Pointer Analysisfor Source-to-Source Transfor mations

Marcio Buss® Stephen A. Edwards’
Department of Computer Science
Columbia University
New York, NY 10027
{marcio,sedwards} @cs.columbia.edu

Abstract

We present a pointer analysis algorithm designed for
source-to-source transformations. Existing techniques for
pointer analysis apply a collection of inference rules to a
dismantled intermediate form of the source program, mak-
ing them difficult to apply to source-to-source tools that
generally work on abstract syntax trees to preserve details
of the source program.

Our pointer analysis algorithm operates directly on the
abstract syntax tree of a C programand uses a form of stan-
dard dataflow analysis to compute the desired points-to in-
formation. We have implemented our algorithmin a source-
to-source tranglation framework and experimental results
show that it is practical on real-world examples.

1 Introduction

Therole of pointer analysisin understanding C programs
has been studied for years, being the subject of several PhD
thesis and nearly a hundred research papers[10]. Thistype
of static analysis has been used in a variety of applications
such as live variable analysis for register allocation and
constant propagation, checking for potential runtime errors
(e.g., null pointer dereferencing), static schedulersthat need
to track resource all ocation and usage, etc. Despiteits appli-
cability in several other areas, however, pointer analysis has
been targeted primarily at compilation, be it software [10]
or hardware [14]. In particular, the use of pointer analysis
(andinfact, static analysisin general) for automated source
code transformations remains little explored.

We believe the main reason for this is the different pro-
gram representations employed in source-to-source tools.
Historically, pointer analysis algorithms have been imple-
mented in optimizing compilers, which typically proceed by

*supported in part by CNPq Brazilian Research Council, grant number
200346/01-6

Tsupported by an NSF CAREER award, agrant from Intel corporation,
an award from the SRC, and by New York State's NY STAR program

BinYao Daniel Waddington
Network Platforms Research Group
Bell Laboratories, Lucent Technologies
Holmdel, NJ 07733
{byao,dwaddington} @lucent.com

p=&x; p=&y; q=&z; p=q; x=&a; y=&b; z=&c;

Andersen [1] Steensgaard [15] Das [5] Heintze [8]
p] @ p] 4] @

2] xy|-- 2]
(2] [&] [e] ab.cl

Figure 1. Results of various flow-insensitive
pointer analysis algorithms.

dismantling the program into increasingly lower-level rep-
resentations that deliberately discard most of the original
structure of the source code to simplify its analysis.

By contrast, source-to-source techniques strive to pre-
serve everything about the structure of the original source
so that only minimal, necessary changes are made. As such,
they typically manipulate abstract syntax treesthat arelittle
morethan astructured interpretation of the original program
text. Such trees are often manipulated directly through tree-
or term-rewriting systems such as Stratego [16, 17].

In this paper, we present an algorithm developed to per-
form pointer analysis directly on abstract syntax trees. We
implemented our algorithm in a source-to-sourcetool called
Proteus [18], which uses Stratego [16] as a back-end, and
find that it workswell in practice.

2 Existing Pointer Analysis Techniques

Many techniques have been proposed for pointer analy-
sis of C programs[1, 3, 5, 7, 11, 13, 15, 19]. They differ
mainly in how they group related alias information. Fig-
ure 1 shows a C fragment and the points-to sets computed
by four well-known flow-insensitive algorithms.

Arrows in the figure represent pointer relationships be-
tween the variables in the head and tail nodes: an arc from
a to b means that variable a points-to variable b, or may

point-to that variable, depending on the specific algorithm.
Some techniques encapusul ate more than one variable in a
single node, as seen in Steensgaard’sand Das's approaches,
in order to speed-up the computation. These methods trade
precision for running time: variable x, for instance, points-
to a, b and ¢ on both techniques, although the code only
assigns a’s address to x.

Broadly, existing techniques can be classified as
constraint-solving [6, 8, 9] or dataflow-based [7, 12, 13, 19].
Members of both groups usually define a minimal gram-
mar for the source language that includes only basic op-
erators and statements. They then build templates used to
match these statements. The templates are cast as inference
rules[6, 8, 9] or dataflow equations[7, 12, 13, 19]. Thea-
gorithms consist of iterative applications of inference rules
or datafl ow equations on the statements of the program, dur-
ing which pointer relationships are derived. This approach
assumes that the C program only contains allowed state-
ments. For instance, a=** b, with two levels of dereference
in the right-hand side, is commonly parsed

Existing techniques generally require the preceding
statement to be dismantled into two sub-expressions, each
having at most onelevel of dereference:

It is difficult to employ such an approach to source-to-
source transformations becauseit is difficult to correlate the
results calculated on the dismantled program with the origi-
nal source. Furthermore, it introduces needlessintermediate
variables, which can increase the analysis cost.

For source-to-source transformations, we want to per-
form the analysis close to the source level. It is particularly
useful to directly analyze the ASTs and annotate them with
the results of the analysis. Hence, we need to be able to
handle arbitrary compositions of statements.

Precision is another issue in source-to-source transfor-
mations: we want the most precise analysis practical be-
cause otherwise we may make unnecessary changes to the
code or, even worse, make incorrect changes. A flow-
insensitive analysis cannot, for example, determine that a
pointer is initialized before it is used or that a pointer has

different values in different regions of the program. Both
of these properties depend on the order in which the state-
ments of the program execute. As aresult, the approach we
adopt is flow-sensitive.

3 AnalysisOutline

Following the approach of Emami et al. [7], our anal-
ySis uses an iterative dataflow approach that computes, for
each pointer statement, the points-to set generated (gen) and
removed (kill) by the statement. The net effect of each state-
ment is (in— kill) U gen, wherein is the set of pointer rela-
tionships holding prior to the statement. In this sense, it is
flow-sensitive and results in the following points-to sets for
each sequence point in the code fragment of Figure 1.

p=&x; © p=&y; ® q=&2; @ p=q; @ x=&a; ® y=&b; ® z=&c; @

b b hh hid b
le]

By operating directly on the AST, we avoid building the
control-flow graph for each procedure or the call-graph for
the whole program. Clearly, the control-flow graph can still
be built if desired, since it simply adds an extra and rela-
tively thin layer as a semantic attribution to the AST. Thus,
from this specific point of view, ASTs are not a necessity
for the iterative computation and handling of the program’s
control structure.

We assume the entire source code of the subject appli-
cation (multiple trandation units, multiplefiles) is resolved
into a large AST that resides in memory [18], so that we
are ableto jump from one procedureto another through tree
gueries. The analysis starts off at the program’s main func-
tion, iterating through its statements. If a function call is
encountered, its body isrecursively analyzed taking into ac-
count pointers being passed as parameters as well as global
pointers. When the analysis reaches the end of the function,
it continues at the statement following the function call.

Below, we give an overview of some aspects of the im-
plementation.

3.1 Pointsto Graph Representation

We represent the points-to graph at a particular point in
the program using a table. Entries in the table are triples
of the form (x,y,q), where x is the source location pointing
to y, the destination location, and q is the qualifier, which
can be either must or may, which indicates that either x is
definitely pointingto'y, or that x merely may pointtoy (e.g.,
it may point to something else or be uninitialized). Pointer
relations between variablesin distinct scopes are encoded as
regular entries in the table by relying on unique signatures
for program variables. Below is a C fragment for illustra-
tion.

int x; C Code
int y;
int main()
. . Menory Representation G obal Table Tine
int a;
int * r;
int ** A
a = &K eeeeeeeeeeeees > - 1
A=ga; oo - B - 2
r = foo(A); ---» [2] RPN a, MUST>
-3 °
int * foo
int ** p;(p) ----- [P} >) 3
&
[2] <a, x, MUST>

.................

return (*p);

(a) (b) (c)

On the left is the source code for two procedures; in the
center are the memory contents during the analysis; and on
the right are the points-to sets generated by each statement.
Note that each location of interest is represented by an ab-
stract signature and that each pointer relationship holding
between two locations is represented by an entry in the ta-
ble. For an if statement, our algorithm makes two copies
of the table, analyzes the statements in the true and false
branches separately, then merges the resulting tables. The
merge operation is a special union (denoted by U in Fig-
ure 6) wherein a must triple has its qualifier demoted to
may in case only one of the branches generates (or fails to
kill) the triple. For and while statements are handled with
afixed-point computation—a copy of the tableis made, the
statements are analyzed, and the resulting table is compared
to the initial one. The process is repeated until the two ta-
bles are the same.

3.2 Abstract Signatures

Each location of interest in the program is represented
by a unique signature of the form

(function-name, identifier, scope)

where function-name is the name of the function in which
the variable or parameter is declared or a special keyword
for global variables; identifier is the syntactic name given
by the programmer or specially-created names for heap lo-
cations; and scope is a unique integer assigned to each dis-
tinct scopein the program (the scope associated with agiven
signatureisthe integer assigned to the scope where the vari-
able is declared). The numbers to the left of each source
program below show a possible set of scopes. The dashed
lines delimit their ranges.

1.c 2.¢c

Xint x; X extern int x;
0! int *vy; 0:

; X int * foo

% int main() b 0
R : int * r;

: nt a; !

iooint *op; 31 1 o= ex;

1: int * q; .

: i (L)
b= &3 * |

: 41

o L)

ot int a; !

i p = &a: 31 return (r);
% ! x}

1 y = foo();

: return 0

x }

The signatures created for g and a while analyzing the
statement g=&a are (main,q,1) and (main,a,1). The signa-
tures for p and a in the statement p=&a, are (main,p,1)
and (main, a,2) (a isredeclared in scope 2). Signatures are
generated on-the-fly to avoid pre-processing.

3.3 Pointer Relationships Representation

Once everything has a unique signature, we adopt the
relations must and may points-to as follows.

By definition, variable x must point to variable y at pro-
gram point p if, at that program point, the address of y isin
the set Sof possiblelocationsthat x may pointtoand |S| = 1.
Also, all possible execution paths to program point p must
have assigned y's address to x prior to p, and that address
assignment must not have been killed since then. Thisis
denoted by thetriple (X', ¥, must), wherex’ and y’ represent
the abstract signaturesfor x and y.

Similarly, variable x may point to variable y at program
point p if, at that program point, the address of y is in the
set S of possible locations that x may point to and either
|S| > 1 or there exists some execution path P; to p that does
not assign y's address to x. This is denoted by the triple
(X,y',may), wherex’ and y’ are the signaturesfor x and y.

Intuitively, an assignment x = &y at point p inside the
then branch of an if statement impliesthat x must point toy
from p to the point where both execution paths merge, as-
suming X is not redefined in between; x may point to y after
thisin case the path that goes through the else part does not
assign y's addressto x.

Figure 2 shows a code fragment and snapshots of the
entire table at four distinct moments during the analysis
(for clarity, must is written “M” and may is written “m”).
Point 1, for example, corresponds to the instant after the
analysis has traversed the if statement at lines 10-13, the
assignment at line 15, the call site at line 16, and is about to
analyzef oo.

G obal Tabl e
C Code Point 1:

<("main","A", 1), ("min","a", 1), m

<(" mai A", 1), (d obal,"w', 0), m>
1inty; <("mal "B, 1), ("main", "A", 1), M
2int *z,*w <("foo","p1",2),("main","A", 1), M
3
4 int main() .
5 { :m>
6 int *a, *r; Y
7 int ** A HYS
8 int *** B; : .
9 .
0 T I N (O N e
11 A = &a;
12 el se
13 A= &w,
14
15 B = &A
16 r = foo(B); /* 4 */
17
18
19 int * foo(int *** pl)
20
21 int k; /* 1 */
22 **pl = &; [* 2 %/
23z = &k; /* 3 %/

24 return’(z);
}

Figure 2. Example program.

Starting at the body of the main function, the if state-
ment at lines 10—13 assigns the addresses of local variable
a and global variable wto A. According to the definition
of may, A may point to either location after the statement,
and this is represented by the first two entries in the ta
ble for point 1 (in fact, since these pointer relationships
are not killed anywhere in the program, they will persist
throughout the entire analysis). The other two entries at
point 1 come from the assignment of &A to B in line 15,
and the function cal at line 16 (point 4 at line 16 hap-
pens after f 0o returns). Specifically, the parameter passing
inr = foo(B) makespl point to whatever locations B
pointsto, namely A.

At point 2, pl is dereferenced twice. The first derefer-
enceleads to A and the second dereferenceleads to either a
or w. Accordingly, both locations are marked as “ may point
toy.” Two new entries are created at point 2 (highlighted in
the figure), indicating that both a and wmay pointtoy.

Note that both A and a (but not w) fall out of scope
when f 00 is caled, athough they can be indirectly ac-
cessed through p1. Existing techniques create a set of “in-
visible” variables, or extended parameters[7, 19], in which
symbolic names are used to access out-of-scope variables
reached through dereferences of aloca pointer. We handle
distinct scopes more transparently, as seen by the effects of
the statement ** p1=&y. Furthermore, avoiding invisible
variables may increase the accuracy of the analysis results,
especially on a chain of function calls, since asingle sym-
bolic name may end up representing more than one out-of-
scope variablein some cases[7, 19].

The statement at line 23, z=&k, adds a new triple to
point 3 (highlighted), and the return at line 24 causes r
to refer to where z points. But note that prior to the re-

turn, z pointsto alocal variable of the called function, and
this causes r to refer to an invalid location. By using our
naming scheme, the highlighted triple in point 4 revealsthe
violation. In the analysis, we can use the name of the clos-
ing function to detect suchinvalid triples. Thispotential bug
was not detected by lint or Gimpel’s Flexelint.

During the analysis, the same idea is used each time
a scope closes (using the scope information in the signa-
tures) to perform a limited type of escape analysis [2], or
to delete certain triples. The latter is seen at point 4, where
((foo,pl,2),(main,A,1),M) was deleted since p1 would
be removed from the stack at runtime upon function return.

4 Basic Dataflow Framewor k

In our approach, the dataflow equations are not taken
from a set of templates, as is usually done, but are evalu-
ated whiletraversing the AST of the program. In the figures
that follow, we express a must relationship as a solid line,
and a may relationship as a dotted line. In this sense, as-
sume that the pointer relationships holding between some
variables just before analyzing the statement * * x=y are as
follows:

‘e
.
.
.

Assuming both z and w are (uninitialized) pointers,
which makes x of *** type, this pointer assignment gen-
erates four new triples: (z g,may), (z,r,may), (w,q, may),
and (w,r,may). The resulting relationships are

.
.
.
5

(**X)

Figure 3 shows the formal definition of the dataflow
equations for an assignment. Here, X,(T) is the set of lo-
cations reached after n dereferences from x in T, the table,
Ym+1(T) isthe set of locations reached after m+ 1 derefer-
ences fromy in T, and the predicate mustt (v1,Vv2) is true
only when all the relationships along the path from v to v»
inT are must.

An invariant in the points-to graph is that any node can
have at most one outgoing must edge (it would be nonsen-
sical to say that a pointer “must” be pointing to two or more
locations at the same time). It then follows from the defini-
tion of the gen set in Figure 3 that

mustt (x,a) A mustt (y,b) = |gen(e,T)| = 1.

That is, when both pointer chains are each known to point
to exactly onething (i.e., a and b), exactly one new relation-
ship is generated.

[must if mustt(x,a) Amustr(y,b)
For an gen(e, T) { (a,b,l)raeXn(T) AbeYmpa(T) Al = {may otherwise
assignment e of
theform / _ [must if mustt(x,a)
change(e, T) { (ab,l):aeXy(T)A{(a,bl) eT Al = {may otherwise

—~ killle T) = {(ab,l):aeXy(T) A (a,bl) €T Amustr(xa)}

T = (T {(a,b,must) : (a,b,may) € change(e, T)}) Uchange(e, T)

T = (T'—kill(eT))ugen(eT)

Figure 3. Dataflow equations for an assignment.

In the example above, n =2, m= 0, Xu(T) =
{z,w}, Ym:1(T) = {q,r}, —mustr(x,z), —mustt(X,w),
—mustt (y,q) and —-mustr(y,r). If instead we had the as-
signment *x=y, then n =1, Xy(T) = {u}, mustt(x,u),
triples (u,z,;may) and (u,w,may) are killed, and triples
(u,g, may) and (u,r,may) are generated.

Since the locations found after m+ 1 dereferences from
y are being assigned to the locations found after n deref-
erences from x, the gen set is formed by the cross product
of sets Xn(T) and Ymy1(T). Each resulting triple (a, b, 1)
has | = must only when mustt(x,a) and mustr (y,b) hold
(i.e., when al the relationships along both simple paths are
known exactly), and has| = may otherwise.

Inthekill set computation, mustt (X, a) requires Xn(T) =
{a} (eg., the set {u} in the assignment * x=y). Location
a is guaranteed to be changed, so we remove the relations
where a points to a variable from points-to information. So
the kill set includes relationships about everything that a
may or must point to prior to the assignment. If mustt(x,a)
does not hold, then existing triples (a,b,l) cannot be re-
moved, since the modification of a is not guaranteed (i.e., a
may not be reached when the assignment is executed).

The change set contains relationships that must be de-
moted from must to may. Section 5 demonstrates this with
an example.

The definitions in Figure 3 apply for any number of
dereferencesin an assignment, and we extend thisbasic idea
in our analysisfor compositions of C statements. We calcu-
late such gen, kill, and change sets using a recursive traver-
sal of the abstract syntax tree of the program (we describe
an example in the next section). The dataflow equations
match the semantics of pointer dereferencesin C, and the
treatment of related operators such as address-of and field-
dereference (e.g., p- >q) follows a similar rationale.

5 An Example

Consider the statement ** p=&a, where a is a non-
pointer variable, and assume that pointers p, g, r, and s
have the following relationship:

d obal NLesl_ll)_I e
----- [2] G0
<r,s, MUST>

This assignment adds the triple (r,a, may) and changes
thetriple (r,s,must) to (r,s,may). The point-to relationships
after the assignment are

“ G obal Table
----- s By
"*IE <r, s, MAY>
<r, a, MAY>

To determinethis, our agorithm independently traverses
the left and right sides of the assignment, collecting infor-
mation on the way. This process is shown below:

left_gens = <q,r,m> 6
left_kills = @
° j right_genz = <;,a,M>

left_changes = <r,s,m>
J right_gen1 = <a, | ,M>

left_genz2 = <p,q,M>
left_kill2= 0
left_changez2 = <q,r,m> C

We construct the gen set by combining information from
the sets labeled |eft_gen and right_gen, collected from both
the left and right sides of the assignment. By contrast, the
kill and change sets are computed from the left side of the
assignment only —from the left kill and left_change sets—
because an existing points-to relationship can only be af-
fected through assignment (i.e., by the Ivalue).

The traversal on the left side of the AST starts at the
first * node and goes down recursively until reaching the
identifier p. The figure above shows the three sets re-
turned at this point. A table query is performed to compute
left_kill; and left_change;.

left_geni = <y,p,M>
left_killt = <p,q,M> C

left_change1 = <p,q,M>

For the next node up as the recursion unwinds, the ta-
ble is accessed and the returned sets correspond to the lo-
cations pointed to by the expression * p. Note that the may
relation between q and r leaves left kill , empty. The top-
most dereferenceisthen reached and thefinal setsleft gens,
left_killz and left_changes represent the sets for * * p. Note
that left_changes containstriple (r,s,may) athough the cur-
rent relationship between r and sis must. This is because
a may relation was crossed on the way up the recursion—
a* nodeinthe AST correspondto a“qualified” dereference
that takes into account qualifiers already seen.

Similarly, the traversal on the right starts at the & node
and stops at the identifier a. The base case on the right is
dlightly different than on the left. An identifier on the right
isan rvalue, and alookup in the table does the dereference.
Since a is a non-pointer variable, we assume it points to
an undefined location (expressed as L in right_genq). The
address-of operator resultsin right_geno.

The final gen set is obtained by merging left gens and
right_gen,. Given atriple (x,y, f) inleft_genand (z,w,g) in
right_gen, the gen set for the assignment includes the triple
(y,w, f Ag) (i.e., the relationship is must only if both the
left and right sets were must, otherwise it is may). In the
example, thistripleis (r,a, may).

Thetriple (r,s,must) is changed to (r,s,may). It would
just have been killed were it not for the double derefer-
ence from p crossing a may relation. This fact is cap-
tured in left_changes, which contains (r,s,may). Thisim-
plies (r,s,may) should replace (r,s,must), since it is not
guaranteed that r will be left unchanged by the assignment
**p=&a. At the end of the recursion, we compare what we
have computed for left_change with what actually holdsin
the table, and update T where they disagree.

6 TheAlgorithm

This section presents our algorithm. Additional details
can be found in our technical report [4].

6.1 Expressions, Function Calls, and Assignments

The function in Figure 4 calculates the gen set for an
expression (an rvalue of an assignment), and Figure 5 cal-
culates the gen, change, and kill sets for the Ivalue of an
assignment. Together, they handle C's expressions.

Both functions take as parameters e, the sub-expression
being analyzed (i.e., a node in the AST), and T, the cur-
rent table. Both proceed by recursing on the structure of
the expression, with separate rules for pointer dereferenc-
ing, function calls, and so forth.

In Figure 4, the rule for an assignment expression is
fairly complicated. It first cals the Ivalue function in Fig-
ure 5 to build the gen, change, and kill sets for the left-hand
side of the assignment, calls itself recursively to calculate

the gen set for the right-hand side, then merges the results
of these two calls and uses them to update the table T.

Note that these functions handle nested assignments.
Consider the expression p=gq=&a. The rvalue function
identifies the assignment to p and callsitself recursively on
the assignment g=&a. In addition to updating the table with
the effects of this expression, the G, set is returned to the
outer call of rvalue. Ultimately, (p,a, must) and (q,a, must)
are added. This recursive behavior is shown below.

second call to rvalue propagates
right_gen (Gr) to the first call

<p,a,M>
3 right_gent, = <_jajM> j'?
B ﬁ <q,a,M>

right_genz, = <7-,:a}M>

N\

left_gen1, = <_;p,M>

left killi, = ... ' Q
left_change1, = ...
left_genz, = <7\'(—:|\,-M>
left_kill2,= ... =
left_changez; = ...

right_gen2, = <a,_,M>

i-th call to rvalue

6.2 Pointer Dereferencing

Both Figures 4 and 5 use a function—dereference—that
performs (qualified) pointer dereference by querying the ta-
ble T and combining qualifiers already seen. It takes a set
of triples, S, and returns a set of triples that is the union of
al locations pointed-to by elementsin S. Precisely,

dereference(S,T) =
{vzfrg:xy.f)eSA(yz0) €T},

where f Ag=must if f = must and g = must, otherwise
f Ag=may.

This definition for dereference combinesthe qualifiers f
and g to comply with the behavior of the must 1 predicatein
the dataflow equations (Figure 3). The idea behind derefer-
enceisto incrementally follow paths in the points-to graph
induced by the expression while propagating the “intersec-
tion” of the qualifiers.

6.3 Address-of Operator

The address_of function returns a set of triples that cor-
respond to every variable that points to something in a set
of triples. Precisely,

address_of(S) = {(L,x,1) : (x,y,1) € S}
7 Interprocedural Analysis

The parameter passing mechanism—the rule for func-
tionsin Figure 4—behavesinitialy like a sequence of sim-
ple assignments. For example, our algorithm treats the call

foo(al, a2, a3); /* call */
foo(fl, f2, f3) { [/* definition */ }

function rvalue(e, T) returns (table, gen) function Ivalue(e, T) returns (table, gen, change, kill)

case e of case e of
&ey: Address-of &ey: Address-of
(T,G) =rvalue(er, T) (T,G,C,K) = Ivalue(er, T)
return (T,address_of (G)) return (T,address of (G), address_of (C), address_of (K))
*€y Dereference er Dereference

(T,G) =rvalue(e,T)

return (T,dereference(G,T)) (T.G,C,K) = Ivalue(ey, T)

Remove all tripleslike (x,y, may) from K

Vi |dentifier return (T,dereference(G), dereference(C), dereference(K))
if visaglobal variablethen
s=(_Globa,v,0) signature for global Vi Identifier
else if visaglobal variable then
f = name of the function where v is declared s= (_Global,v,0) signature for global
d = number of scopewherev is declared else
s=(f,v,d) signature for local f = name of the function where v is declared
if thereisat least one (s,x,l) € T then d = number of scope wherev is declared
return (T,{(s,x,1) : (s;x,1) € T}) s=(f,v,d) signature for local
ese G={(L,s,must)}
return (T,{(s, L, must)}) if thereis at least one (s,x,1) € T then
f(ag,a,...): Function call d;*K*{<S’X’|>'<S’X’I>€T}

d = outermost scope for the body of function f
for each actual parameter a; do

(T,G) =rvaue(a;, T)

v; = formal parameter for a;

C=K={(s L,must)}
return (T,G,C,K)

Figure 5. The function for Ivalues.

pi = (f,vi,d) signature for the formal
for each (_,q,1) e Gdo
add (pi,q.l)toT as a series of assignments f 1=al; f2=a2; f3=a3;.
T = statement(body of f,T) Each assignment, which may have an arbitrary expression
Remove local variables declaredin f from T on the right, is treated like an assignment expression, al-
return (T,Gy) G iscomputed at return stmts — though we only compute the gen set for each since formal
| —=r - Assignment parametersare guaranteed to be uninitialized beforethecall.
(T,G1,G1,K)) = Ivalue(l, T) The scopes of the actual exprons differ from thos_e of the
(T,Gr) = rvalue(r,T) formal arguments; our rule for signatures ensures this.
G=0 Once the assignments are performed, the statements in
K =K, the function body are analyzed and may produce an updated
for each triple (x,y,11) € G do table since they might modify existing pointer relationships
for each triple (z,w,l2) € G, do (e.g., Figure 2). Additionally, if the function itself returns
if 11 = must Al» = must then a pointer, we collect the potential return values at the re-
Add (y,w,must) to G turn statements and merge al of them as the G, set for the
dse function call.
Add (y,w, may) to G Return statements are fairly subtle. To process a return
for each triple (x,y, f) € C; do statement, our algorithm collects return values in case the
if (x,y,must) € T A f = may then function returns a pointer and merges the points-to infor-
Replace (x,y,must) with (x,y,may) in T mation reaching the return statement with the points-to in-
T=(T-K)JUG formation reaching other return statements in the function.
return (T,Gy) At the end of the function, the set from the return statements
i . is merged with the points-to information reaching the end of
€10pe; . Arithmetic operators the function to combine all potential outputs. Our technical
(T,G) =rvalue(ey, T) report [4] describes thisin more detail.

(T,G) =rvalue(ez, T)

Our current implementation handles recursive functions
return (T,G)

inasimplistic way. Basically, we keep astack datastructure

.) . that resembles the function call stack, containing the name
Figure 4. The function for expressions.

function statement(s, T) returnstable
case s of

an expressione: Expression
(T,_) =rvalue(e, T)
S1; 9S8 ...t Compound statement

for each statement s; do
T = statement(s;, T)

if (e spelsesy: If-el se statement
(T,_) =rvalue(e, T)

Ti=T

Ty = statement(sy, T1)

To=T

T, = statement(sz, T2)

T=TWUT,

while (€) s : While statement
(T,-) =rvalue(e T)
T=T
T'=0
while T’ T” do
T// — T/
T’ = statement(s1, T')
T=TuT

for(i;c;n)s;: For statement
(T,-) =rvalue(i,T)
(T,_) =rvalue(c,T)
T=T
T'=0
while T/ # T” do
TII — Tl
T’ = statement(s1, T')
(T’,-) =rvalue(n, T')
T=TuT

returnT

Figure 6. The function for statements.

of the functions being analyzed in the current chain of calls.
At every new call site, we check if the called function's
name is in the stack. If so, we skip the function call and
continueto the next statement. If not, we add the function’s
nameto thetop of the stack and jump to itsfirst statement to
continue the analysis. This method is clearly not very pre-
cise, but is areasonableinitial trade-off. We plan to extend
the recursive function handling in a future implementation
of our algorithm by performing a fixed-point computation.
Function pointers are also handled by our algorithm. Since
we perform a flow-sensitive, context-sensitive, interproce-
dural points-to analysis, the set of functionsinvocable from
afunction pointer call-siteis a subset of the set of functions
that the function pointer can point to at the program point

just before the call-site. The analysis assumes that all these
functions are invocable from the site, and mergestheir out-
put sets to compute the points-to information at the program
point after this call. As previously mentioned, this requires
aflow-sensitive analysis dueto its dependence on statement
ordering.

8 Experimental Results

We have implemented the algorithm presented in this
paper (along with additions for handling the rest of C)
in a Linux-based source-to-source framework called Pro-
teus [18]. Proteus uses Stratego [16] as its back end and
thus employs tree-rewriting for code transformations. To
write transformations in Proteus, the user writes a program
inthe YATL language, which iscompiledto an Strategofile.
Thus, we used a transformation language to implement our
pointer analysis algorithm. One can view it as an “annota-
tion” transformation that traverses the ASTs of the subject
program, analyzing pointer statements without actually re-
writing the code.

Asan example, thefollowing YATL fragment, taken ver-
batim from our implementation, checksif theterm being an-
alyzedisan if statement and, if so, analyzes both branches
of the conditional and merges the results.

mat ch(1 fEl seStnt: {=$cnd}<cond>, { =$t h} <t hen>, {=$el } <el se>)
{

/1 Analyze the condition expression //
anal yze_expression($cnd, $t);

/!l Create two copies of the current //
/1 points-to set, t, and hand them to //
/1 the two branches of the "if" stnt //

$thenSet = int-to-string(uuid-int());
set _copy($thenSet, $t);

$el seSet = int-to-string(uuid-int());
set _copy($el seSet, $t);

anal yze_generic_stnt ($th, $thenSet);
anal yze_generic_stnt ($el, $el seSet);

/1 Merge "thenSet" and "el seSet" //
set _merge($t henSet, $el seSet);
set _copy($t, $thenSet);

/'l Free unused nenory //
set _destroy($thenSet);
set _destroy($el seSet);

The match construct in the above code means if the
term being analyzed—the root of the current subtree—is
an if statement, to bind the subtree representing the con-
ditional expression to variable $cnd, the subtree corre-
sponding to the true branch to variable $t h, and the sub-
tree corresponding to the else branch to $el . Since $cnd
can be an arbitrary expression, it can include a pointer
assignment (i f ((p=malloc(...))!=NULL) istyp-
ical). The call to analyze_expression (rvaue function) han-

name linesof number parsing analysis max.
code of files time time memory
stanford 885 1 17s 48s 16Mb
compress 1933 3 27s <1m 27
mpeg2dec 9830 20 <2m <7m 24
ipeg 27966 85 <7m <32m 65

Table 1. Experimental results.

dles the conditional, which might update $t , a string that
holds a unigue namefor the table: a*“ pointer” to it.

Two copies of the table are made—$t henSet
and $el seSet. These are two unique names gen-
erated by uuid-int and converted to strings by
int-to-string. The statements in the two branches
of theif are then analyzed, each branch with its own copy
of the initial table $t . After thisis done, the resulting ta-
bles are merged by set _mer ge, (U in Figure 6) and the
final set overwrites $t (the first parameter in set _ner ge
also represents the destination; set _copy(a, b) means
a < b). Finaly, the memory used for the temporary setsis
freed.

With the support from the tool to build ASTS, resolve
multiple files, and provide the front-end language, the
pointer analysis algorithm takes less than four thousand
lines of code, yet covers amost the entire C language (we
currently do not handle goto statements).

8.1 Experiments

We tested our procedure on a set of benchmarks rang-
ing in size from about 800 to 30000 lines of code (includ-
ing whitespace and comments). We report four test cases:
stanford, compress, mpeg2dec, and jpeg. Stanford is a col-
lection of algorithms such as a solution to the eight-queens
problem and Towers of Hanoi. Compress, mpeg2dec, and
jpeg are well-known file compression, MPEG video de-
coder, and JPEG encoder/decoder libraries. We dlightly
modified the source of each example to remove goto state-
ments (we duplicated code) and correct prototypes.

To analyze a program, our system first parses al its
source files and constructs a single AST in memory. We
list the time taken for this in the parsing column of Ta
ble 1. Then our analysis runs: traverses the AST starting
from main, constructs tables, etc. The times for this phase
are listed under analysis. We ran these experiments on a
512 Mb, 2.4GHz Pentium 4 running Linux.

Not surprisingly, thetime required for our analysisgrows
with the size of the program, asthe pricefor precisionin the
form of flow-sensitiveness and function body re-analysis
is paid in efficiency. Thirty-two minutes of analysis time
for the largest example may seem excessive, but our ob-
jective has been precision, not speed, and as such we have
not attempted to make our implemention more efficient.

Compared to traditional pointer analysis algorithms, ours
is flow-sensitive and interprocedural, up to multiple transla-
tion units and multiplefiles.

We believe that for source-to-source transformations,
however, this magnitude of execution time is acceptable.
This type of static analysis could automate a source code
transformation that would take days or weeks to perform
manually. For instance, inserting the minimal amount of
null pointer checking in the source code might be done by
first performing a pointer analysis and then inserting checks
wherever a pointer may be null. Although slower, flow-
sensitivity is of paramount importanceto thistype of check-
ing, since verifying whether a pointer isinitialized beforeit
is used depends on the order of the statements. We are cur-
rently applying our analysis to porting a legacy application
that assumed a big-endian architecture to alittle-endian ar-
chitecture. To perform this, we augment the points-to sets
with type information—asimple, but very useful modifica-
tion.

In Table 1, we list memory usage, which includes the
space needed to store ASTs, symbol table(s), as well as
the space used for temporary points-to tables. Although the
source of the compress exampleis smaller, it requires about
as much memory as the larger mpeg2dec example because
the code is more pointer-intensive and may include more
conditionals, which tends to increase the number of copies
of the points-to table.

9 Conclusions and Future work

The main contribution of this paper is a pointer analy-
sis algorithm that operates on the abstract syntax tree of a
program—anecessity for source-to-sourcetransformations,
which strive to preserve as much about the program as pos-
sible. Our agorithm performs a flow-sensitive analysis us-
ing dataflow equations generated directly on-the-fly from
the abstract syntax tree of the program. Our choice of
a flow-sensitive analysis makes our algorithm slower than
many existing techniques, but the extraprecision it provides
isuseful in source-to-sourcetransformations. Similarly, our
choiceof re-analyzingafunctioneachtimeitiscaledisless
efficient than techniquesthat, say, create atransfer function
for each subroutine and re-apply it as necessary [19], but
this increases precision.

The agorithm presented in this paper fits the environ-
ment typical in source-to-source tools, although some cod-
ing optimizations are still needed to make it run faster.
In the future, we plan to memoize functions that do not
change the points-to sets, which should not affect precision.
We aso plan to build a visualization tool that displays the
points-to sets graphically (presumably as a points-to graph).
This might be useful for source code debugging. Partial
support for this has already been built.

References

(1]

(2]

(3]

(4]

(5]

(6]

(8]

(9]

L. O. Andersen. Program analysis and specidiza-
tion for the C programming language. PhD thesis,
DIKU, University of Copenhagen, May 1994. Available at
ftp.diku.dk/pub/diku/semantics/papers/D-203.dvi.Z.

B. Blanchet. Escape analysis: correctness proof, implemen-
tation and experimental results. In POPL '98: Proceedings
of the 25th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pages 25-37, 1998.

M. Burke, P. Carini, J. Choi, and M. Hind. Flow-insensitive
interprocedural alias analysisin the presence of pointers. In
Lecture Notes in Computer Science, 892, Springer-Verlag,
Proceedings of the 7th International Workshop on Lan-
guages and Compilers for Parallel Computing, pages 234—
250, 1995.

M. Buss, S. Edwards, B. Yao, and D. Waddington. Pointer
analysis for source-to-source transformations. Technical
Report CUCS-028-05, Department of Computer Science,
Columbia University, 2005.

J. Choi, M. Burke, and P. Carini. Efficient flow-sensitive
interprocedural computation of pointer-induced aliases and
side effects. In Proceedings of the 20th Annual ACM Sympo-
sium on Principles of Programming Languages, pages 233—
245, 1993.

M. Das. Unification-based pointer analysis with directional
assignments. In Proceedings of Programming Language De-
sign and Implementation (PLDI), pages 3546, 2000.

M. Emami, R. Ghiya, and L. Hendren. Context-sensitive
interprocedural points-to analysisin the presence of function
pointers. In Proceedings of Programming Language Design
and Implementation (PLDI), pages 242-256, 1994.

M. Fahndrich, J. Rehof, and M. Das. Scalable context-
sensitive flow analysis using instantiation constraints. In
Proceedings of Programming Language Design and Imple-
mentation (PLDI), pages 253-263, 2000.

N. Heintzeand O. Tardieu. Ultra-fast aliasing analysis using
CLA: a million lines of C code in a second. In Proceed-
ings of Programming Language Design and Implementation
(PLDI), pages 254-263, 2001.

[10]

[11]

[12]

[13]

[14]

[19]

[16]
[17]

[18]

[19]

M. Hind. Pointer analysis: haven't we solved this prob-
lem yet? In PASTE '01: Proceedings of the 2001 ACM
S GPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, pages 5461, 2001.

W. Landi and B. Ryder. A safe approximate algorithm for
interprocedural pointer aliasing. In Proceedings of Program-
ming Language Design and Implementation (PLDI), pages
235-248, 1992.

T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedu-
ral dataflow analysis via graph reachability. In POPL ’95:
Proceedings of the 22nd ACM S GPLAN-SIGACT sympo-
siumon Principles of programming languages, pages49-61,
1995.

E. Ruf. Context-insensitive alias analysis reconsidered. In
Proceedings of Programming Language Design and Imple-
mentation (PLDI), pages 13-22, 1995.

L. Semeria, K. Sato, and G. D. Micheli. Synthesis of hard-
ware modelsin C with pointers and complex data structures.
IEEE Trans. Very Large Scale Integr. Syst., 9(6):743-756,
2001.

B. Steensgaard. Points-to analysis in amost linear time.
In POPL '96: Proceedings of the 23rd ACM SIGPLAN-
SGACT symposium on Principles of programming lan-
guages, pages 3241, 1996.

E. Visser. Stratego xt. http://www.stratego-language.org.

E. Visser and Z. Benaissa. A core language for rewriting.
http://www.el sevier.nl/locate/entcs/volumel5.html.

D. Waddington and B. Yao. High fidelity C++ code trans-
formation. In Proceedings of the 5th workshop on Language
Descriptions, Tools and Applications (LDTA), 2005.

R. Wilson and M. Lam. Efficient context-sensitive pointer
analysis for C programs. In Proceedings of Programming
Language Design and Implementation (PLDI), pages 1-12,
1995.

