
Statically Unrolling Recursion to Improve Opportunities
for Parallelism

Neil Deshpande Stephen A. Edwards
Department of Computer Science, Columbia University, New York

Technical Report CUCS-011-12

July 2012∗

Abstract

We present an algorithm for unrolling recursion in the Haskell functional language.
Adapted from a similar algorithm proposed by Rugina and Rinard for imperative lan-
guages, it essentially inlines a function in itself as many times as requested. This
algorithm aims to increase the available parallelism in recursive functions, with an eye
toward its eventual application in a Haskell-to-hardware compiler. We first illustrate
the technique on a series of examples, then describe the algorithm, and finally show
its Haskell source, which operates as a plug-in for the Glasgow Haskell Compiler.

1 Introduction

Ongoing work at Columbia by Stephen A. Edwards and Martha A. Kim aims to produce
a compiler capable of compiling functional code, such as programs written in the Haskell
language [8]. For this compiler, exposing and exploiting parallelism will be crucial for
producing high-performance circuits.

Recursive functions are a particular focus of this compiler since its goal is to enable
the implementation of software-like algorithm, such as those employing recursive, abstract
data types, and recursive algorithms are a natural fit for manipulating such data structures.

Our plan for implementing unbounded recursion in hardware relies on storing activa-
tion records in stack memory, an approach mimicking how it is usually implemented on
sequential processors1. While this is conceptually simple, it is inherently sequential since
only one call of the function can make progress at any point in time.

∗This document’s unusual page size is intended to aid on-screen viewing and printing two pages per sheet.
Furthermore, it is written as literate Haskell (an .lhs file); its source can be compiled both with LATEX and the
Haskell compiler; see Section 5.2.

1Ghica, Smith, and Singh [7] present an alternative but comparable approach that replaces each register in
a recursive function with a stack of such registers.

1

The goal of the work in this paper is to improve the available parallelism of recursive
functions by “widening” them into the equivalent of multiple recursive calls. We closely
follow Rugina and Rinard [12], who implemented a similar algorithm for imperative code
(in C). Their objectives were a little different since they assumed execution on a sequential
processor: they aimed to reduce control overhead (e.g., stack management) by increasing
the size of functions, which also facilitated traditional compiler optimizations such as reg-
ister allocation.

In our setting, unrolling recursion provides two advantages: it can increase the num-
ber of operations, ranging from simple addition to external (non-recursive) function calls,
that can be executed in parallel per recursive invocation; and, if a function makes multiple
recursive calls (i.e., the unrolled call graph is a tree), unrolling the top function makes it
possible to execute more subtrees in parallel.

Our basic algorithm amounts to function inlining, a standard technique in compilers
for functional languages [11], with a refinement that avoids unhelpful duplication of local
helper functions (see Section 2.2).

We implement this algorithm as a plugin for the Glasgow Haskell Compiler (GHC).
As such, it restructures the GHC “Core” functional IR and allows us to run benchmarks to
identify gains resulting from this transformation.

We include the complete source code of our implementation in Section 4 and describe
how to compile and benchmark it in Section 5.

2 Examples

2.1 Inlining Recursive Functions

Figures 1–4 illustrate our procedure for inlining recursive functions to increase the avail-
able parallelism. The fib function implements a naïve, recursive algorithm to calculate the
nth Fibonacci number. While this inefficient algorithm would never be used to compute
Fibonacci numbers, its structure is representative of other, more realistic functions, so we
consider it here.

Our procedure operates in three steps. We begin by making a copy of the fib function
and making each call the other. This produces the mutually recursive functions in Figure 2.
Next, we inline the body of the second function, a lambda expression, at its two call sites
and alpha-rename the arguments for clarity. This produces Figure 3. Finally, we beta-reduce
the two lambda expressions (formerly the two recursive calls), producing fib4 (Figure 4).

Similarly, Figures 5–8 illustrate our algorithm applied to a Huffman decoder, which
uses a Huffman tree to transform a list of Booleans to a list of characters.

As before, we create two mutually recursive functions, dec and dec2, that have similar
bodies but call each other instead of recursing on themselves (Figure 6). Inlining dec2 gives
us dec3, which once more recurses on itself (Figure 7). Finally, we beta reduce the lambda
expressions in the body of dec3 to get dec4 as shown in Figure 8.

2

fib 0 =0
fib 1 =1
fib n = fib (n−1) +fib (n−2)

Figure 1: A recursive function for calcu-
lating the nth Fibonacci number, which we
will use to illustrate our algorithm.

fib2 0 =1
fib2 1 =1
fib2 n = fib2 ’ (n−1) +fib2 ’ (n−2)

fib2 ’ 0 =1
fib2 ’ 1 =1
fib2 ’ n = fib2 (n−1) +fib2 (n−2)

Figure 2: The first step: a mutually recur-
sive variant obtained by duplicating the fib
function and redirecting the recursive calls.

fib3 0 =1
fib3 1 =1
fib3 n = ((λn1→

case n1 of
0 → 1
1 → 1
_ → fib3 (n1−1) +

fib3 (n1−2)
) (n−1)) +
((λn2→

case n2 of
0 → 1
1 → 1
_ → fib3 (n2−1) +

fib3 (n2−2)
) (n−2))

Figure 3: After inlining the two calls of fib2
and alpha-renaming the arguments.

fib4 0 =1
fib4 1 =1
fib4 n = (case (n−1) of

0 → 1
1 → 1
_ → fib4 ((n−1)−1) +

fib4 ((n−1)−2)) +
(case (n−2) of
0 → 1
1 → 1
_ → fib4 ((n−2)−1) +

fib4 ((n−2)−2))

Figure 4: After beta-reducing the two
lambda terms in Figure 3.

3

data Htree =Leaf Char
| Branch Htree Htree

decoder tree i =dec tree i where
dec state i =

case state of
Leaf x → x : (dec tree i)
Branch t f →

case i of
[] → []
True : ys → dec t ys
False : ys → dec f ys

Figure 5: A simple Huffman decoder

decoder tree i =dec tree i where
dec state i =

case state of
Leaf x → x : (dec2 tree i)
Branch t f → case i of

[] → []
True : ys → dec2 t ys
False : ys → dec2 f ys

dec2 state i =
case state of

Leaf x → x : (dec tree i)
Branch t f →
case i of

[] → []
True : ys → dec t ys
False : ys → dec f ys

Figure 6: After expanding dec to mutually
recursive functions

2.2 Lifting local helper functions

If the function being inlined has any local functions, it would be natural to make a separate
copy every time the function is inlined. For example, consider the version of Quicksort
presented in Figure 9, where part is a local function. Figure 10 shows a single, naïve
unrolling of the qsort function produces three copies of the part function.

Such copies are redundant since they would be invoked sequentially anyway and do not
reduce overhead such as from function calls, so we would like to avoid them.

To avoid such redundancy, we want to lift the local function out of the recursive function
being inlined. In addition, such lifting can expose opportunities for other optimizations.
For example, for Quicksort, lifting part out of its scope makes it easier to run our unrolling
algorithm in it as well.

Lifting a function out of the scope in which it is defined can be done using Johnsson’s
lambda lifting [10], which typically adds additional arguments for variables that are other-
wise captured by the lambda expression (e.g., not arguments), although this is not necessary
in the case of part. Figure 11 shows the result of lifting out part, which, when unrolled,
gives Figure 12, which has not duplicated the body of part.

4

decoder tree i =dec3 tree i where
dec3 state i = case state of

Leaf x → x : ((λ state1 i1 →
case state1 of

Leaf x1 → x1 : (dec3 tree i1)
Branch t1 f1 → case i1 of

[] → []
True : ys1 → dec3 t1 ys1
False : ys1 → dec3 f1 ys1

) tree i)
Branch t f → case i of

[] → []
True : ys → (λ state2 i2 →

case state2 of
Leaf x2 → x2:(dec3 tree i2)
Branch t2 f2 → case i2 of

[] → []
True : ys2 → dec3 t2 ys2
False : ys2 → dec3 f2 ys2

) t ys
False : ys →

(λ state3 i3 → case state3 of
Leaf x3 → x3:(dec3 tree i3)
Branch t3 f3 → case i3 of

[] → []
True : ys3 → dec3 t3 ys3
False : ys3 → dec3 f3 ys3

) f ys

Figure 7: dec2 inlined, which effectively
makes three copies of it

decoder tree i =dec4 tree i where
dec4 state i = case state of

Leaf x → x : (case tree of
Leaf x1 →

x1 : (dec4 tree i)
Branch t1 f1 → case i of

[] → []
True : ys1 → dec4 t1 ys1
False : ys1 → dec4 f1 ys1)

Branch t f → case i of
[] → []
True : ys → case t of

Leaf x2 →
x2 : (dec4 tree ys)

Branch t2 f2 → case ys of
[] → []
True : ys2 → dec4 t2 ys2
False : ys2 → dec4 f2 ys2

False : ys → case f of
Leaf x3 →

x3 : (dec4 tree ys)
Branch t3 f3 → case ys of

[] → []
True : ys3 → dec4 t3 ys3
False : ys3 → dec4 f3 ys3

Figure 8: After beta-reducing the lambda
expressions in Figure 7. Each invocation of
dec4 processes now processes two incom-
ing bits rather than one.

5

qsort [] = []
qsort (y:ys) = let (ll , rr) = part y ys [] [] in

(qsort ll) ++[y] ++(qsort rr)
where part p [] l r = (l , r)

part p (x:xs) l r = if x <p then part p xs (x: l) r
else part p xs l (x: r)

Figure 9: Quicksort implemented with a local partition function

qsort [] → []
qsort (y:ys) → let (ll , rr) = part y ys [] [] in

case ll of
[] → []
(y1:ys1) → let (ll1 , rr1) = part1 y1 ys1 [] []

in (qsort ll1) ++[y1] ++(qsort rr1)
where part1 p1 [] l1 r1 = (l1 , r1)

part1 p1 (x1:xs1) l1 r1 =
if x1 <p1 then part1 p1 xs1 (x1:l1) r1
else part1 p1 xs1 l1 (x1:r1)

++[y] ++
case rr of

[] → []
(y2:ys2) → let (ll2 , rr2) = part2 y2 ys2 [] []

in (qsort ll2) ++[y2] ++(qsort rr2)
where part2 p2 [] l2 r2 = (l2 , r2)

part2 p2 (x2:xs2) l2 r2 =
if x2 <p2 then part2 p2 xs2 (x2:l2) r2
else part2 p2 xs2 l2 (x2:r2)

where part p [] l r = (l , r)
part p (x:xs) l r = if x <p then part p xs (x: l) r

else part p xs l (x: r)

Figure 10: Quicksort after one iteration of naïve unrolling, which made three duplicates of
the part function.

6

part p [] l r = (l , r)
part p (x:xs) l r = if x <p then part p xs (x: l) r

else part p xs l (x: r)

qsort [] = []
qsort (y:ys) = let (ll , rr) = part y ys [] [] in

(qsort ll) ++[y] ++(qsort rr)

Figure 11: Quicksort after lifting part outside the scope of qsort

part p z l r = case z of
[] → (l , r)
(x:xs) → if x <p then part p xs (x: l) r

else part p xs l (x: r)

qsort w =case w of
[] → []
(y:ys) → let (ll , rr) = part y ys [] [] in

case ll of
[] → []
(y1:ys1) → let (ll1 , rr1) = part y1 ys1 [] []

in (qsort ll1) ++[y1] ++(qsort rr1)
++[y] ++
case rr of

[] → []
(y2:ys2) → let (ll2 , rr2) = part y2 ys2 [] []

in (qsort ll2) ++[y2] ++(qsort rr2)

Figure 12: The Quicksort of Figure 11 unrolled once: part was not duplicated

2.3 Case Transformations

The Fibonacci example is typical of many recursive functions: a top-level pattern match that
distinguishes the base case followed by some expressions that do work and finally recursive
calls (Figure 1). When we apply our inlining procedure, the structure becomes a pattern
match followed by expressions followed by another pattern match and more expressions
and finally a recursive call (Figure 4).

In many cases, it may be possible hoist the inner cases up past the first level of expres-
sions to decrease the number of decisions to be made and potentially increase parallelism.

7

fib5 n =
case (n, n−1, n−2) of

(0, _, _) → 1
(1, _, _) → 1
(_, 0, 0) → 1 +1
(_, 0, 1) → 1 +1
(_, 0, _) → 1 + fib5 ((n−2)−1) +fib5 ((n−2)−2)
(_, 1, 0) → 1 +1
(_, 1, 1) → 1 +1
(_, 1, _) → 1 + fib5 ((n−2)−1) +fib5 ((n−2)−2)
(_, _, 0) → fib5 ((n−1)−1) +fib5 ((n−1)−2) +1
(_, _, 1) → fib5 ((n−1)−1) +fib5 ((n−1)−2) +1
(_, _, _) → fib5 ((n−1)−1) +fib5 ((n−1)−2) +

fib5 ((n−2)−1) +fib5 ((n−2)−2)

Figure 13: Hoisting up the inner cases of Figure 4

fib6 0 =1
fib6 1 =1
fib6 2 =2
fib6 3 =3
fib6 n = fib6 (n−2) +2 ∗ fib6 (n−3) +fib6 (n−4)

Figure 14: After performing arithmetic and other simplifications on Figure 13

This requires the inner cases not depend on things computed by the first level of expres-
sions and for these expressions never to diverge, although useful recursive functions rarely
diverge anyway.

Such a transformation also improve the opportunities for more optimizations such as
common subexpression elimination. Figures 13 and 14 illustrate how such optimizations
could improve the generated code, going so far as to reduce the number of recursive calls
and in this case, begin to illustrate the relationships among the Fibonacci sequence, Pascal’s
triangle, and the binomial theorem.

8

simplInline(f ,d)
f = λx1.λx2 . . .λxn.E f

E f (0) = subst(E f)[f (0)/ f]
f (0) = λx1.λx2 . . .λxn.E f (0)

for i = 0,1, . . . ,d−1
E f ′ = subst(E f (i))[f

′/ f (i)]
E f ′′ = subst(E f (i))[f

′′/ f (i)]
f ′ = λx1.λx2 . . .λxn.E f ′′

f ′′ = λx1.λx2 . . .λxn.E f ′

f ′′′ = subst
(

λx1.λx2 . . .λxn.
(
subst(E f ′′)[(λx1.λx2 . . .λxn.E f ′)/ f ′′]

))
[f ′′′/ f ′]

f ′′′→β f ′′′′→α f (i+1)

return f (d)

Figure 15: Our inlining algorithm

3 A Simple Inlining Algorithm

We present our algorithm in Figure 15. Here, we argue for its correctness. Let g be a
recursive function that contains no free variables and is not part of a group of mutually
recursive functions. Our algorithm is correct even if the function is part of such a group,
but we will not consider that case for now. We can represent g as

g = λx1.λx2.λxn.Eg, (1)

where Eg is some expression containing recursive calls to the function g. It follows that

g a1 a2 · · · am ≡ (λx1.λx2.λxn.Eg) a1 a2 · · · am. (2)

Let subst (M) [E/x] represent the result of substituting the literal E for the literal x in
the expression M2 and let

E f = subst (Eg) [f/g] and f = λx1.λx2.λxn.E f .

Changing an application of g to an application of f with the same arguments is meaning
preserving. That is,

g a1 a2 · · · am ≡ f a1 a2 . . . am.

Thus, renaming a function is safe as long as we rename all the recursive calls within its
body consistently and the new name is unique. Now, let

E f ′ = subst(Eg)[f ′/g] and E f ′′ = subst(Eg)[f ′′/g],

Also, let f ′ = λx1.λx2.λxn.E f ′′ and f ′′ = λx1.λx2.λxn.E f ′

2Following, e.g., Peyton Jones and Marlow [11].

9

be two mutually recursive functions. Based on the argument given above, we claim that f ′,
f ′′, and g are all equivalent since all that we have changed is the name bound to the lambda
expression. Now, let

f ′′′ = subst
(

λx1.λx2 . . .λxn.
(
subst (E f ′′) [λx1.λx2 . . .λxn.E f ′/ f ′′]

))[
f ′′′/ f ′

]
. (3)

That is, we derive f ′′′ from f ′ by substituting the expression bound to f ′′ at its call sites
within E f ′′ , followed by renaming. Thus, f ′′′ is equivalent to g.

Finally, let f ′′′→β f (1), that is, f (1) is obtained from f ′′′ by beta reducing the lambdas
that were introduced in (3). Since beta reduction is safe, f (1) is equivalent to f ′′′, and by
transitivity, to g.

GHC uses unique integers to distinguish variables. Thus, when we inline the lambda
expression according to (3), we need to rename all the bound variables. This is equivalent
to an alpha conversion which is safe if the new names are unique. To ensure this, we use the
UniqSupply utility provided by the GHC API. Furthermore, we assume f contains no free
variables, ensuring the series of transformations outlined above are meaning preserving.

10

data Expr b
=Var Id
| Lit Literal
| App (Expr b) (Arg b)
| Lam b (Expr b)
| Let (Bind b) (Expr b)
| Case (Expr b) b Type [Alt b]
| Cast (Expr b) Coercion
| Tick (Tickish Id) (Expr b)
| Type Type
| Coercion Coercion
deriving (Data, Typeable)

−− Type synonym for expressions that occur in function argument positions.
−− Only Arg should contain a Type at top level, general Expr should not
type Arg b =Expr b
−− A case split alternative. Consists of the constructor leading to the alternative,
−− the variables bound from the constructor,
−− and the expression to be executed given that binding.
type Alt b = (AltCon, [b], Expr b)
−− Binding, used for top level bindings in a module and local bindings in a Let
data Bind b =NonRec b (Expr b)

| Rec [(b, (Expr b))]
deriving (Data, Typeable)

type CoreProgram =[CoreBind]

−− The common case for the type of binders and variables when
−− we are manipulating the Core language within GHC
type CoreBndr =Var
type CoreExpr =Expr CoreBndr −− Expressions where binders are CoreBndrs
type CoreArg =Arg CoreBndr −− Argument expressions where binders are CoreBndrs
type CoreBind =Bind CoreBndr −− Binding groups where binders are CoreBndrs
type CoreAlt =Alt CoreBndr −− Case alternatives where binders are CoreBndrs

Figure 16: The GHC Core language, adapted from CoreSyn.lhs [1]

11

4 Implementation

We implemented our algorithm as a plugin that transforms GHC’s Core (Figure 16).

4.1 The SimplInline plugin

Our plugin is executed as one of the Core-to-Core passes after the desugaring phase. GHC
exposes most of the functions in its source through the GhcPlugins package. Thus, we can
use much of GHC’s infrastructure.

Our module exports a single function, plugin, which GHC will pick up and run as one
of the Core-to-Core passes. We extend defaultPlugin (which does nothing) by providing an
implementation for the installCoreToDos function. The GHC User Guide [9] has a more
thorough discussion of what each of these types mean. Our install function simply adds our
custom pass, called Recursion Inline, to the list of passes executed by the GHC.

During the optimization phase, GHC invokes the pass function by passing an instance of
ModGuts to it. The ModGuts type represents a module being compiled by the GHC [9]. The
pass function retrieves all the top level bindings from the ModGuts and runs the unrollTop
function on each binding. unrollTop is a simple tail recursive function that calls unroll(i)

(i.e. the ith iteration of unroll) on the binding that has been passed to it. unroll uses the
recHelper function to recurse down the SAST that has been passed to it until it finds a simple
recursive binding. Once a simple recursive binding has been found, it calls mkPartner to
create a pair of mutually recursive functions. Then, betaReduce and other helper functions
are used to inline one of the two mutually recursive functions into the other. Alpha renaming
is carried out using renameLocals during the inlining phase to avoid name collisions and to
ensure that the transformation is meaning preserving. Finally, pass returns the transformed
instance of ModGuts to the GHC for running other passes from the pipeline.

module SimplInline (plugin) where
import GhcPlugins
import Unique
import Debug.Trace
import System.IO.Unsafe

plugin :: Plugin
plugin = defaultPlugin {

installCoreToDos = install
}

install :: [CommandLineOption]→[CoreToDo]→CoreM [CoreToDo]
install _ todo =do

reinitializeGlobals
return (CoreDoPluginPass "Recursion Inline" pass : todo)

12

The function below, pass, prints debugging information and generates the arguments
for the top level call to unrollTop. We use the UniqSupply module for generating Unique’s,
which we use to create unique names for new local variables. GHC uses this mechanism
to disambiguate variables. The mkSplitUniqSupply function returns a tree of UniqSupply
values. Each UniqSupply can give us one Unique value. It can also be split to give us two
distinct UniqSupply values. The mkSplitUniqSupply function takes a single character as a
seed. We chose to use ’Z’ as the seed since it is currently one of the characters that GHC
itself does not use as a seed for its own UniqSupply values.

pass :: ModGuts→CoreM ModGuts
pass guts = let binds =mg_binds guts

us =unsafePerformIO $ mkSplitUniqSupply ’Z’
in let binds’ = altHelperU us f unrollTop binds []

in return (guts { mg_binds =binds’ })
where

f u g b = let {
b’ =g u 1 $

trace ("Received SAST :::::::::::::::::::::::::::: " ++sh b) b;
}
in trace ("New SAST ::::::::::::::::::::::::::::::::: " ++sh b’) b’

unrollTop :: UniqSupply→ Int → Bind CoreBndr→ Bind CoreBndr
unrollTop us i bndr = if i ==0 then bndr

else let (us1, us2) = splitUniqSupply us
in unrollTop us1 (i−1) (unroll us2 bndr)

unroll takes a binding and calls mkPartner to generate a pair of mutually recursive
functions as described in section 3. Finally, it calls betaReduce to actually inline e into
e’ at the call sites for b’. Since only function applications are reduced by betaReduce, we
use substitute to replace all other occurences of b’ with b within e’. Future work: rather
than indiscriminately inlining the first recursive function that we encounter, we should use
annotations or a predicate that tells us which functions should be inlined.

unroll :: UniqSupply→ Bind CoreBndr→ Bind CoreBndr
unroll us (NonRec b e) =NonRec b $ recHelper us e
unroll us (Rec [bndr]) = let (us1, us2) = splitUniqSupply us

in let [(b, e ’), (b ’, e)] = mkPartner us1 bndr
in Rec [(b, substitute varToCoreExpr b’ b $ betaReduce b’ e us2 e ’)]

−−We do not handle mutually recursive groups currently
unroll us m =m

13

recHelper descends to the first simple recursive function in the given SAST and calls
unroll on it.

recHelper :: UniqSupply→ Expr CoreBndr→ Expr CoreBndr
recHelper us e = let (us1, us2) = splitUniqSupply us

in case e of
Let bnd expr → Let (unroll us1 bnd) (recHelper us2 expr)
Lam var expr → Lam var (recHelper us expr)
App expr arg → App (recHelper us1 expr) (recHelper us2 arg)
Case expr bnd t alts → Case (recHelper us1 expr) bnd t $

altHelperU us2 altTransformU recHelper alts []
Cast expr co → Cast (recHelper us expr) co
Tick id expr → Tick id (recHelper us expr)
x → x

mkPartner takes a simple recursive function and generates two mutually recursive func-
tions as described in section 3. This function calls renameLocals to ensure that the local
variables in the two mutually recursive functions appear as distinct variables to GHC.

mkPartner :: UniqSupply→ (CoreBndr, Expr CoreBndr)
→ [(CoreBndr, Expr CoreBndr)]

mkPartner us (b, e) = let (us1, us2) = splitUniqSupply us
in let b’ =mkPBnd us1 b

in let e’ = renameLocals us2 $ substitute varToCoreExpr b b’ e
in [(b, e ’), (b ’, e)]

mkPBnd creates a Unique from the UniqSupply that it receives and creates a local vari-
able having the same type as the binding passed to it by calling mkSysLocal, which is
exposed by GHC. Currently, an unfortunate side effect is that wild card variables lose their
wild card behavior, since we don’t play around with the IdInfo. We need to fix this so
further passes of the compiler have more opportunities for optimization.

mkPBnd :: UniqSupply→CoreBndr→ CoreBndr
mkPBnd us var = let uniq =uniqFromSupply us

in mkSysLocal (fsLit "r2d2") uniq (varType var)

These are a bunch of utility functions used to iterate over lists etc.

altHelperU us f g (alt : alts) res = let (us1, us2) = splitUniqSupply us
in altHelperU us2 f g alts $ (f us1 g alt) : res

altHelperU us f g [] res = reverse res

altTransformU us f (altCon , bnds, ex) = (altCon , bnds, f us ex)

14

altHelper f alts =map (λ (altCon, bnds, ex) → (altCon , bnds, f ex)) alts

isVarBound u bnd = case bnd of
NonRec v expr → u ==v
Rec [(v, expr)] → u ==v
Rec ((v, expr): bnds) → u ==v | | isVarBound u (Rec bnds)

sh x = showSDoc $ ppr x

substitute takes a function f, a variable to replaced b, an expression e bound to b and the
tree (SAST) in which the replacement is supposed to take place e’. It recursively descends
the tree and replaces all occurences of b by the result of f e, except when the name b is
bound to a lambda within e’.

substitute f b e e’ = case e’ of
var@(Var id) → if id ==b then f e else var
App expr arg → App (substitute f b e expr)

(substitute f b e arg)
lam@(Lam bnd expr) → if b ==bnd then lam

else Lam bnd (substitute f b e expr)
lett@(Let bnd expr) → if isVarBound b bnd then lett

else Let (bndHelper f b e bnd) (substitute f b e expr)
cas@(Case expr bnd t alts) → if bnd ==b then cas

else Case (substitute f b e expr) bnd t (altHelper (substitute f b e) alts)
Tick t expr → Tick t (substitute f b e expr)
Cast expr co → Cast (substitute f b e expr) co
x → x

15

substituteU performs the same task as substitute, but we use this version when the
function f needs a UniqSupply argument in addition to e.

substituteU f b e us e’ = let (us1, us2) = splitUniqSupply us
in case e’ of

var@(Var id) → if id ==b then f us e else var
App expr arg → App (substituteU f b e us1 expr)

(substituteU f b e us2 arg)
lam@(Lam bnd expr) → if b ==bnd then lam

else Lam bnd (substituteU f b e us expr)
lett@(Let bnd expr) → if isVarBound b bnd then lett

else Let (bndHelperU us1 f b e bnd) (substituteU f b e us2 expr)
cas@(Case expr bnd t alts) → if bnd ==b then cas

else Case (substituteU f b e us1 expr) bnd t $
altHelperU us2 altTransformU (substituteU f b e) alts []

Tick t expr → Tick t (substituteU f b e us expr)
Cast expr co → Cast (substituteU f b e us expr) co
x → x

renameLocals takes a UniqSupply (us) and an SAST e and recursively descends the
SAST, renaming all the local variables within the tree and substituting all occurences of the
old names with the corresponding newly generated names.

renameLocals us e = let (us1, us2) = splitUniqSupply us
in case e of

App expr (Type t) → App (renameLocals us expr) (Type t)
App expr arg → App (renameLocals us1 expr) (renameLocals us2 arg)
Lam var expr → lamHelper us var expr
Let bnd expr → letHelper us bnd expr
Case expr var t alts → let var’ =mkPBnd us1 var

(us3, us4) = splitUniqSupply us2
in let alts ’ = altHelper (substitute varToCoreExpr var var ’) alts

in Case (renameLocals us3 expr) var’ t $
altHelperU us4 renAltU id alts ’ []

Tick t expr → Tick t (renameLocals us expr)
Cast expr co → Cast (renameLocals us expr) co
x → x

betaReduce takes a variable b bound to a function e and the SAST to be modified which
is e’. It replaces all applications of b in the SAST e’ by e. Furthermore, it beta-reduces
all the applications of e with the arguments specified in the SAST. This is slightly different
from classical beta reduction which takes a single lambda and reduces it using a single

16

argument. This method supports reducing an arbitrary number of arguments as well as
curried functions.

betaReduce :: CoreBndr→ Expr CoreBndr→UniqSupply→ Expr CoreBndr
→ Expr CoreBndr

betaReduce b e@(Lam v ex) us e’ = let (us1, us2) = splitUniqSupply us
in case e’ of

App (Var var) arg → let arg’ =betaReduce b e us1 arg
in if var ==b then renameLocals us2 $ substitute id v arg’ ex

else App (Var var) arg’
App app@(App expr a) arg → let arg’ =betaReduce b e us1 arg

in case betaReduce b e us2 app of
Lam v’ ex’ → substitute id v’ arg’ ex’
app’ → App app’ arg’

App expr arg → App (betaReduce b e us1 expr) (betaReduce b e us2 arg)
lam@(Lam bnd expr)→ if b ==bnd then lam

else Lam bnd (betaReduce b e us expr)
lett@(Let bnd expr) → if isVarBound b bnd then lett

else let expr’ =betaReduce b e us1 expr
in case bnd of

NonRec vr expre → Let (NonRec vr (betaReduce b e us expre)) expr’
Rec bnds → Let (Rec $

altHelperU us (substBndU v) (betaReduce b e) bnds []
) expr’

cas@(Case expr bnd t alts) → if bnd ==b then cas
else Case (betaReduce b e us1 expr) bnd t $

altHelperU us2 altTransformU (betaReduce b e) alts []
Tick t expr → Tick t (betaReduce b e us expr)
Cast expr co → Cast (betaReduce b e us expr) co
x → x

−− Don’t beta reduce things that are not functions
−− instead just go in and inline them
betaReduce b e us e’ = substituteU renameLocals b e us e’

substBndU v us g (var , expr) = if var 6= v then (var , g us expr)
else (var , expr)

Finally, we have a bunch of helper functions for doing some heavy lifting:
lamHelper renames locals within a lambda expression. We rename the bound variable

of the lambda and substitute all occurences with of the bound variable with the new name.

17

This is alpha conversion. Finally, renameLocals is called recursively on the body of the new
lambda. However, we have to be careful that we don’t play with the type variables for type
lambdas or with the bound variable of a dictionary.

lamHelper us var expr
| isTyVar var =Lam var $ renameLocals us expr
| isDictId var =Lam var $ renameLocals us expr
| otherwise = let (us1, us2) = splitUniqSupply us

in let var’ =mkPBnd us1 var
in Lam var’ $ renameLocals us2 $ substitute varToCoreExpr var var’ expr

varRenameU us _ var =mkPBnd us var

renAltU renames locals within a case alternative. This entails renaming all the locals
bound from the constructor used for the pattern match (altCon) and substituting all oc-
curences with the new names. Finally, we recurse on the body of case alternative.

renAltU us _ (altCon , vars , expr) = let (us1, us2) = splitUniqSupply us
in let nvars = altHelperU us1 varRenameU id vars []

in let subs = zip vars nvars
f x (b, b’) = substitute varToCoreExpr b b’ x

in (altCon , nvars , renameLocals us2 $ foldl f expr subs)

letHelper renames the locals within a let expression defined by a binding bnd and an
expression expr.

letHelper us bnd expr = let (us1, us2) = splitUniqSupply us
in case bnd of

NonRec v e→ let v’ =mkPBnd us1 v
in let (us3, us4) = splitUniqSupply us2

in Let (NonRec v’ $ renameLocals us3 e)
(renameLocals us4 $ substitute varToCoreExpr v v’ expr)

Rec bnds → let vars =map fst bnds
exprs =map snd bnds

in let nvars = altHelperU us1 varRenameU id vars []
in let subs = zip vars nvars

f x (v, v’) = substitute varToCoreExpr v v’ x
in let exprs’ =map (λx→ foldl f x subs) exprs

(us3, us4) = splitUniqSupply us2
in let bnd’ =Rec $ zip nvars $

altHelperU us3 (λu g e→ g u e) renameLocals exprs’ []
in Let bnd’ $ renameLocals us4 $ foldl f expr subs

18

bndHelper replaces v by f e in bnd if v has not already been name captured within bnd.

bndHelper f v e bnd = case bnd of
NonRec var expr → if var 6= v then NonRec var $ substitute f v e expr

else NonRec var expr
Rec bnds → Rec $ map (λ (var, expr) → if var 6= v

then (var , substitute f v e expr)
else (var , expr)) bnds

bndHelperU us f v e bnd = case bnd of
NonRec var expr → NonRec var $ substituteU f v e us expr
Rec bnds → Rec $ altHelperU us (substBndU v) (substituteU f v e) bnds []

5 Performance Analysis

We compiled and installed the SimplInline plugin and ran it on the nofib benchmark to
measure its performance. The run was conducted on a Lenovo ThinkPad E420 running
Ubuntu 11.10. The plugin requires the GHC infrastructure in order to build and deploy it.

5.1 Getting the ghc-7.4.1 infrastructure

The GHC source is required in order to run the nofib benchmark, since the benchmark uses
some of the build infrastructure of the GHC source. We need to install the haskell platform
before we can build the GHC. That is, we need ghc to build the ghc source. This can be
done as follows:

1. Install a ghc binary (version 6 or higher) either from the GHC download site [2] or
by running (on Ubuntu):

sudo apt-get install ghc

2. Get the ghc-7.4.1 source from the GHC download site [2]

3. Build ghc-7.4.1 from source by the running following sequence of commands in the
unpacked directory [3]:

./configure
make

make install

4. Make the newly built ghc-7.4.1 binary the default ghc on your PATH.

5. Get the haskell-platform-2011.4.0.0 source from the GHC download site [6].

6. Build the haskell platform from source by the running following sequence of com-
mands in the unpacked directory [6]

19

./configure
make

make install

5.2 Compiling and Installing the SimplInline plugin

Compiling and installing this plugin requires ghc 7.4.1 and cabal 1.10 (or higher). The
plugin can be compiled by the following command:

ghc -c SimplInline.lhs -package ghc

We use the cabal utility to install the SimplInline plugin. The SimplInline.cabal file
can be found in Figure 17. The plugin is installed by executing the following command in
the directory where SimplInline.lhs file has been compiled. The cabal file should also be
present in the same directory.

cabal install

Once the plugin has been installed, we can use it to optimize programs by employing
the -fplugin=SimplInline option with ghc. For instance, we can compile and run a program
foo.hs with the SimplInline optimization by using the following sequence of commands:

ghc -c -fplugin=SimplInline foo.hs

ghc -o foo foo.hs

./foo

5.3 Running the nofib benchmark

1. Get the nofib source from the git repository [4] as a tarball

2. Unpack the nofib tarball under the root of the ghc source tree on the same level as
compiler and libraries.

3. In ghc-7.4.1/mk/build.mk, set

WithNofibHc =ghc

4. We are now set to run the benchmark. Run the following commands in the directory
ghc-7.4.1/nofib [5]

make clean && make boot && make -k >& vanillaLog

make clean && make boot && make -k \

EXTRA_HC_OPTS="-fplugin=SimplInline" >& simplInlineLog

nofib-analyse/nofib-analyse vanillaLog simplInlineLog \

>analysis.txt

The file analysis.txt now contains the results of the benchmark run.

20

−− The name of the package.
Name: SimplInline

−− The package version. See the Haskell package versioning policy
−− standards guiding when and how versions should be incremented.
Version : 0.1

−− A short (one-line) description of the package.
Synopsis: Simple Recursion Unrolling

−− URL for the project homepage or repository.
Homepage: http ://patch−tag.com/r/neil/ simplInline

−− The license under which the package is released.
License: BSD3

−− The file containing the license text.
License−file : LICENSE

−− The package author(s).
Author: Neil Deshpande

−− An email address to which users can send suggestions, bug reports,
−− and patches.
Maintainer : neil .deshpa@gmail.com

Category: System

Build−type: Simple

−− Constraint on the version of Cabal needed to build this package.
Cabal−version: ≥1.10

Library
−−Modules exported by the library.
Exposed−modules: SimplInline

−− Packages needed in order to build this package.
Build−depends: base ,

ghc

Figure 17: The cabal (package manager) specification for our plug-in

21

References

[1] http://hackage.haskell.org/trac/ghc/browser/compiler/coreSyn/CoreSyn.

lhs.

[2] http://www.haskell.org/ghc/download_ghc_7_4_1.

[3] http://hackage.haskell.org/trac/ghc/wiki/Building/QuickStart.

[4] https://github.com/ghc/nofib.

[5] http://hackage.haskell.org/trac/ghc/wiki/Building/RunningNoFib.

[6] http://hackage.haskell.org/platform/linux.html.

[7] Dan R. Ghica, Alex Smith, and Satnam Singh. Geometry of synthesis IV: Compiling
affine recursion into static hardware. In Proceedings of the International Conference
on Functional Programming (ICFP), pages 221–233, Tokyo, Japan, September 2011.

[8] http://www.haskell.org/.

[9] http://www.haskell.org/ghc/docs/7.4.1/html/users_guide/

compiler-plugins.html#writing-compiler-plugins.

[10] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equations.
In Proceedings of Functional Programming Languages and Computer Architecture,
volume 201 of Lecture Notes in Computer Science, pages 190–203, Nancy, France,
1985. Springer.

[11] Simon Peyton Jones and Simon Marlow. Secrets of the Glasgow Haskell Compiler
inliner. Journal of Functional Programming, 12:393–434, September 2002.

[12] Radu Rugina and Martin Rinard. Recursion unrolling for divide and conquer pro-
grams. In Proceedings of the Workshop on Languages and Compilers for Parallel
Computing (LCPC), volume 2017 of Lecture Notes in Computer Science, pages 34–
48, Yorktown Heights, New York, August 2000.

22

http://hackage.haskell.org/trac/ghc/browser/compiler/coreSyn/CoreSyn.lhs
http://hackage.haskell.org/trac/ghc/browser/compiler/coreSyn/CoreSyn.lhs
http://www.haskell.org/ghc/download_ghc_7_4_1
http://hackage.haskell.org/trac/ghc/wiki/Building/QuickStart
https://github.com/ghc/nofib
http://hackage.haskell.org/trac/ghc/wiki/Building/RunningNoFib
http://hackage.haskell.org/platform/linux.html
http://www.haskell.org/
http://www.haskell.org/ghc/docs/7.4.1/html/users_guide/compiler-plugins.html#writing-compiler-plugins
http://www.haskell.org/ghc/docs/7.4.1/html/users_guide/compiler-plugins.html#writing-compiler-plugins

	Introduction
	Examples
	Inlining Recursive Functions
	Lifting local helper functions
	Case Transformations

	A Simple Inlining Algorithm
	Implementation
	The SimplInline plugin

	Performance Analysis
	Getting the ghc-7.4.1 infrastructure
	Compiling and Installing the SimplInline plugin
	Running the nofib benchmark

