Digital Design with SystemVerilog
CSEE W4840

Prof. Stephen A. Edwards
Columbia University

Spring 2026

Synchronous Digital Design

Combinational Logic

Sequential Logic

Summary of Modeling Styles

Why HDLs?

1970s: SPICE transistor-level netlists

An XOR built from four NAND gates

.MODEL P PMOS
.MODEL N NMOS

.SUBCKT NAND A B Y Vdd Vss
M1 Y A Vdd vdd P

M2 Y B Vdd vdd P

M3 YAX Vss N

M4 X B Vss Vss N

.ENDS

X1 A B I1 Vvdd O NAND
X2 A I1 I2 vdd O NAND
X3 B I1 I3 vdd O NAND
X4 I2 I3 Y Vdd O NAND

B—¢

Why HDLs?

1980s: Graphical schematic capture programs

$ () & & EIE
File Edit Bufer view Page Add Hierarshy Afributes Options Help

Ced s cio=FE 1k

GREYCQUNTER

) >
Pick | Action | Pan/Cancel __/gschem/examplesigrey_courter 1.sch Select Mode

Why HDLs?
1990s: HDLs and Logic Synthesis

library ieee;
use ieee.std_logic_1164.all;

i

use ieee.numeric_std.all; Tg;;;;ﬂ
ool Bl

entity ALU is I ?337

port(A: in unsigned(1l downto 0); ‘?£§T>j

B: in unsigned(1l downto 0);
Sel: in unsigned(1l downto 0);
Res: out unsigned(1l downto 0));
end ALU;
architecture behv of ALU is begin
process (A,B,Sel) begin
case Sel is
when "00" => Res <= A + B;
when "01" => Res <= A + (not B) + 1;
when "10" => Res <= A and B;
when "11" => Res <= A or B;
when others => Res <= "XX";
end case;
end process;
end behv;

Separate bu

BE ERS

T

t Equal: Verilog and VHDL

Verilog: More succinct, really messy

VHDL: Verbose, overly flexible, fairly messy
Part of languages people actually use identical
Every synthesis system supports both

SystemVerilog a newer version. Supports many
more features.

Synchronous Digital Design

The Synchronous Digital Logic Paradigm

Gates and D flip-flops only
No level-sensitive latches INPUTS OUTPUTS

All flip-flops driven by the
same clock
STATE

No other clock signals

CLOCK D

Every cyclic path contains at
least one flip-flop

No combinational loops NEXT STATE

Timing in Synchronous Circuits

S T

tc

CLK __|
Q &
D ([

t.: Clock period. E.g., 10 ns for a 100 MHz clock

Timing in Synchronous Circuits

L KT

Sufficient Hold Time?

tp(min,FF) > tp(min,CL)
CLK | | B
Q —m

D

Hold time constraint: how soon after the clock edge
can D start changing? Min. FF delay + min. logic delay

Timing in Synchronous Circuits

e P

CLK l_

Sufficient Setup Time?
tp(max,CL) -
tp(max,FF) e >

CLK | | [
Qe —m
D

A

Setup time constraint: when before the clock edge is D guaranteed stable?
Max. FF delay + max. logic delay

Combinational Logic

FU” Adder Module name
Data type:

Input port
Single-line single bit Port name
comment
Systems are built ~// Full adder

f dul
rom modues " module full_adder(input logic a; b, c,
output logic sum, carry);

a;:scimr?r?\:g}cj"s _assign sum =a A b A c;
exp?esses assign carry =a &b | a&c | b &c;
combinational
logic endmodule
b[D> Expression
a[>
carry
c[>

jsum

\) O sum

Operators and Vectors

Four-bit vector,
little-endian style

module gates(input 1logic [3:0] a, b,
output logic [3:0] v1, v2, v3,
v4, v5); Multi-line

. . . comment
/* Five groups of two-input logic gates L —
acting on 4-bit busses +*/

assign vl = a & b; // AND
assign v2 = a | b; // OR
assign y3 = a A b; // XOR
assign v4 = ~(a & b); // NAND
assign y5 = ~(a | b); // NOR

endmodule

Reduction AND Operator

module and8(input 1logic [7:0] a,
output logic v);

assign v = &a; // Reduction AND

// Equivalent to
// assign y = a[7] & a[6] & a[5] & a[4] &

// al3] & a[2] & a[l1l] & a[0];
// Also ~&a NAND

// la OR

// ~la NOR

// Aa XOR

// ~Ag XNOR

endmodule

The Conditional Operator: A Two-Input Mux

module mux2(input logic [3:0] dO, di,
input logic S,
output logic [3:0] v);

// Array of two-input muxes

assign y = s ? dl : dO;
endmodule

sO——
do3..o [<
d1[3..0] S

y~0

y~3

—{ yi3.0

Operators in Precedence Order

lc -¢ &c ~&cC NOT, Negate, Reduction AND, NAND
|lc ~|c Ac ~Ac OR, NOR, XOR, XNOR
a*b a/b a%b Multiply Divide, Modulus
a+b a-»b Add, Subtract

a<<b a>»>hb Logical Shift

a<<b a>»>>hb Arithmetic Shift

a<b a<=b a>b a>=b Relational

a == al=b Equality

a&b arb AND

arb a~Ab XOR, XNOR

alb OR

a?b:c Conditional

{a,b,c,d,r{e})} Concatenation and Replication

An XOR Built Hierarchically

module mynand2(input logic a, b,
output logic v);
assign vy = ~(a & b);
endmodule

module myxor2(input logic a, b,

output logic v); Declare internal wires

logic abn, aa, bb; -
n1: A mynand2

mynand2 nl(a, b, abn), __————+— connected to a, b, and abn

n2(a, abn, aa),

n3(abn, b, bb),

n4(aa, bb, y);
endmodule
4
mynand2:n2 mynand2:n4

a y~not a y~not

a[> . l ER

mynand2:nl
E il mynand2:n3
a
b . y =
D_h a y~not
|

o |

Verilog Numbers

16’ h8_0F
N

/
Number of Bits Value:
_are ignored

Zero-padded
Can include X and Z

Base: b, o, d, or h

4°b1010 = 4’012 = 4°d10 = 4’ha
16°h4840 = 16’b 100_1000_0100_0000

A Decimal-to-Seven-Segment Decoder

always_comb:
combinational

module dec7seg(input 1logic [3:0] a,

seven-bit
_ binary vector
(_is ignored)

logicin an
imperative style \\\\\\\\ output logic [6:0] v);
always_comb
case (a)
Multiway — 4’d0: vy = 7’b111_1110;
conditional 4’dl: y = 7’b011_0000;
4’d2: y = 7’b110_1101;
4'd5: decimal “5” 4’d3: y = 7’b111_1001;
as a four-bit 4’d4: y = 7’b011_0011;
binary number T ——4°(5: v = 7°b101_1011;
4°d6: vy = 7’b101_1111;
4’dr7: y = 7’b111_0000;
4°ds8: y = 7’b111_1111;
Mandatory 4°d9: y = 7’b111_0011;
—default: y = 7’b000_0000;
endcase
endmodule
!
“blocking
assignment”:

use in always_comb

Imperative Combinational Logic

y~5

2 ~2 0
2 2 1 — yis.0]

module combl(Addo
input logic [3:0] a, b, 0UT(3.0
input logic s, —
output logic [3:0] v);

0 -0 y~7
always_comb 0 b o :
if (s)
elz: a+b; af3..0] =145 -3
y=aé&b; bB"m[:>-q£:E::::::"II'_________L___ o

endmodule

Both a + b and a & b computed, mux selects the result.

Imperative Combinational Logic

a3..0) D——

module comb2(
input logic [3:0] a, b,
input logic s, t,
output logic [3:0] Vv);

always_comb
if (s)
y = a + b;
else if (t)
vy = a & b;
else
y=a| b;

endmodule

All three expressions computed
in parallel. Cascaded muxes
implement priority

(s over t).

2

b[3.0]

{2

2

Y_\

Yo

Ym

s[>

s t y

1 — a+b
0 1 a&b
0 0 al|b

y-13

y-14

y-15

y-12

D yvis.0)

Imperative Combinational Logic

module comb3(
input logic [3:0] a, b,
input logic s, t,
output logic [3:0] v, z);

always_comb begin
z = 4’b0;
if (s) begin
y = a + b;
Z =a - b;
end else if (t) begin
vy = a & b;
z =a + b;
end else
y=a | b;
end

endmodule

Separate mux cascades for y and z.

One copy of a + b.

[

y-10
s L] o
A y-13
2 o
3.0
SO 21 = yie.0)
(3.0 D11
-9
b0 i y-14
. []
2
Sl s
s

T

D 2.0/

y-8
o
1
2-0
Tho
3
4
21
1h0
2
3
1h0 0
1 1
23
1ho
1

An Address Decoder

module adecode(input logic [15:0] address,
output logic RAM, ROM, Vector concatenation
output logic VIDEO, I0); .

always_comb begin /////////’///////,#<gﬁgﬁﬂ;
{RAM, ROM, VIDEO, IO}—= 4'b 05— |

if (address[15]}————— | Select bit 15

RAM = 1;

else if (address[14:13] == 2’b 00) Select bits 14. 13, & 12
VIDEO = 1; - — T

else if (address[14:12] == 3’b 101)
I0 = 1;

else if (address[14:13] == 2’b 11)
ROM = 1;

end
endmodule

Omitting defaults for RAM, etc. will give “construct does not infer purely
combinational logic.”

Sequential Logic

A D-Flip-Flop

module mydff(input 1logic clk,

always_ff introduces input logic d,
sequential logic output logic q);
\always_ff @(posedge clk)/
q <= d;
Copydtoq endmodule

Non-blocking assignment:
happens “just after” the rising edge

q~reg0

clk

Triggered by the
rising edge of clk

A Four-Bit Binary Counter

module count4(input logic clk,
output logic [3:0] count); Width optional

__ but good style
always_ff @(posedge clE%””,,,,——”””’
count <= count + 4’d1;

endmodule

Addo count[0]~reg[3..0]
OUTJ[3..0]

count[3..0]

ck[>

A Decimal Counter with Reset, Hold, and Load

module dec_counter(input logic clk,
input logic reset, hold, load,
input logic [3:0] d,
output logic [3:0] count);

always_ff @(posedge clk)
if (reset) count <= 4°’d 0;
else if (load) count <= d;
else if (~hold)
if (count == 4°d 9) count <= 4’d 0;
else count <= count + 4’d 1;

endmodule

Moore and Mealy Finite-State Machines

Current
State

Inputs e—

-

The Moore Form:

Output Logic Outputs

Next State
Logic

CLK —p

Outputs are a function of only the current state.

Moore and Mealy Finite-State Machines

InputsL

-

The Mealy Form:

Current
State

Output Logic Outputs

Next State
Logic

CLK —p

Outputs may be a function of both the current state and the inputs.

A mnemonic: Moore machines often need more states.

Moore-style: Sequential Next-State Logic

module moore_tlc(input logic clk, reset,
input logic advance,
output logic red, yellow, green);

enum logic [2:0] {R, Y, G} state; // Symbolic state names

always_ff @(posedge clk)
if (reset) state
else case (state)
R: if (advance) state
G: if (advance) state
Y: if (advance) state
default: state
endcase

assign red
assign yellow
assign green

endmodule

// Moore-style next-state logic
<= R;

<= G;
<=Y;
<= R;
<= R;

state == R; // Combinational output logic
state == Y; // separated from next-state logic
state == G;

Mealy-style: Combinational output/next state logic

module mealy_tlc(input logic clk, reset,
input logic advance,
output logic red, yellow, green);

typedef enum logic [2:0] {R, Y, G} state_t;
state_t state, next_state;

always_ff @(posedge clk)
state <= next_state;

always_comb begin // Mealy-style next state and output logic
{red, vellow, green} = 3’b0; // Default: all off and

next_state = state; // hold state
if (reset) next_state = R;
else case (state)
R: begin red = 1; if (advance) next_state = G; end
G: begin green = 1; if (advance) next_state = Y; end
Y: begin vellow = 1; if (advance) next_state = R; end
default: next_state = R;
endcase

end

endmodule

Blocking vs. Nonblocking assignment

module nonblock(input

logic b, c;
always_ff @(posedge clk)
begin Nonblocking
b <= a, assignment:
c <= b; All run on the
d <=7 clock edge
end
endmodule

clk,
input logic a,
output logic d);

d~reg0

a[>
ck[>—

aaa

module blocking(input clk,
input logic a,
output logic d);

logic b, c;
always_ff @(posedge clk)
begin . Blocking
b = a; assignment:
c = b; Effect felt by
d =—c3 next statement
end
endmodule
d~reg0
a
clk

Summary of Modeling Styles

module styles_tlc(input logic clk, reset,

input logic advance,

output logic red, yellow, green);
enum logic [2:0] {R, Y, G} state;

always_ff @(posedge clk) // Imperative sequential
if (reset) state <= R; // Non-blocking assignment
else case (state) // Case

R: if (advance) state <= G; // If-else
G: if (advance) state <= Y;
Y: if (advance) state <= R;

default: state <= R;
endcase
always_comb begin // Imperative combinational

{red, yellow} = 2’b O; // Blocking assignment
if (state == R) red = 1; // If-else

case (state) // Case
Y: yellow = 1;
default: ;
endcase;
end
assign green = state == G; // Cont. assign. (comb)

endmodule

	Synchronous Digital Design
	Combinational Logic
	Sequential Logic
	Summary of Modeling Styles

