
Pointer Analysis for Source-to-Source Transformations

Marcio Buss∗ Stephen A. Edwards†

Department of Computer Science
Columbia University
New York, NY 10027

{marcio,sedwards}@cs.columbia.edu

Bin Yao Daniel Waddington
Network Platforms Research Group

Bell Laboratories, Lucent Technologies
Holmdel, NJ 07733

{byao,dwaddington}@lucent.com

Abstract

We present a pointer analysis algorithm designed for
source-to-source transformations. Existing techniques for
pointer analysis apply a collection of inference rules to a
dismantled intermediate form of the source program, mak-
ing them difficult to apply to source-to-source tools that
generally work on abstract syntax trees to preserve details
of the source program.

Our pointer analysis algorithm operates directly on the
abstract syntax tree of a C program and uses a form of stan-
dard dataflow analysis to compute the desired points-to in-
formation. We have implemented our algorithm in a source-
to-source translation framework and experimental results
show that it is practical on real-world examples.

1 Introduction

The role of pointer analysis in understanding C programs
has been studied for years, being the subject of several PhD
thesis and nearly a hundred research papers [10]. This type
of static analysis has been used in a variety of applications
such as live variable analysis for register allocation and
constant propagation, checking for potential runtime errors
(e.g., null pointer dereferencing), static schedulers that need
to track resource allocation and usage, etc. Despite its appli-
cability in several other areas, however, pointer analysis has
been targeted primarily at compilation, be it software [10]
or hardware [14]. In particular, the use of pointer analysis
(and in fact, static analysis in general) for automated source
code transformations remains little explored.

We believe the main reason for this is the different pro-
gram representations employed in source-to-source tools.
Historically, pointer analysis algorithms have been imple-
mented in optimizing compilers, which typically proceed by
∗supported in part by CNPq Brazilian Research Council, grant number

200346/01-6
†supported by an NSF CAREER award, a grant from Intel corporation,

an award from the SRC, and by New York State’s NYSTAR program

p

x y z

q

a b c

Andersen [1]

p

x,y,z

q

a,b,c

Steensgaard [15]

p

x,y z

q

Das [5]

a,b,c

p

x y z

q

a b c

Heintze [8]

p=&x; p=&y; q=&z; p=q; x=&a; y=&b; z=&c;

Figure 1. Results of various flow-insensitive
pointer analysis algorithms.

dismantling the program into increasingly lower-level rep-
resentations that deliberately discard most of the original
structure of the source code to simplify its analysis.

By contrast, source-to-source techniques strive to pre-
serve everything about the structure of the original source
so that only minimal, necessary changes are made. As such,
they typically manipulate abstract syntax trees that are little
more than a structured interpretation of the original program
text. Such trees are often manipulated directly through tree-
or term-rewriting systems such as Stratego [16, 17].

In this paper, we present an algorithm developed to per-
form pointer analysis directly on abstract syntax trees. We
implemented our algorithm in a source-to-source tool called
Proteus [18], which uses Stratego [16] as a back-end, and
find that it works well in practice.

2 Existing Pointer Analysis Techniques

Many techniques have been proposed for pointer analy-
sis of C programs [1, 3, 5, 7, 11, 13, 15, 19]. They differ
mainly in how they group related alias information. Fig-
ure 1 shows a C fragment and the points-to sets computed
by four well-known flow-insensitive algorithms.

Arrows in the figure represent pointer relationships be-
tween the variables in the head and tail nodes: an arc from
a to b means that variable a points-to variable b, or may

point-to that variable, depending on the specific algorithm.
Some techniques encapusulate more than one variable in a
single node, as seen in Steensgaard’s and Das’s approaches,
in order to speed-up the computation. These methods trade
precision for running time: variable x, for instance, points-
to a, b and c on both techniques, although the code only
assigns a’s address to x.

Broadly, existing techniques can be classified as
constraint-solving [6, 8, 9] or dataflow-based [7, 12, 13, 19].
Members of both groups usually define a minimal gram-
mar for the source language that includes only basic op-
erators and statements. They then build templates used to
match these statements. The templates are cast as inference
rules [6, 8, 9] or dataflow equations [7, 12, 13, 19]. The al-
gorithms consist of iterative applications of inference rules
or dataflow equations on the statements of the program, dur-
ing which pointer relationships are derived. This approach
assumes that the C program only contains allowed state-
ments. For instance, a=**b, with two levels of dereference
in the right-hand side, is commonly parsed

=

*

b
*

a

Existing techniques generally require the preceding
statement to be dismantled into two sub-expressions, each
having at most one level of dereference:

=

t

b

*

=

t
*a

It is difficult to employ such an approach to source-to-
source transformations because it is difficult to correlate the
results calculated on the dismantled program with the origi-
nal source. Furthermore, it introduces needless intermediate
variables, which can increase the analysis cost.

For source-to-source transformations, we want to per-
form the analysis close to the source level. It is particularly
useful to directly analyze the ASTs and annotate them with
the results of the analysis. Hence, we need to be able to
handle arbitrary compositions of statements.

Precision is another issue in source-to-source transfor-
mations: we want the most precise analysis practical be-
cause otherwise we may make unnecessary changes to the
code or, even worse, make incorrect changes. A flow-
insensitive analysis cannot, for example, determine that a
pointer is initialized before it is used or that a pointer has

different values in different regions of the program. Both
of these properties depend on the order in which the state-
ments of the program execute. As a result, the approach we
adopt is flow-sensitive.

3 Analysis Outline

Following the approach of Emami et al. [7], our anal-
ysis uses an iterative dataflow approach that computes, for
each pointer statement, the points-to set generated (gen) and
removed (kill) by the statement. The net effect of each state-
ment is (in− kill)∪gen, where in is the set of pointer rela-
tionships holding prior to the statement. In this sense, it is
flow-sensitive and results in the following points-to sets for
each sequence point in the code fragment of Figure 1.

p

x

p=&x; p=&y; q=&z; p=q; x=&a; y=&b; z=&c;1 2 3 4 5 6 7

c

1 2 3 5 6 7
p

y

p

y z

q
4

p

z

q p

z

q x

a

y

b

p

z

q x

a

y

b

p

z

q x

a

By operating directly on the AST, we avoid building the
control-flow graph for each procedure or the call-graph for
the whole program. Clearly, the control-flow graph can still
be built if desired, since it simply adds an extra and rela-
tively thin layer as a semantic attribution to the AST. Thus,
from this specific point of view, ASTs are not a necessity
for the iterative computation and handling of the program’s
control structure.

We assume the entire source code of the subject appli-
cation (multiple translation units, multiple files) is resolved
into a large AST that resides in memory [18], so that we
are able to jump from one procedure to another through tree
queries. The analysis starts off at the program’s main func-
tion, iterating through its statements. If a function call is
encountered, its body is recursively analyzed taking into ac-
count pointers being passed as parameters as well as global
pointers. When the analysis reaches the end of the function,
it continues at the statement following the function call.

Below, we give an overview of some aspects of the im-
plementation.

3.1 Points-to Graph Representation

We represent the points-to graph at a particular point in
the program using a table. Entries in the table are triples
of the form 〈x,y,q〉, where x is the source location pointing
to y, the destination location, and q is the qualifier, which
can be either must or may, which indicates that either x is
definitely pointing to y, or that x merely may point to y (e.g.,
it may point to something else or be uninitialized). Pointer
relations between variables in distinct scopes are encoded as
regular entries in the table by relying on unique signatures
for program variables. Below is a C fragment for illustra-
tion.

int x;
int y;

int main()
{
 int * a;
 int * r;
 int ** A;

 a = &x;

 A = &a;

 r = foo(A);
}

int * foo(p)
int ** p;
{

 *p = &y;

 return (*p);
}

C Code

Global Table

a x

a x

a yA

A

r

<a, x, MUST>

<A, a, MUST>
<a, x, MUST>

<A, a, MUST>
<a, y, MUST>
<r, y, MUST>

<p, a, MUST>
<A, a, MUST>
<a, x, MUST>

<p, a, MUST>
<A, a, MUST>
<a, y, MUST>

Memory Representation

a xA

p

a yA

p

(a) (b) (c)

Time

1

2

5

3

4

On the left is the source code for two procedures; in the
center are the memory contents during the analysis; and on
the right are the points-to sets generated by each statement.
Note that each location of interest is represented by an ab-
stract signature and that each pointer relationship holding
between two locations is represented by an entry in the ta-
ble. For an if statement, our algorithm makes two copies
of the table, analyzes the statements in the true and false
branches separately, then merges the resulting tables. The
merge operation is a special union (denoted by � in Fig-
ure 6) wherein a must triple has its qualifier demoted to
may in case only one of the branches generates (or fails to
kill) the triple. For and while statements are handled with
a fixed-point computation—a copy of the table is made, the
statements are analyzed, and the resulting table is compared
to the initial one. The process is repeated until the two ta-
bles are the same.

3.2 Abstract Signatures

Each location of interest in the program is represented
by a unique signature of the form

(function-name, identifier,scope)

where function-name is the name of the function in which
the variable or parameter is declared or a special keyword
for global variables; identifier is the syntactic name given
by the programmer or specially-created names for heap lo-
cations; and scope is a unique integer assigned to each dis-
tinct scope in the program (the scope associated with a given
signature is the integer assigned to the scope where the vari-
able is declared). The numbers to the left of each source
program below show a possible set of scopes. The dashed
lines delimit their ranges.

int x;
int * y;

int main()
{
 int a;
 int * p;
 int * q;

 q = &a;

 {
 int a;
 p = &a;
 }

 y = foo();

 return 0;
}

1.c 2.c

3

0

1

2

1

3

4

extern int x;

int * foo()
{
 int * r;

 r = &x;

 if (...)
 {
 ...
 }

 return (r);
}

0

The signatures created for q and a while analyzing the
statement q=&a are (main,q,1) and (main,a,1). The signa-
tures for p and a in the statement p=&a, are (main,p,1)
and (main,a,2) (a is redeclared in scope 2). Signatures are
generated on-the-fly to avoid pre-processing.

3.3 Pointer Relationships Representation

Once everything has a unique signature, we adopt the
relations must and may points-to as follows.

By definition, variable x must point to variable y at pro-
gram point p if, at that program point, the address of y is in
the set S of possible locations that x may point to and |S|= 1.
Also, all possible execution paths to program point p must
have assigned y’s address to x prior to p, and that address
assignment must not have been killed since then. This is
denoted by the triple 〈x′,y′,must〉, where x′ and y′ represent
the abstract signatures for x and y.

Similarly, variable x may point to variable y at program
point p if, at that program point, the address of y is in the
set S of possible locations that x may point to and either
|S|> 1 or there exists some execution path Pi to p that does
not assign y’s address to x. This is denoted by the triple
〈x′,y′,may〉, where x′ and y′ are the signatures for x and y.

Intuitively, an assignment x = &y at point p inside the
then branch of an if statement implies that x must point to y
from p to the point where both execution paths merge, as-
suming x is not redefined in between; x may point to y after
this in case the path that goes through the else part does not
assign y’s address to x.

Figure 2 shows a code fragment and snapshots of the
entire table at four distinct moments during the analysis
(for clarity, must is written “M” and may is written “m”).
Point 1, for example, corresponds to the instant after the
analysis has traversed the if statement at lines 10–13, the
assignment at line 15, the call site at line 16, and is about to
analyze foo.

 1 int y;
 2 int *z,*w;
 3
 4 int main()
 5 {
 6 int *a,*r;
 7 int ** A;
 8 int *** B;
 9
10 if (...)
11 A = &a;
12 else
13 A = &w;
14
15 B = &A;
16 r = foo(B); /* 4 */
17 }
18
19 int * foo(int *** p1)
20 {
21 int k; /* 1 */
22 **p1 = &y; /* 2 */
23 z = &k; /* 3 */
24 return (z);
25 }

C Code
Global Table

<("main","r",1),("foo","k",2), M>

Point 1:
<("main","A",1),("main","a",1),m>
<("main","A",1),(Global,"w",0),m>
<("main","B",1),("main","A",1),M>
<("foo","p1",2),("main","A",1),M>

<("main","A",1),("main","a",1),m>
<("main","A",1),(Global,"w",0),m>
<("main","B",1),("main","A",1),M>
<("foo","p1",2),("main","A",1),M>

Point 2:

<("main","a",1),(Global,"y",0),m>
<(Global,"w",0),(Global,"y",0),m>

<(Global,"z",0),("foo","k",2), M>

Point 3:
<("main","A",1),("main","a",1),m>
<("main","A",1),(Global,"w",0),m>
<("main","B",1),("main","A",1),M>
<("foo","p1",2),("main","A",1),M>
<("main","a",1),(Global,"y",0),m>
<(Global,"w",0),(Global,"y",0),m>

Point 4:
<("main","A",1),("main","a",1),m>
<("main","A",1),(Global,"w",0),m>
<("main","B",1),("main","A",1),M>
<("main","a",1),(Global,"y",0),m>
<(Global,"w",0),(Global,"y",0),m>

Figure 2. Example program.

Starting at the body of the main function, the if state-
ment at lines 10–13 assigns the addresses of local variable
a and global variable w to A. According to the definition
of may, A may point to either location after the statement,
and this is represented by the first two entries in the ta-
ble for point 1 (in fact, since these pointer relationships
are not killed anywhere in the program, they will persist
throughout the entire analysis). The other two entries at
point 1 come from the assignment of &A to B in line 15,
and the function call at line 16 (point 4 at line 16 hap-
pens after foo returns). Specifically, the parameter passing
in r = foo(B) makes p1 point to whatever locations B
points to, namely A.

At point 2, p1 is dereferenced twice. The first derefer-
ence leads to A and the second dereference leads to either a
or w. Accordingly, both locations are marked as “may point
to y.” Two new entries are created at point 2 (highlighted in
the figure), indicating that both a and w may point to y.

Note that both A and a (but not w) fall out of scope
when foo is called, although they can be indirectly ac-
cessed through p1. Existing techniques create a set of “in-
visible” variables, or extended parameters [7, 19], in which
symbolic names are used to access out-of-scope variables
reached through dereferences of a local pointer. We handle
distinct scopes more transparently, as seen by the effects of
the statement **p1=&y. Furthermore, avoiding invisible
variables may increase the accuracy of the analysis results,
especially on a chain of function calls, since a single sym-
bolic name may end up representing more than one out-of-
scope variable in some cases [7, 19].

The statement at line 23, z=&k, adds a new triple to
point 3 (highlighted), and the return at line 24 causes r
to refer to where z points. But note that prior to the re-

turn, z points to a local variable of the called function, and
this causes r to refer to an invalid location. By using our
naming scheme, the highlighted triple in point 4 reveals the
violation. In the analysis, we can use the name of the clos-
ing function to detect such invalid triples. This potential bug
was not detected by lint or Gimpel’s FlexeLint.

During the analysis, the same idea is used each time
a scope closes (using the scope information in the signa-
tures) to perform a limited type of escape analysis [2], or
to delete certain triples. The latter is seen at point 4, where
〈(foo,p1,2),(main,A,1),M〉 was deleted since p1 would
be removed from the stack at runtime upon function return.

4 Basic Dataflow Framework

In our approach, the dataflow equations are not taken
from a set of templates, as is usually done, but are evalu-
ated while traversing the AST of the program. In the figures
that follow, we express a must relationship as a solid line,
and a may relationship as a dotted line. In this sense, as-
sume that the pointer relationships holding between some
variables just before analyzing the statement **x=y are as
follows:

ux

w

z

y

q

r

Assuming both z and w are (uninitialized) pointers,
which makes x of *** type, this pointer assignment gen-
erates four new triples: 〈z,q,may〉, 〈z,r,may〉, 〈w,q,may〉,
and 〈w,r,may〉. The resulting relationships are

ux

w

z

y

q

r

(x) (*x)

(**x)

(**x)

Figure 3 shows the formal definition of the dataflow
equations for an assignment. Here, Xn(T) is the set of lo-
cations reached after n dereferences from x in T , the table,
Ym+1(T) is the set of locations reached after m+1 derefer-
ences from y in T , and the predicate mustT (v1,v2) is true
only when all the relationships along the path from v 1 to v2

in T are must.
An invariant in the points-to graph is that any node can

have at most one outgoing must edge (it would be nonsen-
sical to say that a pointer “must” be pointing to two or more
locations at the same time). It then follows from the defini-
tion of the gen set in Figure 3 that

mustT (x,a)∧mustT (y,b)⇒ |gen(e,T)|= 1.

That is, when both pointer chains are each known to point
to exactly one thing (i.e., a and b), exactly one new relation-
ship is generated.

For an
assignment e of
the form

∗· · ·∗︸ ︷︷ ︸
n

x = ∗· · ·∗︸ ︷︷ ︸
m

y

gen(e,T) =

{
〈a,b, l〉 : a ∈ Xn(T) ∧ b ∈Ym+1(T) ∧ l =

{
must if mustT (x,a)∧mustT (y,b)
may otherwise

}

change(e,T) =

{
〈a,b, l〉 : a ∈ Xn(T) ∧ 〈a,b, l′〉 ∈ T ∧ l =

{
must if mustT (x,a)
may otherwise

}

kill(e,T) =
{〈a,b, l〉 : a ∈ Xn(T) ∧ 〈a,b, l〉 ∈ T ∧ mustT (x,a)

}
T ′ =

(
T −{〈a,b,must〉 : 〈a,b,may〉 ∈ change(e,T)})∪ change(e,T)

T ′′ =
(
T ′ −kill(e,T)

)∪gen(e,T)

Figure 3. Dataflow equations for an assignment.

In the example above, n = 2, m = 0, Xn(T) =
{z,w}, Ym+1(T) = {q,r}, ¬mustT (x,z), ¬mustT (x,w),
¬mustT (y,q) and ¬mustT (y,r). If instead we had the as-
signment *x=y, then n = 1, Xn(T) = {u}, mustT (x,u),
triples 〈u,z,may〉 and 〈u,w,may〉 are killed, and triples
〈u,q,may〉 and 〈u,r,may〉 are generated.

Since the locations found after m + 1 dereferences from
y are being assigned to the locations found after n deref-
erences from x, the gen set is formed by the cross product
of sets Xn(T) and Ym+1(T). Each resulting triple 〈a,b, l〉
has l = must only when mustT (x,a) and mustT (y,b) hold
(i.e., when all the relationships along both simple paths are
known exactly), and has l = may otherwise.

In the kill set computation, mustT (x,a) requires Xn(T) =
{a} (e.g., the set {u} in the assignment *x=y). Location
a is guaranteed to be changed, so we remove the relations
where a points to a variable from points-to information. So
the kill set includes relationships about everything that a
may or must point to prior to the assignment. If mustT (x,a)
does not hold, then existing triples 〈a,b, l〉 cannot be re-
moved, since the modification of a is not guaranteed (i.e., a
may not be reached when the assignment is executed).

The change set contains relationships that must be de-
moted from must to may. Section 5 demonstrates this with
an example.

The definitions in Figure 3 apply for any number of
dereferences in an assignment, and we extend this basic idea
in our analysis for compositions of C statements. We calcu-
late such gen, kill, and change sets using a recursive traver-
sal of the abstract syntax tree of the program (we describe
an example in the next section). The dataflow equations
match the semantics of pointer dereferences in C, and the
treatment of related operators such as address-of and field-
dereference (e.g., p->q) follows a similar rationale.

5 An Example

Consider the statement **p=&a, where a is a non-
pointer variable, and assume that pointers p, q, r, and s
have the following relationship:

p q r

s a

 Global Table
 <p,q,MUST>
 <q,r,MAY>
 <r,s,MUST>

The AST of this assignment is

=

*

p
* a

&

This assignment adds the triple 〈r,a,may〉 and changes
the triple 〈r,s,must〉 to 〈r,s,may〉. The point-to relationships
after the assignment are

p q r

s

a

 Global Table
 <p,q,MUST>
 <q,r,MAY>
 <r,s,MAY>
 <r,a,MAY>

To determine this, our algorithm independently traverses
the left and right sides of the assignment, collecting infor-
mation on the way. This process is shown below:

=

*

p

* a

&

left_gen1 = <_,p,M>

left_change1 = <p,q,M>
left_kill1 = <p,q,M>

left_gen2 = <p,q,M>

left_change2 = <q,r,m>
left_kill2 = 0

left_gen3 = <q,r,m>

left_change3 = <r,s,m>
left_kill3 = 0

right_gen2 = <_,a,M>

right_gen1 = <a,_,M>

We construct the gen set by combining information from
the sets labeled left gen and right gen, collected from both
the left and right sides of the assignment. By contrast, the
kill and change sets are computed from the left side of the
assignment only —from the left kill and left change sets—
because an existing points-to relationship can only be af-
fected through assignment (i.e., by the lvalue).

The traversal on the left side of the AST starts at the
first * node and goes down recursively until reaching the
identifier p. The figure above shows the three sets re-
turned at this point. A table query is performed to compute
left kill1 and left change1.

For the next node up as the recursion unwinds, the ta-
ble is accessed and the returned sets correspond to the lo-
cations pointed to by the expression *p. Note that the may
relation between q and r leaves left kill2 empty. The top-
most dereference is then reached and the final sets left gen3,
left kill3 and left change3 represent the sets for **p. Note
that left change3 contains triple 〈r,s,may〉 although the cur-
rent relationship between r and s is must. This is because
a may relation was crossed on the way up the recursion—
a * node in the AST correspond to a “qualified” dereference
that takes into account qualifiers already seen.

Similarly, the traversal on the right starts at the & node
and stops at the identifier a. The base case on the right is
slightly different than on the left. An identifier on the right
is an rvalue, and a lookup in the table does the dereference.
Since a is a non-pointer variable, we assume it points to
an undefined location (expressed as ⊥ in right gen1). The
address-of operator results in right gen2.

The final gen set is obtained by merging left gen3 and
right gen2. Given a triple 〈x,y, f 〉 in left gen and 〈z,w,g〉 in
right gen, the gen set for the assignment includes the triple
〈y,w, f ∧ g〉 (i.e., the relationship is must only if both the
left and right sets were must, otherwise it is may). In the
example, this triple is 〈r,a,may〉.

The triple 〈r,s,must〉 is changed to 〈r,s,may〉. It would
just have been killed were it not for the double derefer-
ence from p crossing a may relation. This fact is cap-
tured in left change3, which contains 〈r,s,may〉. This im-
plies 〈r,s,may〉 should replace 〈r,s,must〉, since it is not
guaranteed that r will be left unchanged by the assignment
**p=&a. At the end of the recursion, we compare what we
have computed for left change with what actually holds in
the table, and update T where they disagree.

6 The Algorithm

This section presents our algorithm. Additional details
can be found in our technical report [4].

6.1 Expressions, Function Calls, and Assignments

The function in Figure 4 calculates the gen set for an
expression (an rvalue of an assignment), and Figure 5 cal-
culates the gen, change, and kill sets for the lvalue of an
assignment. Together, they handle C’s expressions.

Both functions take as parameters e, the sub-expression
being analyzed (i.e., a node in the AST), and T , the cur-
rent table. Both proceed by recursing on the structure of
the expression, with separate rules for pointer dereferenc-
ing, function calls, and so forth.

In Figure 4, the rule for an assignment expression is
fairly complicated. It first calls the lvalue function in Fig-
ure 5 to build the gen, change, and kill sets for the left-hand
side of the assignment, calls itself recursively to calculate

the gen set for the right-hand side, then merges the results
of these two calls and uses them to update the table T .

Note that these functions handle nested assignments.
Consider the expression p=q=&a. The rvalue function
identifies the assignment to p and calls itself recursively on
the assignment q=&a. In addition to updating the table with
the effects of this expression, the Gr set is returned to the
outer call of rvalue. Ultimately, 〈p,a,must〉 and 〈q,a,must〉
are added. This recursive behavior is shown below.

=

a

&q

=

p
left_gen1 = <_,p,M>

left_change1 = ...

right_gen2 = <a,_,M>

1

left_kill1 = ...1

1

left_gen2 = <_,q,M>

left_change2 = ...1

left_kill2 = ...1

1

1

right_gen2 = <_,a,M>2

right_gen1 = <_,a,M>1

i-th call to rvalue

second call to rvalue propagates
right_gen (Gr) to the first call

<q,a,M>

<p,a,M>

6.2 Pointer Dereferencing

Both Figures 4 and 5 use a function—dereference—that
performs (qualified) pointer dereference by querying the ta-
ble T and combining qualifiers already seen. It takes a set
of triples, S, and returns a set of triples that is the union of
all locations pointed-to by elements in S. Precisely,

dereference(S,T) =
{〈y,z, f ∧g〉 : 〈x,y, f 〉 ∈ S ∧ 〈y,z,g〉 ∈ T} ,

where f ∧ g = must if f = must and g = must, otherwise
f ∧g = may.

This definition for dereference combines the qualifiers f
and g to comply with the behavior of the mustT predicate in
the dataflow equations (Figure 3). The idea behind derefer-
ence is to incrementally follow paths in the points-to graph
induced by the expression while propagating the “intersec-
tion” of the qualifiers.

6.3 Address-of Operator

The address of function returns a set of triples that cor-
respond to every variable that points to something in a set
of triples. Precisely,

address of(S) = {〈⊥,x, l〉 : 〈x,y, l〉 ∈ S}

7 Interprocedural Analysis

The parameter passing mechanism—the rule for func-
tions in Figure 4—behaves initially like a sequence of sim-
ple assignments. For example, our algorithm treats the call

foo(a1, a2, a3); /* call */
foo(f1, f2, f3) { /* definition */ }

function rvalue(e,T) returns (table, gen)
case e of
&e1 : Address-of

(T,G) = rvalue(e1,T)
return (T,address of(G))

∗e1 : Dereference
(T,G) = rvalue(e1,T)
return (T,dereference(G,T))

v : Identifier
if v is a global variable then

s = (Global,v,0) signature for global
else

f = name of the function where v is declared
d = number of scope where v is declared
s = (f ,v,d) signature for local

if there is at least one 〈s,x, l〉 ∈ T then
return (T,{〈s,x, l〉 : 〈s,x, l〉 ∈ T})

else
return (T,{〈s,⊥,must〉})

f (a1,a2, . . .) : Function call
d = outermost scope for the body of function f
for each actual parameter ai do

(T,G) = rvalue(ai,T)
vi = formal parameter for ai

pi = (f ,vi,d) signature for the formal
for each 〈 ,q, l〉 ∈G do

add 〈pi,q, l〉 to T
T = statement(body of f ,T)
Remove local variables declared in f from T
return (T,Gr) Gr is computed at return stmts

l = r : Assignment
(T,Gl,Cl ,Kl) = lvalue(l,T)
(T,Gr) = rvalue(r,T)
G = /0
K = Kl

for each triple 〈x,y, l1〉 ∈ Gl do
for each triple 〈z,w, l2〉 ∈ Gr do

if l1 = must∧ l2 = must then
Add 〈y,w,must〉 to G

else
Add 〈y,w,may〉 to G

for each triple 〈x,y, f 〉 ∈Cl do
if 〈x,y,must〉 ∈ T ∧ f = may then

Replace 〈x,y,must〉 with 〈x,y,may〉 in T
T = (T −K)∪G
return (T,Gr)

e1 ope2 : Arithmetic operators
(T,G) = rvalue(e1,T)
(T,G) = rvalue(e2,T)
return (T,G)

Figure 4. The function for expressions.

function lvalue(e,T) returns (table, gen, change, kill)
case e of
&e1 : Address-of

(T,G,C,K) = lvalue(e1,T)
return (T,address of(G),address of(C),address of(K))

∗e1 : Dereference
(T,G,C,K) = lvalue(e1,T)
Remove all triples like 〈x,y,may〉 from K
return (T,dereference(G),dereference(C),dereference(K))

v : Identifier
if v is a global variable then

s = (Global,v,0) signature for global
else

f = name of the function where v is declared
d = number of scope where v is declared
s = (f ,v,d) signature for local

G = {〈⊥,s,must〉}
if there is at least one 〈s,x, l〉 ∈ T then

C = K = {〈s,x, l〉 : 〈s,x, l〉 ∈ T}
else

C = K = {〈s,⊥,must〉}
return (T,G,C,K)

Figure 5. The function for lvalues.

as a series of assignments f1=a1; f2=a2; f3=a3;.
Each assignment, which may have an arbitrary expression
on the right, is treated like an assignment expression, al-
though we only compute the gen set for each since formal
parameters are guaranteed to be uninitialized before the call.
The scopes of the actual expressions differ from those of the
formal arguments; our rule for signatures ensures this.

Once the assignments are performed, the statements in
the function body are analyzed and may produce an updated
table since they might modify existing pointer relationships
(e.g., Figure 2). Additionally, if the function itself returns
a pointer, we collect the potential return values at the re-
turn statements and merge all of them as the Gr set for the
function call.

Return statements are fairly subtle. To process a return
statement, our algorithm collects return values in case the
function returns a pointer and merges the points-to infor-
mation reaching the return statement with the points-to in-
formation reaching other return statements in the function.
At the end of the function, the set from the return statements
is merged with the points-to information reaching the end of
the function to combine all potential outputs. Our technical
report [4] describes this in more detail.

Our current implementation handles recursive functions
in a simplistic way. Basically, we keep a stack data structure
that resembles the function call stack, containing the name

function statement(s,T) returns table
case s of
an expression e : Expression

(T,) = rvalue(e,T)

s1; s2; s3; . . . : Compound statement
for each statement si do

T = statement(si,T)

if (e) s1 else s2 : If-else statement
(T,) = rvalue(e,T)
T1 = T
T1 = statement(s1,T1)
T2 = T
T2 = statement(s2,T2)
T = T1 �T2

while (e) s1 : While statement
(T,) = rvalue(e,T)
T ′ = T
T ′′ = /0
while T ′
= T ′′ do

T ′′ = T ′
T ′ = statement(s1,T ′)

T = T �T ′

for (i ; c ; n) s1 : For statement
(T,) = rvalue(i,T)
(T,) = rvalue(c,T)
T ′ = T
T ′′ = /0
while T ′
= T ′′ do

T ′′ = T ′
T ′ = statement(s1,T ′)
(T ′,) = rvalue(n,T ′)

T = T �T ′

return T

Figure 6. The function for statements.

of the functions being analyzed in the current chain of calls.
At every new call site, we check if the called function’s
name is in the stack. If so, we skip the function call and
continue to the next statement. If not, we add the function’s
name to the top of the stack and jump to its first statement to
continue the analysis. This method is clearly not very pre-
cise, but is a reasonable initial trade-off. We plan to extend
the recursive function handling in a future implementation
of our algorithm by performing a fixed-point computation.
Function pointers are also handled by our algorithm. Since
we perform a flow-sensitive, context-sensitive, interproce-
dural points-to analysis, the set of functions invocable from
a function pointer call-site is a subset of the set of functions
that the function pointer can point to at the program point

just before the call-site. The analysis assumes that all these
functions are invocable from the site, and merges their out-
put sets to compute the points-to information at the program
point after this call. As previously mentioned, this requires
a flow-sensitive analysis due to its dependence on statement
ordering.

8 Experimental Results

We have implemented the algorithm presented in this
paper (along with additions for handling the rest of C)
in a Linux-based source-to-source framework called Pro-
teus [18]. Proteus uses Stratego [16] as its back end and
thus employs tree-rewriting for code transformations. To
write transformations in Proteus, the user writes a program
in the YATL language, which is compiled to an Stratego file.
Thus, we used a transformation language to implement our
pointer analysis algorithm. One can view it as an “annota-
tion” transformation that traverses the ASTs of the subject
program, analyzing pointer statements without actually re-
writing the code.

As an example, the following YATL fragment, taken ver-
batim from our implementation, checks if the term being an-
alyzed is an if statement and, if so, analyzes both branches
of the conditional and merges the results.

match(IfElseStmt: {=$cnd}<cond>,{=$th}<then>,{=$el}<else>)
{

// Analyze the condition expression //
analyze_expression($cnd, $t);

// Create two copies of the current //
// points-to set, t, and hand them to //
// the two branches of the "if" stmt //

$thenSet = int-to-string(uuid-int());
set_copy($thenSet, $t);

$elseSet = int-to-string(uuid-int());
set_copy($elseSet, $t);

analyze_generic_stmt($th, $thenSet);
analyze_generic_stmt($el, $elseSet);

// Merge "thenSet" and "elseSet" //
set_merge($thenSet, $elseSet);
set_copy($t, $thenSet);

// Free unused memory //
set_destroy($thenSet);
set_destroy($elseSet);

}

The match construct in the above code means if the
term being analyzed—the root of the current subtree—is
an if statement, to bind the subtree representing the con-
ditional expression to variable $cnd, the subtree corre-
sponding to the true branch to variable $th, and the sub-
tree corresponding to the else branch to $el. Since $cnd
can be an arbitrary expression, it can include a pointer
assignment (if ((p=malloc(...))!=NULL) is typ-
ical). The call to analyze expression (rvalue function) han-

name lines of number parsing analysis max.
code of files time time memory

stanford 885 1 17s 48s 16Mb
compress 1933 3 27s < 1m 27
mpeg2dec 9830 20 < 2m < 7m 24
jpeg 27966 85 < 7m < 32m 65

Table 1. Experimental results.

dles the conditional, which might update $t, a string that
holds a unique name for the table: a “pointer” to it.

Two copies of the table are made—$thenSet
and $elseSet. These are two unique names gen-
erated by uuid-int and converted to strings by
int-to-string. The statements in the two branches
of the if are then analyzed, each branch with its own copy
of the initial table $t. After this is done, the resulting ta-
bles are merged by set_merge, (� in Figure 6) and the
final set overwrites $t (the first parameter in set_merge
also represents the destination; set_copy(a,b) means
a← b). Finally, the memory used for the temporary sets is
freed.

With the support from the tool to build ASTs, resolve
multiple files, and provide the front-end language, the
pointer analysis algorithm takes less than four thousand
lines of code, yet covers almost the entire C language (we
currently do not handle goto statements).

8.1 Experiments

We tested our procedure on a set of benchmarks rang-
ing in size from about 800 to 30 000 lines of code (includ-
ing whitespace and comments). We report four test cases:
stanford, compress, mpeg2dec, and jpeg. Stanford is a col-
lection of algorithms such as a solution to the eight-queens
problem and Towers of Hanoi. Compress, mpeg2dec, and
jpeg are well-known file compression, MPEG video de-
coder, and JPEG encoder/decoder libraries. We slightly
modified the source of each example to remove goto state-
ments (we duplicated code) and correct prototypes.

To analyze a program, our system first parses all its
source files and constructs a single AST in memory. We
list the time taken for this in the parsing column of Ta-
ble 1. Then our analysis runs: traverses the AST starting
from main, constructs tables, etc. The times for this phase
are listed under analysis. We ran these experiments on a
512 Mb, 2.4GHz Pentium 4 running Linux.

Not surprisingly, the time required for our analysis grows
with the size of the program, as the price for precision in the
form of flow-sensitiveness and function body re-analysis
is paid in efficiency. Thirty-two minutes of analysis time
for the largest example may seem excessive, but our ob-
jective has been precision, not speed, and as such we have
not attempted to make our implemention more efficient.

Compared to traditional pointer analysis algorithms, ours
is flow-sensitive and interprocedural, up to multiple transla-
tion units and multiple files.

We believe that for source-to-source transformations,
however, this magnitude of execution time is acceptable.
This type of static analysis could automate a source code
transformation that would take days or weeks to perform
manually. For instance, inserting the minimal amount of
null pointer checking in the source code might be done by
first performing a pointer analysis and then inserting checks
wherever a pointer may be null. Although slower, flow-
sensitivity is of paramount importance to this type of check-
ing, since verifying whether a pointer is initialized before it
is used depends on the order of the statements. We are cur-
rently applying our analysis to porting a legacy application
that assumed a big-endian architecture to a little-endian ar-
chitecture. To perform this, we augment the points-to sets
with type information—a simple, but very useful modifica-
tion.

In Table 1, we list memory usage, which includes the
space needed to store ASTs, symbol table(s), as well as
the space used for temporary points-to tables. Although the
source of the compress example is smaller, it requires about
as much memory as the larger mpeg2dec example because
the code is more pointer-intensive and may include more
conditionals, which tends to increase the number of copies
of the points-to table.

9 Conclusions and Future work

The main contribution of this paper is a pointer analy-
sis algorithm that operates on the abstract syntax tree of a
program—a necessity for source-to-source transformations,
which strive to preserve as much about the program as pos-
sible. Our algorithm performs a flow-sensitive analysis us-
ing dataflow equations generated directly on-the-fly from
the abstract syntax tree of the program. Our choice of
a flow-sensitive analysis makes our algorithm slower than
many existing techniques, but the extra precision it provides
is useful in source-to-source transformations. Similarly, our
choice of re-analyzing a function each time it is called is less
efficient than techniques that, say, create a transfer function
for each subroutine and re-apply it as necessary [19], but
this increases precision.

The algorithm presented in this paper fits the environ-
ment typical in source-to-source tools, although some cod-
ing optimizations are still needed to make it run faster.
In the future, we plan to memoize functions that do not
change the points-to sets, which should not affect precision.
We also plan to build a visualization tool that displays the
points-to sets graphically (presumably as a points-to graph).
This might be useful for source code debugging. Partial
support for this has already been built.

References

[1] L. O. Andersen. Program analysis and specializa-
tion for the C programming language. PhD thesis,
DIKU, University of Copenhagen, May 1994. Available at
ftp.diku.dk/pub/diku/semantics/papers/D-203.dvi.Z.

[2] B. Blanchet. Escape analysis: correctness proof, implemen-
tation and experimental results. In POPL ’98: Proceedings
of the 25th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pages 25–37, 1998.

[3] M. Burke, P. Carini, J. Choi, and M. Hind. Flow-insensitive
interprocedural alias analysis in the presence of pointers. In
Lecture Notes in Computer Science, 892, Springer-Verlag,
Proceedings of the 7th International Workshop on Lan-
guages and Compilers for Parallel Computing, pages 234–
250, 1995.

[4] M. Buss, S. Edwards, B. Yao, and D. Waddington. Pointer
analysis for source-to-source transformations. Technical
Report CUCS-028-05, Department of Computer Science,
Columbia University, 2005.

[5] J. Choi, M. Burke, and P. Carini. Efficient flow-sensitive
interprocedural computation of pointer-induced aliases and
side effects. In Proceedings of the 20th Annual ACM Sympo-
sium on Principles of Programming Languages, pages 233–
245, 1993.

[6] M. Das. Unification-based pointer analysis with directional
assignments. In Proceedings of Programming Language De-
sign and Implementation (PLDI), pages 35–46, 2000.

[7] M. Emami, R. Ghiya, and L. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function
pointers. In Proceedings of Programming Language Design
and Implementation (PLDI), pages 242–256, 1994.

[8] M. Fahndrich, J. Rehof, and M. Das. Scalable context-
sensitive flow analysis using instantiation constraints. In
Proceedings of Programming Language Design and Imple-
mentation (PLDI), pages 253–263, 2000.

[9] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using
CLA: a million lines of C code in a second. In Proceed-
ings of Programming Language Design and Implementation
(PLDI), pages 254–263, 2001.

[10] M. Hind. Pointer analysis: haven’t we solved this prob-
lem yet? In PASTE ’01: Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, pages 54–61, 2001.

[11] W. Landi and B. Ryder. A safe approximate algorithm for
interprocedural pointer aliasing. In Proceedings of Program-
ming Language Design and Implementation (PLDI), pages
235–248, 1992.

[12] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedu-
ral dataflow analysis via graph reachability. In POPL ’95:
Proceedings of the 22nd ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pages 49–61,
1995.

[13] E. Ruf. Context-insensitive alias analysis reconsidered. In
Proceedings of Programming Language Design and Imple-
mentation (PLDI), pages 13–22, 1995.

[14] L. Semeria, K. Sato, and G. D. Micheli. Synthesis of hard-
ware models in C with pointers and complex data structures.
IEEE Trans. Very Large Scale Integr. Syst., 9(6):743–756,
2001.

[15] B. Steensgaard. Points-to analysis in almost linear time.
In POPL ’96: Proceedings of the 23rd ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, pages 32–41, 1996.

[16] E. Visser. Stratego xt. http://www.stratego-language.org.
[17] E. Visser and Z. Benaissa. A core language for rewriting.

http://www.elsevier.nl/locate/entcs/volume15.html.
[18] D. Waddington and B. Yao. High fidelity C++ code trans-

formation. In Proceedings of the 5th workshop on Language
Descriptions, Tools and Applications (LDTA), 2005.

[19] R. Wilson and M. Lam. Efficient context-sensitive pointer
analysis for C programs. In Proceedings of Programming
Language Design and Implementation (PLDI), pages 1–12,
1995.

