
Digital Design with SystemVerilog
CSEE W4840

Prof. Stephen A. Edwards

Columbia University

Spring 2026

Synchronous Digital Design

Combinational Logic

Sequential Logic

Summary of Modeling Styles

Why HDLs?
1970s: SPICE transistor-level netlists

An XOR built from four NAND gates

.MODEL P PMOS

.MODEL N NMOS

.SUBCKT NAND A B Y Vdd Vss
M1 Y A Vdd Vdd P
M2 Y B Vdd Vdd P
M3 Y A X Vss N
M4 X B Vss Vss N
.ENDS

X1 A B I1 Vdd 0 NAND
X2 A I1 I2 Vdd 0 NAND
X3 B I1 I3 Vdd 0 NAND
X4 I2 I3 Y Vdd 0 NAND

Vss

Y

Vdd

A

B

X1

X2

X3

X4

A

B

I1

I2

I3

Y

Why HDLs?
1980s: Graphical schematic capture programs

Why HDLs?
1990s: HDLs and Logic Synthesis

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity ALU is
port(A: in unsigned(1 downto 0);

B: in unsigned(1 downto 0);
Sel: in unsigned(1 downto 0);
Res: out unsigned(1 downto 0));

end ALU;
architecture behv of ALU is begin

process (A,B,Sel) begin
case Sel is

when "00" => Res <= A + B;
when "01" => Res <= A + (not B) + 1;
when "10" => Res <= A and B;
when "11" => Res <= A or B;
when others => Res <= "XX";

end case;
end process;

end behv;

Separate but Equal: Verilog and VHDL

Verilog: More succinct, really messy

VHDL: Verbose, overly flexible, fairly messy

Part of languages people actually use identical

Every synthesis system supports both

SystemVerilog a newer version. Supports many
more features.

Synchronous Digital Design

The Synchronous Digital Logic Paradigm

Gates and D flip-flops only

No level-sensitive latches

All flip-flops driven by the
same clock

No other clock signals

Every cyclic path contains at
least one flip-flop

No combinational loops

CL
STATE

NEXT STATE

INPUTS OUTPUTS

CLOCK

Timing in Synchronous Circuits

CL· · · · · ·Q D

CLK

CLK

Q

D

tc

tc: Clock period. E.g., 10 ns for a 100 MHz clock

Timing in Synchronous Circuits

CL· · · · · ·Q D

CLK

CLK

Q

D

tp(min,FF) tp(min,CL)

Sufficient Hold Time?

Hold time constraint: how soon after the clock edge
can D start changing? Min. FF delay + min. logic delay

Timing in Synchronous Circuits

CL· · · · · ·Q D

CLK

CLK

Q

D

tp(max,FF)

tp(max,CL)
Sufficient Setup Time?

Setup time constraint: when before the clock edge is D guaranteed stable?
Max. FF delay + max. logic delay

Combinational Logic

Full Adder

Single-line
comment

// Full adder

module

Systems are built
from modules

module full_adder

Module name

full_adder(input

Input port

input logic

Data type:
single bit

logic a

Port name

a, b, c,
output logic sum, carry);

assign“Continuous
assignment”
expresses
combinational
logic

assign sum = a ^ b ^ c;
assign carry = a & b | a & c | b & c

Logical Expression

a & b | a & c | b & c;

endmodule

carry~0

carry~2 carry~3

carry

carry~1

a

c

sum

b

sum

Operators and Vectors

module gates(input logic [3:0]

Four-bit vector,
little-endian style

[3:0] a, b,
output logic [3:0] y1, y2, y3,

y4, y5);

/* Five groups of two-input logic gates

Multi-line
comment

acting on 4-bit busses */
assign y1 = a & b; // AND
assign y2 = a | b; // OR
assign y3 = a ^ b; // XOR
assign y4 = ~(a & b); // NAND
assign y5 = ~(a | b); // NOR

endmodule

Reduction AND Operator

module and8(input logic [7:0] a,
output logic y);

assign y = &a; // Reduction AND

// Equivalent to
// assign y = a[7] & a[6] & a[5] & a[4] &
// a[3] & a[2] & a[1] & a[0];

// Also ~&a NAND
// |a OR
// ~|a NOR
// ^a XOR
// ~^a XNOR

endmodule

The Conditional Operator: A Two-Input Mux

module mux2(input logic [3:0] d0, d1,
input logic s,
output logic [3:0] y);

// Array of two-input muxes

assign y = s ? d1 : d0;
endmodule

y~0
0

1
d0[3..0]

y~1
0

1

y~2
0

1

s

d1[3..0]
y[3..0]

y~3
0

1

3

2

1

0

3

2

1

0

Operators in Precedence Order
!c -c &c ~&c NOT, Negate, Reduction AND, NAND

|c ~|c ^c ~^c OR, NOR, XOR, XNOR

a * b a / b a % b Multiply, Divide, Modulus

a + b a - b Add, Subtract

a << b a >> b Logical Shift

a <<< b a >>> b Arithmetic Shift

a<b a<=b a>b a>=b Relational

a == b a != b Equality

a & b a ^& b AND

a ^ b a ~^ b XOR, XNOR

a | b OR

a ? b : c Conditional

{a,b,c,d,r{e})} Concatenation and Replication

An XOR Built Hierarchically
module mynand2(input logic a, b,

output logic y);
assign y = ~(a & b);

endmodule

module myxor2(input logic a, b,
output logic y);

logic abn, aa, bb;
Declare internal wires

mynand2 n1(a, b, abn),
n1: A mynand2
connected to a, b, and abn

n2(a, abn, aa),
n3(abn, b, bb),
n4(aa, bb, y);

endmodule

mynand2:n1

a

b
y

mynand2:n2

a

b
y

mynand2:n3

a

b
y

mynand2:n4

a

b
y

y

yy~noty y~not

y~noty

y~not

y

b

a

Verilog Numbers

16

Number of Bits

16’h

Base: b, o, d, or h

h8_0F

Value:
_ are ignored
Zero-padded
Can include X and Z

8_0F

4’b1010 = 4’o12 = 4’d10 = 4’ha
16’h4840 = 16’b 100_1000_0100_0000

A Decimal-to-Seven-Segment Decoder

module dec7seg(input logic [3:0] a,
output logic [6:0] y);

always_comb

always_comb:
combinational
logic in an
imperative style

always_comb
case

Multiway
conditional

case (a)
4’d0: y = 7’b111_1110;
4’d1: y = 7’b011_0000;
4’d2: y = 7’b110_1101;
4’d3: y = 7’b111_1001;
4’d4: y = 7’b011_0011;
4’d5

4’d5: decimal “5”
as a four-bit
binary number 4’d5: y = 7’b101_1011

seven-bit
binary vector
(_ is ignored)7’b101_1011;

4’d6: y = 7’b101_1111;
4’d7: y = 7’b111_0000;
4’d8: y = 7’b111_1111;
4’d9: y = 7’b111_0011;
default

Mandatory
default: y =

“blocking
assignment”:
use in always_comb

= 7’b000_0000;
endcase

endmodule

Imperative Combinational Logic

module comb1(
input logic [3:0] a, b,
input logic s,
output logic [3:0] y);

always_comb
if (s)
y = a + b;

else
y = a & b;

endmodule

y~5
0

1

y~2

y~1

y~6
0

1

+

Add0
A[3..0]

B[3..0]
OUT[3..0]

y~0 y~7
0

1

s

a[3..0] y~3

b[3..0]

y[3..0]

y~4
0

1

2

1

0

3

2

1

0

3

2

1

0

3

Both a + b and a & b computed, mux selects the result.

Imperative Combinational Logic
module comb2(
input logic [3:0] a, b,
input logic s, t,
output logic [3:0] y);

always_comb
if (s)
y = a + b;

else if (t)
y = a & b;

else
y = a | b;

endmodule

All three expressions computed
in parallel. Cascaded muxes
implement priority
(s over t).

y~2

y~6 y~9
0

1

y~13
0

1y~5

y~10
0

1

y~14
0

1

y~1

y~0

y~4

y~11
0

1

y~15
0

1

y~3

a[3..0]

y[3..0]

y~7

y~8
0

1

y~12
0

1

s

t

+

Add0
A[3..0]

B[3..0]
OUT[3..0]

b[3..0]

3

0

1

2

2

2

1

1

0

0

3

3

2

2

1

1

0

0

3

3

s t y

1 − a + b
0 1 a & b
0 0 a | b

Imperative Combinational Logic

module comb3(
input logic [3:0] a, b,
input logic s, t,
output logic [3:0] y, z);

always_comb begin
z = 4’b0;
if (s) begin

y = a + b;
z = a - b;

end else if (t) begin
y = a & b;
z = a + b;

end else
y = a | b;

end

endmodule

Separate mux cascades for y and z.
One copy of a + b.

+

Add1
A[4..0]

B[4..0]
OUT[4..0]

y~5

t

y~1

y~10
0

1 y~13
0

1
s

y~2

y~6

y~9
0

1

y~14
0

1

y~0

y[3..0]

y~4

y~11
0

1

y~15
0

1

a[3..0]

y~3

b[3..0]

y~8
0

1

y~7

y~12
0

1

z~0
01'h0

1

z~4
0

1

+

Add0
A[3..0]

B[3..0]
OUT[3..0]

z~1
01'h0

1

z~5
0

1

z~2
01'h0

1

z~6
0

1

z~3
01'h0

1

z~7
0

1

z[3..0]

0

1

2

3

3

0

1

2

4

3

2

1

3

3

0

0

2

2

1

1

0:
3

3

3

0

0

2

2

1

1

0:
3

An Address Decoder

module adecode(input logic [15:0] address,
output logic RAM, ROM,
output logic VIDEO, IO);

always_comb begin
{RAM, ROM, VIDEO, IO}

Vector concatenation

} = 4’b 0

Default:
all zeros

0;
if (address[15] Select bit 15[15])
RAM = 1;

else if (address[14:13] == 2’b 00)
VIDEO = 1;

else if (address[14:12]

Select bits 14, 13, & 12

[14:12] == 3’b 101)
IO = 1;

else if (address[14:13] == 2’b 11)
ROM = 1;

end

endmodule

Omitting defaults for RAM, etc. will give “construct does not infer purely
combinational logic.”

Sequential Logic

A D-Flip-Flop

module mydff(input logic clk,
input logic d,
output logic q);

always_ff

always_ff introduces
sequential logic

always_ff @(posedge clk

Triggered by the
rising edge of clk

clk)

Copy d to q

q <=

Non-blocking assignment:
happens “just after” the rising edge

<= d;

endmodule

d q

q~reg0

D

CLK

Q

clk

A Four-Bit Binary Counter

module count4(input logic clk,
output logic [3:0] count);

always_ff @(posedge clk)
count <= count + 4’d

Width optional
but good style

4’d 1;

endmodule

+

Add0
A[3..0]

B[3..0]4'h8
OUT[3..0]

count[0]~reg[3..0]

D

CLK

Q

clk

count[3..0]

A Decimal Counter with Reset, Hold, and Load
module dec_counter(input logic clk,

input logic reset, hold, load,
input logic [3:0] d,
output logic [3:0] count);

always_ff @(posedge clk)
if (reset) count <= 4’d 0;
else if (load) count <= d;
else if (~hold)

if (count == 4’d 9) count <= 4’d 0;
else count <= count + 4’d 1;

endmodule

count~0
0

11'h0
count~4

0

1

count~8
0

1

count~12
0

11'h0count~1
0

11'h0
count~5

0

1

count~9
0

1

count~13
0

11'h0count~2
0

11'h0
count~6

0

1

count~10
0

1

count~14
0

11'h0count~3
0

11'h0
count~7

0

1

count~11
0

1

count~15
0

11'h0

+

Add0
A[3..0]

B[3..0]4'h8
OUT[3..0]

count[0]~reg[3..0]

D

CLK

Q count[3..0]

=

Equal0
A[3..0]

B[3..0]4'h9
OUT

clk

d[3..0]

hold

load

reset

3

2

1

0

0

1

2

3

3

2

1

0

Moore and Mealy Finite-State Machines

Next State
Logic

Output Logic

CLK

Next
State

Current
State

Inputs Outputs

The Moore Form:

Outputs are a function of only the current state.

Moore and Mealy Finite-State Machines

Next State
Logic

Output Logic

CLK

Next
State

Current
State

Inputs Outputs

The Mealy Form:

Outputs may be a function of both the current state and the inputs.

A mnemonic: Moore machines often need more states.

Moore-style: Sequential Next-State Logic

module moore_tlc(input logic clk, reset,
input logic advance,
output logic red, yellow, green);

enum logic [2:0] {R, Y, G} state; // Symbolic state names

always_ff @(posedge clk) // Moore-style next-state logic
if (reset) state <= R;
else case (state)

R: if (advance) state <= G;
G: if (advance) state <= Y;
Y: if (advance) state <= R;
default: state <= R;

endcase

assign red = state == R; // Combinational output logic
assign yellow = state == Y; // separated from next-state logic
assign green = state == G;

endmodule

Mealy-style: Combinational output/next state logic
module mealy_tlc(input logic clk, reset,

input logic advance,
output logic red, yellow, green);

typedef enum logic [2:0] {R, Y, G} state_t;
state_t state, next_state;

always_ff @(posedge clk)
state <= next_state;

always_comb begin // Mealy-style next state and output logic
{red, yellow, green} = 3’b0; // Default: all off and
next_state = state; // hold state
if (reset) next_state = R;
else case (state)

R: begin red = 1; if (advance) next_state = G; end
G: begin green = 1; if (advance) next_state = Y; end
Y: begin yellow = 1; if (advance) next_state = R; end
default: next_state = R;

endcase
end

endmodule

Blocking vs. Nonblocking assignment
module nonblock(input clk,

input logic a,
output logic d);

logic b, c;

always_ff @(posedge clk)
begin

b <= a;
c <= b;
d <=

Nonblocking
assignment:
All run on the
clock edge<= c;

end

endmodule

a d

d~reg0

D

CLK

Q

b

D

CLK

Q

c

D

CLK

Q

clk

module blocking(input clk,
input logic a,
output logic d);

logic b, c;

always_ff @(posedge clk)
begin
b = a;
c = b;
d =

Blocking
assignment:
Effect felt by
next statement= c;

end

endmodule

a d

d~reg0

D

CLK

Q

clk

Summary of Modeling Styles

module styles_tlc(input logic clk, reset,
input logic advance,
output logic red, yellow, green);

enum logic [2:0] {R, Y, G} state;

always_ff @(posedge clk) // Imperative sequential
if (reset) state <= R; // Non-blocking assignment
else case (state) // Case
R: if (advance) state <= G; // If-else
G: if (advance) state <= Y;
Y: if (advance) state <= R;
default: state <= R;

endcase

always_comb begin // Imperative combinational
{red, yellow} = 2’b 0; // Blocking assignment
if (state == R) red = 1; // If-else
case (state) // Case

Y: yellow = 1;
default: ;

endcase;
end

assign green = state == G; // Cont. assign. (comb)
endmodule

	Synchronous Digital Design
	Combinational Logic
	Sequential Logic
	Summary of Modeling Styles

