
Flexible Pointer Analysis Using Assign-Fetch Graphs

Marcio Buss
Columbia University

New York, NY
marcio@cs.columbia.edu

Daniel Brand
IBM T.J. Watson

Yorktown Heights, NY
danbrand@us.ibm.com

Vugranam Sreedhar
IBM T.J. Watson
Hawthorne, NY

vugranam@us.ibm.com

Stephen A. Edwards
Columbia University

New York, NY
sedwards@cs.columbia.edu

ABSTRACT
We propose a new abstraction for pointer analysis that represents
reads and writes to memory instead of traditional points-torela-
tions. Compared to points-to graphs, our Assign-Fetch Graph (AFG)
leads to concise procedure summaries that can be used in any call-
ing context. Also, its flexibility supports new analysis techniques
with different trade-offs between speed and precision.

For efficiency, we build a summary for each procedure that as-
sumes distinct pointers from the environment are not aliased and re-
store soundness when the summary is used in a context with aliases.

We present two pointer analysis techniques based on our AFG.
The first takes the flow-insensitive view adopted by many authors;
the second considers statement ordering. In addition to being more
precise, we find that this “flow-aware” analysis runs faster.We
conclude with experimental results showing it is practical.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs—Program Analysis

General Terms
Algorithms, Languages, Performance

Keywords
Static analysis, pointer analysis, summary-based analysis

1. INTRODUCTION
Pointer analysis [1, 5, 6, 7, 8, 10, 11] is necessary for most lan-

guage processing tools, including optimizing compilers and tools
for bug finding, program understanding, and refactoring. Such
analysis consists of computingpoints-to information—given two
program locations,p andq, we sayp points-toq if p can contain
the address ofq. Pointer analysis statically estimates such possible
set of locations a pointer can point to during program’s execution.

Pointer analysis is of greatest concern for a language such as C
that exposes pointers to the programmer, but it is also helpful for
tools for a language such as Java that hides pointers behind object
references. We consider C, but our techniques could be adapted.

Instead of thepoints-to graph[6, 7, 10] commonly used in pointer
analysis, we propose a new representation for a function’s behav-
ior: the assign-fetch graph (AFG). A strength of our AFG is that it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

support many different algorithms, including the well-known flow-
insensitive technique and the faster, more precise flow-aware ap-
proach that we present for the first time in this paper.

Unlike a points-to graph, whose nodes represent pointer vari-
ables and whose edges represent points-to relations, the nodes in
our AFG represent locations and values and edges represent reads
and writes to memory. Pointer analysis amounts to matching pointer
dereferences (“fetch edges”) to pointer assignments (“assign edges”).
The AFG allows varying levels of precision by allowing different
matchings; a more selective matching may require more resources.
Our analysis issummary-based[4, 11]: it computes a representa-
tion for each procedure that summarizes its effects on pointers.

After introducing our technique with an example, we describe
the AFG (Section 2) and how it is used for pointer analysis (Sec-
tion 3). We implemented two kinds: classical flow-insensitive (Sec-
tion 3.2), which we use as a baseline, and our faster and more ac-
curate flow-aware technique (Section 3.3). Section 4 discusses the
interprocedural nature of the analysis. We conclude with results
from running our technique on large programs (Section 5).

1.1 An Example
Our AFG is designed to let us compute what values a program

might read from memory while it is executing. Except for I/O and
constants, the program itself must have written any value that is
read, so pointer analysis can be thought of as an attempt to under-
stand which writes could be seen by each read. One approximation
is that each write to a location can be seen by every read of that
location, but this is usually an overapproximation: a read and write
may occur in different branches of a conditional, or a write might
occur in sequence after a read. With the AFG, it is easy to approx-
imate these relationships differently, producing different pointer
analysis algorithms. In this paper we explore two: our baseline,
classical flow-insensitive analysis, and a new flow-awareanalysis.

Our AFG abstracts a procedure’s reads and writes instead of
points-to relations, which has many advantages: the AFG is simpler
to construct, our summaries work in all possible calling contexts
(in particular, when arguments are aliased), and the AFG facilitates
trading off analysis precision for efficiency.

Figure 1 shows the AFG in action. Figure 1(b) depicts the AFG
for the C code in Figure 1(a). The AFG’s nodes represent values
and addresses and its edges represent read and write operations.
The first statement in Figure 1(a),*z=&x, stores the address of
the global variablex at the address inz. We representz with the
location nodez, the dereference ofz with the fetch edgeF1, the
address read fromz with the fetch node n1, the address ofx with
the location nodex, and the write to*z with the assign edgeA2.

In our figures, we shade each fetch node as a reminder that we do
not know its value when we construct the graph. The basic question
for pointer analysis then becomes “given a fetch, which assigns
should it match?” The AFG abstraction allows us to answer this
question differently depending on speed/precision trade-offs.

foo()
{
*z = &x; // F1 A2
z = &v; // A3

if (...) {
z = &w; // A4

} else {
*z = &y; // F5 A6

}
}

abstract
into
an

assign-fetch
graph
→

flow-insensitive
analysis

→

ց
flow-aware

analysis(a) (b)

summarize
→

(c) (d) (g)

summarize
→

(e) (f) (h)

Figure 1: An illustration of our pointer-analysis technique. A proce-
dure (a) is first abstracted as an assign-fetch graph (b), whose nodes
represent addresses and values and whose edges represent memory
operations. An assign-fetch graph can be analyzed in at least two
ways: with a flow-insensitive analysis (c), where potentialaliases are
calculated ignoring statement order to produce a summary (d); and
our new flow-aware technique, which considers statement execution
order (e) to produce a more accurate summary (f). Contrast these summaries with (g) Andersen’s and (h) Steensgaard’s.

x = &y; // A1
.. = x; // F2

Figure 2: The simple
case: x is assigned in
A1 and fetched in F2; an
alias edge indicate that
n can be an alias fory.
Self-loops represent triv-
ial aliasing of locations.

Answering this question is the goal of theresolution phase, which
addsalias edgesfrom fetch nodes to location nodes to indicate what
values could be fetched. Each fetch of the same variable in a proce-
dure generates a distinct fetch node, allowing the AFG to represent
variables that take on different values at different times.

Figure 2 shows the simplest alias case: we add a (dashed) alias
edge fromn to y to indicate fetchingx (F2) after assigning it the
address ofy (A1) returns the address ofy. The self-loops indicate,
e.g., the address ofx is itself. We omit them in all other figures.

Adding aliases from fetch to location nodes produces aresolved
AFG. Using different levels of precision can generate different re-
solved AFGs, such as Figures 1(c) and 1(e). The former is a flow-
insensitive view of the program, where a fetch from a location
matches any assignment to the same location; the latter is a more
precise result obtained by considering statement orderingand mu-
tually exclusive operations, which leads to a smaller number of
fetch/assign matchings. E.g., because they appear in separate branches
of a conditional,*z=&y andz=&w are mutually exclusive, so fetch
F5 cannot see assignA4 and there is no alias edge fromn5 to w in
Figure 1(e). Also, the first fetch ofz in the code (F1) can only “see”
the (unknown) initial value ofz coming from the environment (rep-
resented byz1). Thus,n1 to z1 is the only alias edge.

Figure 1 also shows points-to graphs from two well-known tech-
niques. Figure 1(g) is the result from Andersen [1], which isequiv-
alent to Figure 1(d), but we also include the initial value node z1.
Figure 1(h) is the result of Steensgaard [10], who merges nodes
to which the same pointer points to, such as{v,w} and{x,y}. It
generates smaller but less accurate graphs.

Figure 3: The usual statements considered in pointer analysis
represented in AFG notation

2. ASSIGN-FETCH GRAPHS
Our assign-fetch graphs represent data and operations in a pro-

cedure in a way that makes it easy to compute the relationships
among them. It is a directed graph whose nodes represent values
and locations and whose edges represent fetches and assignments
to this data. To compute points-to information for a function, we
mechanically build an AFG, add alias edges to “resolve” it, and
remove information hidden from a caller, producing a summary.

Before building AFGs, we decompose a program into loop-free
procedures. We transform loops to tail-recursive procedure calls,
so a procedure’s statements can be ordered in a useful way. We
handle mutually recursive procedures by iterating their analysis to
convergence. Details are given in Section 4.5.

Our AFGs abstract many things. We ignore pointer arithmetic
by considering all elements of an array to be one location, merge
fields of structures so an expression such asp->next is treated
like *p, and model heap locations using a naming scheme like Choi
et al. [5]. We model return values with a special locationret.

Figure 3 shows AFG fragments for the four statements typically
considered in pointer analysis. Forx=&y, we represent the lvalue
x and the rvalue&y as location nodes and connect them with an
assign edge indicatingx points to the memory location fory. Note
that this does not read or change the contents ofy. By contrast,
sincex=y readsy, we add the fetch noden1 to represent its value,
add a fetch edge indicating a read ofy, and add an assign edge to
indicate they are written tox. We treat other statemenets similarly.

In alias analysis, executing statementp=&r creates the alias re-
lation 〈*p,r〉, meaning*p is an alias forr. Computing points-to
sets using the AFG amounts to determining the locations for which
a fetch node could be an alias. We represent such relations by
adding directedalias edgesto the AFG. In Figure 2, the dashed
edge (n, y) represents the alias relation〈*x,y〉. Each (non-trivial)
alias edge starts at a fetch node and terminates at a locationnode.

The central goal of pointer analysis is to determine a small set of
aliases that includes every possible one (i.e., remains sound). While
we could proclaim that every fetch node aliases every location, such
a gross overapproximation would not be very helpful. In the next
section, we discuss various ways to compute this set more precisely.

3. DETERMINING ALIASES
Determining aliases between fetch nodes and location nodesis

the main step in pointer analysis on AFGs. In this section, wedis-
cuss procedures with varying levels of precision, and show how the
AFG lends itself to such variants, one of its key strengths.

3.1 Alias Analysis
Let x, y,... denotelocationnodes,n1,n2, ... denotefetchnodes;

andα,β , ... denote arbitrary nodes. We writeal(α) to indicate the
set of nodes thatα can be an alias for. In Figure 2,al(n) = {y},
al(y) = {y} andal(x) = {x}.

An alias edge from a nodeα to a nodex indicatesx ∈ al(α);
an alias edge’s target is always a location. We assume variables are
distinct, so a location node only aliases itself:al(x) = {x}.

A fetch noden can be an alias for many locations; computing
them is the main purpose of any analysis. Because a fetch can
only return a value that the program wrote to memory, any alias of
a fetch node must be the target of an assign edge (we model the
initialization of global variables with assign edges).

We write affects(σA,σF) to indicate the assign edgeσA could
write a value that fetch edgeσF could read. This relation can be
many-to-many: one assignment could be seen by many fetches,and
a fetch might see many assignments. Unfortunately,affectsis not
effectively computable, so any pointer analysis must approximate
it. A sound analysis demands an overapproximation: it should be
true whenaffectsis true, but not necessarily vice-versa.

When an assignment affects a fetch, the fetch can return anything
written by the assignment, so aliases for the fetch must include all
aliases of the assignment’s “right-hand side.” Put formally,

σA : γ A
−→β σF : α F

−→n affects(σA,σF)

al(β) ⊆ al(n)
[ALIAS]

whereγ A
−→β indicates an assign edge fromγ to β and α F

−→n
indicates a fetch edge fromα to n. The solution to pointer analysis
is the minimal set of alias edges that satisfies this rule.

3.2 Flow-Insensitive Analysis on the AFG
A simple approximation of theaffectsrelation gives Andersen-

style flow-insensitive analysis, which will use as a baseline for eval-
uating our new flow-aware analysis (described in the next section).
Define the predicatealiasesas

aliases(α,γ) ⇔ α = γ ∨ al(α)∩al(γ) 6= /0.

This says nodesα andγ are aliases for the same thing if they are
identical or if they are aliases for some common location node.

This relationship is a flow-insensitive (over-) approximation of
the exactaffects(σA,σF), so [ALIAS] can be approximated by

σA : γ A
−→β σF : α F

−→n aliases(α,γ)

al(β) ⊆ al(n)
[FI-ALIAS]

Because this rule is recursive (the premise refers to thealiasesre-
lation, which depends onal), finding the minimal resolved AFG re-
quires computing a fixed point. Our implementation uses the usual
worklist algorithm that iterates to convergence.

These rules ignore statement order. Consider Figure 1(c), which
shows the resolved AFG for Figure 1(b) under the [FI-ALIAS] rule.
Every assign to a location is seen by all fetches from that location,
so in Figure 1(b), bothn1 andn5 will resolve to bothv andw. In the
implementation, we also create the (unknown) initial valuenodez1
since globalz is dereferenced within the function (we lazily initial-
ize environment variables). Nodesn1 andn5 also resolve toz1.

3.3 Flow-Aware Analysis on the AFG
Here, we describe our second key contribution: flow-aware anal-

ysis, which considers statement ordering when computing aliases.

(a)

(b)
(c)

(d)
(e)

Figure 4: Motivation for flow-
aware analysis. (a) An assign-
ment before a fetch can af-
fect the fetch; (b) one after a
fetch cannot. Conditionals (c,
d) further constrain which as-
signments are visible to a fetch.
Our flow-aware analysis ap-
proximates the execution order
(d) with the total order (e).

From experiments, which we describe in Section 5, we find flow-
aware analysis runs faster than flow-insensitive analysis and pro-
duces more precise results, making it all-around superior.Reduc-
ing the number of matchings between fetches and assigns leads to
faster convergence with fewer alias edges.

The basic idea in flow-aware analysis is to number all the as-
signments and fetches in a procedure (i.e., assign them a total or-
der) and only consider assignments whose labels are less than that
of a matching fetch. This is a quick-to-compute conservative ap-
proximation (the true relationship is a complex partial order due to
conditionals and data) that is more precise than the [FI-ALIAS] rule,
which completely ignores statement order. The AFG abstraction is
key for the flow-aware analysis.

The control-graph fragments in Figure 4 illustrate the motiva-
tion for this approximation. Figure 4(a) is the simplest case: the
assignmentA j runs before the fetchFi, so A j can affectFi , i.e.,
affects(A j , Fi) holds. However, a fetch that runs before an assign-
ment, such as in Figure 4(b), cannot be affected by the assignment.
A flow-insensitive analysis treats these two cases identically; our
flow-aware analysis does not build an alias edge in the secondcase.

Conditionals add complexity. In Figure 4(c), fetchFi should re-
solve to assignA j since the latter occurs strictly before the former,
but affects(Ak, Fi) is false because the two operations are mutually
exclusive. Finally,affects(Am, Fi) andaffects(Am, Fl) are both false
becauseAm runs afterFi andFl .

The situation in Figure 4(d) is slightly different. Although Fl oc-
curs afterAm, Am cannot affectFl because they are mutually exclu-
sive: the expressionc controls both conditionals. However,Ak does
affectFl becauseAk comes beforeFl along a feasible path.Affects
is always an approximation since path-feasibility is undecidable.

Figure 4(e) shows one possible total order for the control-flow
graph of Figure 4(d): we numbered statements in the true branch
of each conditional before its false branch.

Figure 1 illustrates the precision advantage of a flow-awareanal-
ysis using conditionals. Figure 1(f) is the summary of Figure 1(e),
which is more precise than Figure 1(d).

Let affects0(σA,σF) be true when the assignmentσA occurs be-
fore the fetchσF in the total order. This approximation can produce
spurious results. For example, in the linearization of Figure 4(d)
in Figure 4(e),affects0(Ak,Fi) and affects0(Am,Fl) are true, yet
affects(Ak,Fi) andaffects(Am,Fl), the exact relations in Figure 4(d),
are false. Thus,affects0 allows a fetch edge to resolve to extra as-
signments, but it is a sound solution with substantially improved
precision over flow-insensitive analysis.

To implement flow-aware analysis, we simply augment each edge
σ in the AFG with an indexrank(σ) from a topological sort of the
statements in the procedure. We write these labels as subscripts on
F ’s andA’s. The [ALIAS] rule for flow-aware analysis is

σA : γ A
−→β σF : α F

−→n aliases(α,γ) affects0(σA,σF)

al(β) ⊆ al(n)
[FA-ALIAS]

f(p,q)
{

*p = &x;
y = *q;

}

(a) (b) (c)

Figure 5: (a) A procedure, (b) its AFG, and (c) summary.

4. INTERPROCEDURAL ANALYSIS
Below, we describe how we perform interprocedural analysis

with our AFG. We describe how we summarize procedures, han-
dle function parameters, and use summaries at procedure call sites.
Although our summaries assume their parameters do not alias, they
can be used in settings where parameters are aliases and remain
sound, a key advantage of our approach.

4.1 Computing Summaries
To prepare a procedure’s AFG to be used at a call site, after com-

puting aliases using flow-insensitive or -aware analysis, we summa-
rize the AFG for each procedure by deleting anything that a caller
could not see, such as temporary memory fetchesn1 andn5 in Fig-
ure 1(c). Before we delete such nodes, we transfer their effects to
nodes that will remain. Figure 1(d) shows this. In general, if an
assignment is made to a fetch noden, andn can be an alias for a
location noden′, the assignment is equivalent to one ton′. E.g., in
Figure 1(c),n1 is assigned the address ofx and can be an alias for
z1, v, andw, so we add assign edges fromz1, v, andw to x. Simi-
larly, we add edges fromz1, v, andw to y. Finally, we removen1
andn5 and “demote”z1 to a fetch node to indicate the dereference
of z. This produces the flow-insensitive summary in Figure 1(d).

4.2 Modeling Parameters
We treat procedure parameters almost like global variables. While

we assume each comes from the environment, a caller always ini-
tializes formal parameters so we add explicit initial valuenodes for
them; we only add an initial value for each global variable that is
fetched by the procedure. Since formal parameters are localvari-
ables, i.e., stacked and discarded when a procedure returns, we re-
move their location nodes during the summarization process.

Figure 5 illustrates how we handle parameters. We add location
nodes for formal parametersp andq and initial value nodes#1 and
#2 that represent their initial caller-passed values. Figure5(b) also
includes nodes and edges for the two statements.

Since formal parameters are initialized by “#i” nodes, the AFG
representation for*p=&x in Figure 5(b) does not include a fetch
edge forp; *p directly yields its initial value, #1.

In summarizing this (alias-free) procedure, we remove the nodes
for the formal parametersp and q and rename the initial value
nodes to include the procedure’s name. Also, fetch edgeF4 in Fig-
ure 5(b) generates an initial value for node #2, which in Figure 5(c)
is labeledn. Figure 5(c) is the final summary.

4.3 Modeling Procedure Calls
When building the initial AFG for a procedure, a call to a func-

tion is replaced by the callee’s summary. Instantiation a summary
involves merging any global variables shared by both and connect-
ing formal parameters to actual parameters. Figure 6 illustrates
calling proceduref from Figure 5. The address of global variable
z is passed to bothp andq, so when we copy the summary off
from Figure 5(c), we mark the nodes for the initial values ofp and
q, f#1 andf#2, to be merged withz.

g() {
f(&z, &z);

}

(a) (b) (c) (d)

Figure 6: (a) A procedureg, which callsf from Figure 5 (b) Its
initial AFG (c) After resolving (d) Its summary

We perform the same process for each global variable: its node
in the callee is merged with its node in the caller. This is vacuous
in Figure 6 sinceg does not touch globalsx or y.

Node merging works even when an actual parameter is an ex-
pression. The callf(z,z) would represent its actual arguments
as two fetch edges fromz to nodes, say,n1 andn2, which would be
merged with the value nodes for the formals:f#1 andf#2. Com-
puting aliases on the AFG would find the two parameters aliased.

Once each callee’s summary has been instantiated, we compute
the caller’s summary. In Figure 6(c), we added an initial value
node for globalz and used flow-insensitive analysis to add alias
edges from fromn to x andz1. Figure 6(d) is the summary. We
removed fetch noden; its aliases now manifest themselves as the
assign edges fromy. A caller of g knows thatz is dereferenced
somewhere down the line by looking atg’s summary.

This example illustrates how a summary is agnostic about pa-
rameter aliasing and can be used in any context. The summary in
Figure 5(c) treated parametersp andq as distinct, but we merged
them at the call site forf in g and found that runningg makesy
point tox. Existing solutions either use information from the en-
vironment while building a summary, or build multiple summaries
for each function, one for each possible environment.

4.4 Interprocedural Flow-Aware Ordering
Performing flow-aware analysis across procedure calls requires

us to label statements on both sides of a call site. To get thisright,
we increase the indices of a callee by the maximum index that oc-
curs in the caller before the call site, then increase the indices in the
caller that appear after the call. Figure 7 illustrates this.

In Figure 7(b),x’s value is read byq=x in bar() then modified
by f() at the call sitef(&x). When statement*q=&w executes,
the original value ofx, &v, is set to point tow. By ignoring or-
der information, an interprocedural flow-insensitive analysis would
pessimistically includea and b as values that could be read by
q=x. Our flow-aware analysis avoids these. Figures 7(c) and 7(d)
show the resolved and summary AFGs for functionf. We sort the
edges in a function summary and number them starting from 1,
being careful to preserve the order among statements. Figure 7(e)
shows how the summary forf is instantiated at the call sitef(&x).
Statements before the call are labeledA1, F2, andA3.

To place a callee’s statements in the total order, we add the high-
est index before the call to every statement in the callee’s summary
when we instantiate it. In Figure 7(e), this index is 3, so we label
themA1\4 andA2\5 to indicateA1 andA2 will becomeA4 andA5.

Figure 7(f) shows the result after flow-aware alias analysis. Note
the fetch ofx in q=x (F2) resolves toA1, the only assignment oc-
curring before that fetch. Figure 7(g) is the points-to setswe com-
pute with our flow-aware analysis, which is more precise thanthe
flow-insensitive result in Figure 7(h).

4.5 Loops and Recursive Procedures
We convert loops into tail-recursive procedures and iteratively

analyze (such) recursive procedures until we reach a fixed-point.
The first time a recursive procedure is analyzed, we do not have

f(int *p)
{

*p = &a;
...
*p = &b;

}

(a)

bar()
{

x = &v; // A1
...
q = x; // F2 A3
...
f(&x); // A4 A5
...

*q = &w; // F6 A7
}

(b)

(c)

(d)

(e) (f)

(g) (h)

Figure 7: Propagating flow-aware ordering across procedure
calls. (a) Functionf() is called by (b)bar(). The AFG for
f() (c) is summarized (d), inserted in the AFG forbar() (e),
the indices in the summary are updated and flow-aware anal-
ysis is performed (f). The flow-aware points-to set (g) is more
precise than the flow-insensitive (h).

a summary for it, so we only consider the other statements in the
procedure. This gives a better summary for the procedure, which
we then instantiate at recursive call sites and summarize again.

It may appear this procedure may not terminate, but this is not
the case. It turns out the number of edges and arcs that can be
added is bounded. The number of heap nodes is bounded because
of the heap naming scheme we adopt. The number of fetch edges is
bounded because the final summary allows at most one fetch edge
out of any node, and there is a limit on the length of any chain of
fetch edges. Finally, we prohibit duplicate assign edges. Together,
these constraints bound the summary and guarantee convergence.
If duplicate assignments between a pair of nodes is allowed,such as
in Figure 8(e), the comparison between two summaries must only

consider whetherx
A

−→y exists and not the number of such edges.
Details can be found in the first author’s thesis [3].

Figure 8 illustrates summarizing afor loop. We transform the
function in Figure 8(a) into the tail-recursive procedure in Fig-
ure 8(b). We nested the definition ofLoop insidebar to empha-
size that it has access tobar’s local variables.

Figure 8(c) is a simplified control-flow graph for this code. On
the left is the structure of the loop; on the right is a linearized ver-
sion of theLoop procedure that assumes flow-aware analysis or-
ders thethenbranch of theif before theelse.

Figure 8(d) is the first summary ofLoop—the assignmentp=&y
is hidden fromz. We now have a summary ofLoop, so we insert
it at its call site. This gives Figure 8(e). Edges with subscripts 1, 2,
and 3 correspond to the loop body statements within the function.
Instantiating the earlier summary adds edgesF4, A5, andA6 (the

int *p, x;
void bar() {

int *z, y;
p = &x;
for (i=0; i<n; i++) {
if (...)

z = p;
else

p = &y;
}

}
(a)

int *p, x;
void bar() {

int *z, y;

void Loop() {
if (i < n) {

if (...)
z = p;

else
p = &y;

i++;
Loop();

}
}

p = &x;
i=0; Loop();

}
(b)

(c)

(d)

(e)
(f)

(g) (h)

Figure 8: Handling loops and recursive functions.

indices are shifted as in Section 4.4). This time, fetch edgeF4
matches assignmentA3, andz will point to y as a result; edges
F4 andA3 belong to different iterations of the original loop.

Figure 8(f) is the summary of Figure 8(e) and also the fixed-
point—the final summary for the function. Some edges have two
numerical labels because they are the result of merging multiple
edges. For example,A3

6 represents the merge ofA3 andA6.
Figure 8(g) shows the graph forbar after we inserted the sum-

mary forLoop. The fetch ofp resolves top=&x since the assig-
ment occurs before the fetch (i.e., we check that the subscript index
of the fetch is greater than the superscript on the assign, incase one
exists, or the subscript otherwise). Finally, Figure 8(h) shows the
summary forbar, which notes that the global variablep is fetched.

5. EXPERIMENTAL RESULTS
We implemented our pointer analysis framework in a static anal-

ysis (bug-finding) tool called BEAM [2] developed at IBM. Our
experiments show our AFG-based pointer analysis techniquecan
be applied on real-world programs; our flow-aware analysis (Sec-
tion 3.3) has both better performance and accuracy than a flow-
insensitive analysis; and our AFG-based analysis generates consid-
erably smaller points-to sets than existing techniques.

Table 1 lists our benchmarks. Paraffins is an implementationof
the Salishan Paraffins problem, compress and gzip are file com-
pression programs, ispell is a spelling checker, pcre is a library
for regular expression pattern matching, make is a build tool, bi-
son is a parser generator, tar is a file archive utility, and balsa is
an electronic mail client. “Source functions” count procedures in
the original code; “internal functions” count procedures after re-
placing loops with tail-recursive functions. “SCCs” countstrongly-
connected components in the program’s call graph. Some bench-
marks contain large SCCs: make has a cluster of 52 mutually-

Table 1: Experimental Results
Benchmark Statistics Flow-insensitive Analysis Flow-aware Analysis Avg. Points-to Set Sizes

Lines Functions SCCs Time Nodes/Summary Speedup “Precision” AFG Steensgaard

Source Internal Avg. Max. Overall Slowest Avg. Peak Andersen

paraffins 1.5k 13 36 36 0.22s 6.1 19 − − 1% 20% 1.11 — —
compress 2.2 30 66 66 0.13 3.4 9 3% 5% 1 50 0.524 1.22 2.1
gzip 8.3 126 331 330 0.72 3.9 18 8 13 7 40 2.06 2.96 25.17
ispell 10.1 117 337 337 13 6.7 101 60 127 34 122 1.92 2.25 16.45
pcre 15.4 63 300 299 21 5.8 19 243 360 10 45 2.21 — —
make 22.1 309 853 799 114 16 279 109 65 23 446 26.11 74.70 414.04
bison 25.4 700 1297 1296 44 7.6 356 159 503 19 337 1.88 1.72 20.51
tar 32.7 651 1145 1124 27 12 178 59 145 5 75 2.58 17.41 53.7
balsa 110.0 2659 4682 4648 31 4.3 51 23 78 12 80 0.92 — —

recursive functions on which the analysis must converge, tar has
a cluster of 19 functions, and balsa has one with 14.

Table 1 lists run times for flow-insensitive analysis (Section 3.2).
The analysis time is for BEAM running on a 2.2 GHz Pentium 4
machine with 4 GB of memory running Linux. The “nodes/summary”
columns list the average and maximum number of nodes in each
procedure’s summary graph. Analysis times includes calculating
the points-to sets as initial, resolved, and summary AFGs, and to
propagate summaries until convergence, but does not include the
time for BEAM to read source files, parse, and build the IR.

Analysis times are short enough to make our technique practical,
but vary widely. For example, although make is only twice as long
as ispell, it takes more time to analyze make because its callgraph
has large SCCs (i.e., groups of mutually recursive functions).

The nodes/summary columns suggest procedure summaries are
small on average and grow polynomially with program size—much
slower than the exponential worst case. Wilson and Lam [11] ob-
served similar behavior on partial transfer functions.

We name heap locations following Choi et al. [5]: a location’s
name is the list of callers at its allocation site. We limit name length
and allow colliding names to merge. Details are elsewhere [3].

The “flow-aware analysis” columns compare our flow-aware anal-
ysis to flow-insensitive. It shows flow-aware analysis is both more
efficient and more precise than our implementation of flow-insensitive
analysis. The “Overall” column lists the overall decrease in run
time for our flow-aware analysis compared to our implementation
of flow-insensitive analysis. Our flow-aware analysis can beover
2× faster. The “Slowest” column lists how much faster flow-aware
analysis is at analyzing the procedure that took the most time.

The “precision” columns compare the size of the summary graphs
from flow-aware analysis with those from flow-insensitive analysis.
If R is the ratio of assign edges to the total number of nodes in the
final summary graph for a procedure,RI is this ratio after flow-
insensitive analysis, andRA is this ratio after flow-aware analysis,
then the increase in precision isQ= (RI −RA)/RA. The peak preci-
sion is the highest suchQ over all procedures; the average precision
is the average increase over all procedures:(Q1 + · · ·+Qn)/n.

The “Avg. points-to set sizes” columns show our AFG abstrac-
tion generates smaller points-to sets than those of Andersen or Steens-
gaard [6, 9]. We compute points-to set sizes by observing that as-
sign edges in the AFG for a function correspond to the set of lo-
cations pointed-to by the source node of the assign edge. There
are several summary AFGs in a given benchmark—one for each
function in the program. To calculate the points-to set sizes in Ta-
ble 1, we compute an average among all AFGs. The table shows
the numbers for the flow-insensitive analysis on the AFG.

6. CONCLUSIONS
We presented a new approach to pointer analysis based on the

assign-fetch graph. By representing the operations in a procedure
instead of points-to relations, the AFG enables context-agnostic
procedure summaries and several pointer analysis variations. Since
an assign-fetch graph abstracts code along with the possible results
of code, it is very natural for inter-procedural analysis.

We described two AFG pointer analysis techniques, a standard
flow-insensitive analysis that ignores statement orderingand a novel
flow-aware technique that approximates the control flow in a pro-
cedure to reduce the number of spurious alias relationships.

Experimental results on real-world C programs showed that our
flow-aware analysis is both faster (3%–243%) and more precise
than flow-insensitive analysis. We measured precision by looking
at the number of edges in the procedure summaries. Since bothare
sound, fewer edges mean a more precise summary.

In the future, we will develop more precise analyses by refining
the approximation of theaffectsrelation of Section 3. For instance,
a path-sensitive approximation can be made by including thecondi-
tions under which fetches and assignments occur. We are currently
adding field-sensitivity to the analysis by inserting one more type
of edge in the AFG, afield-dereferenceedge, which will handle
arbitrary casting possible in C.

7. REFERENCES
[1] L. O. Andersen. Program analysis and specialization forthe C pro-

gramming language. PhD thesis, DIKU, U. Copenhagen, 1994.
[2] D. Brand. A software falsifier. InIntl. Symposium on Software Relia-

bility Engineering, pages 174–185, October 2000.
[3] M. Buss. Summary-based pointer analysis framework for modular bug

finding. PhD thesis, Columbia University (to appear), 2008.
[4] R. Chatterjee, B. Ryder, and W. Landi. Relevant context inference. In

Principles of Prog. Languages, pages 133–146, 1999.
[5] J. Choi, M. Burke, and P. Carini. Efficient flow-sensitiveinterproce-

dural computation of pointer-induced aliases and side effects. InPrin-
ciples of Prog. Languages, pages 232–245, 1993.

[6] M. Das. Unification-based pointer analysis with directional assign-
ments. InProg. Language Design and Impl., pages 35–46, 2000.

[7] M. Emami, R. Ghiya, and L. Hendren. Context-sensitive interproce-
dural points-to analysis in the presence of function pointers. In Prog.
Language Design and Impl., pages 242–256, 1994.

[8] W. Landi and B. Ryder. A safe approximate algorithm for interproce-
dural pointer aliasing. InProg. Language Design and Implementation,
pages 235–248, 1992.

[9] M. Shapiro and S. Horwitz. Fast and accurate flow-insensitive points-
to analysis. InPrinciples of Prog. Languages, pages 1–14, 1997.

[10] B. Steensgaard. Points-to analysis in almost linear time. InPrinciples
of Prog. Languages, pages 32–41, 1996.

[11] R. Wilson and M. Lam. Efficient context-sensitive pointer analysis for
C programs. InProg. Language Design and Impl., pages 1–12, 1995.

