
ARTICLE IN PRESS
Science of Computer Programming () –

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

A novel analysis space for pointer analysis and its application for
bug finding
Marcio Buss a,b,∗, Daniel Brand b, Vugranam Sreedhar c, Stephen A. Edwards a
a Department of Computer Science, Columbia University, New York, NY, United States
b IBM T. J. Watson Research Center, Yorktown Heights, NY, United States
c IBM T. J. Watson Research Center, Hawthorne, NY, United States

a r t i c l e i n f o

Article history:
Received 30 July 2008
Received in revised form 30 March 2009
Accepted 12 August 2009
Available online xxxx

Keywords:
Static analysis
Pointer analysis
Summary-based analysis
Bug-finding

a b s t r a c t

The size of today’s programs continues to grow, as does the number of bugs they contain.
Testing alone is rarely able to flush out all bugs, and many lurk in difficult-to-test corner
cases. An important alternative is static analysis, in which correctness properties of a
program are checked without running it. While it cannot catch all errors, static analysis
can catch many subtle problems that testing would miss.
We propose a new space of abstractions for pointer analysis—an important component

of static analysis for C and similar languages. We identify two main components of any
abstraction—how tomodel statement order and how tomodel conditionals, then present a
newmodel of programs that enables us to explore different abstractions in this space. Our
assign-fetch graph represents reads and writes to memory instead of traditional points-
to relations and leads to concise function summaries that can be used in any context.
Its flexibility supports many new analysis techniques with different trade-offs between
precision and speed.
We present the details of our abstraction space, explain where existing algorithms fit,

describe a variety of new analysis algorithms based on our assign-fetch graphs, and finally
present experimental results that show our flow-aware abstraction for statement ordering
both runs faster and produces more precise results than traditional flow-insensitive
analysis.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Modern society is irreversibly dependent on computers and, consequently, on software. Examples abound: from office
work to banking, from leisure to air traffic control, communications, cars, air planes, etc. Yet, software products today are
plagued by defects. The increasing complexity of programs makes it almost impossible to deploy an error-free product. For
example, the Linux kernel grew from 2 million lines of code in 2002 to about 6 million lines in 2007 [1]; the number of
lines of code in a typical GM vehicle increased from 100 thousand in 1970 to 1 million in 1990—it is estimated to grow to
100 million lines by 2010 [2]. As a striking example, the Windows 2k operating system was shipped with 63,000 defects
(discovered to date) [3]. Furthermore, it has been argued from empirical evidence [4] that even bug density (i.e., the number
of defects per lines of code) is increasing with project size.
Static program analysis has been gaining renewed momentum as a solution for automated error detection. In the most

basic sense, it means finding defects without running the code. More specifically, it means analyzing the source code and

∗ Corresponding author at: Department of Computer Science, Columbia University, New York, NY, United States.
E-mail address:marcio@cs.columbia.edu (M. Buss).

0167-6423/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2009.08.002

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:marcio@cs.columbia.edu
http://dx.doi.org/10.1016/j.scico.2009.08.002

ARTICLE IN PRESS
2 M. Buss et al. / Science of Computer Programming () –

searching for violations of correctness properties. This approach is complementary, and sometimesmore attractive, tomore
traditional methods such as testing [5] (dynamic analysis) ormodel checking [6,7].
However, static analysis invariably issues some false alarms because it considers all paths through the program

simultaneously and symbolically executes the program instead of using real inputs. Thus, static tools will inevitably signal
errors in correct programs. By contrast, dynamic analysis examines particular runs of a program at a finer granularity and
thus never issues false alarms because it has precise information about the current execution state. Thus, a static bug finder
tends to issue either toomany spuriouswarnings about non-bugs, or is too uncertain about program defects and thusmisses
real bugs.
The presence of pointers is a challenging aspect of many languages that can force static analysis to consider far more

behavior than actually possible. In C, pointers are often regarded as the bane of static program analysis. They pose a problem
to compilers and bug finding tools because it is often unclear what locations may be accessed through indirect memory
references. Aliasing, i.e., two expressions referring to the samememory location, is another commonaspect of using pointers,
which can complicate the analysis. Without enough information, static tools are forced to make conservative assumptions
such as ‘‘a pointer assignment could write to any variable in the current scope’’, leading to many superfluous dependencies
and significantly limiting the power of the analyzer.
To alleviate that, a common solution is to allow the programmer to provide annotations to guide the analyzer, e.g., to

declare a variable as unaliased in a certain scope, allowing the analyzer to aggressively infer properties in that scopewithout
fearing any aliases. Other tools simply restrict pointer use to a minimal, systematic way [8], provide special constructs such
as the ‘‘never-null’’ pointer of Cyclone [9], or create special data types that can never be aliased [10].
However, experience has shown [11] that programmers are reluctant to provide any but the most minimal annotations,

andwhen they do, the annotations are rarely synchronizedwith code changes. This burden is particularly pronouncedwhen
applying a tool to a legacy code base.
The solution is to provide some external checking of properties. For pointers, determining useful information requires

some form of pointer analysis. Such analysis consists of computing points-to information—given two program locations, p
and q, we say p points-to q if p can contain the address of q. Pointer analysis statically estimates such possible set of locations
a pointer can point to during program’s execution. There aremany types of pointer analysis, with different levels of precision
and speed. The precision of a particular analysis can directly affect the utility of the bug finding tool—the more precise the
pointer analysis, the more aggressive the tool can be, leading to fewer false alarms and/or missed errors. However, some
solutions are precise but prohibitively expensive, while others are fairly cheap but too approximate. A bug finder that relied
on the latter would be too inaccurate, while using the former could result in a checker that is unacceptably slow. The gap
between these two extremes is sparsely populated by a few disconnected, ad-hoc heuristics. This has prevented designers
from implementing effective pointer analysis algorithms into real-world error detection tools, even though researchers
agree [12,13] that this could lead to considerable benefits.
We propose a novel analysis space for pointer analysis in which the usual extreme solutions are simply special cases of

a more fundamental, underlying principle. This is achieved by reformulating the granularity and the dimensions of pointer
analysis itself, allowing finer-grain trade-offs between speed and utility, as well as finding new, previously unknown, sweet
spots. In particular, we introduce flow-aware analysis—a technique that approximates statement ordering information and
is thus more precise than flow-insensitive analysis, yet runs faster since it processes far fewer alias relationships because
the increased precision reduces the number that need to be considered.
The framework is particularly tailored for what we call modular bug finding [14], and it is developed around a new

abstraction for computing points-to sets, the Assign-Fetch Graph, that has many interesting features. Empirical evaluation
shows interesting results, as some unknown errors in well-known applications (such as the Linux kernel) were discovered.
While our pointer analysis technique is targeted to bug finding, its results are never directly reported to the user because

they are still too approximate. Instead, they are used to provide hints to cut down our reliance on a much more accurate,
but vastly more expensive, analysis procedure. We discuss this more when we report experimental results in Section 10.
This work is a distillation of the first author’s thesis [14], which we also presented in much-abbreviated form

elsewhere [15].

2. Pointer analysis

Pointer analysis attempts to statically determine useful properties about pointers in a program. Most interesting prop-
erties are undecidable, so most algorithms strive for a sound approximation. In this paper, we are concerned with points-to
analysis [16], which, for each pointer, determines a superset of the locations to which it can refer; and alias analysis [17],
which calculates pairs of pointer expressions that may refer to the same storage location. We do not consider escape analy-
sis [18–20], which identifies which memory locations may be visible outside a particular scope; and shape analysis [21,22],
which tries to understand the structure of data in a program, e.g., whether something is a tree.
Points-to analysis algorithms are distinguished by how they abstract the program. Flow-sensitive analysis [23–25,16,17]

considers the order in which the statements of a program execute, and is usually based on an iterative dataflow
framework [26]. More common is a flow-insensitive analysis [27–32], which treats the program as a pile of (unordered)
statements, much like a type system. As such, flow-insensitive algorithms are generally formulated as a set of type rules.

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

ARTICLE IN PRESS
M. Buss et al. / Science of Computer Programming () – 3

Fig. 1. Our abstraction model. Each point in this three-dimensional space corresponds to a different interpretation of a program; we indicate three that
correspond to common pointer analysis algorithms. Moving away from the origin means modeling behavior more precisely, but not necessarily a more
expensive analysis.

Such an analysis may compute a single solution that is valid for the entire program [27,33,32,34] or may compute one
solution for each function [29,35].
The flow-insensitive approach trades accuracy for speed, but it is often accurate enough. In particular, it remains sound

and thus safe for applications such as compiler optimization, where imprecision merely reduces the quality of the result. A
number of studies have tried to quantify the trade-offs between the two techniques [36–38].
Another dimension of these algorithms is context-sensitivity, which refers to howmuchmultiple calls to the same function

are differentiated. Using program state information at a function’s call site yields a context-sensitive analysis.
Many context-sensitive algorithms summarize the behavior of a called function as a transfer function. The algorithm

creates a parametrized summary of the behavior of a function, then uses it to characterize the behavior of its callers.
While such an approach is theoretically appealing, its implementation is not straightforward, especially when the summary
function cannot be expressed symbolically. Assumption sets [39] are a widely adopted alternative that represent the transfer
function as a table of mappings from context information to output flow values. A context-sensitive analysis algorithm
selects different entries from this table based on the program state at a call site.
Since not every possible state will occur at a particular call site, it is natural to consider partial transfer functions [40]—

function summaries that are only computed for the input patterns encountered during a top-down traversal of a program’s
functions. Here, a context is the aliasing relationship among function arguments (e.g., whether the first and second
arguments of a function may point to the same array).
Our technique for context-sensitivity is based on a functional approach that is not based on assumption sets. It works by

representing summary information symbolically in the form of a partially evaluated graph.
The needs of evidence-based bug detection [41] motivated our form of pointer analysis. Those needs are different from

those ofwhole program analysis. The difference can be best understood by an example: suppose a caller passes a null pointer
to a callee, who then dereferences it. Is the bug in the callee for failure to check its parameter, or is the bug in the caller for
passing null to a function not intended to handle it? Whole program analysis flags the error in the callee, thus whether a
callee contains an error or not depends on its calling environment. In contrast, in evidence-based analysis, the presence of
a bug inside a procedure never depends on its calling environment. In our example, the callee contains a bug only if there
is evidence that the callee is ‘‘meant’’ to handle a null argument. (An example of such evidence is a separate test for it being
null). In the absence of such evidence, the callee is not in error. Instead, information about its requirement for a non-null
argument is propagated to any caller. If a caller violates this requirement by passing a null pointer, the caller is in error.
Thus, evidence-based bug detection implies information about functions—including pointer alias information—

propagated from callees to callers, never in the opposite direction. This poses a particular challenge for pointer analysis
because pointer relationships inside callees in general do depend on callers. This paper presents a solution to this problem—
an accurate pointer information for a procedure is obtained by propagating information bottom-up from callee to caller, but
never top-down.

3. A space of abstractions for pointer analysis algorithms

The goal of our work is to formalize and improve the flexibility of the abstractions used in pointer analysis. We do so
by decomposing the abstraction problem into three dimensions: statement ordering, conditions, and strong updates, which
we present in this section. Later, we show several ways to combine these elements to produce new analysis algorithms,
including a new ‘‘sweet spot’’—our flow-aware analysis that is both faster and more precise than flow-insensitive analysis.
Exploring the analysis space is a step towards bridging the gap between cheap and approximate versus precise and expensive
algorithms.
Fig. 1 shows the essence of our abstraction space. Each dimension corresponds to a particular aspect of the program’s

semantics (the ordering of statements, the effects of conditionals, and the treatment of assignments). We place the most
abstract interpretation of a program at the origin. There is no numeric scale associated with axes and there is no implication
of any total ordering—it is just a qualitative representation of the independence of the three aspects of program semantics.
Each axis has two important points—the origin, where information from the program source is completely ignored, and the
maximum point, where all information is used. Points in between represent partial use of program information.

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

ARTICLE IN PRESS
4 M. Buss et al. / Science of Computer Programming () –

The right-pointing axis (‘‘v’’) represents how precisely an algorithm heeds the ordering of program statements.
Traditional flow-insensitive analysis completely ignores statement ordering (e.g., it assumes that any two statementsmay be
executed in either order) and thus corresponds to the origin. A precise analysis would consider the exact partial ordering of
statements in a program. In Section 6.1, we describe flow-aware analysis, an efficient approximation that treats statements
as totally ordered.
The vertical axis (‘‘Conditions’’) represents how an algorithm abstracts the effects of conditional statements such as if-

then-else. Again, the origin corresponds to ignoring this aspect of program execution by assuming that statements in every
branch of a conditional may all execute, again, a traditional assumption in flow-insensitive analysis. Points along this axis
correspond to modeling mutual exclusion among branches, relationships among branches under distinct conditionals, and
so forth. We consider a technique for modeling the effect of conditionals in Section 7.
The left-pointing axis (‘‘Kill’’) refers to how strong updates are handled, i.e., whether the effect of an assignment is treated

as overwriting all earlier assignments to the samememory location.While an assignment in a running program does exactly
this, it becomes difficult to model when statement evaluation order, the behavior of conditionals, and the concrete values
of pointers are unknown, as it is in static analysis. Naturally, varying levels of approximation are possible, e.g., updates to
variables that are never aliased may be modeled exactly while pointers may be approximated. In this paper, we do not
propose new abstractions for this axis; see the first author’s thesis [14].
Fig. 2 illustrates how different points in our abstraction space correspond to different abstractions and produce different

results. Here, we show how the small program in Fig. 2(g) is interpreted under various abstractions to produce different
points-to graphs.
Fig. 2(a) is a precise analysis that considers statement order, conditionals, and strong updates and thus produces themost

sparse points-to graph. For instance, the dereference of p at statement *p=&w cannot read the address of r because p=&r
occurs on the opposite branch. Also, statement p=&x is killed by p=&q prior to statement *p=&w, and therefore q is the only
location that can be set to point to w.
Fig. 2(b) is the other extreme: it ignores statement order and conditionals (we omitted the ‘‘c’’ node to indicate this). Not

surprisingly, this produces many spurious aliases, such as r pointing tow, which can never happen in the original program.
This is equivalent to an Andersen-style analysis [27].
Fig. 2(c) illustrates what happens when only conditionals are ignored. Here, we replaced the conditional node ‘‘c’’ with

a triangle node to indicate that both branches of the conditional are treated as running in parallel. Although statement
ordering is considered overall, the relative order of statements in opposite branches of the conditional is non-deterministic.
This means *p in statement *p=&w can read either q or r, and thus both points-to relations q w and r w become valid.
Similarly, because the right-hand side in z=p can read the value set by p=&q, statement *z=&t also sets q to point-to t.
Fig. 2(d) shows the effects of considering only statement ordering. Compared to Fig. 2(b), it omits the arc from z to r

because although the program contains both p=&r and z=p, p=&r appears later so we know that z cannot take on the
address of r. Fig. 2(d) also illustrates the effect of ignoring strong updates in the abstraction of Fig. 2(c). For example, the
deference of p in *p=&w can also refer to the address of x, and make that variable to point-to w as well.
Fig. 2(e) adds the effect of conditionals, which inhibits the interaction between the statements in the two branches of the

conditional, eliminating, for example, the points-to arc between r andw. Finally, Fig. 2(f) only heeds the effect of conditionals,
but not statement ordering. This adds, for example, the r-to-t arc because thep=&r assignment is nowconsidered as possibly
running before z=p.
Choosing one of these pointer-analysis variations may impact the outcome of another analysis. Assume that a false-

positive-suppressing tool wants to prove that the statement *z=&t does not write to q. Then, only the solutions in
Figures 2(a), (e), and (f) would suffice; all others have a (spurious) arc from z to q.
Some of the different abstraction points in Fig. 2 have been implemented by others using very different algorithms for

each point. Below, we describe one of our main contributions: the Assign-Fetch Graph (AFG), a representation for program
behavior that makes it easy to implement different abstractions. Slight variations in how this graph is built and interpreted
lead directly to the abstractions shown in Fig. 2 and facilitate exploring different points in our abstraction space.

4. The assign-fetch graph

Instead of the usual points-to graph [31,16,32] used by most pointer analysis algorithms, we represent a function’s
behavior with an assign-fetch graph (AFG), which we developed to make it easier to abstract the program in different ways.
Our analysis is summary-based [42,43,40]: it computes a representation for each procedure that summarizes its effects on
pointers.
Unlike a points-to graph, whose nodes represent pointer variables and whose edges represent points-to relations, the

nodes in our AFG represent locations and values, and edges represent reads and writes to memory. Fig. 3 illustrates the
assign-fetch graph for a small program fragment. Pointer analysis amounts to matching pointer dereferences to pointer
assignments, i.e., the analysis can be thought of as an attempt to understand which writes could be seen by each read.
One approximation is that each write to a location can be seen by every read of that location, but this is usually an over-
approximation: a read and write may occur in different branches of a conditional, or a write might occur in sequence after a
read. Our analysis space enables us to approximate these relationships in various ways, producing different pointer analysis
algorithms; the AFG is the main data structure behind it.

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

ARTICLE IN PRESS
M. Buss et al. / Science of Computer Programming () – 5

a

g

f e

d

c

b

Fig. 2. Our abstraction model applied to a small program (g). Each point in this three-dimensional space corresponds to a different interpretation of a
program (a)–(f), which we illustrate with a control-flow graph and the points-to graph it produces.

Fig. 3. A pair of statements and their AFG: x is assigned in A1 and fetched in F2; an alias edge indicates that n, the result of the fetch, can take the address
of y.

In traditional pointer analysis, there is a major difference between flow-sensitive and flow-insensitive analysis. In flow-
insensitive analysis, there is a single points-to graph representing a solution for the whole program. In contrast, a flow-
sensitive analysis associates a points-to graph with each control flow point. Like flow-insensitive analysis, we maintain a
single AFG solution, even in a mode as precise as flow-sensitive analysis. This is possible by having the two kinds of edges
(assign and fetch), as opposed to only one kind of an edge in a points-to graph. The distinction between assigns and fetches
allows us to express that one may happen before the other, or that they may happen under different conditions. This makes
it unnecessary to associate different information with different program points.

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

ARTICLE IN PRESS
6 M. Buss et al. / Science of Computer Programming () –

a b c d
Fig. 4. The usual statements considered in pointer analysis and their AFGs.

Our total system deals with three kinds of graphs—a syntax tree, a flow graph, and the AFG. Only the last is the subject of
this paper, but it is important to avoid confusion with the other two. In a syntax tree an edge goes from a node representing
a syntactic object to one of its syntactic sub-objects. A flow graph is obtained from a syntax tree by adding semantic
information; an edge indicates that one piece of data is used in calculating another. AFG is obtained from a flow graph
and represents a state of memory; an assign or fetch edge goes from an address to its contents.
Formally, an assign-fetch graph is a 7-tuple (N, C, T , I, A, F , E) where N is the set of nodes, of which C ⊂ N are fetch

nodes, T ⊂ N − C are interface nodes and I ⊂ N are initial-value nodes (I ⊂ N − C before summarization and I ⊂ C after.
T ∩ I = ∅). A : N × N are assignment edges; F : N × N are fetch edges, and E : N × N are alias edges.
We write n, n1, n2, . . . ∈ C to denote fetch nodes, x, y, . . . ∈ N − C for location nodes; and α, β, . . . ∈ N for arbitrary

nodes. We write al(α) = {β : (α, β) ∈ E} to indicate the set of nodes to which αmay refer, i.e., for which αmay be an alias.
An AFG represents memory locations and values (the nodes N), and operations (loads and stores—F and A). A fetch node

n ∈ C represents a value that has been read from memory; each fetch edge, (γ , n) ∈ F , represents a read of location γ

that produces the value n. We often write this as γ
F
−→ n. A fetch node usually has exactly one incident fetch edge. Each

assignment (α, β) ∈ A represents a write to the location α with the value (an address) β . We write this α
A
−→β .

Interface nodes T ⊂ N − C represent values from outside that are visible within a function: argument values, global
variables, and heap locations. Local (automatic) variables are never interface nodes. Initial-value nodes I represent values
taken by the interface nodeswhen a function is entered. Interprocedural analysis treats these nodes specially (see Section 8);
they are otherwise undistinguished.
Fig. 3 shows the AFG for a simple pair of assignments to illustrate our notation. Here, the three nodes N = {x, y, n}

represent the addresses of variables x and y and ‘‘n,’’ the result of reading the contents of x.
The first statement assigns the address of y to x. This is the only assignment in this fragment, so A = {(x, y)}, which we

indicate by the arc from x to y labeled A1.
In the second statement, we read the value of x. Considering the statement in isolation, we do not know the value of x,

so we represent it with the (shaded) fetch node n (C = {n}). Since this node represents a fetch of x (and the only fetch in
this fragment), F = {(x, n)} and we draw the arc labeled F2 from x to n.
Fetch nodes represent unknown values; the goal of pointer analysis is to resolve such unknowns. In this simple example,

it is easy to see that x could only contain the address of y at this point. Thus, we say n is an alias for y. Since x and y can only
refer to themselves, E = {(n, y), (x, x), (y, y)}, and we draw a dashed line from n to y and self-loops on x and y.
Because each named variable is assumed to have a unique address, each location node is an alias for itself and only itself.

However, for clarity in later figures, we do not draw the alias self-loop on each location node; we simply assume it is there.
The AFG represents more information about the behavior of the program than a points-to graph (which for Fig. 3 would

consist of just a single arc from x to y) to allow us to divide pointer analysis algorithms into better-understood pieces.
Constructing nodes and edges for a program is a mechanical procedure. However, alias edges can be added in many ways;
each technique corresponds to a different abstraction.
Fig. 4 shows AFG fragments for the four statements typically considered in pointer analysis. For x=&y, we represent the

lvalue x and the rvalue &y as location nodes and connect them with an assign edge indicating x points to the memory
location for y. Note that this does not read or change the contents of y. By contrast, since x=y reads y, we add the fetch node
n1 to represent its value, add a fetch edge indicating a read of y, and add an assign edge to indicate that they are written to
x. We treat other statements similarly.
Fig. 5 illustrates an AFG being interpreted for different abstractions. Fig. 5(b) is the AFG constructed mechanically from

the C code in Fig. 5(a). The first statement, *z=&x, stores the address of global variable x at the address in z. We represent z
with a location node labeled z, the dereference of z with the fetch edge F1, the address read from z with the fetch node n1,
the address of xwith the location node x, and the write to the address contained in z with the assign edge A2.
Again, a (shaded) fetch node represents the value returned by a particular fetch operation in the program. We do not

know its value when we construct the AFG; determining the set of possible values is the basic question in pointer analysis.
In particular, we ask which assignments are visible to a particular fetch since the only values that should be read by a fetch
are those that were written earlier, barring reads of uninitialized variables.

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

ARTICLE IN PRESS
M. Buss et al. / Science of Computer Programming () – 7

a

b

c

d

e

f
Fig. 5. An illustration of pointer-analysis using AFGs. A procedure (a) is first abstracted as an assign-fetch graph (b), whose nodes represent addresses
and values and whose edges represent memory operations. Flow-insensitive analysis (c) is an abstraction where potential aliases are calculated ignoring
statement order. This produces a summary (d). Considering execution order and mutually exclusive operations (e) produces a more accurate summary (f).

Answering this question is the goal of resolution, which adds alias edges from fetch nodes to location nodes to indicate
what values could be fetched. Each fetch of the same variable in a procedure generates a distinct fetch node, allowing the
AFG to represent variables that take on different values at different times.
Adding aliases from fetch to location nodes produces a resolvedAFG. Using different analysis variations generate different

resolved AFGs, such as Fig. 5(c) and (e). The former is a traditional flow-insensitive view of the program,where a fetch from a
locationmatches any assignment to the same location; the latter is a more precise result obtained by considering statement
ordering andmutually exclusive operations, which leads to a smaller number of fetch/assignmatches. For example, because
they appear in separate branches of a conditional, *z=&y and z=&w are mutually exclusive, so fetch F5 cannot see assign A4
and there is no alias edge from n5 tow in Fig. 5(e). Also, the first fetch of z in the code (F1) can only see the (unknown) initial
value of z coming from the environment (represented by initial value node z1). Thus, n1 to z1 is the only alias edge.
After resolving the AFG, we summarize it to enable its use in interprocedural analysis, which we discuss in Section 8.

Broadly, we remove nodes that correspond to internal operations that are invisible to callers, such as the fetches of z – n1
and n5 – in Fig. 5(d) and (f), and remember only their effects. For example, in Fig. 5(e), fetch F1 always returns z1 (the initial
value of z), represented by node n1. We remove the (implicit) assignment of z to z1 by the environment (the A arc in Fig. 5(e))
and replace it with a fetch edge that indicates that this fetch can only return z1.

4.1. Pointer alias analysis

In alias analysis, executing statement p=&r creates the alias relation 〈*p, r〉, meaning *p is an alias for r. Computing
points-to sets using the AFG amounts to determining the locations for which a fetch node could be an alias. We represent
such relations by adding directed alias edges to the AFG; each alias edge corresponds to a potential alias relation. In Fig. 3,
the dashed edge n→ y indicates the alias relation 〈*x, y〉. Each alias edge starts at a fetch node and terminates at a location
node.
The central goal of pointer analysis is to determine a small set of alias edges that includes every one that is actually

possible (i.e., remains sound). While the most conservative over-approximation is to proclaim that every fetch node aliases
every location, this would not be very helpful. Instead, the goal is to include as few relations as possible while remaining
sound and computationally reasonable. In the following sections, we show how using different analysis variations within
our space produces different minimal sets of alias edges for a given AFG. Each such set corresponds to a different points-to
solution, with distinct precision levels.

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

ARTICLE IN PRESS
8 M. Buss et al. / Science of Computer Programming () –

Determining aliases between fetch nodes and location nodes is the main step in pointer analysis on AFGs. Below, we
discuss a general rule of inference that we will later specialize to algorithms with varying levels of precision; that the AFG
lends itself to such variants is one of its key strengths. A second strength is its ability to produce a single summary for any
given procedure that can be used in any calling context.
A fetch node n can be an alias for many locations. Because a fetch can only return a value that the program wrote to

memory, any alias of a fetch node must be the target of an assign edge (we model the initialization of global variables with
assign edges).
Wewrite affects(σA, σF) to indicate that the assign edge σA couldwrite a value that fetch edge σF could read. This relation

can be many-to-many: one assignment could be seen by many fetches, and a fetch might see many assignments. As with
any other useful property about computer programs, affects is not effectively computable, so any pointer analysis must
approximate it. A sound analysis demands an over-approximation: it should be true when affects is true, but not necessarily
vice-versa. Different approximations result in different sets of alias edges for the same initial AFG, leading to different pointer
analysis solutions.
When an assignment affects a fetch, the fetch can return anythingwritten by the assignment, so aliases for the fetchmust

include all aliases of the assignment’s ‘‘right-hand side’’. Formally,

σA : γ
A
−→β σF : α

F
−→ n affects(σA, σF)

al(β) ⊆ al(n)
(alias)

where γ
A
−→β denotes an assign edge from γ to β and α

F
−→ n denotes a fetch edge from α to n. The solution to pointer

analysis is the minimal set of alias edges that satisfies this rule.
In Fig. 2, the assignment p=&r affects the fetch of p in statement *p=&w, provided that condition c is neglected (e.g.,

Fig. 2(b)), but the assignment does not affect the fetch if we consider the two statements to be mutually exclusive.
Different points in our analysis space correspond to different approximations of the affects relation. Below, we present

an approximation corresponding to the origin of the analysis space; later sections describe different points.

5. Flow-insensitive analysis with the AFG

The [alias] rule we presented above gives a precise characterization of pointer analysis that depends on the non-
computable affects relation. Here, we describe one approximation to affects that corresponds to the origin of our analysis
space: an Andersen-style flow-insensitive analysis.
Define the predicate aliases as

aliases(α, γ) ⇔ α = γ ∨ al(α) ∩ al(γ) 6= ∅.

This says nodes α and γ are aliases if they are identical or if they are aliases for some common location node.
The aliases relation is a flow-insensitive (over-) approximation of the exact affects relation. [alias] is approximated by

σA : γ
A
−→β σF : α

F
−→ n aliases(α, γ)

al(β) ⊆ al(n)
(fi-alias)

Because this rule is recursive (the premise refers to the aliases relation, which depends on al), finding the minimal resolved
AFG requires computing a fixed point. Our implementation uses the usual worklist algorithm that iterates to convergence.
These rules correspond to an abstraction at the origin of our space: they ignore statement order and conditionals. Consider

Fig. 5(c), which shows the resolved AFG for Fig. 5(b) under the [fi-alias] rule. Every assign to a location is seen by all fetches
from that location, so in Fig. 5(b), both n1 and n5 will resolve to both v and w. In the implementation, we also create the
(unknown) initial value node z1 since global z is dereferencedwithin the function (we lazily initialize environment variables).
Nodes n1 and n5 also resolve to z1.
Fig. 6 illustrates the [fi-alias] rule graphically. Existing alias relationships are shown with thin dashed lines and the rule

generates the edges in bold.

6. The statement order dimension

The [fi-alias] rule ignores the fact that assignments and fetches in a program happen in sequence: later assignments
cannot be seen by earlier fetches. This leads to overly approximate results, arriving at more aliases than actually possible.
To increase precision this section considers the ordering of statements. In general, this is not a partial order, but becomes

one in the case of loop-free procedures. For this reason, before pointer analysis, we convert all loops into tail-recursive
procedures (we describe this in detail in Section 9). This conversion benefits all algorithms because problems that may be
unsolvable in general become solvable for loop-free programs; or problems that require nonlinear algorithms in general can

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

ARTICLE IN PRESS
M. Buss et al. / Science of Computer Programming () – 9

Fig. 6. Visualizing the [fi-alias] rule. The bold alias edges (dashed lines) are added if the rest of the pattern exists.

a b
Fig. 7. Ordering information reduces the number of alias edges.

be solved by a linear algorithm for acyclic graphs. By separating out loops, the loop-free portions can benefit from the more
efficient algorithms, while only loops suffer the less efficient, or inaccurate ones.
For the rest of the paper, we assume a given partial order of all the statements in a procedure. The partial order arises

directly from the control flow graph of a procedure: for two statements σ1 and σ2, σ1 v σ2 if σ2 is reachable from σ1. This
section refines the approximation of the affects relation by considering this partial order. An assignment σA cannot affect a
fetch σF if σF v σA.
Fig. 7 illustrates the matching of fetch and assign operations when considering the statements partial order. This figure

presents two identical fragments of the control-flow graph of a program showing some assignments and fetches. For
simplicity, assume that these operations are performed on the same program variable, so that aliases is always true. For
the sake of presentation only, dashed arrows have been added to the control-flow graph—a dashed arrow from a fetch Fi to
an assign Aj indicates that Fi resolves to Aj.
Fig. 7(a) correspond to the matchings when the [fi-alias] rule is applied, whereas the dashed arrows in Fig. 7(b)

indicate the matchings obtained when execution ordering is considered. For instance, note that fetch Fi will only resolve
to assignments (omitted) occurring before the code fragment shown, and assignment An does not affect any of the fetches
depicted since it happens later.
The refined affects relation which ‘‘unfolds’’ the partial order axis of our analysis space is defined as

σA : γ
A
−→β σF : α

F
−→ n aliases(α, γ) σA 6w σF

al(β) ⊆ al(n)
(po-alias)

Informally, in addition toα and γ being aliases, the [po-alias] rule also requires that the assign σA does not occur after the
fetch σF in the partial order. The idea of unfolding the horizontal axis is that different approximations to the execution order
can be given: from a ‘‘flat’’ set of statementswhere no statement precedes another, to the full partial order obtained from the
program text. Actually, we found that there is no practical advantage in considering anything less than the full partial order.
That extreme point yields both more efficient and more precise results that any other point on the statement-ordering axis.

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

ARTICLE IN PRESS
10 M. Buss et al. / Science of Computer Programming () –

a b c d e
Fig. 8.Motivation for flow-aware analysis. (a) A (nonsensical) programwith two correlated conditional branches. (b) Its control-flow graph. (c) Considering
correlation of conditions. (d) One possible total ordering under flow-aware ordering (subscripts indicate the order). Bold arrows show spurious
dependences. (e) Another possible ordering (A1, A4, F2, A3, F6, A5, F7).

Fig. 7(b) shows the matchings obtained when applying the [po-alias] inference rule. For example, Fm matches Ak and Aj
because both assignments precede Fm; Fi does notmatch any ofAj,Ak, andAn because all of these assignments happen after Fi.
Note that the [po-alias] rule does not require the fetch to occur after the assignment, or σA v σF . Thus, an assignment is

considered to affect a fetch occurring on a different branch. This is the case with Fl and Ak in Fig. 7(b). In order to obtain an
answer from the ‘‘v’’ relation, [po-alias] requires instead that σA 6w σF , which is true in case σA and σF are not comparable.
This is the reason: When conditions are ignored, two branches of an if statement are treated the same as two branches of a
parallel construct; two statements on different branches of a parallel construct can indeed affect each other.
Also note that the [fi-alias] rule is an (over)approximation of the [po-alias] rule where ‘‘σA 6w σF ’’ is proclaimed true for

any given pair σA and σF . Intuitively, this means that the fixed-point obtained by [po-alias] is smaller than that of [fi-alias].
Given an initial AFG, the iterative process of adding alias edges until convergence terminates earlier for [po-alias], which
means a more precise, and in some casesmore efficient, analysis.

6.1. Flow-aware analysis

A central advantage of our AFG is that it makes it easy to implement different abstractions. In this section, we present a
particularly interesting one: flow-aware analysis [15], which supplements statement ordering with a total order obtained
by topologically sorting a procedure. This is a sound approximation in the common case when all branching is due to
conditionals, not parallelism. The fact that two branches of a conditional statement are mutually exclusive can be expressed
by adding extrav relations on top of those obtained from the control flowof the given procedure. Pointer analysis algorithms
obtained in this way are between points (d) and (e) of Fig. 2. The more such extra v relations are added, the higher along
the conditions axis is the resulting analysis. That makes it more precise, and interestingly also more efficient. This efficiency
is due to the simplicity of the total order—the affects relation is approximated by a simple integer comparison; in contrast,
taking into account program conditions in full generality requires many more computational resources.
Fig. 8 illustrates this on a program fragment. The original partial order is obtained from the flow graph of Fig. 8(b). For

example,A3 v F6, although in real execution F6 can never followA3 because the two if statements have the same conditionc.
Fig. 8(c) shows how Fig. 8(b) could be rewritten if the correlation between the two if statements were taken into account.
The approximation presented in this section is more precise than Fig. 8(b) in that it allows us to express that A4 does not
affect F2, but it does not have the precision of Fig. 8(c) in that it still allows the possibility that A3 affects F6.
With flow-aware analysis, the statements might be arranged in the total order of Fig. 8(d), which captures the fact that

A4 does not affect F2. It does so by (arbitrarily) placing A4 after F2 and A3 in the total order. This amounts to adding the arc
A3 v A4 highlighted in Fig. 8(d). This total order adds otherv relations, also highlighted in Fig. 8(d). The choice of ordering
between conditional branches is non-deterministic; Fig. 8(e) is another possible order.
Approximating statement ordering with a total order has the benefit of disassociating one branch of a conditional from

the other (but not vice-versa). For example, in Fig. 8(d), the total order correctly models the fact that A4 is not visible to A3,
but makes A3 visible to A4. The total order in Fig. 8(e) has the opposite problem. The first author’s thesis [14] shows how a
pair of orderings can capture exclusivity of conditional branches for practically all programs. More precisely, it is exact for
programswith planar control-flow graphs andmerely a safe approximation for all others.We do not bother to test programs
for planarity since we use the same ordering scheme for all programs.
Formally, let affects0(σA, σF) be true when assignment σA occurs before fetch σF in the total order. The [alias] rule for

flow-aware analysis is

σA : γ
A
−→β σF : α

F
−→ n aliases(α, γ) affects0(σA, σF)
al(β) ⊆ al(n)

(flow-aware)

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

ARTICLE IN PRESS
M. Buss et al. / Science of Computer Programming () – 11

a b c

d e
Fig. 9. The effect of considering ordering and predicates. A program fragment (a) and its resolved AFG under flow-insensitive analysis (b) without and
(c) with predicates, flow-aware (d) without predicates, and (e) with predicates.

This rule leads to faster convergence with fewer alias edges when compared to [fi-alias] because it prunes off many
spurious dependencies that would otherwise have to be considered.
To implement such analysis, we simply augment each edge σ in the AFG with an index rank(σ) from a topological

sort of the statements in the procedure (each procedure is acyclic after our preprocessing). Then affects0(σA, σF) can be
implemented as rank(σA) < rank(σF).

7. The condition dimension: Guards on arcs

Here, we describe a technique for more precisely treating the behavior of conditionals in a program. We assume guards
on fetch and assign edges to indicate under what conditions they may run. This contributes to the precision of the analysis
by disallowing matches between fetches and assigns with mutually exclusive guards. The job of pointer analysis is then to
calculate not only whether an alias can occur, but also under what conditions.
Fig. 9 illustrates the advantages of considering conditionals. Even with a flow-insensitive abstraction, modeling

conditionals can eliminate spurious aliases: Fig. 9(b) is the resolved AFG under the flow-insensitive abstraction, the point at
Fig. 2(b). In Fig. 9(c), we added predicates to the fetch and assign edges in conditional branches, then used them to eliminate
spurious aliases. This is the point of Fig. 2(f). For example, the alias arc from n5 to q in Fig. 9(b) is absent from Fig. 9(c) since
it is impossible: A3 only runs when c is true and F5 only runs when c is false (they are in opposite branches of the if).
Considering the effect of conditionals in addition to considering statement ordering provides an additional improvement.

For example, Fig. 9(d) is the resolved AFG under the flow-aware abstraction. This allows us to prune the aliases for n1 since
F1 appears first, and for r since A6 appears last. Further considering conditionals gives Fig. 9(e), in which the alias from n5 to
q has been removed because F5 and A3 cannot run simultaneously (they are in different branches of the if).
Formally, we allow every edge in an AFG to have a condition; we write C(α, β) to denote the condition on an edge from

α to β . Conditions on assign and fetch edges are assumed given (extracted from the program). Pointer analysis extends them
to conditions on alias edges.
To this point, we considered an alias edge between a pair of nodes either to exist or not to exist. Now, for simplicity of

notation, we assume an alias edge between every pair of nodes; some alias edgesmay have the always false condition, which
is a representation of non-existence. A pointer analysis ignoring conditions is a special case of one considering conditions,
namely any condition that is not always false is approximated to be always true.
Analysis considering conditions starts by assigning the false condition on the alias edge between every pair of nodes; the

only exceptions are the self-loops on location nodes—they have the condition always true. Then, the conditions on all the
alias edges are calculated as the least fixed point of the following rule

σA : γ
A
−→β σF : α

F
−→ n σA 6w σF

C(α, n) ∧ C(α, x) ∧ C(γ , x) ∧ C(γ , β) ∧ C(β, y) ⊆ C(n, y)
(guarded-alias)

This rule can be best understood by considering the first and most general case of Fig. 6. The premise of the rule assumes
an assign and fetch edge satisfying the ordering constraint of Section 6. The conclusion of the rule states that for any two

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

ARTICLE IN PRESS
12 M. Buss et al. / Science of Computer Programming () –

a b c
Fig. 10. Handling arguments: (a) a function, (b) its AFG, and (c) its summary.

nodes x and y the AND of the conditions on all the five existing edges in Fig. 6 must be included in the condition of the new
alias edge from n to y.
Please note that when conditions are ignored, i.e., every alias edge has the condition always true or always false, then

[guarded-alias] reduces to the rule [po-alias].
As with the program’s partial order, different approximations can be given to program predicates as well as to the results

of the above Boolean operations. A widening operator [44] can be defined such that, e.g., the logical or of two predicates is
widened to true. This is one of the mechanisms we use in our implementation, controlled by a parameter.
In our experimentation, the most general treatment of conditions proved prohibitively expensive. The experiments

reported in Section 10 were run with the following approximation. Any condition on an alias edge, unless always false,
was replaced by the always true condition. In contrast, conditions on assign and fetch edges were kept accurate, as obtained
from the source program. In addition, conditions were not propagated interprocedurally.
With this treatment of the conditions, rule [guarded-alias] becomes

σA : γ
A
−→β σF : α

F
−→ n aliases(α, γ) σA 6w σF C(γ , β) ∧ C(α, n)

al(β) ⊆ al(n)
(simplified-guarded-alias)

That is the same rule as [po-alias] with the addition of the requirement C(γ , β)∧ C(α, n). Such Boolean reasoning was
performed by the BEAM theorem prover [45].

8. Interprocedural analysis

So far we have only described how to analyze single procedures. Here, we describe how to extend our analysis to work
across procedures. We explain how to summarize procedures, handle arguments, and how to use summaries at call sites.
Our summaries do not assume anything about whether arguments are aliased and as such can be used in any setting and
remain sound, a key advantage of our approach.

8.1. Computing summaries

After computing aliases, we prepare a procedure’s AFG to be used at a call site by summarizing it. We delete anything
that a caller could not see, such as temporarymemory fetches n1 and n5 in Fig. 5(c). Before we delete such nodes, we transfer
their effects to nodes that will remain. Fig. 5(d) shows this. In general, if an assignment is made to a fetch node n, and n can
be an alias for a location node n′, the assignment is equivalent to one to n′. For example, in Fig. 5(c), n1 is assigned the address
of x and can be an alias for z1, v, and w, so we add assign edges from z1, v, and w to x. Similarly, we add edges from z1, v,
and w to y. Finally, we remove n1 and n5 and ‘‘demote’’ z1 to a fetch node to indicate the dereference of z. This produces the
flow-insensitive summary in Fig. 5(d).

8.2. Modeling arguments

Argument passing in the AFG is represented the same way as in the given flow graph, which is somewhat different from
what a compiler does. During actual execution a caller would place argument values on the stack, and then invoke the callee.
The callee would then access those argument values by fetching the contents of its parameters. In our representation, the
callee first allocates its parameters like any other local variables, and then explicitly assigns the argument values to those
parameter variables. Thus, the argument values are the initial values of the parameter variables. This is analogous to the
treatment of global variables; for them we also create an assignment of new values representing the initial values at entry
to the callee.
Fig. 10 illustrates howwe handle arguments. We add location nodes for formal arguments p and q and initial value nodes

#1 and #2 that represent their initial (caller-passed) values. Fig. 10(b) also includes nodes and edges for the two statements.

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

ARTICLE IN PRESS
M. Buss et al. / Science of Computer Programming () – 13

a b c d
Fig. 11. Handling procedure calls: (a) a procedure g , which calls f (Fig. 10), (b) its initial AFG, (c) after resolving, and (d) after summarizing.

Since formal arguments are initialized by ‘‘#i’’ nodes, the AFG representation for *p = &x in Fig. 10(b) does not include
a fetch edge for p; *p directly yields its initial value, #1.
In summarizing this (alias-free) procedure, we remove the nodes for the formal arguments p and q and rename the initial

value nodes to include the procedure’s name. Also, fetch edge F4 in Fig. 10(b) generates an initial value for node #2, which
in the final summary Fig. 10(c) we label n.

8.3. Modeling procedure calls

When building the initial AFG for a procedure, we replace a call to a function with the summary for the function.
Instantiating a summary involves merging any global variables shared by both caller and callee and connecting formal to
actual arguments. Fig. 11 illustrates calling procedure f (Fig. 10). The address of global variable z is passed as both formal
arguments p and q, so when we copy the summary of f from Fig. 10(c), we mark the nodes for the initial values of p and q,
f#1 and f#2, to be merged with z.
We perform the same process for each global variable: its node in the callee is merged with its node in the caller. This is

vacuous in Fig. 11 since g does not touch globals x or y.
Node merging works even when an actual argument is an expression. The call f (z, z) would represent its actual

arguments as two fetch edges from z to nodes, say, n1 and n2, which would be merged with the value nodes for the formals:
f#1 and f#2. Computing aliases on the AFG would find the two arguments aliased.
After instantiating each callee’s summary, we compute the caller’s summary. In Fig. 11(c), we added an initial value node

for global z and used flow-insensitive analysis to add alias edges from n to x and z1. We produced the summary in Fig. 11(c)
by removing fetch node n; its aliases now manifest themselves as the assign edges from y. A caller of g can know from this
summary that g dereferences z.
This example illustrates howa summary is agnostic about argument aliasing and canbeused in any context. The summary

in Fig. 10(c) treated arguments p and q as distinct, but wemerged them at the f call site in g and found that running g makes
y point to x. Other published solutions to the environment problem either use information from the environment while
building a summary [40], or build multiple summaries for each function, one for each possible environment [42,43].

8.4. Interprocedural flow-aware ordering

This section illustrates how we can manipulate ordering information across procedures and how spurious pointer
relations that would otherwise span multiple functions are avoided. We will focus on flow-aware analysis.
Performing flow-aware analysis across procedure calls requires us to order statements on both sides of a call site. To get

this right, we shift the indexes of the callee by themaximum index that occurs in the caller before the call site, then increase
the indexes in the caller that appear after the call (based on the maximum index within the callee’s summary). This means
that an assignment occurring after the function call cannot be seen by a fetch occurring before or within the called function.
Alternatively, a fetch occurring before the call site does not read a value assigned later by the callee. Fig. 12 illustrates this.
In Fig. 12(b), x’s value is read by q=x in bar() then modified by f() at the call site f(&x). When statement *q=&w

executes, the original value of x, &v, is set to point to w. By ignoring order information, an interprocedural flow-insensitive
analysis would pessimistically include a and b as values that could be read by q=x. Our flow-aware analysis avoids such
spurious relations. Fig. 12(c) and (d) show the resolved and summary AFGs for function f. Nodes labeled ‘‘#1’’ in Fig. 12(c)
and ‘‘f#1’’ in Fig. 12(d) represent the initial value for argument p, which is merged with the argument node at the call site
(modeling arguments and summary instantiation is explained in detail in Section 8.2).
We sort the edges in a function summary and number them starting from 1, being careful to preserve the relative order

among statements. Fig. 12(e) shows how the summary for f is instantiated at the call site f(&x). Statements before the call
are labeled A1, F2, and A3.
To place a callee’s statements in the total order, we add the highest index before the call to every statement in the callee’s

summary when we instantiate it. In Fig. 12(e), this index is 3, so we label callee’s statements A1\4 and A2\5 to indicate that
A1 and A2 will become A4 and A5. Processing the remaining statements after the function call gives the initial AFG for bar()
in Fig. 12(f).

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

ARTICLE IN PRESS
14 M. Buss et al. / Science of Computer Programming () –

a b c

d e

f g

h i
Fig. 12. Propagating flow-aware ordering across procedure calls. (a) Function f() is called by (b) bar(). The resolved (c) and summary (d) AFG for f(),
which is instantiated at the call site f(&x) (e): the indexes in the summary are updated and the remaining statements in bar() are processed, generating
the initial AFG for bar() (f). Flow-aware analysis is performed (g) by considering ordering across procedures. The flow-aware points-to set (h) is more
precise than the flow-insensitive (i).

Fig. 12(g) shows the result after flow-aware analysis. Note the fetch of x in q=x (F2) resolves to A1, the only assignment
occurring before that fetch. When F6 matches A3 a single alias edge is added. Fig. 12(h) shows the corresponding points-to
sets, which is more precise than the flow-insensitive result in Fig. 12(i).

9. Loops and recursive procedures

This section describes how loops and recursive procedures are handled in general, emphasizing the case for flow-aware
analysis. We convert loops into tail-recursive procedures and iteratively analyze (such) recursive procedures until we reach
a fixed-point. The first time a recursive procedure is analyzed, we do not have a summary for it, so we only consider the
other statements in the procedure. This gives a better summary for the procedure, which we then instantiate at recursive
call sites and summarize again.
It may appear that this process might not terminate, but this is not the case. It turns out that the number of edges and

arcs that can be added is bounded. The number of heap nodes is bounded because of the heap naming schemewe adopt [14].
The number of fetch edges is bounded because the final summary allows at most one fetch edge out of any node, and there
is a user-settable limit on the length of any chain of fetch edges. Finally, we prohibit duplicate assign edges. Together, these
constraints bound the summary and guarantee convergence. If duplicate assignments between a pair of nodes is allowed,
such as in Fig. 13(e), the comparison between two summariesmust only considerwhether x

A
−→ y exists and not the number

of such edges.

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

ARTICLE IN PRESS
M. Buss et al. / Science of Computer Programming () – 15

a

b

c

d

e
f

g h
Fig. 13. Handling loops and recursive functions.

Fig. 13 illustrates summarizing a simple for loop.We transform the function in Fig. 13(a) into the tail-recursive procedure
in Fig. 13(b). The transformation assumes an Algol/Pascal-style scope where a procedure can be defined inside another
procedure, and variables declared in between are local to the outer procedure and global to the inner one. To illustrate, we
nested the definition of Loop inside bar to emphasize that it has access to bar’s local variables.
Fig. 13(c) is a simplified control-flow graph for this code. On the left is the structure of the loop; on the right is a linearized

version of the Loop procedure that assumes flow-aware analysis placing the then branch of the if before the else.
Fig. 13(d) is the first summary of Loop—the assignment p=&y is hidden from z. We now have a summary of Loop, which

is used in the second iteration of the analysis giving Fig. 13(e). Edges with subscripts 1, 2, and 3 correspond to the loop body
statements within the function. Instantiating the earlier summary adds edges F4, A5, and A6 (the indexes are shifted as in
Section 8.4). This time, fetch edge F4 matches assignment A3, and z will point to y as a result; edges F4 and A3 belong to
different iterations of the original loop.
Fig. 13(f) is the summary of Fig. 13(e) and also the fixed-point—the final summary for function Loop(). Some edges

have two numerical labels because they are the result of merging multiple edges. This means they represent the interval for
which the operation is valid. For example, A36 represents the merge of A3 and A6.
Fig. 13(g) shows the graph for bar after we inserted the summary for Loop. The fetch of p resolves to p=&x since the

assignment occurs before the fetch (i.e., we check that the subscript index of the fetch is greater than the superscript on the
assign, in case one exists, or the subscript otherwise). Finally, Fig. 13(h) shows the summary for bar, which notes that the
global variable p is fetched.
Note in Fig. 13(g) that F 25 does not resolve to A

4
7, although 5 > 4. This happens because A1 is the only new fact that needs to

be consideredwhen instantiating the summary of Loop() into bar(); all the other edgeswere already present in Fig. 13(f),
and F4 had already been resolved to A3 in Fig. 13(e). Our algorithm is such that only the addition of new aliases or new facts
trigger the inference rule for resolution. Details can be found in the first author’s thesis [14].

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

ARTICLE IN PRESS
16 M. Buss et al. / Science of Computer Programming () –

Table 1
Benchmarks: whole applications and Linux 2.6.23 kernel modules.
Name Version Description Lines Functions

Source Internal

balsa 2.3.13 E-mail client 110.0k 2659 4682
bftpd 2.0.3 FTP server daemon 4.9 145 245
bison 2.1 GNU parser generator 25.4 700 1297
black-hole 1.0.9 Spam prevention 18.0 87 290
cfingerd 1.4.3 Configurable ‘‘finger’’ daemon 4.5 68 123
compress 1.3 Compression software 2.2 30 66
firestorm 0.5.4 Network firewall 8.0 229 330
gzip 1.2.4 File compressor 8.3 126 331
identd 1.3 TCP identification protocol 0.3 21 40
ispell 3.1 Spell checker 10.1 117 337
lhttpd 0.1 Http server and content management 0.8 20 40
make 3.81 Application building system 22.1 309 853
mingetty 1.07 Minimalist ‘‘getty’’ program 0.4 24 43
muh 2.05d IRC bouncing tool 5.2 75 107
pcre 7.1 Regular expression interpreter 15.4 63 300
pgp4pine 1.76 PGP for the Pine mail reader 4.2 72 146
polymorph 0.4.0 Filename converter (‘‘unixizer’’) 1.0 19 31
stunnel 3.26 Universal SSL tunnel 3.9 93 134
tar 1.15.1 File archiver 32.7 651 1145
trollftpd 1.26 FTP server daemon 2.8 52 102

algos I2C module 1.7k 52 75
amso1100 Network module 8.2 234 304
atm I2C module 5.7 166 209
bluetooth Bluetooth module 8.4 291 358
busses I2C module 20.3 434 520
chips I2C module 7.1 115 131
core USB module 15.8 527 659
cxgb3 Network module 9.3 307 420
gadget USB module 41.9 693 872
host USB module 25.6 629 878
ieee1394 Firewire module 24.0 512 735
inficore Network module 25.4 659 840
irq Kernel module 2.3 86 105
kernel Kernel module 64.5 2451 3254
misc USB module 16.8 523 665
mlx4 Network module 4.3 149 178
mthca Network module 15.0 442 597
power Kernel module 4.8 220 302
serial USB module 42.1 911 1205
storage USB module 12.2 274 366
video Video module 84.0 1134 1667

10. Experimental results

We implemented our pointer analysis framework in a static analysis (bug-finding) tool called BEAM [46] developed at
IBM. In this section, we show two types of experimental data: analysis metrics and bugs we found when analyzing several
benchmark applications.
The analysis metrics are also used to validate our hypothesis that flow-insensitive analysis is not the most efficient

algorithm for pointer analysis. Indeed, our abstraction model and AFG uncovers analysis variations that are more efficient
and more precise than (Andersen-style) flow-insensitive analysis.
Some of the applications we tested receive regular manual and automated source code checking, so finding errors in a

number of them reinforces the utility of our analysis.
Table 1 lists the benchmarks we tested. There are two kinds: complete applications (executables) and Linux kernel

modules. The lines column lists the number of source lines of codewe analyzed. The source functions column lists the number
of functions defined in the source; internal functions refers to the number of functions after loops have been transformed
into tail-recursive functions. This latter number is more representative of the control complexity of the program.

10.1. Running time

Table 2 shows the times it took to perform pointer analysis using variants of our algorithms. The times in the flow-
insensitive column are our baseline, which we collected by running BEAM on a 2.2 GHz Pentium 4 machine with 4 GB
of memory running Linux. These times include calculating the points-to sets as initial, resolved, and summary AFGs, and
propagating summaries until convergence, but do not include the time for BEAM to read source files, parse, and build the IR.

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

ARTICLE IN PRESS
M. Buss et al. / Science of Computer Programming () – 17

Table 2
Improvements in time and accuracy for flow-aware analysis.
Name Flow-insensitive Improvement for flow-aware

Condition-insensitive Condition-sensitive
Time Time Accuracy Time Accuracy

balsa 43s 15% 10.95% −40% 12.01%
bftpd 3.5 9.5 1.09 −22 1.09
bison 51.2 55 27.34 −88 29.24
blackhole 11.2 7 7.36 −52 7.36
cfingerd 2.6 12 1.07 −20 1.07
compress 0.7 3.6 1.05 −11 1.05
firestorm 1.3 4.3 9.42 −16 9.42
gzip 1.4 8.7 6.04 −17 7.23
identd 0.1 4.5 0.16 −15 0.16
ispell 8.0 50 10.99 −35 11.44
lhttpd 1.5 0.7 3.00 −5.6 3.00
make 120 67 11.48 −90 12.89
mingetty 0.4 0.8 0.1 −8.2 0.1
muh 2.8 25 7.31 −14 7.31
pcre 19 83 15.53 −94 15.53
pgp4pine 2.9 5.0 1.04 −26 1.04
polymorph 0.5 1.8 0.32 −23 0.32
stunnel 1.5 3.9 10.33 −18 10.33
tar 37 43 6.56 −51 6.71
trollftpd 1.8 0.13 2.94 −21 2.94

algos 0.5 6.9 1.23 −17 1.31
amso1100 1.5 8.4 8.14 −5.3 9.64
atm 1.6 0.01 3.89 −10 3.89
bluetooth 1.2 7.4 6.47 −5.4 7.28
busses 7.3 14 25.68 −8.5 25.68
chips 2.0 8.3 2.51 −8.2 2.51
core 5.6 5.8 10.78 −12 10.78
cxgb3 2.4 6.1 14.29 −22 14.29
gadget 18.9 31 70.09 −53 73.66
host 16.6 35 15.53 −33 15.53
ieee1394 34.9 8.0 27.59 −40 28.69
inficore 7.3 7.3 18.67 −5.0 18.67
irq 0.4 1.3 1.71 −17 1.71
kernel 27.5 14 13.84 −145 16.50
misc 6.9 6.6 4.20 −12 4.20
mlx4 0.9 1.9 5.01 −20 5.01
mthca 3.7 13 8.81 −9.2 8.81
power 1.5 8.4 4.33 −26 4.33
serial 12.7 33 26.69 −22 26.69
storage 4.8 16 5.07 −17 5.07
video 31.2 38 21.75 −39 23.36

In general, analysis times are short enough to make our technique practical for bug finding (although perhaps not
for compilation), but vary widely depending on the size of the input program and other characteristics. An important
characteristic is the shape of the program’s call graph—an application with big clusters of mutually recursive functions
makes propagating summaries a more challenging task since a global fixed point is necessary for the analysis to converge
(i.e., all the summary AFGs for all the functions in the strongly connected component have to stabilize).
Table 2 also shows how analysis times improve or worsen for different analysis algorithms. All the speedup numbers

are in percentage improvement over the baseline flow-insensitive analysis for various flow-aware algorithms. We report
speedupswhen ignoring and considering conditionals, which aremodeled as being true, false, or unknownwhen summaries
are computed.
Heeding conditions consistently takes more time than ignoring them. This is not surprising since it requires invoking a

theorem prover [14]. But using a flow-aware analysis is consistently faster than flow-insensitive analysis.

10.2. Accuracy

Table 2 also presents a measure of how the quality of results improve when different abstractions are used. Because all
our abstractions are sound (i.e., guaranteed to never miss an actual dependency), the fewer assign edges our algorithms
report, the better. Thus, the numbers in Table 2 report the percentage reduction in the ratio of assign edges to nodes in the
summary graphs over the value for the baseline—flow-insensitive analysis. Larger numbers are better.
Unfortunately, this percentage decrease in edge ratio is only a crude measure of the quality of the results. For example,

it does not consider that some analysis variations provide conditions attached to assign and fetch edges and that some

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

ARTICLE IN PRESS
18 M. Buss et al. / Science of Computer Programming () –

Table 3
Bugs found.
Name Number of Type

Reports Bugs

balsa 8 2 null pointer dereference, passing null argument
bftpd 2 2 memory leak, using garbage value from malloc
bison 5 0
black-hole 13 3 memory leak
cfingerd 7 1 memory leaks when things fails elsewhere, file leak
compress 0 0
fireStorm 8 0
gzip 4 0
identd 1 0
ispell 5 1 null pointer dereference
lhttpd 0 0
make 14 1 null pointer dereference
mingetty 0 0
muh 2 0
pcre 8 2 pointer to local variable exposed, null pointer
pgp4pine 19 3 null pointer dereference
polymorph 3 0
stunnel 6 1 file leak
tar 9 0
trollftpd 15 3 null argument passing, double allocation

algos 0 0
amso1100 2 1 null pointer dereference
atm 0 0
bluetooth 2 0
busses 2 1 null pointer dereference
chips 5 0
core 3 1 pointer to local variable exposed
cxgb3 5 2 null pointer dereference
gadget 9 2 null pointer dereference
host 7 1 null pointer dereference
ieee1394 3 0
inficore 5 1 null pointer dereference
irq 7 1 null pointer dereference
kernel 11 2 pointer to local variable exposed, null pointer
misc 8 2 pointer to local variable exposed, null pointer
mlx4 4 0
mthca 6 2 null pointer dereference
power 0 0
serial 4 1 null pointer dereference
storage 0 0
video 9 2 buffer overrun, null pointer dereference

Total 221 38

solutions provide ordering information. Flow-insensitive and flow-aware solutions for a given programmay end up having
the same number of edges, but access to order information can be a big advantage. Similarly, being able to distinguish what
happens under a given condition by taking advantage of the predicates attached to the graph edges is key in certain cases.

10.3. Bug reports

More effective bug finding, specifically pointer-related bugs, is the main goal of our work. Here, we discuss the sorts of
bugs we found and the analysis it took to find them.
Table 3 lists the number of and character of pointer-related bugs we found, which include null pointer dereference,

returning from a functionwith a global variable referring to the function’s local variable, memory leaks, and buffer overruns.
In all these runs, our pointer analysis was used for MOD analysis, i.e., calculating function side-effect. They were all run

in the flow-aware, condition-insensitivemode. A bug gets reported only if it can be confirmed by symbolic execution, which
is themost accurate form of analysis. It is independent of the pointer analysis described in this paper, and it is too expensive
to be used on more than the actual function containing the bug. Our pointer analysis supplies the symbolic execution with
approximate information about the side-effects of called functions. If the information is too inaccurate to form a proof that
the bug is possible, then nothing is reported.
We were surprised to find elementary errors in so many of the benchmarks, especially in the Linux kernel modules. Our

expectation was that such widely used open-source software would not contain such errors, but odd corner cases in less
commonly used device drivers are not tested that much. Examining user reports suggests that runtime errors are common

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

ARTICLE IN PRESS
M. Buss et al. / Science of Computer Programming () – 19

Fig. 14. A potential NULL pointer dereference in the amso1100 Linux driver. The c2_errno function crashes if passed NULL, yet handle_vq can
deliberately do so.

with USB devices and network cards, among others. The significant number of such reports we found online suggest that
null pointer dereferences, for example, still haunt users despite the apparent maturity of the software.
Not surprisingly, errors often spanmore than one procedure, often in separate source files thatmay have beenwritten by

different programmers. Of course, these are harder to find and provide motivation for inter-procedural analysis for finding
bugs. For example, the procedure in Fig. 14 from the amso1100 Linux device driver can trigger a null pointer dereference.
Fig. 14would be correct ifc2_errno could handle aNULL argument (thereply_msg variable is explicitly assignedNULL

in the then branch of the if statement). Howeverc2_errno immediately calls c2_wr_get_result, which unconditionally
dereferences its argument wr. This error manifests itself when host_msg receives a null value from vq_repbuf_alloc,
which means it failed to allocate a buffer. The programmer did not intend to crash due to a null pointer dereference if this
happened: the fact that the value of err is tested indicates that the program was expected to continue.
This error can be caught because the summarized information for c2_errno contains the fact that its argument reply is

unconditionally fetched (after incorporating the summarized information from c2_wr_get_result). For that to happen,
the analysis needs some minimum information about program conditions. Also, statement order information is needed
for handle_vq, as well as the ability to distinguish then and else branches. Otherwise, the analysis cannot figure out the
relationship between statements reply_msg = NULL and reply_msg = host_msg. Note c2_wr_get_result is not
faulty because it does not check for wr before dereferencing it; the fault comes from c2_errno passing in an illegal input.
Interprocedural analysis is necessary here since the statements leading to the error span several procedures.
Balsa also has a potential null pointer dereference in an exception case, shown in Fig. 15. Perhaps the if statement is not

supposed to fail. If it does, however, use_from is assigned NULL, and then later dereferenced by use_from->address.
Being able to distinguish among themutually exclusive branches of the if, as well as modeling some statement order, makes
this error not hard to find.
Perhaps one of themost interesting errors we have reported occurs in the USBmodule of the Linux kernel, and it involves

order, fields, and variable aliasing. Fig. 16 shows a simplified version of the code. The potential error is a null pointer
dereference of urb->dev->tt in the last statement. This can happen because tt and urb->dev->tt may be aliased
due to statement tt = urb->dev->tt at the top, and failing at the null check ‘‘tt ?’’ suggests that NULL is meant to be
allowed. In response to our bug report, the developers wrote

Looks to me like this is a longstanding bug in the root hub TT support. See if this patch makes that work better.

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

ARTICLE IN PRESS
20 M. Buss et al. / Science of Computer Programming () –

Fig. 15. A potential null pointer dereference (from Balsa).

Fig. 16. An error in the Linux USB module.

It looks like this is an ARC-derived core, and no root hub TT has been set up.Moreover, it looks like even the original
patch adding root hub TT support (only for the PCI based devboard/FPGA) didn’t actually set up such a TT . . . so this
bug has been around for a very long time.

Although this is not a particularly intricate error, the developers had failed to find it manually or during automated
testing. This reinforces our intuition that simple enhancements to static analysis techniques can go a long way towards
making software less faulty.
Returning from a function when a global pointer refers to a deallocated block of memory is another common type of

error. While such a global variable is harmless if it is overwritten before it is used, it can lead to a hard-to-find error. In the
match function from the pcre benchmark, the statement md->recursive = &new_recursive assigns the address of
new_recursive, a local variable, to md->recursive, an outside pointer. Several lines later, the function returns without
modifying that pointer. Similarly, the Linux kernel’s start_unregistering function executes p->unregistering =
&wait to assign the address of a local variable to outside pointer p->unregistering and then returns.

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

ARTICLE IN PRESS
M. Buss et al. / Science of Computer Programming () – 21

Table 3 indicates that our tool does report false positives (i.e., warns about situations that are not actually bugs). This
was usually due to a lack of information about the semantics of a callee function, or errors that would exist only if a loop
executes zero times, which is often impossible.

11. Conclusions

Pointer analysis is still an active area of research [47–49]. The number of papers in the subject is no fewer than a hundred,
and several Ph.D. theses have been published exclusively on pointer analysis. Being a critical component for most software
analysis tools, there is a lot of interest in the problem andmany researchers are trying to develop ingenious solutions. Being
a very difficult problem, it is unlikely that any of these attempts will solve it in general; instead, we believe that the idea is
to tailor the analysis to a particular application.
We have learned that a relevant increment in analysis precision should not require a large decrease in efficiency, and that

interesting trade-offs can be obtained by looking at pointer analysis in differentways. For example, the execution-insensitive
nature of some dataflow analysis algorithms makes software analysis tools to grossly underreport errors. Providing some
minimal order is cheap and can assist with information the tool can rely upon when facing uncertainty about a procedure’s
execution. Loops may pose a challenge to that objective, and there are basically two ways of dealing with them. Either
penalize the entire function by enclosing it on a big cycle, or take the loops apart and analyze them separately, converting
the rest of the procedure’s code into an acyclic representation. In general, algorithms for acyclic structures are simpler and
more efficient, and can yield better results. Our framework is built on top of such kind of representation, and therefore it is
simple and efficient.We also find it to be elegant since the definition of a single inference that can be refined in differentways
covers a large set of pointer analysis algorithms. The ability to evaluate a myriad of such variations is one of the strengths
of our technique, perhaps more important than the specific results of a particular implementation itself.
Like us, Burns and Chandra [50] attempt to characterize multiple abstractions for pointer analysis. They also start with a

single representation of programbehavior (in their case, labeled transition systems) anduse it differently to capture different
abstractions for pointer analysis (in their case, they characterize different abstractions as sets of program transformations).
We have not attempted a precise technical comparison of our two techniques, although we suspect each approach would
have something to learn from the other. However, it does not appear that they have applied their technique to a real-world
tool.
We have not tried to make our analysis demand-driven, but we find that our Assign-Fetch Graph representation could

be adapted for such purpose since it would not require either constructing or intersecting points-to sets like most existing
demand-driven approaches. The structure of the AFG could be explored to derive alias edges on the fly, and only for those
operations that are relevant for a given query. This would resemble the work of Sridharan et al. [51], in which a demand-
driven points-to analysis for Java is proposed. A key to their approach is to match loads and stores on the same class field
through ‘‘match’’ edges. Their technique does not apply for C, however, where one can explicitly take the address of a
variable, the address of a field, or dereference any pointer (not only fields like Java).
Indeed, the Assign-Fetch Graph representation has a number of natural features that makes it a very attractive

abstraction. Because it models pointer assignments within a function instead of points-to relations, it is used to answer
MOD and other side-effect questions directly. In addition, fetch edges in a procedure’s summary, specially if annotated with
some formof conditions, can provide information aboutwhich variables are dereferenced. This plus the ability to summarize
a function for any possible calling context makes it ideal for bottom-up, modular analysis. It is our expectation that the AFG
will be extended by others in some currently unknown but certainly interesting way.

References

[1] Linux Kernel Project, http://www.kernel.org.
[2] M. Hicks, GM to software vendors: Cut the complexity, http://www.eweek.com/c/a/Enterprise-Applications/GM-to-Software-Vendors-Cut-the-
Complexity/(Oct. 2004).

[3] R. Lockridge, Will bugs scare off users of newWindows 2000?, http://archives.cnn.com/2000/TECH/computing/02/17/windows.2000 (Feb. 2000).
[4] S.C. Misra, V.C. Bhavsar, Relationships between selected software measures and latent bug-density: Guidelines for improving quality, in: Proceedings
of the International Conference on Computational Science and its Applications, ICCSA, in: Lecture Notes in Computer Science, vol. 2667, Springer,
Montreal, Canada, 2003, pp. 724–732.

[5] G. Myers, The Art of Software Testing, 2nd ed., John Wiley and Sons, 2004.
[6] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, MIT Press, 1999.
[7] P. Godefroid, Model checking for programming languages using Verisoft, in: Proceedings of Principles of Programming Languages, POPL, Paris, France,
1997, pp. 174–186. http://citeseer.ist.psu.edu/godefroid97model.html.

[8] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L.Mauborgne, A.Miné, D.Monniaux, X. Rival, A static analyzer for large safety-critical software, in: Proceedings
of Program Language Design and Implementation, PLDI, 2003, pp. 196–207.

[9] T. Jim, G.Morrisett, D. Grossman,M. Hicks, J. Cheney, Y.Wang, Cyclone: A safe dialect of C, in: Proceedings of the USENIX Annual Technical Conference,
Monterey, California, 2002, pp. 275–288.

[10] R. DeLine, M. Fähndrich, Enforcing high-level protocols in low-level software, in: Proceedings of Program Language Design and Implementation, PLDI,
Snowbird, Utah, 2001, pp. 59–69.

[11] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, R. Stata, Extended static checking for Java, in: Proceedings of Program Language Design
and Implementation, PLDI, Berlin, Germany, 2002, pp. 234–245.

[12] D. Engler, M. Musuvathi, Static analysis versus model checking for bug finding, in: Proceedings of Verification, Model Checking and Abstract
Interpretation, VMCAI, in: Lecture Notes in Computer Science, vol. 2937, Springer, Venice, Italy, 2004.

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

http://www.kernel.org
http://www.eweek.com/c/a/Enterprise-Applications/GM-to-Software-Vendors-Cut-the-Complexity/
http://www.eweek.com/c/a/Enterprise-Applications/GM-to-Software-Vendors-Cut-the-Complexity/
http://www.eweek.com/c/a/Enterprise-Applications/GM-to-Software-Vendors-Cut-the-Complexity/
http://archives.cnn.com/2000/TECH/computing/02/17/windows.2000
http://citeseer.ist.psu.edu/godefroid97model.html

ARTICLE IN PRESS
22 M. Buss et al. / Science of Computer Programming () –

[13] D.Wagner, J.S. Foster, E.A. Brewer, A. Aiken, A first step towards automated detection of buffer overrun vulnerabilities, in: Proceedings of the Network
and Distributed System Security Symposium, NDSS, San Diego, CA, 2000, pp. 3–17.

[14] M. Buss, Summary-based pointer analysis framework for modular bug finding, Ph.D. Thesis, Columbia University, New York, USA, cUCS–013–08
(Feb. 2008).

[15] M. Buss, D. Brand, V. Sreedhar, S.A. Edwards, Flexible pointer analysis using assign-fetch graphs, in: Proceedings of the Symposium on Applied
Computing, SAC, Fortaleza, Ceará, Brazil, 2008, pp. 234–239. http://doi.acm.org/10.1145/1363686.1363746.

[16] M. Emami, R. Ghiya, L.J. Hendren, Context-sensitive interprocedural points-to analysis in the presence of function pointers, in: Proceedings of Program
Language Design and Implementation, PLDI, Orlando, FL, 1994, pp. 242–256.

[17] W. Landi, B. Ryder, A safe approximate algorithm for interprocedural pointer aliasing, in: Proceedings of Program Language Design and
Implementation, PLDI, San Francisco, CA, 1992, pp. 235–248.

[18] B. Blanchet, Escape analysis for object oriented languages: Application to Java, in: Proceedings of the Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA, Denver, CO, 1999, pp. 20–34.

[19] S. Cherem, R. Rugina, A practical escape and effect analysis for building lightweight method summaries, in: Proceedings of Compiler Construction, CC,
in: Lecture Notes in Computer Science, vol. 4420, Springer, Braga, Portugal, 2007, pp. 172–186.

[20] J.-D. Choi, M. Gupta, M. Serrano, V. Sreedhar, S. Midkiff, Escape analysis for Java, in: Proceedings of the Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA, Denver, CO, 1999, pp. 1–19.

[21] M. Sagiv, T. Reps, R. Wilhelm, Solving shape-analysis problems in languages with destructive updating, in: Proceedings of Principles of Programming
Languages, POPL, St. Petersburg Beach, FL, 1996, pp. 16–31.

[22] R.Wilhelm, S. Sagiv, T.W. Reps, Shape analysis, in: Proceedings of Compiler Construction, CC, in: LectureNotes in Computer Science, vol. 2027, Springer,
Berlin, Germany, 2000, pp. 1–17.

[23] M. Burke, An interval-based approach to exhaustive and incremental interprocedural data-flow analysis, ACM Transactions on Programming
Languages and Systems 12 (3) (1990) 341–395.

[24] D. Chase, M. Wegman, F. Zadek, Analysis of pointers and structures, in: Proceedings of Program Language Design and Implementation, PLDI, White
Plains, New York, 1990, pp. 296–310.

[25] J. Choi,M. Burke, P. Carini, Efficient flow-sensitive interprocedural computation of pointer-induced aliases and side effects, in: Proceedings of Principles
of Programming Languages, POPL, Charleston, SC, 1993, pp. 232–245.

[26] A.V. Aho, M. Lam, R. Sethi, J.D. Ullman, Compilers, Principles, Techniques, and Tools, 2nd ed., Addison-Wesley, Reading, MA, 2006.
[27] L.O. Andersen, Program analysis and specialization for the C programming language, Ph.D. Thesis, DIKU, University of Copenhagen (1994).
[28] J. Banning, An efficient way to find the side-effects of procedure calls and the aliases of variables, in: Proceedings of Principles of Programming

Languages, POPL, 1979, pp. 29–41.
[29] M. Burke, P. Carini, J. Choi, M. Hind, Flow-insensitive interprocedural alias analysis in the presence of pointers, in: Proceedings of the Workshop on

Languages and Compilers for Parallel Computing, in: Lecture Notes in Computer Science, vol. 1473, Springer, 1995, pp. 234–250.
[30] K. Cooper, K. Kennedy, Inter-procedural side-effect analysis in linear time, in: Proceedings of Program Language Design and Implementation, PLDI,

Atlanta, GA, 1988, pp. 487–506.
[31] M. Das, Unification-based pointer analysis with directional assignments, in: Proceedings of Program Language Design and Implementation, PLDI,

Vancouver, BC, Canada, 2000, pp. 35–46. http://research.microsoft.com/manuvir/homepage.html.
[32] B. Steensgaard, Points-to analysis in almost linear time, in: Proceedings of Principles of Programming Languages, POPL, St. Petersburg Beach, FL, 1996,

pp. 32–41. http://research.microsoft.com/~rusa/papers.html.
[33] M. Shapiro, S. Horwitz, Fast and accurate flow-insensitive points-to analysis, in: Proceedings of Principles of Programming Languages, POPL, Paris,

France, 1997, pp. 1–14.
[34] S. Zhang, B. Ryder, W. Landi, Program decomposition for pointer aliasing: A step toward practical analyses, in: Proceedings of Foundations of Software

Engineering, FSE, San Francisco, CA, 1996, pp. 81–92.
[35] M. Hind, M. Burke, P. Carini, J.-D. Choi, Interprocedural pointer alias analysis, ACM Transactions on Programming Languages and Systems 21 (4) (1999)

848–894.
[36] M. Hind, A. Pioli, Assessing the effects of flow-sensitivity on pointer alias analyses, in: Proceedings of the Static Analysis Symposium, SAS, in: Lecture

Notes in Computer Science, vol. 1503, Springer, Pisa, Italy, 1998, pp. 57–81.
[37] P. Stocks, B. Ryder, W. Landi, S. Zhang, Comparing flow and context sensitivity on the modification-side-effects problem, in: Proceedings of the

International Symposium on Software Testing and Analysis, ISSTA, Clearwater Beach, FL, 1998, pp. 21–31.
[38] S. Zhang, B. Ryder, W. Landi, Experiments with combined analysis for pointer aliasing, in: Proceedings of the Workshop on Program Analysis for

Software Tools and Engineering, PASTE, Montreal, Quebec, Canada, 1998, pp. 11–18.
[39] F. Nielson, H.R. Nielson, C. Hankin, Principles of Program Analysis, Springer, 1999, http://www.daimi.au.dk/~hrn/PPA/ppa.html.
[40] R.P. Wilson, M.S. Lam, Efficient context-sensitive pointer analysis for C programs, in: Proceedings of Program Language Design and Implementation,

PLDI, La Jolla, CA, 1995, pp. 1–12. http://suif.stanford.edu.
[41] D. Brand, M. Buss, V. Sreedhar, Evidence based analysis and inferring preconditions for bug detection, in: Proceedings of the International Conference

on Software Maintenance, ICSM, Paris, France, 2007, pp. 44–53.
[42] R. Chatterjee, B. Ryder, W. Landi, Relevant context inference, in: Proceedings of Principles of Programming Languages, POPL, San Antonio, TX, 1999,

pp. 133–146.
[43] E.M. Nystrom, H.-S. Kim, W. mei, W. Hwu, Bottom-up and top-down context-sensitive summary-based pointer analysis, in: Proceedings of the Static

Analysis Symposium, SAS, Verona, Italy, 2004, pp. 165–180.
[44] P. Cousot, R. Cousot, Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints,

in: Proceedings of Principles of Programming Languages (POPL), Los Angeles, CA, 1977, pp. 238–252. http://www.dmi.ens.fr/~cousot.
[45] D. Brand, F. Krohm, Arithmetic reasoning for static analysis of software, Tech. Rep. RC-22905, IBM Research Division, T. J. Watson Research Center,

Yorktown Heights, NY 10598 (Oct. 2003).
[46] D. Brand, A software falsifier, in: Proceedings of Software Reliability Engineering (ISSRE), San Jose, CA, 2000, pp. 174–185.
[47] B. Hardekopf, C. Lin, The ant and the grasshopper: Fast and accurate pointer analysis for millions of lines of code, in: Proceedings of Program Language

Design and Implementation, PLDI, San Diego, CA, USA, 2007, pp. 290–299.
[48] C. Lattner, A. Lenharth, V. Adve, Making context-sensitive points-to analysis with heap cloning practical for the real world, in: Proceedings of Program

Language Design and Implementation, PLDI, San Diego, CA, USA, 2007, pp. 278–289.
[49] M. Sridharan, R. Bodik, Refinement-based context-sensitive points-to analysis for Java, in: Proceedings of Program Language Design and

Implementation, PLDI, Ottawa, Canada, 2006, pp. 387–400.
[50] G. Bruns, S. Chandra, Searching for points-to analysis, IEEE Transactions on Software Engineering 29 (10) (2003) 883–897.
[51] M. Sridharan, D. Gopan, L. Shan, R. Bodik, Demand-driven points-to analysis for Java, in: Proceedings of the Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA, San Diego, CA, 2005, pp. 59–76.

Please cite this article in press as: M. Buss, et al., A novel analysis space for pointer analysis and its application for bug finding, Science of Computer
Programming (2009), doi:10.1016/j.scico.2009.08.002

http://doi.acm.org/10.1145/1363686.1363746
http://research.microsoft.com/manuvir/homepage.html
http://research.microsoft.com/~rusa/papers.html
http://www.daimi.au.dk/~hrn/PPA/ppa.html
http://suif.stanford.edu
http://www.dmi.ens.fr/~cousot

	A novel analysis space for pointer analysis and its application for bug finding
	Introduction
	Pointer analysis
	A space of abstractions for pointer analysis algorithms
	The assign-fetch graph
	Pointer alias analysis

	Flow-insensitive analysis with the AFG
	The statement order dimension
	Flow-aware analysis

	The condition dimension: Guards on arcs
	Interprocedural analysis
	Computing summaries
	Modeling arguments
	Modeling procedure calls
	Interprocedural flow-aware ordering

	Loops and recursive procedures
	Experimental results
	Running time
	Accuracy
	Bug reports

	Conclusions
	References

