VIS: A System for Verification and Synthesis

Robert K. Brayton* Gary D. Hachtel® Alberto Sangiovanni-Vincentelli* Fabio Somenzi'
Adnan Aziz* Szu-Tsung Cheng* Stephen Edwards® Sunil Khatri* Yuji Kukimoto*

Abelardo Pardo’ Shaz Qadeer Rajeev K. Ranjan* Shaker Sarwary* Thomas R. Shiple*
Gitanjai Swamy* Tiziano Villa*

1 Introduction

VIS (Verification Interacting with Synthesis) is atool that integrates the verification, simulation, and synthesis of finite-state
hardware systems. It uses a Verilog front end and supportsfair CTL model checking, language emptiness checking, combin-
ational and sequential equivalence checking, cycle-based simulation, and hierarchical synthesis.

We designed V1S to maximize performance by using state-of-the-art algorithms, and to provide a solid platform for future
research in formal verification. VIS improves upon existing verification tools by:

1. providing abetter programming environment,
2. providing new capabilities, and
3. improving performance in some cases.

We have incorporated software engineering methodsinto the design of VIS. In particul ar, we provide extensive documentation
that is automatically extracted from the sourcefiles for browsing on the World Wide Web.

Section 2 describesthe major capabilitiesof VIS as seen by theuser, and Section 3 givesabrief description of theunderlying
algorithmsof these capabilities. Section 4 discusses the VIS programming environment, and Section 5 gives conclusions and
idess for future work.

2 Capabilitiesof VIS

We briefly describethe salient features of VIS. VIS has both an interactive command interface and abatch mode. For adetailed
description of the full functionality of VIS, with examples of usage, refer to the VIS Manual [2].

Verilogfront end VISoperateson anintermediateformat called BLIF-MV, whichisan extension of BLIF, theintermediate
format for logic synthesisaccepted by SIS[7]. VISincludesastand-alone compiler from Verilogto BLIF-MV, called viL2mv,
which supports a synthesi zable subset of Verilog. vL2MV extracts a set of interacting finite state machines that preserves the
behavior of the source Verilog program defined in terms of simulated results. Two new features have been added to Verilog:

1. Nondeterminism. A nondeterministic construct, $ND, has been added to specify nondeterminism on wirevariables; this
isthe only legal way to introduce nondeterminismin VIS,

2. Symbolic variables. Sometimesiit is desirable to specify and examine the value of variables symbolicaly, rather than
having to explicitly encode them. vL2mV extends Verilog to alow symbolic variables using an enumerated type mech-
anism similar to the one availablein the C programming language.

Conceptually, it would be easy to provide atrand ator from another HDL language, like VHDL or Esterel, to BLIF-MV.
*Department of EECS, University of California, Berkeley, CA 94720
t Department of Electrical and Computer Engineering, University of Colorado, Boulder, CO 80309
4 Lattice Semiconductor, Milpitas, CA 95035

Hierarchy and initialization WhenaBLIF-MV descriptionisread into VIS, it isstored hierarchically as atree of modules,
which in turn consist of sub-modules. This hierarchy can be traversed in a manner similar to traversing directoriesin UNIX.
Simulation and verification operations can be performed at any subtree of the hierarchy. It is possible to replace the subhier-
archy rooted at the current node with anew hierarchy specified by anew BLIF-MYV file, which might be a synthesized module
or amanually abstracted module. VIS can aso output the hierarchy below the current nodeto aBLIF-MYV file.

Interaction with synthesis VIS can interact with SIS to optimizethe existing logic by reading and writing the BLIF format,
which SIS recognizes. Synthesis can be performed on any node of the hierarchy.

Abstraction Manua abstraction can be performed by giving a file containing the names of variables to abstract. For each
variable appearing in the file, a new primary input node is created to drive all the nodes that were previously driven by the
variable. Abstracting a net effectively alowsit to take any valuein itsrange, at every clock cycle.

Fair CTL model checking and language emptiness check VIS performs fair CTL model checking under Biichi fairness
congtraints. In addition, VIS can perform language emptiness checking by model checking the formula G true. Thelan-
guage of adesignisgiven by sequences over the set of reachabl e statesthat do not violatethefairnessconstraint. Thelanguage
emptiness check can be used to perform language containment by expressing the set of bad behaviors as another component
of the system. If model checking or language emptiness fail, VIS reports the failure with a counterexample, (i.e., behavior
seen in the system that does not satisfy the property - for model checking, or valid behavior seen in the system - for language
emptiness). Thisiscaled the“debug” trace. Debug traces list aset of states that are on apath to afair cycle and fail the CTL
formula.

Equivalence checking VIS providesthe capability to check the combinational equivaence of two designs. An important
usage of combinational equivalenceisto provideasanity check when re-synthesizing portionsof anetwork. VIS aso provides
the capability to test the sequentia equivalence of two designs. Sequential verification is done by building the product finite
state machine, and checking whether a state where the values of two corresponding outputs differ, can be reached from the
set of initia states of the product machine. [If this happens, a debug trace is provided. Both combinational and sequential
verification are implemented using BDD-based routines.

Simulation VISa so providestraditional design verificationintheformof acycle-based simulator that uses BDD techniques.
Since VIS performs both formal verification and simulation using the same data structures, consistency between them is en-
sured. VIS can generate random input patterns or accept user-specified input patterns. Any subtree of the specified hierarchy
may be simulated.

3 Algorithms

This section briefly discusses the significant agorithmsof VIS, The fundamental datastructurefor these algorithmsisamulti-
level network of latches and combinational gates that is created by flattening the hierarchy. It is assumed that there are no
combinationa cycles in the network. The primary inputs and latch outputs are referred to as combinational inputs and the
primary outputs and latch inputs are referred to as combinational outputs. The variables of a network are multi-valued, and
logic functions over these variables are represented by multi-valued decision diagrams (MDDs) which are an extension of
BDDs.

MDD variableordering The combinationa input variables and next state variables must be ordered before MDDs can be
constructed. The combinational input variablesare ordered by doing adepth-first traversal of thelogic that generates the com-
binational outputs. The order in which the output logic cones are visited is determined using the algorithm of Aziz et al. [1].
Thisagorithm ordersthe latches to decrease acommunication complexity bound (where backward edges are more expensive
than forward edges) on the latch communication graph. The traversal of an output logic cone is done in such away that the
combinational inputs farthest from the outputs appear earlier in the ordering. We use the merging technique of Fujii et al. to
handl e those variables that appear in multiple cones of logic [5]. Finaly, each next state variableis inserted into the variable
ordering immediately after the corresponding present state variable.

If the user has some knowledgeof agood ordering, then apartia or total ordering onthevariablescan beread in. Inaddition,
dynamic variable ordering is supported. We have found that forcing corresponding present state and next state variables to

remain adjacent to each other isusually beneficial. Generally, agood initia ordering followed by one or two forced dynamic
reorderings gives good results.

Partitioning the network Once the description of a system has been read in and the ordering of the variables assigned, an
abstracted view of the systemiscreated inwhich thefunctionsof the network are stored as MDDs. Thisabstracted view, called
a“partition”, istheinput to model checking and reachability. It can be created in several ways. At one extreme, combinational
output functions are defined directly in terms of combinational inputs. On the other extreme, thereisan MDD corresponding
to each node in the network representing the functionality of the node in terms of itsfanins, i.e., avariableisintroduced for
each node in the network. In general, intermediate variables can be introduced to represent the functionality of a cluster of
nodesin the original network. Thisflexibility allows very large designs to be represented and manipul ated.

Image/Pre-imagecomputation Our image/pre-image computati on techniqueisbased on an early quantification heuristic[6].
Theinitialization process consists of creating abit-level relation for the next state function of each latch inthe network. These
bit-level relations are then ordered to optimally exploit early quantification. Next, the relations of several bits are grouped
together, making a cluster whenever the MDD size of the group reaches athreshold. Next, each cluster issimplified by quan-
tifying out the primary inputslocal to that cluster. Finally, the orders of the clusters for image and pre-image are cal cul ated
and stored. Also stored isthe schedule of variables for early quantification.

Reachability analysis Reachability analysis makes iterative use of image computation. The performance of reachability
analysisisimproved by exploiting three sets of don't cares (in the following R, (%) represents the set of states reached from
theinitia statesin k or fewer steps):

1. Selection of the frontier set for computing Ry, 11 (%), given Ry (Z). Thefrontier set 7'(#) can be any set satisfying the
followinginequality: Ry (Z)Ry_1(¥) C F (%) C Ry (T).

2. Simplification of thetransitionrelation 7'(%, i, i), by taking the generalized cofactor with respect to F'(%) (we care only
about the transitions originating from the frontier states).

3. Simplification of the transition relation 7'(#, 4, #), by taking the generalized cofactor with respect to Ry (%) (we care
only about the transitionsto the set of states not reached thusfar).

Model checking and debugging We use the algorithms presented in [3] as the basis for fair CTL model checking and de-
bugging. In addition, a specia algorithm has been implemented to improve the efficiency of checking invariants. Also, a
structural pruning techniqueis used to eliminate those parts of the network that cannot affect the formulabeing checked. This
is particularly useful in conjunction with the abstraction mechanism mentioned in Section 2. Finally, don’t cares arising from
the unreachabl e states, and from the fixed point computations, are used to simplify intermediate MDDs.

4 Programming Environment

One of the key goas of VISisto serve asaplatform for devel oping new verification a gorithms. We have used as our model
the object-oriented programming styleof SIS. VISiscomposed of 18 packages; each exportsaset of routinesfor manipul ating
a particular data structure, or for performing a set of related functions (e.g., there are packages for model checking, variable
ordering, and manipulating the network data structure). New packages can be added easily. Thiswealth of exported functions
can be used by future programmersto quickly assemble new algorithms. All functionsadhere to acommon naming convention
so that it iseasy to find functionsin the documentation.

Particular attention was paid to the design of the interfaces to packages that are till the subject of ongoing research (e.g.,
MDD variable ordering, image computation, and partitioning). This makes it easy for other researchers to plug in their al-
gorithmsfor performing a particular task, and then evaluate their agorithm within the context of VIS.

Extensive user and programmer documentation exists for VIS. The creation of this documentation was aided by the tool
ext [4], which extracts documentation embedded in the source code. For each function, the programmer providesa synopsis
and acompl ete description, and ext automatically extractsthisinformation, al ong with the function name and argument types,
into an HTML file that can be viewed on the World Wide Web. Documentation for user commands is extracted in a similar
fashion.

5

Conclusions and Future Wor k

We have described the verification and synthesistool VIS, which offers a better programming environment, new capabilities,
and improved performance over existing verification tools. We have implemented VIS using the C programming language,
and it has been ported to many different operating systems and architectures. The capabilities of VIS have been tested on the
sequential circuitsfrom the ISCAS benchmark set and some industrial designs.

Aspart of futurework, weintend to expl oreand support explicit methodsfor state enumeration, verification of asynchronous

systems, hierarchical synthesis, partitioning schemes, language containment, and incremental techniques for synthesis and
verification. In particular, we want to explore the synergy between verification and synthesis.

For more information about VIS or to get acopy, visit the VIS home page [8].

Acknowledgments

We would liketo thank Adrian Isles, Sriram Rgjamani, and Serdar Tasiran for their assistance in developing VIS.

References

(1]

(2]

(3]

[4]
(5]

(6]

(7]

(8]

A. Aziz, S. Tasiran, and R. K. Brayton. BDD Variable Ordering for Interacting Finite State Machines. In Proc. of the Design
Automation Conf., pages 283-288, San Diago, CA, June 1994.

R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S. T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto,
A. Pardo, S. Qadeer, R. K. Ranjan, S. Sarwary, T. R. Shiple, G. Swamy, and T. Villa. VIS: A System for Verification and Synthesis.
Technical Report UCB/ERL M95, Electronics Research Lab, Univ. of California, Berkeley, CA 94720, Dec. 1995.

E. M. Clarke, O. Grumberg, K. L. McMillan, and X. Zhao. Efficient generation of counterexamplesand witnessesin symbolic model
checking. In Proc. 32nd Design Automat. Conf., pages 427-432, June 1995.

S. Edwards. The Ext System, 1995. ht t p: / / www. eecs. ber kel ey. edu/ " sedwar ds/ ext .

H. Fujii, G. Ootomo, and C. Hori. Interleaving based variable ordering methods for ordered binary decision diagrams. In Proc. Intl.
Conf. on Computer-Aided Design, pages 38-41, Nov. 1993.

R. K. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R. K. Brayton. Efficient Formal Design Verification: Data Structure + Algorithms.
Technical Report UCB/ERL M94/100, Electronics Research Lab, Univ. of California, Berkeley, CA 94720, Oct. 1994.

E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli. SIS: A System for Sequential Circuit Synthesis. Technical Report UCB/ERL M92/41, Electronics Research
Lab, Univ. of California, Berkeley, CA 94720, May 1992.

The VIS Group. VIS Verification Interacting with Synthesis, 1995.
http://ww cad. eecs. ber kel ey. edu/ Respep/ Research/ vi s.

