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1 Introduction

VIS (Verification Interacting with Synthesis) is a tool that integrates the verification, simulation, and synthesis of finite-state
hardware systems. It uses a Verilog front end and supports fair CTL model checking, language emptiness checking, combin-
ational and sequential equivalence checking, cycle-based simulation, and hierarchical synthesis.

We designed VIS to maximize performance by using state-of-the-art algorithms, and to provide a solid platform for future
research in formal verification. VIS improves upon existing verification tools by:

1. providing a better programming environment,

2. providing new capabilities, and

3. improving performance in some cases.

We have incorporated software engineering methods into the design of VIS. In particular, we provide extensive documentation
that is automatically extracted from the source files for browsing on the World Wide Web.

Section 2 describes the major capabilities of VIS as seen by the user, and Section 3 gives a brief description of the underlying
algorithms of these capabilities. Section 4 discusses the VIS programming environment, and Section 5 gives conclusions and
ideas for future work.

2 Capabilities of VIS

We briefly describe the salient features of VIS. VIS has both an interactive command interface and a batch mode. For a detailed
description of the full functionality of VIS, with examples of usage, refer to the VIS Manual [2].

Verilog front end VIS operates on an intermediate format called BLIF-MV, which is an extension of BLIF, the intermediate
format for logic synthesis accepted by SIS [7]. VIS includes a stand-alone compiler from Verilog to BLIF-MV, called VL2MV,
which supports a synthesizable subset of Verilog. VL2MV extracts a set of interacting finite state machines that preserves the
behavior of the source Verilog program defined in terms of simulated results. Two new features have been added to Verilog:

1. Nondeterminism. A nondeterministic construct, $ND, has been added to specify nondeterminism on wire variables; this
is the only legal way to introduce nondeterminism in VIS.

2. Symbolic variables. Sometimes it is desirable to specify and examine the value of variables symbolically, rather than
having to explicitly encode them. VL2MV extends Verilog to allow symbolic variables using an enumerated type mech-
anism similar to the one available in the C programming language.
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Hierarchy and initialization When a BLIF-MV description is read into VIS, it is stored hierarchically as a tree of modules,
which in turn consist of sub-modules. This hierarchy can be traversed in a manner similar to traversing directories in UNIX.
Simulation and verification operations can be performed at any subtree of the hierarchy. It is possible to replace the subhier-
archy rooted at the current node with a new hierarchy specified by a new BLIF-MV file, which might be a synthesized module
or a manually abstracted module. VIS can also output the hierarchy below the current node to a BLIF-MV file.

Interaction with synthesis VIS can interact with SIS to optimize the existing logic by reading and writing the BLIF format,
which SIS recognizes. Synthesis can be performed on any node of the hierarchy.

Abstraction Manual abstraction can be performed by giving a file containing the names of variables to abstract. For each
variable appearing in the file, a new primary input node is created to drive all the nodes that were previously driven by the
variable. Abstracting a net effectively allows it to take any value in its range, at every clock cycle.

Fair CTL model checking and language emptiness check VIS performs fair CTL model checking under Büchi fairness
constraints. In addition, VIS can perform language emptiness checking by model checking the formula EG true. The lan-
guage of a design is given by sequences over the set of reachable states that do not violate the fairness constraint. The language
emptiness check can be used to perform language containment by expressing the set of bad behaviors as another component
of the system. If model checking or language emptiness fail, VIS reports the failure with a counterexample, (i.e., behavior
seen in the system that does not satisfy the property - for model checking, or valid behavior seen in the system - for language
emptiness). This is called the “debug” trace. Debug traces list a set of states that are on a path to a fair cycle and fail the CTL
formula.

Equivalence checking VIS provides the capability to check the combinational equivalence of two designs. An important
usage of combinational equivalence is to provide a sanity check when re-synthesizing portions of a network. VIS also provides
the capability to test the sequential equivalence of two designs. Sequential verification is done by building the product finite
state machine, and checking whether a state where the values of two corresponding outputs differ, can be reached from the
set of initial states of the product machine. If this happens, a debug trace is provided. Both combinational and sequential
verification are implemented using BDD-based routines.

Simulation VIS also provides traditionaldesign verification in the form of a cycle-based simulator that uses BDD techniques.
Since VIS performs both formal verification and simulation using the same data structures, consistency between them is en-
sured. VIS can generate random input patterns or accept user-specified input patterns. Any subtree of the specified hierarchy
may be simulated.

3 Algorithms

This section briefly discusses the significant algorithms of VIS. The fundamental data structure for these algorithms is a multi-
level network of latches and combinational gates that is created by flattening the hierarchy. It is assumed that there are no
combinational cycles in the network. The primary inputs and latch outputs are referred to as combinational inputs and the
primary outputs and latch inputs are referred to as combinational outputs. The variables of a network are multi-valued, and
logic functions over these variables are represented by multi-valued decision diagrams (MDDs) which are an extension of
BDDs.

MDD variable ordering The combinational input variables and next state variables must be ordered before MDDs can be
constructed. The combinational input variables are ordered by doing a depth-first traversal of the logic that generates the com-
binational outputs. The order in which the output logic cones are visited is determined using the algorithm of Aziz et al. [1].
This algorithm orders the latches to decrease a communication complexity bound (where backward edges are more expensive
than forward edges) on the latch communication graph. The traversal of an output logic cone is done in such a way that the
combinational inputs farthest from the outputs appear earlier in the ordering. We use the merging technique of Fujii et al. to
handle those variables that appear in multiple cones of logic [5]. Finally, each next state variable is inserted into the variable
ordering immediately after the corresponding present state variable.

If the user has some knowledge of a good ordering, then a partial or total ordering on the variables can be read in. In addition,
dynamic variable ordering is supported. We have found that forcing corresponding present state and next state variables to
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remain adjacent to each other is usually beneficial. Generally, a good initial ordering followed by one or two forced dynamic
reorderings gives good results.

Partitioning the network Once the description of a system has been read in and the ordering of the variables assigned, an
abstracted view of the system is created in which the functions of the network are stored as MDDs. This abstracted view, called
a “partition”, is the input to model checking and reachability. It can be created in several ways. At one extreme, combinational
output functions are defined directly in terms of combinational inputs. On the other extreme, there is an MDD corresponding
to each node in the network representing the functionality of the node in terms of its fanins, i.e., a variable is introduced for
each node in the network. In general, intermediate variables can be introduced to represent the functionality of a cluster of
nodes in the original network. This flexibility allows very large designs to be represented and manipulated.

Image/Pre-image computation Our image/pre-image computation technique is based on an early quantificationheuristic [6].
The initialization process consists of creating a bit-level relation for the next state function of each latch in the network. These
bit-level relations are then ordered to optimally exploit early quantification. Next, the relations of several bits are grouped
together, making a cluster whenever the MDD size of the group reaches a threshold. Next, each cluster is simplified by quan-
tifying out the primary inputs local to that cluster. Finally, the orders of the clusters for image and pre-image are calculated
and stored. Also stored is the schedule of variables for early quantification.

Reachability analysis Reachability analysis makes iterative use of image computation. The performance of reachability
analysis is improved by exploiting three sets of don’t cares (in the followingRk(~x) represents the set of states reached from
the initial states in k or fewer steps):

1. Selection of the frontier set for computing Rk+1(~x), given Rk(~x). The frontier set F (~x) can be any set satisfying the
following inequality: Rk(~x)Rk�1(~x) � F (~x) � Rk(~x).

2. Simplification of the transition relationT (~x; ~u; ~y), by taking the generalized cofactor with respect toF (~x) (we care only
about the transitions originating from the frontier states).

3. Simplification of the transition relation T (~x; ~u; ~y), by taking the generalized cofactor with respect to Rk(~y) (we care
only about the transitions to the set of states not reached thus far).

Model checking and debugging We use the algorithms presented in [3] as the basis for fair CTL model checking and de-
bugging. In addition, a special algorithm has been implemented to improve the efficiency of checking invariants. Also, a
structural pruning technique is used to eliminate those parts of the network that cannot affect the formula being checked. This
is particularly useful in conjunction with the abstraction mechanism mentioned in Section 2. Finally, don’t cares arising from
the unreachable states, and from the fixed point computations, are used to simplify intermediate MDDs.

4 Programming Environment

One of the key goals of VIS is to serve as a platform for developing new verification algorithms. We have used as our model
the object-oriented programming style of SIS. VIS is composed of 18 packages; each exports a set of routines for manipulating
a particular data structure, or for performing a set of related functions (e.g., there are packages for model checking, variable
ordering, and manipulating the network data structure). New packages can be added easily. This wealth of exported functions
can be used by future programmers to quickly assemble new algorithms. All functions adhere to a common naming convention
so that it is easy to find functions in the documentation.

Particular attention was paid to the design of the interfaces to packages that are still the subject of ongoing research (e.g.,
MDD variable ordering, image computation, and partitioning). This makes it easy for other researchers to plug in their al-
gorithms for performing a particular task, and then evaluate their algorithm within the context of VIS.

Extensive user and programmer documentation exists for VIS. The creation of this documentation was aided by the tool
ext [4], which extracts documentation embedded in the source code. For each function, the programmer provides a synopsis
and a complete description, and ext automatically extracts this information, along with the functionname and argument types,
into an HTML file that can be viewed on the World Wide Web. Documentation for user commands is extracted in a similar
fashion.
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5 Conclusions and Future Work

We have described the verification and synthesis tool VIS, which offers a better programming environment, new capabilities,
and improved performance over existing verification tools. We have implemented VIS using the C programming language,
and it has been ported to many different operating systems and architectures. The capabilities of VIS have been tested on the
sequential circuits from the ISCAS benchmark set and some industrial designs.

As part of future work, we intend to explore and support explicit methods for state enumeration, verification of asynchronous
systems, hierarchical synthesis, partitioning schemes, language containment, and incremental techniques for synthesis and
verification. In particular, we want to explore the synergy between verification and synthesis.

For more information about VIS or to get a copy, visit the VIS home page [8].
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