objects described above or a constantinteger. Many combinations of these are unused|for example, the destinationof an assignment may not be constant, and only the simple assignment form isallowed to have non-register operands. These policies of use were imposed tosimplify the translation of these instructions into assembly code for the SPARCRISC processor, and would simplify the translation for other processors.� d := sSimple assignment. The value of the source is written into the destination.� d := op sUnary operation. The operator is applied to the value of the source andthe result written into the destination. The unary operators are integernegate, binary NOT, and decrement.� d := s1 op s2Binary operation. The operator is applied to the values of the two sourcesand the result written into the destination. The binary operators areinteger add, subtract, multiply, divide, and modulus, binary AND andOR, integer equality, integer less than, and integer less than or equal to.When a signal or exception is referenced, the value returned is the value ofthe signal in the current instant, and not presence/absence or raised/loweredinformation. For such accesses to be legal, the presence/absence of a signal mustbe established in an instant or the raised status of an exception must be known,either from context (The code run by a handle clause of a try obviously knowsthat the exception has been raised.) or through force (The require statementensures that the value of a signal is known correctly.).3.3.2 Flow-of-Control StatementsThe intermediate representation has a general branch instruction which eitherunconditionally branches to an instruction, checks for the zero/non-zero status26

of a register or variable, the presence/absence of a signal, or the raised/loweredstatus of an exception. It takes the following formsgoto l Unconditional branch to instruction lif s goto l If status of s is \true," branch to instruction lif not s goto l If status of s is \false," branch to instruction l3.3.3 emitThe emit statement is very similar to its Esterel counterpart. It makes thegiven signal present in the current instant, and may set its value, if any. Thetwo forms areemit s Emit the signal semit s r Emit the signal s setting its value to register r3.3.4 exitThe exit statement, like its Esterel counterpart, can raise an exception and setits value. In the intermediate representation, it also serve to terminate a process(In Esterel, this action was implicit.) The three forms areexit Terminate the processexit e Terminate the process and raise exception eexit e r Terminate the process and raise exception e,assigning it the value in register r.3.3.5 haltThe halt statment, like its Esterel counterpart, prevents further execution ofthe process, but does not allow it to terminate. This is the only mechanism inthe intermediate representation which consumes time. Between instants, eachactive process is either stopped at a halt or waiting on a halted subprocess.3.3.6 requirerequire s1 s2 : : : skWhen the value of a signal is needed to evaluate an expression, the newestvalue of that signal is needed. Similarly, a conditional branch which depends onthe presence or absence of a signal must know whether the signal is present orabsent in an instant before proceeding. The require instruction ensures thatthe named signals are known before execution may proceed.27

3.4 The try InstructionThe try instruction is responsible for parallel execution of processes and bothkinds of preemption (signal- and exception-prompted). Its most general form istrycall p1call p2...call pnwatching s1 c1 goto wl1watching s2 c2 goto wl2...watching sm cm goto wlmhandle e1 goto el1handle e2 goto el2...handle ep goto elpThis calls subprocesses p1 through pn while monitoring signals s1 throughsm and exceptions e1 through ep. If one of these signals is present or an ex-ception is raised, then the subprocesses are terminated and the handler pointedto by the goto is executed, otherwise the instruction terminates when all of itssubprocesses have.More speci�cally, if exception ei is raised and exceptions e1 through ei�1are not, then the subprocesses are terminated after they have completed for theinstant and execution proceeds with instruction eli. If signal si is present, thencounter ci is decremented. If counter ci becomes zero and counters c1 throughci�1 are non-zero, then the subprocesses are terminated and execution proceedswith instruction wli. The signals are checked before any subprocesses executein every instant except the �rst in which the try is executed.The semantics of this instruction were chosen to capture Esterel's most di�-cult instruction, await: : :case. This can have a mixture of counted, uncounted,and immediate occurrences. Counters were introduced to handle the countedoccurrences. Another approach would have been to introduce a separate pro-cess to count the signals. However, since the semantics require that when apreempting signal occurs, none of the processes will be executed in that instant,it was not clear how to do this.In a previous version of this compiler, there were two varieties of the tryinstruction, one that dealt only with signals, and one that dealt only with ex-ceptions. All instructions in Esterel can be represented by a nesting of suchconstructs, but since much of the code was the same (program counter ini-28

tialization, subprocess calling, potential set calculation, and so forth), the twovarieties were merged.3.5 Translating EsterelThe translation of a small Esterel program into the intermediate format is shownin Figure 3.1 on page 30. The await A instruction turns into a try which callsa process containing a single halt while watching the awaited signal. Thepresent instruction, since it needs to know about a signal to correctly checkits condition, is composed of a require statement followed by a conditionalbranch.In this simple example, there are three expressions: \3" in the initializationof variable C, \C + 3" in the �rst emit, and \C - 2" in the second. These ex-pressions produce code in a RISC-like load-store manner. Values which residein \memory" (i.e., non-registers) are loaded into registers before being manipu-lated.A more elaborate program and its translation are shown in Figure 3.2 onpage 31. This example contains an await: : :case statement, which is the mostcomplex in Esterel, employing the three types of occurrences (simple, counted,and immediate). The counted occurrence requires a counter to be loaded withthe iteration count before the try instruction is entered (instructions 2 and 3of process P0). The immediate occurrence is similar to a simple occurrence,but the presence of the signal is checked before the try instruction is entered(instructions 0 and 1 of process P0).This example also illustrates the use of an exception. The statements whichare observed for the exception are placed in a separate process (P3) and run bya try (instruction 14 of process P0) with a handle clause.The value of signal B is read by the ? operator in the exit instruction.The exit instruction (instruction 5 of process P3) raises the exception and setsits value to the contents of register r0 which contains the value of signal s2.Note that this signal was required (in instruction 3) before the expression wasevaluated. The value of the exception is loaded in the handler routine andemitted through signal F (instructions 12 and 13 of process P0).
29

module example1:input A,D;output B(integer);loopvar C := 3 : integer inawait A ;present D thenemit B(C+3)elseemit B(C-2)endendend.
Local variablesv0: CSignals 4(1 valued)s0: TICKs1: As2: Ds3: B(int)Process P0 uses PC00: r0 := 31: v0 := r02: trycall P1watching s1 goto 33: require s24: if not s2 goto 105: r0 := v06: r1 := 37: r0 := r0 + r18: emit s3 r09: goto 1410: r0 := v011: r1 := 212: r0 := r0 - r113: emit s3 r014: goto 0Process P1 of process P0 uses PC10: haltFigure 3.1: A small example and its translation into the intermediate format.The local variables and signals are listed above the processes. Each instructionin each process is labeled with a small integer, and each process is introducedwith a name and which program counter it uses.30

module example2:input A, B(integer), C;output D, E, F(integer);awaitcase A do emit Dcase 3 B doemit E ;await A ;emit Dcase immediate C doemit F(0)end;trap e(integer) inloopawait A ;present B thenexit e(?B)endendhandle e doemit F(??e)end.

Signals 7 (2 valued)s0: TICKs1: A s2: B(int) s3: Cs4: D s5: E s6: F(int)Counters 1c0: BExceptions 1 (1 valued)e0: e(int)Process P0 uses PC00: require s31: if s3 goto 122: r0 := 33: c0 := r04: trycall P1watching s1 goto 6watching s2 c0 goto 8watching s3 goto 125: goto 146: emit s47: goto 148: emit s59: trycall P2watching s1 goto 1010: emit s411: goto 1412: r0 := 013: emit s6 r014: trycall P3handle e0 goto 1615: goto 1816: r0 := e017: emit s6 r018: exitProcess P1 of process P0 uses PC10: haltProcess P2 of process P0 uses PC10: haltProcess P3 of process P0 uses PC10: trycall P4watching s1 goto 11: require s22: if not s2 goto 73: require s24: r0 := s25: exit e0 r06: goto 0Process P4 of process P3 uses PC20: haltFigure 3.2: A further example illustrating the translation from Esterel into theintermediate format. 31

Chapter 4ExecutionThe intermediate format has been chosen so that virtually all instructions areeasy to execute on a traditional processor. This compiler generates code for theSPARC architecture, although it could easily be retargeted to another. Arith-metic instructions translate, for the most part, into single assembly languageinstructions. emit simply stores a value in an array in memory, and a condi-tional branch consists of a test followed by an assembly-language branch.The di�cult part of executing the intermediate format (and hence, Esterel)is ensuring that the correct instructions execute in each instant in the rightorder. For example, the subprocesses of a try must not be executed if any ofthe watched signals are present in that instant. Also, if an expression reads thevalue of a signal, and if some other part of the program is going to emit thatsignal, the expression should get the new value, and not the old.4.1 Causal InterleavingThe approach taken here turns the execution of the intermediate format into a�xed-point computation on the set of signals, both internal and external. Thecode generator produces a routine, hereafter referred to as the main process rou-tine, that takes incomplete information about the presence or absence of signalsand emits what signals it can, changing program counters, variables, counters,exceptions, and so forth in the process. Execution for each instant consists set-ting all signals except those global inputs that are known to be present or absentto unknown, and calling the routine repeatedly until the presence or absence ofeach signal is known.There is no instruction in the intermediate representation that \unemits" asignal, so something else must establish the absence of a signal. A conservativerule is used to decide which signals are absent:32

If an internal or output signal could not be emitted in the currentinstant, then is marked as absent.Much of the code produced is responsible for establishing which signals couldstill be emitted in the current instant. In particular, when the main process hasexecuted what it can using the information it has, it returns the address of aroutine that marks all the signals that still have the potential to be emitted inthe current instant. The outer loop then marks all unknown signals which arenot in this potential set as absent.This technique causes the set of present and absent signals to grow mono-tonically and the set of unknown signals to shrink monotonically since oncea signal is marked as present, it cannot be marked as absent (only unknownsignals are marked as absent), and once it is marked as absent, it could notthereafter be emitted since all signals that could possibly be emitted are placedin the potential set.4.2 Process RoutinesEach process in the the intermediate representation is translated into a sequenceof assembly-language instructions, which compose its process routine.Each process routine, when called, executes as many instructions as it can,depending on the state of various signals, and returns with� A program counter that points to the instruction to be executed the nexttime the process routine is called;� A potential set calculator that points to a routine that marks those signalswhich could still be emitted in the current instant; and� A status, one ofTerminated (0) The process has hit an exit instruction and has termi-nated. In this case, the returned program counter points to this sameexit instruction and the returned potential set calculator points toa null routine (this process could not emit any more signals this in-stant).Halted (1) The process has hit a halt instruction. In this case, thereturned program counter points to this same halt and the returnedpotential set calculator points to a null routine.Waiting (�1) This indicates that the process needs information aboutmore signals before it may proceed, but that it has more to do inthe current instant. The returned potential set calculator points toa routine that marks the appropriate signals.33

If the process exits or halts, the returned program counter points to thesame exit or halt instruction. This simpli�es the code that calls the process:rather than having to test a
ag or the program counter against something thatindicates the terminated or halted status of the process, it can always call theprocess regardless of whether it has terminated.When a process routine contains a try instruction, it calls other process rou-tines (i.e., those in call clauses of the try instruction). Potential set calculatorsalso may call other potential set calculators with the relationships imposed bythe try instruction.Each process is assigned a unique program counter. In any program, it maynot be possible for every process to be active simultaneously, so each programcounter may not have a unique process. In particular, if a process containstwo try instructions, the processes called by those try instructions may shareprogram counters. The assignment of program counters is performed at compiletime with a simple recursive rule which makes a worst-case estimate of thenumber of simultaneously-active processes.4.3 Processor RegistersProcessor registers are used to return the new program counter, the new poten-tial set calculation routine, and the return status.Intermediate representation registers are mapped directly onto processor reg-isters.One processor register stores the base address of all the arrays for addressingpurposes.Register use is shown in Table 4.2.4.4 Simple InstructionsThe compiler currently produces assembly code for the SPARC architecture.This is a modern RISC processor with 32 32-bit registers. Register %g0 isspecial|it always returns a zero, and may be used as the destination for aresult which is ignored.The branch instructions on the SPARC have a single shadowed instructionfollowing. This instruction is not executed only if the annul
ag (part of thebranch opcode) is set and the branch fails.The one addressing mode used by the compiler adds a 12-bit immediatevalue to a register to form a full 32-bit address. By putting the high-order bitsof the base address of the arrays in a register, this mode facilitates quick accessto all the run-time data. The syntax[%i5+%lo(V+12)]34

Description C de�nition MultiplicityProgram Counters void (*PC[])() one per active processpoint to process routines. These are function pointers.Potential Function Pointers void (*PO[])() one per active processpoint to potential set calculation routines. These are function pointers.Halted Flags char H[] one per active processA process sets its halted
ag to 1 when it is �nished for the instant. Atthe beginning of each instant, these
ags are all cleared to 0 to restart theprocesses for the instant. These
ags are used by both the process routinesand the potential set calculators.Signal Presence Flags char S[] one per signalEach signal is either present (1), absent (�1), or unknown (0). At thebeginning of each instant, all but the input signals are set to unknown.Signal Potential Flags char P[] one per signalThe potential set routines set each signal with the potential to be emittedto 1. Those signals which have no potential (0), and are unknown aremarked as absent.Signal Values int SV[] one per valued signalVariable Values int V[] one per variableCounter Values int C[] one per counted occurrenceException Presence Flags char E[] one per exceptionException Values int EV[] one per valued exceptionTable 4.1: List of all runtime data structures.The size of each of these is determined at compile time.35

Registersname use%g0 Always zero%o0 Temporary%o1 Temporary%l0 r0%l1 r1... ...%l7 r7%i2 Returned program counter%i3 Returned potential set calculation routine%i4 Returned status (�1,0,1)%i5 Base address of arraysTable 4.2: Register usage for the SPARC processor.means \take the low-order bits of the address of V, an array, add twelve, andadd this to the register %i5". %i5 contains the base address of the arrays, sothis refers to the 12th byte of the V array. Such a scheme allows for a small,limited amount of data, but this has not presented a problem thus far.4.4.1 Assignment StatementsSimple assignment instructions translate into single instructions:� A memory load instruction (array to register). e.g.,r0 := v1 ! ld [%i5+%lo(_V+4)],%l0� A memory store instruction (register to array)v3 := r1 ! st %l1,[%i5+%lo(_V+12)]� A constant load (constant to register)r2 := 5 ! mov 5,%l2Assignment instructions with unary and binary operands only reference reg-isters, so most translate to single instructions:r0 := not r1 ! xnor %g0,%l1,%l0r1 := r2 + r3 ! add %l2,%l3,%l1The comparison operators use the SPARC's annul
ag, which cancels theexecution of the instruction in the branch delay slot if the branch is not taken.If the branch is taken, 1 is loaded, otherwise 0 is loaded.36

r1 := r2 < r3 ! cmp %l2,%l3bl,a LL1mov 1,%r1mov 0,%r1LL1:4.4.2 Flow-of-Control StatementsEach instruction is given a label like P5I3, which refers to instruction 3 ofprocess 5.� Unconditional branches translate directly.goto 1 ! ba P0I1nop� A register test translates toif r1 goto 5 ! tst %l1bne P3I5nop� A signal presence test translates toif not s1 goto 3 ! ldsb [%i5+%lo(_S+1)],%o0tst %o0bneg P2I3nop4.4.3 emitemit simply stores the signal value, if any, and sets the signal to present:emit s2 r1 ! st %l1,[%i5+%lo(_SV+8)] ! store valuemov 1,%o0stb %o0,[%i5+%lo(_S+2)] ! set to present4.4.4 exitAn exit with an exception stores the exception value, if any, raises its exception,sets the return PC to branch to the same exit instruction, and sets the returnpotential set routine to null. It then \returns" to the try instruction whichcalled it, returning the halted status.Returning the halted status in this case is done to get around a technicalpoint. If all other processes were also to terminate, the innermost enclosingtry would execute �rst. Since this try may not be watching for the givenexception (i.e., another further out would be), it may erroneously execute further37

instructions. The halted status prevents this possibility and since we can beassured that some enclosing try is watching for the exception, it will be handled.exit e1 r0 ! st %l0,[%i5+%lo(_EV+4)] ! store valuemov 1,%o0 ! set to raisedstb %o0,[%i5+%lo(_E+1)]LL1:set LL1, %i2 ! Return PCset PO1, %i3 ! Return POba PR1or %i4, 1 , %i4 ! return HALTEDWhen the exit does not refer to an exception, the generated code is similar,except that the terminated status is returned (implicitly) instead of the haltedstatus.exit ! LL1:set LL1, %i2 ! Return PCset PO1, %i3 ! Return POba PR1nop4.4.5 halthalt is much like an exit. Naturally, the halted status is returned.halt ! LL2:set LL2, %i2 ! Return PCset PO2, %i3 ! Return POba PR2or %i4, 1, %i4 ! return HALTED4.4.6 Requirerequiremay force a process to return with the waiting status. First, it checks itssignals and if none are unknown, it branches to the next instruction. Otherwise,it returns with the waiting status and returns a potential set calculation routinethat marks those signals can be emitted.
38

1: require s2 s32: emit s03: emit s1 ! ! check signals s2 and s3P0I1:ldsb [%i5+%lo(_S+2)],%o0tst %o0be LL0ldsb [%i5+%lo(_S+3)],%o0tst %o0be P0I2nop! Return waitingLL0:set P0I1,%i2 ! PCset LL1,%i3 ! potentialba PR0or %i4,-1,%i4 ! return waiting!! Potential set calculator! marks s0 and s1 as having potentialLL1:stb %g0,[%i5+%lo(_P+0)]stb %g0,[%i5+%lo(_P+1)]ba PO0nop!! Code for emitP0I2:...The potential set calculation for the require instruction is static, sincewe know which segments of code (in particular, the �rst instructions of thesubprocesses of every try) may be executed in the current instant.4.5 The try Instructiontry is the most complex of all the intermediate instructions, being responsiblefor parallel execution, preemption, and exception handling. Because of this, italso has signi�cant responsibilities related to the potential set.A try instruction's behavior changes with time. For example, it examinesany watched signals only after the �rst instant. The change is accomplished byreturning di�erent program counters (i.e., not always pointing to the beginningof the code for the try) as appropriate, and through the use of the halt array.Most of the information a try instruction needs is available at compile time.For example, it will always check the same signals and exceptions. This makes39

for very simple, loop-free code in the executable.A try instruction has the following structure:PCi : : :PCj = 0 initialize subprocess program countersEk : : :El = 0 lower our exceptionsrepeatA: waiting for processes to runcall PCi : : :PCj call each of the subprocessesif any processes returned waiting a process has not completedreturn waiting, PC = Aif any exception was raised check the exceptions after completionbranch to its handlerif any process returned halted process is done for this instant,return halted, PC = B but is still activebranch to the next instruction all subprocesses have terminatedB: waiting for watching signalsif this process has been halted halted in this instantreturn halted, PC = Bif any watched signals are unknown need to know about allreturn waiting, PC = B watched signals before proceedingdecrement the counter of any countedoccurrence whose signal is presentif any occurrence elapsed counter became zero, orbranch to its handler simple occurrence's signal presentend repeatThe full potential-set calculator routine for a try is much more elaboratethan that used by require:if process is not haltedcall POi : : :POj potential set routines of subprocessesmark potential set of each watch handlermark potential set of each exception handlermark potential set of next instructionreturn4.6 ExampleThe SPARC translation of the program of Figure 3.1 on page 30 is shown inFigure 4.1 on page 41. The assembly code for the try instruction has beenplaced in the second column for clarity.Each instruction is given a label such as P0I1, which indicates process zero,instruction one. 40

Local variablesv0: CSignals 4(1 valued)s0: TICKs1: As2: Ds3: B(int)Process P0 uses PC00: r0 := 31: v0 := r02: trycall P1watching s1 goto 33: require s24: if not s2 goto 105: r0 := v06: r1 := 37: r0 := r0 + r18: emit s3 r09: goto 1410: r0 := v011: r1 := 212: r0 := r0 - r113: emit s3 r014: goto 0Process P1of process P0 uses PC10: halt

! Process P0 uses PC0!P0I0:mov 3,%l0P0I1:st %l0,[%i5+%lo(V+0)]P0I2:P0I3:! Potential signals: 3ldsb [%i5+%lo(S+2)],%o0tst %o0bne P0I4nopLL7:set P0I3,%i2set LL8,%i3ba PR0or %i4,-1,%i4LL8:stb %g0,[%i5+%lo(PO+12)]ba PO0nopP0I4:ldsb [%i5+%lo(S+2)],%o0tst %o0bneg P0I10nopP0I5:ld [%i5+%lo(V+0)],%l0P0I6:mov 3,%l1P0I7:add %l0,%l1,%l0P0I8:st %l0,[%i5+%lo(SV+0)]mov 1,%o0stb %o0,[%i5+%lo(S+3)]P0I9:ba P0I14nopP0I10:ld [%i5+%lo(V+0)],%l0P0I11:mov 2,%l1P0I12:sub %l0,%l1,%l0P0I13:st %l0,[%i5+%lo(SV+0)]mov 1,%o0stb %o0,[%i5+%lo(S+3)]P0I14:ba P0I0nopP1I0:LL9:set LL9,%i2set PO1,%i3ba PR1or %i4,1,%i4

! Initializing all program countersset P1I0,%o0st %o0,[%i5+%lo(PC+4)]! Lowering all exceptionsba LL0nopLL1:! Checking the halted status of thisldsb [%i5+%lo(H+0)],%o0tst %o0be LL3nop! Returning the halted statusset LL1,%i2set LL5,%i3ba PR0or %i4,1,%i4LL3:! Checking watched signalsldsb [%i5+%lo(S+1)],%o0tst %o0be LL2nopbneg LL6nopba P0I3nopLL6:LL0:! Executing all subprocessesstb %i4,[%i5+%lo(H+0)]mov %g0,%i4ld [%i5+%lo(PC+4)],%o0call %o0,0nopPR1:st %i2,[%i5+%lo(PC+4)]st %i3,[%i5+%lo(PO+4)]subcc %i4,%g0,%o0bpos LL4nop! Return with the waiting statusset LL0,%i2set LL5,%i3ba PR0stb %g0,[%i5+%lo(H+0)]LL4:ldsb [%i5+%lo(H+0)],%i4! Checking all exceptionstst %o0be P0I3nop! Haltingset LL1,%i2set LL5,%i3or %o0,%i4,%i4ba PR0stb %o0,[%i5+%lo(H+0)]! Returning with waiting statusLL2:set LL1,%i2set LL5,%i3ba PR0or %i4,-1,%i4LL5:! Calculating potential setldsb [%i5+%lo(H)],%o0tst %o0bne PO0nopld [%i5+%lo(PO+4)],%o0call %o0,0nopPO1:! Potential signals: 3stb %g0,[%i5+%lo(P+3)]ba PO0nopFigure 4.1: The translation of the Esterel program of Figure 3.1 from page 30.41

The potential-set calculator routine for the try starting at LL5 �rst checksthe status of the halted
ag for the process, returning immediately if it is set,indicating that the process has halted. In this case, since the process has halted,it cannot emit any more signals in the current instant. However, at the begin-ning of the next instant, the halted
ag will be cleared and when the potentialset calculator is called again (even before it is known that the process can beexecuted), the potential set will be calcuated assuming that the process couldbe executed.Because each subprocess can be called from exactly one try instruction, thereturn address of each subprocess is known at compile time. In this example,for instance, process P1 is called from the try in process P0. The return addressof process P1 is given the label PR1. Similarly, the potential set calculator forprocess P1 is called from exactly one point, so its return address is explicit: PO1.4.7 Outer LoopThe outer loop calls the outermost process routine and its potential set calcu-lator repeatedly to compute the program's response for an instant. The outerloop performs the following actions:H0 : : :Hn := 0 clear all halted
agsS0 : : :Sm := 0 mark all signals as unknownSi : : :Sj := 1 or � 1 as appropriate mark all input signals as present or absentrepeatP0 : : :Pl = 0 mark signals as having no potentialcall PC0 outermost process routineforeach signal iif Si = 0 and Pi = 0 signal is unknown and has no potentialSi = �1 mark signal as absentuntil outermost process routine returned halted
42

Chapter 5CausalityIn Esterel, as in any language, it is possible to write something nonsensical.Possible errors include the simple syntax error (misspelling a keyword, for ex-ample), and more elaborate semantic errors (e.g., trying to add an integer ora boolean, emitting an input-only signal, etc.). In Esterel, there is the fairlysubtle concept of causality which can be violated.A simple example of a causality error is the following paradoxpresent A else emit A endBecause of the instantaneous semantics of Esterel, this fragment means thatif the signal A is absent in an instant, then it should be emitted in that instant,which is clearly nonsense since a signal is either present or absent, never both.Another, more commonmistake is to make a do: : :watching preempt itself. Forexample,doawait A ; emit B ; emit Cwatching CWhen A arrives, B and C are emitted in the same instant. However, when Cis emitted, the enclosed instruction is not executed (the semantics of the do), soC could not have been emitted. (A way to get around this particular problemis to replace the do: : :watching with a trap instruction.)These two errors would be fairly easy to catch at compile time|the ruleis that any instruction whose execution depends on a signal cannot emit thatsignal. However, manifestation of these sorts of errors can be arbitrarily subtle.Consider the following sequence 43

await B ; present A else emit C end||await C ; emit D||await D ; emit E||await E ; emit AHere, when B arrives, C is emitted if A is present. However, A is emitted if Eis present, and E is emitted if D is present, and D is emitted if C is present. It issubtle, but this is the same sort of paradox as present A else emit A end.To illustrate how subtle such violations can be, consider the following vari-ation on this code:await B ; present A else emit C end||await B ; await C ; emit D||await D ; emit E||await E ; emit AThis does not constitute a causality violation. Assuming B is the only inputsignal, when B occurs, D cannot be emitted because the await C will only startlooking for C in the next instant. Thus, D is not emitted, so E and A are notemitted, so C is.However, by adding one keyword, the fragment again becomes non-causal:await B ; present A else emit C end||await B ; await immediate C ; emit D||await D ; emit E||await E ; emit AHere is another paradox:every A dopresent C then emit D endend||every A dopresent D else emit C endend 44

Here, when A is present, the �rst line says that C implies D, but the secondsays D implies not C, which is paradoxical.However, the data-dependent actions make the problem even more subtle.Considervar i := 0 : integer inevery A doi := i + 1 ;emit B(i)end||every B doif ?B mod 2 = 1 thenpresent C then emit D endendend||every B doif ?B mod 2 = 0 thenpresent D else emit C endendendendThis is actually causal since it is impossible for both ?B mod 2 = 0 and ?Bmod 2 = 1 to be true in the same instant (the value returned by ?B is uniqueto an instant).1So in general, exact causality checking is impractical. The Esterel V3 com-piler simulates only the signal portion of the program as part of the compilationprocess (i.e., not the data portion), which accounts for its rapidly-growing com-pilation times. It can detect causality violations, but it is conservative and itrequires excessively long compilation times.Some causality checking is necessary, but the conservative approach takenby the Esterel V3 compiler requires too much time to perform.
1Unsurprisingly, the Esterel V3 compiler
ags this example as noncausal.45

Chapter 6Results and ConclusionsThe compiler presented in this report was tested on the lengthy example (andvariations thereon) presented in appendix C. For comparison, it was also testedwith the production Esterel V3 compiler supported by CISI INGENIERIE[8].These results are shown in Tables 6.1 and 6.2 on pages 47 and 47.The examples watch1, watch2, watch3, and watch4 are stripped-down ver-sions of the complete watch example, containing the �rst one, two, three, andfour submodules respectively.6.1 Results for The Esterel V3 CompilerPlease refer to Table 6.1. With the Esterel V3 compiler, the number of states inthe �nite-state machine starts small, but grows quickly with the size of the input�le. The length of the ic �le, which contains an intermediate representationsimilar to the one used here, is growing roughly linearly with the length of theinput �le, as is to be expected. However, the length of the oc �le, which containsa description of the state machine used to produce the C source, is growing veryrapidly|exponentially for this example.The C source �le produced is roughly the same size as the oc �le, so thesystem's C compiler is presented with a challenge: C source �les no smaller than980K. Not surprisingly, the time required to produce the C source �le is rapidlygetting out of hand, starting at a minute and increasing by about a factor offour for each 200-line increase in the length of the source �le.The size of the executable produced by this compiler tracks the size of theC source �le, and is also growing very rapidly. The one consolation is that thetime required to simulate one thousand clock ticks is both small and growingslowly. 46

watch1 watch2 watch3 watch4 watchlines in source �le 297 467 619 823 998number of states 7 22 32 128 >206length of ic �le (kilobytes) 16 25 35 45 52length of oc �le (megabytes) 0.98 5.42 18.7 190 >236time to create C source �le (mm:ss) 0:52 4:43 15:57 >37:00ytime to compile C source (mm:ss) 1:50 15:30 18:43ysize of MIPS executable (megabytes) 0.87 3.7 12.2time to simulate 1000 clock ticks (seconds) 2.8 4.8 6.6y Times on a machine roughly 3� fasterTable 6.1: The Esterel V3 compiler used on the watch example from appendix Cwatch1 watch2 watch3 watch4 watchlines in source �le 297 467 619 823 998number of processes 45 83 110 150 178number of program counters 34 50 58 78 97number of signals 40 45 54 62 70length of translation �le (kilobytes) 10 17 24 31 36lines of assembly code (thousands) 5.6 9.9 13 18 21time to produce assembly code (seconds) 1.7 2.5 3.1 3.7 4.5time to assemble (seconds) 3 4 5.5 7.8 8.5size of SPARC process code (kilobytes) 14 26 35 48 56size of SPARC executable (kilobytes) 64 80 96 112 128time to simulate 1000 clock ticks (seconds) 2.3 2.6 3.2 3.8 4.2iterations per clock tick 9 9 9 9 9Table 6.2: This compilation scheme used on the watch example from appendix C47

6.2 Results for This CompilerPlease refer to Table 6.2. With the compilation scheme presented in this report,the number of processes and program counters are both growing roughly linearlywith the size of the source �le. Moreover, the length of the translation (roughlyequivalent to the ic �le|a textual listing of the intermediate representation) isgrowing linearly. The really encouraging result is that the number of assemblycode lines is also growing linearly with the size of the source �le, as expected.The time required to produce this assembly code is very small indeed (thistime includes parsing the Esterel source �le, converting it to the intermediaterepresentation, and translating this into SPARC assembly code), and also ap-pears to be linear in the length of the Esterel source �le, very much unlike theEsterel V3 compiler.It takes roughly twice as long to run the assembly code through the assembler1as it does to compile the Esterel source code.Not surprisingly, the executable produced (which includes a simple command-line interface, so comparison with the MIPS executable is reasonable), is muchsmaller. For example, the 600-line source �le watch3 produces a 12 megabyteexecutable with thee Esterel V3 compiler, whereas this approach produces a128 kilobyte executable, nearly two orders of magnitude smaller!Finally, the time to simulate 1000 clock ticks is roughly comparable to theEsterel V3 compiler (the two machines used were roughly the same speed: aSPARCstation IPC and a DECstation 5000). The number of calls to the processcode for the signal information to converge is between one and ten for all �veexamples, with nine being the overwhelming median for all.6.3 CommentsIt is not entirely fair to compare the compilation times for two compilers, asthe Esterel V3 compiler is doing full causality checking. The compiler presentedhere does e�ectively none, instead leaving the checking to runtime. However,the times and �le sizes for the V3 compiler become prohibitive very quickly.For example, I was unable to �nd a machine with the 400 MB of free diskspace required produce the C source code for the watch4 example. Even for thesmaller watch2 example, waiting twenty minutes for the program to compilewould have made debugging agonizing, to say the least. The multi-megabyteexecutables are also infeasible for embedded systems. Although the amount ofmemory available in such systems has been growing rapidly over time, theseseem excessive.So the question of whether this language is practical without full compile-time causality checking arises. In the process of writing and debugging thewatch example of appendix C, it turned out not to be a major issue. If a1Sun's standard SPARC assembler shipped with SunOS 4.1.1 for these examples48

causality violation was introduced (and quite a number were over the courseof development), it would become clear fairly quickly|either the whole watchwould fail, or the module where the violation was introduced would fail inan obvious manner. The Tcl/Tk mock-up described in appendix C was aninvaluable debugging aid. Instead of entering test vectors in a textual mannerand observing the results, I simply used the mock-up like I used the watch onmy wrist|the bugs became apparent fairly quickly.Esterel is a good language for describing very heterogeneous systems. Insuch cases, little code could possibly be reused|every problem has to be solvedin a di�erent way. However, when there is some uniformity involved, which isoften the case with human-interface code, Esterel is not completely e�ective.For example, most of the \adjust" modes of the watch are very similar|MODEadvances the �eld being adjusted, FORWARD and REVERSE adjust that �eld. Thiswas implemented with a valued signal, but that technique isn't quite right. Asignal with a notion of an ordered \one-hot" encoding would be better.The designers of Esterel included the copymodule keyword in the language(not present in the compiler presented here) which is little more than a simplemacro expansion. The watch example of appendix C used the m4 macro prepro-cessor for this function, which was nearly as e�ective. Such preprocessors canimprove the readability of the code, and somewhat simplify the programmer'stask, but much more is needed to capture the similarity in typical control-dominated systems.A number of important features were omitted from the example of ap-pendix C which were present in the real watch on which it was based. Whythey were omitted sheds some light on Esterel's shortcomings.� The true watch has a \telephone book" mode which stores about 24 names(8 alphanumeric characters each) and phone numbers (12 digits each).� The true watch calculated the day-of-the-week from the year, month anddate. Moreover, it knows about the number of days in each month andleap years.� The true watch has �ve alarms and a hourly signal.The telephone book mode was omitted primarily because storing the datawould have been di�cult in Esterel. The Esterel V3 compiler has the ability toimport complex types from a host language (e.g., C) and attach them to signals,local variables, and whatnot. These can then be manipulated with functions inthe host language called from Esterel. These facilities are not present in thecompiler presented here, but could be included. But this seems to be avoidingthe problem by letting a \real" language handle the messy data manipulation.Calculating the day-of-the-week from the year, month, and date is a fairlycomplex arithmetic operation which would bene�t from array lookups, some-thing not present in Esterel. 49

The �ve alarms could have been implemented with a number of instantiationsof the alarm module presented here, but this produces an excessive amount ofcode. Since all �ve are identical, there should be some way to reuse the codemore e�ectively.6.4 ConclusionsThe objective stated in the abstract has been achieved: a compiler for the Esterellanguage has been produced which quickly produces an e�cient executable. Forlarge programs, its performance greatly eclipses the existing compilation scheme,and allows such programs to be compiled at all. The increase in speed has comeat the expense of compile-time causality checking.There are many ways to proceed from here. Retargeting the backend toproduce code for other processors is one simplemodi�cation. There are probablymany more simple checks which could be performed at compile time in the hopesof catching an erroneous (i.e., non-causal) program. Also, this approach lendsitself to symbolic debugging, which has not currently been implemented beyonda simple mechanism to report the locations of the program counters.A hope for this work is for it to be used for other tasks. For example, itappears that the scheme presented here for producing assembly code from theintermediate representation could also be used to produce code from a syn-chronous subset of the VHDL language [2, 3]. The intermediate format alsolends itself to taking event derivatives and forming an FSM. While this hasshown to be potentially explosive, there may be a way of e�ectively partitioninga program. An FSM so generated could be sent to a formal veri�cation systemwhich could then prove properties about the system.
50

Appendix ALexical Aspects of EsterelIdentifiersAn identi�er is a sequence of letters, digits, and underscores starting witha letter. Case is signi�cant. There is no limit on the length of identi�ers.KeywordsAll keywords are lowercase.andawaitcallcasedoeachelseemitendevery exitfalsehalthandleifimmediateininputinputoutputloop modmodulenotnothingoroutputpresentrepeatsensorsignal sustainthentimeouttimestraptrueuptovarwatchingwithInteger LiteralsAn integer literal is a string of digits 0{9. Leading zeros are and - signsare allowed. Leading + signs are disallowed.CommentsComments begin with a percent sign (%) and continue to the end of theline.WhitespaceWhitespace includes comments, spaces, tabs, newlines, and form feeds,and serves to delimit identi�ers, keywords, and integer literals.51

Appendix BSyntax of EsterelIn the following, items in braces (f g) are optional. The notation f A g� means\zero or more occurrences of A," and the notation f B g+ means \one or moreoccurrences of B."
-identi�er is an identi�er of type
. Keywords are in atypewriter typeface.FilesThe source �le is composed of one or more modules.�le ! f module g+ModulesA module contains zero or more declarations and a single instruction ter-minated by a period (.).module ! module module-identi�er :f declaration g�instruction.Declarationsdeclaration !input signal-declaration-list ;j output signal-declaration-list ;j inputoutput signal-declaration-list ;j sensor sensor-declaration-list ;52

Signal Declaration ListsSignals are declared with comma-separated lists of one or more signals,each with an optional type.signal-declaration-list !signal-declaration f , signal-declaration g�signal-declaration !signal-identi�erj signal-identi�er (type-identi�er)type-identi�er !integerj booleansensor-declaration-list !sensor-declaration f , sensor-declaration g�sensor-declaration !signal-identi�er (type-identi�er)Instructionsinstruction !var variable-declaration-list in instruction endj signal signal-declaration-list in instruction endj [instruction]j f instruction ; g+ f instruction gj instruction f || instruction g+j nothingj haltj exit exception-identi�er f (expression) gj variable-identi�er := expressionj if expression f then instruction gf else instruction g endj loop instruction endj repeat expression times instruction endj emit signal-identi�er f (expression) gj sustain signal-identi�er f (expression) gj present signal-identi�er f then instruction gf else instruction g endj do instruction watching occurrencef timeout instruction end g53

j await occurrence f do instruction end gj await f case occurrence f do instructiong g+ endj loop instruction each occurrencej do instruction upto occurrencej every occurrence do instruction endj trap exception-declaration in instructionf handle exception-identi�er do instruction g endexception-declaration !exception-identi�erj exception-identi�er (type-identi�er)Variable Declaration ListsVariables are declared in comma-separated lists with optional initializationexpressions and type speci�cations.variable-declaration-list !variable-declaration f , variable-declaration g�variable-declaration !variable-identi�er f := expression gf : type-identi�er gExpressionsexpression !integer-literalj truej falsej variable-identi�erj ?signal-identi�erj ?sensor-identi�erj ??exception-identi�erj (expression)j - expressionj expression * expressionj expression / expressionj expression mod expressionj expression + expressionj expression - expressionj expression < expressionj expression <= expressionj expression > expression54

j expression >= expressionj expression = expressionj expression <> expressionj not expressionj expression and expressionj expression or expressionOccurrencesoccurrence !signal-identi�erj immediate signal-identi�erj expression signal-identi�er

55

Appendix CA Large ExampleTo illustrate the e�ectiveness of the compiler on a large program, the followingprogram was created. It describes the functionality of a fairly elaborate digitalwristwatch.The watch has �ve main features, shown in Figure C.1.� Time keeping including the day, date, month and year� An alarm which may be set to particular time and date� A dual timezone mode� A settable countdown timer� A stopwatchThese features are controlled through four buttons:� MODE, which switches between the above-listed modes, or between �eldswhen setting the watch. If no other buttons have been pressed, MODEswitches to the next mode, otherwise, it returns to the timekeeping mode.� ADJUST, which toggles between setting and running for the above modes� FORWARD, used to increase the value of a �eld when setting� REVERSE, used to decrease the value of a �eld when setting56

MODE MODE MODEMODEMODE
ADJUSTTime AdjustMODE (�eld change) ADJUSTAlarm AdjustMODE (�eld change) ADJUSTDual AdjustMODE (�eld change)

ADJUSTTimer AdjustMODE (�eld change)
MODE (other button pressed �rst)
Figure C.1: The watch's modes.57

C.1 Testing SchemeA mock-up of an actual watch was created using the Tcl/Tk system [10] forbuilding user interfaces. A short (� 40 line) tcl script describes a window withfour text items and �ve buttons. Four of these buttons call simple routines in asmall C program (� 400 lines) when pressed, the other quits the program. Eachof these simple routines set the given button to present and calls the tick rou-tine, which calculates the Esterel program's response for the next instant. The Cprogram then examines the emitted signals and adjusts the display accordinglythrough tcl commands.A facility for creating periodic events in Tk is used to call a C routineapproximately ten times a second. This C routine sets the TENTHSECOND signalpresent and calls tick. Not surprisingly, since this timekeeping mechanism isfairly inexact, the watch keeps less-than-perfect time. Nevertheless, this schememade the debugging process much more e�cient than had it been attemptedusing just a command-line-based simulator.C.2 The Main ModuleThe watch receives its controls through �ve signals, one which occurs ten timesa second, and one for each button.module watch:input TENTHSECOND;input MODE, ADJUST, REVERSE, FORWARD;The display is controlled through two valued signals, one which indicateswhich major mode is being displayed (time, time adjust, alarm, alarm adjust,etc), and one which, in the adjust modes, indicates which �eld is being changed.output DISPLAY_MODE(integer),DISPLAY_FIELD(integer);A separate valued signal is used for each �eld from the �ve major compo-nents. In e�ect, the C program acts as a multiplexer which selects which ofthese �elds to copy to the display based on DISPLAY MODE and DISPLAY FIELD.These are integer-valued signals, but it is useful to think of them as tak-ing on the following symbolic values. The various modes de�ne the valuesDISPLAY MODE takes on and the various adjusts de�ne values for DISPLAY FIELD.define(`Time_mode',`0')define(`Time_adjust_mode',`1') 58

define(`Time_adjust_seconds',`0')define(`Time_adjust_minutes',`2')define(`Time_adjust_hours',`1')define(`Time_adjust_days',`6')define(`Time_adjust_dayofweek',`3')define(`Time_adjust_months',`5')define(`Time_adjust_years',`4')define(`Alarm_mode',`2')define(`Alarm_adjust_mode',`3')define(`Alarm_adjust_minutes',`1')define(`Alarm_adjust_hours',`0')define(`Alarm_adjust_days',`3')define(`Alarm_adjust_months',`2')define(`Dual_mode',`4')define(`Dual_adjust_mode',`5')define(`Dual_adjust_minutes',`1')define(`Dual_adjust_hours',`0')define(`Dual_adjust_days',`3')define(`Dual_adjust_months',`2')define(`Timer_mode',`6')define(`Timer_adjust_mode',`7')define(`Timer_adjust_minutes',`1')define(`Timer_adjust_hours',`0')define(`Stopwatch_mode',`8')output MAIN_SECOND(integer),MAIN_MINUTE(integer),MAIN_HOUR(integer),MAIN_DAY(integer),MAIN_DATE(integer),MAIN_MONTH(integer),MAIN_YEAR(integer);output DUAL_MINUTE(integer),DUAL_HOUR(integer),DUAL_DAY(integer),DUAL_DATE(integer),DUAL_MONTH(integer);output TIMER_HOUR(integer),TIMER_MINUTE(integer),TIMER_SECOND(integer);output ALARM_MINUTE(integer), 59

ALARM_HOUR(integer),ALARM_DATE(integer),ALARM_MONTH(integer);output STOPWATCH_TENTHSECOND(integer),STOPWATCH_SECOND(integer),STOPWATCH_MINUTE(integer),STOPWATCH_HOUR(integer);Four other signals perform miscellaneous tasks.UPDATE is present whenever the display needs to be updated, e.g., when themode changes, when a value changes, etc.ALARM is present whenever the alarm is going o�.FLASH is present whenever the watch is in an adjust mode and the requested�eld should be blanked. This is used to indicate which �eld is currentlybeing changed.STOPWATCH FROZEN is present whenever the stopwatch is in lap mode (keepingtime, but display holds previous value). When in stopwatch mode, thedisplay indicates when it is in lap mode.output UPDATE;output ALARM;output FLASH;output STOPWATCH_FROZEN;The main module is composed of �ve processes executing in parallel, one foreach major mode (the time and dual modes are combined here), and one whichcontrols the operation of the display. The m4 macro preprocessor was used tobreak the program into modules. Thus, each of the modules and watchdogshere actually expand into a number of instructions which will be described inlater sections.signal MAIN_REVERSE, MAIN_FORWARD, DUAL_REVERSE, DUAL_FORWARD,ALARM_REVERSE, ALARM_FORWARD, TIMER_STARTSTOP, TIMER_RUNNING,TIMER_REVERSE, TIMER_FORWARD, TIMER_RESET,STOPWATCH_FREEZETHAW,STOPWATCH_STARTSTOP, STOPWATCH_RUNNING,STOPWATCH_RESET intime_module||alarm_module 60

||timer_module||stopwatch_module||looptrap Return_to_time intime_control_module ;alarm_control_module ;dual_control_module ;timer_control_module ;stopwatch_control_moduleend;await TICKendend. The main loop is a sequence of control modules (instructions) enclosed bya trap instruction. If one of the control modules terminates, it starts the nextmodule. However, if it issues the Return to time exception, the watch returnsto timekeeping mode.The local signals are used to adjust the various timekeeping mechanisms andadjust their modes. These form the communication path between the controlmodules and the modules which actually keep the time.C.3 The Time ModuleThe time module, responsible for keeping track of the main time as well asthe time for the dual-timezone mode, is composed of a number of sub-modulesexecuting in parallel, one for each unit of time.Again, local signals are used for communcation between the various modules.define(`time_module',`signal NEXT_SECOND, NEXT_MINUTE,MAIN_NEXT_HOUR, MAIN_NEXT_DAY, MAIN_NEXT_MONTH, MAIN_NEXT_YEAR,DUAL_NEXT_HOUR, DUAL_NEXT_DAY, DUAL_NEXT_MONTH, DUAL_NEXT_YEAR,MAIN_RESET_SECOND inevery MAIN_FORWARD doif ?DISPLAY_FIELD = Time_adjust_seconds then emit MAIN_RESET_SECOND endend 61

||tenthsecond_module||second_module||minute_module(`MAIN',`Time_adjust')||minute_module(`DUAL',`Dual_adjust')||hour_module(`MAIN',`Time_adjust')||hour_module(`DUAL',`Dual_adjust')||day_module(`MAIN',`Time_adjust')||day_module(`DUAL',`Dual_adjust')||dayofweek_module(`MAIN',`Time_adjust')||month_module(`MAIN',`Time_adjust')||month_module(`DUAL',`Dual_adjust')||year_module(`MAIN',`Time_adjust')end') The tenthsecond module is simple. It emits the NEXT SECOND signal everyten tenths of a second, or resets itself when necessary.define(`tenthsecond_module',`loopevery 10 TENTHSECOND doemit NEXT_SECONDendeach MAIN_RESET_SECOND') The second module is slightly more complex because the second count mustbe visible to the outside world (through the MAIN SECOND signal).define(`second_module',`loopvar second := 0 : integer in62

emit MAIN_SECOND(second);every NEXT_SECOND dosecond := second + 1;if second = 60 then second := 0; emit NEXT_MINUTE end;emit UPDATE ; emit MAIN_SECOND(second)endendeach MAIN_RESET_SECOND') The minute module is more complex still, since the minute must be able tobe increased and decreased. The await: : :case instruction is used to arbitratebetween which of the three actions to take.Using the ?DISPLAY FIELD signal in this manner is somewhat unsatisfactory|there is a slight possibility that some other �eld is adjusted just when NEXT MINUTEsignal is present, causing the minute to be lost. One solution would be to \fanout" the MAIN FORWARD signals based on the value of DISPLAY FIELD in a man-ner similar to MAIN RESET SECOND. But this is not particularly elegant. Whatis needed is a more sophisticated notion of a signal, one which has a \one-hot"notion associated with it.Two instantiations of the minute module are used, one for the main time-keeper and one for the dual-timezone mode. $1 and $2 are replaced with MAINand Time adjust, or DUAL and Dual adjust respectively.define(`minute_module',`var minute := 0 : integer inemit $1_MINUTE(minute);loopawaitcase $1_FORWARD doif ?DISPLAY_FIELD = $2_minutes then minute := minute + 1 endcase $1_REVERSE doif ?DISPLAY_FIELD = $2_minutes then minute := minute - 1 endcase NEXT_MINUTE dominute := minute + 1 ; if minute = 60 then emit $1_NEXT_HOUR endend ;minute := (minute + 60) mod 60;emit UPDATE ; emit $1_MINUTE(minute)end 63

end') The hour module is almost identical to the minute module, and the paircould probably have been written as a more elaborate macro.define(`hour_module',`var hour := 0 : integer inemit $1_HOUR(hour);loopawaitcase $1_FORWARD doif ?DISPLAY_FIELD = $2_hours then hour := hour + 1 endcase $1_REVERSE doif ?DISPLAY_FIELD = $2_hours then hour := hour - 1 endcase $1_NEXT_HOUR dohour := hour + 1 ; if hour = 24 then emit $1_NEXT_DAY endend ;hour := (hour + 24) mod 24;emit UPDATE ; emit $1_HOUR(hour)endend') The day module is slightly di�erent. It wraps around at one instead of zero.This is fairly simple-minded since all months are assumed to have 31 days.define(`day_module',`var date := 1 : integer inemit $1_DATE(date);loopawaitcase $1_FORWARD doif ?DISPLAY_FIELD = $2_days then date := date + 1 endcase $1_REVERSE doif ?DISPLAY_FIELD = $2_days then date := date - 1 endcase $1_NEXT_DAY dodate := date + 1 ; if date = 32 then emit $1_NEXT_MONTH endend ; 64

date := (date + 30) mod 31 + 1;emit UPDATE ; emit $1_DATE(date)endend') The day-of-the-week, month, and year modules are all very similar:define(`dayofweek_module',`var day := 0 : integer inemit $1_DAY(day);loopawaitcase $1_FORWARD doif ?DISPLAY_FIELD = $2_dayofweek then day := day + 1 endcase $1_REVERSE doif ?DISPLAY_FIELD = $2_dayofweek then day := day - 1 endcase $1_NEXT_DAY doday := day + 1end ;day := (day + 7) mod 7;emit UPDATE ; emit $1_DAY(day)endend')define(`month_module',`var month := 1 : integer inemit $1_MONTH(month);loopawaitcase $1_FORWARD doif ?DISPLAY_FIELD = $2_months then month := month + 1 endcase $1_REVERSE doif ?DISPLAY_FIELD = $2_months then month := month - 1 endcase $1_NEXT_MONTH domonth := month + 1 ; if month = 13 then emit $1_NEXT_YEAR endend ; 65

month := (month + 11) mod 12 + 1;emit UPDATE ; emit $1_MONTH(month)endend')define(`year_module',`var year := 94 : integer inemit $1_YEAR(year);loopawaitcase $1_FORWARD doif ?DISPLAY_FIELD = $2_years then year := year + 1 endcase $1_REVERSE doif ?DISPLAY_FIELD = $2_years then year := year - 1 endcase $1_NEXT_YEAR doyear := year + 1end ;year := (year + 100) mod 100;emit UPDATE ; emit $1_YEAR(year)endend')C.4 The Time Control ModuleThe time control module is responsible for handling the four buttons when thewatch is in the main timekeeping mode.define(`time_control_module',`trap Leave_time inloop% Time displayemit DISPLAY_MODE(Time_mode) ; emit UPDATE ;doawait MODE; exit Leave_time66

watching ADJUST;emit DISPLAY_MODE(Time_adjust_mode) ; emit UPDATE ;dotime_adjust_modulewatching ADJUSTend % time display/adjust loopend % Leave_time') An exception is used to detect when this module should terminate, i.e., whenMODE is presessed from within. ADJUST toggles between the main time displaymode and the time adjust mode.The time adjust module cycles through the �elds (using the variable setfield)when MODE is pressed, converts the REVERSE and FORWARD buttons to their time-adjusting counterparts, and
ashes the display �eld.define(`time_adjust_module',`var setfield := 0 : integer inemit DISPLAY_FIELD(setfield) ; emit UPDATE ;[every MODE dosetfield := setfield + 1;if setfield = 7 then setfield := 0; end ;emit DISPLAY_FIELD(setfield) ; emit UPDATEend||every REVERSE doemit MAIN_REVERSEend||every FORWARD doemit MAIN_FORWARDend||flash_enable_module] 67

end % var setfield') The
ash module is simple|it emits the FLASH signal on and o�, synchro-nized with the TENTHSECOND signal.define(`flash_enable_module',`loopemit UPDATE ; await 2 TENTHSECOND ;emit FLASH ; emit UPDATE ; await TENTHSECOND ;emit FLASH ; await TENTHSECONDend')C.5 The Alarm ModuleMuch like the time module, the alarm module is composed of a number of sub-modules executing in parallel. Every minute, the alarm is checked against themain clock to see if the alarm should be started. If so, it is started and sustaineduntil one of the main buttons is pressed.define(`alarm_module',`signal STARTALARM inalarm_minute_module||alarm_hour_module||alarm_date_module||alarm_month_module||every MAIN_MINUTE doif ((?MAIN_MINUTE = ?ALARM_MINUTE) and(?MAIN_HOUR = ?ALARM_HOUR) and(?ALARM_DATE = 0 or (?ALARM_DATE = ?MAIN_DATE)) and(?ALARM_MONTH = 0 or (?ALARM_MONTH = ?MAIN_MONTH))) thenemit STARTALARMendend||loopawait STARTALARM ;do 68

dodosustain ALARMwatching MODEwatching FORWARDwatching REVERSEendend') The minute, hour, date, and monthmodules are all fairly similar. Each uses alocal variable to remember their settings, and each waits until an ALARM FORWARDor ALARM REVERSE signal instructs them to change.define(`alarm_minute_module',`var minute := 0 : integer inemit ALARM_MINUTE(minute);loopawaitcase ALARM_FORWARD doif ?DISPLAY_FIELD = Alarm_adjust_minutes thenminute := minute + 1 endcase ALARM_REVERSE doif ?DISPLAY_FIELD = Alarm_adjust_minutes thenminute := minute - 1 endend ;minute := (minute + 60) mod 60;emit UPDATE ; emit ALARM_MINUTE(minute)endend')define(`alarm_hour_module',`var hour := 0 : integer inemit ALARM_HOUR(hour);loopawaitcase ALARM_FORWARD do 69

if ?DISPLAY_FIELD = Alarm_adjust_hours then hour := hour + 1 endcase ALARM_REVERSE doif ?DISPLAY_FIELD = Alarm_adjust_hours then hour := hour - 1 endend ;hour := (hour + 24) mod 24;emit UPDATE ; emit ALARM_HOUR(hour)endend')define(`alarm_date_module',`var date := 0 : integer inemit ALARM_DATE(date);loopawaitcase ALARM_FORWARD doif ?DISPLAY_FIELD = Alarm_adjust_days then date := date + 1 endcase ALARM_REVERSE doif ?DISPLAY_FIELD = Alarm_adjust_days then date := date - 1 endend ;date := (date + 32) mod 32 ;emit UPDATE ; emit ALARM_DATE(date)endend')define(`alarm_month_module',`var month := 0 : integer inemit ALARM_MONTH(month);loopawaitcase ALARM_FORWARD doif ?DISPLAY_FIELD = Alarm_adjust_months then month := month + 1 endcase ALARM_REVERSE doif ?DISPLAY_FIELD = Alarm_adjust_months then month := month - 1 endend ;month := (month + 13) mod 13 ;emit UPDATE ; emit ALARM_MONTH(month)70

endend')C.6 The Alarm Control ModuleLike the time control module, the alarm display and alarm set modes are splitinto two modules. One di�erence is that the MODE button has two di�erente�ects depending on whether ADJUST is pressed before MODE. If the user adjuststhe alarm, MODE returns the watch to the main time display mode, otherwise, itadvances it to the next main mode.define(`alarm_control_module',`trap Leave_Alarm inemit DISPLAY_MODE(Alarm_mode); emit UPDATE ;doawait MODE; exit Leave_Alarmwatching ADJUST;loopemit DISPLAY_MODE(Alarm_adjust_mode) ; emit UPDATE ;doalarm_adjust_modulewatching ADJUST;emit DISPLAY_MODE(Alarm_mode); emit UPDATE ;doawait MODE; exit Return_to_timewatching ADJUSTend % alarm adjust/display modeend % Leave_Alarm') 71

define(`alarm_adjust_module',`var setfield := 0 : integer inemit DISPLAY_FIELD(setfield) ; emit UPDATE ;[every MODE dosetfield := setfield + 1;if setfield = 4 then setfield := 0 end;emit DISPLAY_FIELD(setfield) ; emit UPDATE ;end||every REVERSE doemit ALARM_REVERSEend||every FORWARD doemit ALARM_FORWARDend||flash_enable_module]end')C.7 The Timer ModuleThe countdown timer has a structure similar to the other modules. The mainmodule is composed of set of sub-modules executing in parallel, one for eachunit of time. The alarm for the countdown timer works in much the same wayas it does for the alarm module.define(`timer_module',`signal STARTALARM, SECOND, MINUTE, HOUR, RESET intimer_tenthsecond_module||timer_second_module||timer_minute_module 72

||timer_hour_module||loopawait STARTALARM ;dododosustain ALARMwatching MODEwatching FORWARDwatching REVERSEendend') The tenthsecond module is a little more elaborate for the countdown timerbecause it must monitor the state of the timer and halt when the count reacheszero, which is performed with the exception Halt Timer. This functionalitywould be di�cult with a signal used with preemption|the do: : :watchingwhichmonitors the signal would be controlling the count, introducing a casality vio-lation.define(`timer_tenthsecond_module',`var tenthsecond := 9 : integer inloopdoevery TIMER_RESET do tenthsecond := 9; emit RESET endwatching TIMER_STARTSTOP ;trap Halt_Timer inevery TENTHSECOND dotenthsecond := tenthsecond - 1;if tenthsecond = -1 then tenthsecond := 9; emit SECOND endend||every SECOND doif ?TIMER_MINUTE = 0 and ?TIMER_HOUR = 0 and?TIMER_SECOND = 0 thenemit STARTALARM; exit Halt_Timerend 73

end||await TIMER_STARTSTOP ; exit Halt_Timerendendend') The second module is much simpler since it relies on the tenthsecond moduleto halt the timer when appropriate. The requirements are that the seconds beboth resettable and externally-visible.define(`timer_second_module',`var second := 0 : integer inemit TIMER_SECOND(second);loopawaitcase RESET dosecond := 0case SECOND dosecond := second - 1;if second = -1 then second := 59; emit MINUTE; endend ;emit UPDATE ; emit TIMER_SECOND(second)endend') The minute module handles both the actual number of minutes remainingand the number of minutes which the user has requested. The reset operation isto load the number of minutes remaining with the number of minutes requested.define(`timer_minute_module',`var minute := 0, setminute := 0 : integer inemit TIMER_MINUTE(minute);loopawait 74

case RESET dominute := setminutecase TIMER_FORWARD doif ?DISPLAY_FIELD = Timer_adjust_minutes thensetminute := (setminute + 61) mod 60 ; minute := setminute endcase TIMER_REVERSE doif ?DISPLAY_FIELD = Timer_adjust_minutes thensetminute := (setminute + 59) mod 60 ; minute := setminute endcase MINUTE dominute := minute - 1; if minute = -1 then minute := 59; emit HOUR endend ;emit UPDATE ; emit TIMER_MINUTE(minute)endend') The hour module is similar to the minute module. Both the number ofhours remaining and the number of hours requested are the responsibility ofthis module.define(`timer_hour_module',`var hour := 0, sethour := 0 : integer inemit TIMER_HOUR(hour);loopawaitcase RESET dohour := sethourcase TIMER_FORWARD doif ?DISPLAY_FIELD = Timer_adjust_hours thensethour := (sethour + 61) mod 60 ; hour := sethour endcase TIMER_REVERSE doif ?DISPLAY_FIELD = Timer_adjust_hours thensethour := (sethour + 59) mod 60 ; hour := sethour endcase HOUR dohour := hour - 1end ;emit UPDATE ; emit TIMER_HOUR(hour)75

endend')C.8 The Timer Control ModuleBecause the timer has both a complex run behavior (it can be started, stopped,and reset), and a complex adjustment behavior (the hours and minutes canbe set independently, and the timer is implicitly reset before adjustment), thecontrol module is broken into three pieces, one for running, one for adjustment,and one which calls both of these, presented below. The required functionalityis that after a button other than MODE has been pressed, MODE returns tothe timekeeping mode, rather than the next (the stopwatch).define(`timer_control_module',`trap Leave_Timer inemit DISPLAY_MODE(Timer_mode); emit UPDATE ;dotimer_run_module(`Leave_Timer');looptimer_run_module(`Return_to_time')endwatching ADJUST;loopemit DISPLAY_MODE(Timer_adjust_mode); emit UPDATE ; emit TIMER_RESET ;dotimer_adjust_modulewatching ADJUST;emit DISPLAY_MODE(Timer_mode); emit UPDATE ;do 76

looptimer_run_module(`Return_to_time')endwatching ADJUSTend % run/adjust loopend % Leave_Timer') The timer run module handles the three buttons MODE, which either re-turns the watch to the timekeeping mode, or sends it to the next mode (thestopwatch), FORWARD, which starts and stops the timer, and REVERSE,which stops and resets the timer.define(`timer_run_module',`awaitcase MODE do exit $1case FORWARD do emit TIMER_STARTSTOPcase REVERSE do emit TIMER_RESETend') The timer adjust module cycles between the two �elds (hour and minute),and sends TIMER REVERSE and TIMER FORWARD to the other timer modules. The�eld being adjusted is set to
ash by the
ash enable module, described insection C.4 on page 68.define(`timer_adjust_module',`var setfield := 0 : integer inloopawaitcase MODE dosetfield := (setfield + 1) mod 2;emit DISPLAY_FIELD(setfield) ; emit UPDATE ;case REVERSE doemit TIMER_REVERSEcase FORWARD doemit TIMER_FORWARDendend||flash_enable_module 77

end')C.9 The Stopwatch ModuleThe stopwatch module consists of parallel-executing modules for each of theunits of time and two toggles which control whether the stopwatch is runningand whether it is in lap mode (the display is not advancing, but the time elapsedis kept).An exception is used to detect STOPWATCH STARTSTOP. This ensures thatSTOPWATCH RUNNING is present up to and including the instant in which STOPWATCH STARTSTOPoccurs.define(`stopwatch_module',`signal SECOND, MINUTE, HOUR, RESET inloopawait STOPWATCH_STARTSTOP;trap Stopwatch_stop insustain STOPWATCH_RUNNING||await STOPWATCH_STARTSTOP ; exit Stopwatch_stopendend||loopawait STOPWATCH_FREEZETHAW ; emit STOPWATCH_FROZEN ;dosustain STOPWATCH_FROZENwatching STOPWATCH_FREEZETHAWend||stopwatch_tenthsecond_module||stopwatch_second_module||stopwatch_minute_module||stopwatch_hour_moduleend') 78

The tenthsecond module for the stopwatch is even more elaborate than thatfor the countdown timer. In addition to start, stop, and reset functionalities, itmuch also handle its display, which is a�ected by the lap mode.define(`stopwatch_tenthsecond_module',`var tenthsecond := 0 : integer inemit STOPWATCH_TENTHSECOND(tenthsecond);loopdoevery STOPWATCH_RESET dotenthsecond := 0;emit UPDATE ; emit STOPWATCH_TENTHSECOND(tenthsecond)endwatching STOPWATCH_STARTSTOP ;doloopawaitcase STOPWATCH_RESET dotenthsecond := 0case TENTHSECOND dotenthsecond := tenthsecond + 1;if tenthsecond = 10 then tenthsecond := 0; emit SECOND endcase STOPWATCH_FREEZETHAWend;emit UPDATE ;present STOPWATCH_FROZEN elseemit STOPWATCH_TENTHSECOND(tenthsecond)endendwatching STOPWATCH_STARTSTOPendend') The stopwatch second, minute, and hour modules are comparatively simple.Each must handle reset, increasing, and the display freezing e�ects of the lapmode. 79

define(`stopwatch_second_module',`var second := 0 : integer inemit STOPWATCH_SECOND(second);loopawaitcase STOPWATCH_RESET dosecond := 0case SECOND dosecond := second + 1;if second = 60 then second := 0; emit MINUTE; endcase STOPWATCH_FREEZETHAWend ;present STOPWATCH_FROZEN elseemit UPDATE ; emit STOPWATCH_SECOND(second)endendend')define(`stopwatch_minute_module',`var minute := 0 : integer inemit STOPWATCH_MINUTE(minute);loopawaitcase STOPWATCH_RESET dominute := 0case MINUTE dominute := minute + 1;if minute = 60 then minute := 0; emit HOUR; endcase STOPWATCH_FREEZETHAWend;present STOPWATCH_FROZEN elseemit UPDATE ; emit STOPWATCH_MINUTE(minute)endend 80

end')define(`stopwatch_hour_module',`var hour := 0 : integer inemit STOPWATCH_HOUR(hour);loopawaitcase STOPWATCH_RESET dohour := 0case HOUR dohour := hour + 1;if hour = 24 then hour := 0; endcase STOPWATCH_FREEZETHAWend;present STOPWATCH_FROZEN elseemit UPDATE ; emit STOPWATCH_HOUR(hour)endendend')C.10 The Stopwatch Control ModuleThe stopwatch control module is simpli�ed because, unlike all the other modes,it has no adjust mode. Moreover, since it is the last in the chain, it does notneed to worry about the dual functionality of the MODE button, which alwaysreturns the watch to the timekeeping mode.The STOPWATCH RUNNING signal is used as a
ag to distinguish between whenthe REVERSE button resets the stopwatch and when it toggles lap mode.define(`stopwatch_control_module',`doemit DISPLAY_MODE(Stopwatch_mode); emit UPDATE;loopawait 81

case FORWARD doemit STOPWATCH_STARTSTOPcase REVERSE dopresent STOPWATCH_RUNNINGthen emit STOPWATCH_FREEZETHAWelse emit STOPWATCH_RESETendendendwatching MODE')

82

Bibliography[1] A. Aho, R. Sethi, and J. Ullman. Compilers, principles, techniques, andtools. Addison-Wesley series in Computer Science. Addison-Wesley, 1988.[2] W. Baker. An application of a synchronous reactive semantics to the VHDLlanguage. Technical Report UCB/ERL M93/10, Unversity of California,Berkeley, 1993.[3] W. Baker. On interfacing existing hardware description languages to state-space exploration-based veri�cation. unpublished, June 1993.[4] G. Berry. A hardware implementation of pure esterel. In 1991 InternationalWorkshop on Formal Methods in VLSI Design. ACM SIG DA, January1991.[5] G. Berry, P. Couronn�e, and G. Gonthier. Synchronous programming ofreactive systems. In France-Japan Arti�cial Intelligence and ComputerScience Symposium, 1986.[6] G�erard Berry and Laurent Cosserat. The ESTEREL synchronous program-ming language and its mathematical semantics. In S. D. Brooks, A. W.Roscoe, and G. Winskel, editors, Seminar on Concurrency, pages 389{448.Springer-Verlag, 1984.[7] J. A. Brzozowski. Derivatives of regular expressions. Journal of the Asso-ciation for Computing Machinery, 11(4):481{494, October 1964.[8] CISI INGENIERIE. The Esterel V3 Language Reference Manual, 1988.[9] Nicolas Halbwachs. Synchronous Programming of Reactive Systems.Kluwer, 1993.[10] J. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1993.83

