Networking, USB, and Threads
CSEE W4840

Prof. Stephen A. Edwards
Columbia University

Spring 2026

Ethernet and the Internet

Sockets

USB: The Universal Serial Bus

libusb 1.0

POSIX Threads (pthreads)

Ethernet and the Internet

Ethernet

Started in about 1976 at Xerox PARC

IEEE Standard 802.3

Carrier-sense multiple access/carrier detect protocol:
1. Listen to the cable

2. If nobody’s there, start talking
3. If someone interrupts, stop, and retry after a random time

10Base-5 “Thicknet”

Shared coax bus with * 802.3 std. suggests yellow

‘'vampire tap” tranceivers

Drop Cable-

Segmﬂﬂ

Transceiver

From http://www.turkcenet.org/yerel_htm/10base5.htm

10Base-2 “Thinnet”

50-Ohm coax segments with BNC “T” connectors Coax invariably black

From Computer Desktop Encyclopedia
@ 1998 The Computer Language Co. Inc.

From http://www.answers.com/topic/10base2

10Base-T and 100Base-T

Put the shared medium in a hub: star topology Everybody uses it now

Workstations

5

e

Star topology Choice of colors

From http://www.asante.com/downloads/legacy/fh200bugra.pdf and http://www.connectworld.net/cables_u/patch-cable-manufacturer.ntml

100Base-TX wiring (CAT 5)

Pair of twisted pairs, one pair for each direction.
Uplink or St_ralght-tlzlrough Normal or
MDI port twisted pair cable MDI-X port

1 -1
| 0000000000000 | R
2 - - 2

3 - 3
Re [50000000000000¢ |
6 L 6
Hub-to-computer cable is straight-through.
Computer-to-computer cable is a “crossover;” most hardware can now adapt

An Ethernet Frame

7 bytes 1 6 6 2 46-1500 4

Preamble | SOF | Dest. | Src. | Type | Payload | Checksum

SOF Start of Frame
Dest. Destination address
Src. Source address
Type Type of packet or length of data field
0x0800 for IP, 0x0806 for ARP, etc.
Bytes sent LSB first
Minimum packet length: 64 (6 + 6 + 2 + 46 + 4)

Lengths > 1500 indicate packet type

Ethernet (MAC) addresses

48 bits ~ 281 trillion (world population: 7.9 billion)

Bits 48-24 Vendor code (OUI)
Bit 41 O=ordinary, 1=group (broadcast) address
Bits 23-0 Serial number

On one of my machines:

$ ifconfig ethO
ethO Ethernet HWaddr 00:18:f3:ef:2b:36

OUI (Organizationally Unique Identifier):
00:18:f3 is ASUS (the machine’s motherboard manufacturer)
Address FF:FF:FF:FF:FF:FF is broadcast

An Ethernet Packet

00d006269c00 Destination MAC address (router)
00087423ccab Source MAC address (desktop)

0800

45

00

0028
c31c
4000

40

06

3ff1
803b1372
40ec6329

Type = IP packet

IPv4, 5 word (20-byte) header
Normal service

Total length = 40 bytes
Identification (unique)

“Don"t Fragment”

64 hops to live

TCP protocol

Header checksum (one’s complement)
Source IP 128.59.19.114 (desktop)
Destination IP 64.236.99.41

deac 0050 bf49 9bab ala4 8bed 5010 ffff 1093 0000 (payload)

IP Header

31 | [28)27] | [24]23] | || | | [16[15] [13]12] [[[[[]]]]]0
Version | Words in | Type of Service Total number of bytes
=4 Header (typically 0) in the IP packet
Identification Number Flags Fragment Offset
(which packet) -DF MF (which fragment)
Time-to-Live Protocol Header checksum
(hops left) 6=TCP, 17=UDP (one's complement sum)
Source IP Address
Destination IP Address

Options and padding

IP Addresses

32 bits ~ 4 billion (world population: 7.9 billion)
First n bits indicate network (n = 8, 16, 24)

For example, columbia.edu
owns 128.59.0.0 — 128.59.255.255

Magical addresses:

127.0.0.1 “Me"
192.168.x.x Never assigned worldwide
10.X.X.X Never assigned worldwide

255.255.255.255 Broadcast

Sockets

Sockets

// Create an Internet socket (SOCK_STREAM = TCP)
int sockfd = socket(AF_INET, SOCK_STREAM, 0);

#define IPADDR(a,b,c,d) (htonl(((a)<<24)|((b)<<16)]|((c)<<8)|(d)))

#define SERVER_HOST IPADDR(192,168,1,1)
#define SERVER_PORT htons(42000) // host to network byte order short

struct sockaddr_in serv_addr = { AF_INET, SERVER_PORT, { SERVER_HOST } };

// Connect to the server
connect(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr));

// Write to the socket
write(sockfd, "Hello _World!\n", 13);

// Read from the socket: block until data arrives
#define BUFFER_SIZE 128

char recvBuf[BUFFER_SIZE];

read(sockfd, &recvBuf, BUFFER_SIZE - 1));

USB: The Universal Serial Bus

USB: Universal Serial Bus

1.5 Mbps, 12 Mbps, 480 Mbps (USB 2.0), 5 Gbps (USB 3.0; two additional pairs)
Point-to-point, differential, twisted pair

3-5m maximum cable length

VBUS

GND

Series "A" Connectors

Series "B" Connectors

¢ Series "A" plugs are
always oriented upstream
towards the Host System

"A" Plugs
(From the
USB Device)

'""A" Receptacles

(Downstream Output

Sfrom the USB Host or
Hub)

¢ Series "B" plugs are
always oriented
downstream towards the

USB Device

"B" Plugs
(From the
Host System)

"B'" Receptacles
(Upstream Input to the
USB Device or Hub)

USB signaling

NRZI: 0 = toggle, 1 = no change

Bit stuffing: 0 automatically inserted after six consecutive 1s

o 11 01 0 1 0 0 0 1 0 0 1 1 O

Data Idle _1 | | | | ’—‘
NRZInJL Idle L] L L

Each packet prefixed by a SYNC field: 000 11

Low- vs. full-speed devices identified by different pull-ups on D+/D- lines

USB Packets

Always start with SYNC
4-bit type; 4-bit type complemented

2 bits distinguish Token, Data, Handshake, and Special; two more bits select
sub-types

Data, depending on packet type
Data checked using a CRC

Addresses (1-128) assigned by bus master, each with 16 possible endpoints

USB Protocol

Polled bus (USB 1.0, 2.0): host initiates all transfers. USB 3.0 is full-duplex
Most transactions involve three packets:
» “Token” packet from host requesting data

» Data packet from target
» Acknowledge from host

Supports both streams of bytes and structured messages (e.g., control
changes).

USB Data Flow Types

» Control
For configuration, etc.

» Bulk Data
Arbitrary data stream: bursty

» Interrupt Data
Timely, reliable delivery of data. Usually events.

» Isochronous Data
For streaming real-time transfer: prenegotiated bandwidth and latency

Host Interconnect Physical Device

l | !

v I I v

i I

Client SW ; Function Function Layer
|
i
i

USB Logical
USBgv{’stem , Devife USB Device

i Layer
!

USB Host ﬁ' USB Bus USB Bus

Controller 0 | i Interface Interface Layer
- i

el 1,21 communications flow

Logical communications flow

Implementation Focus Area

USB Bus Topology

—

of Cummm
o
el

Source: http://www.usblyzer.com/usb-topology.htm

K

U
:
!

Host Controller
Root Hub
€

Device e

Compaound —_

Mouse @

http://www.usblyzer.com/usb-topology.htm

Isusb output

Front: USB keyboard

Back: IR receiver

Back: Monitor hub w/
webcam
microphone
Back: 7-port hub w/
SD card reader

Bluetooth dongle
SoCKit board (USB Blaster)

Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus

SoCKit board (Serial)

002
002
002
001
001
001
001
001
001
001
001
001
001

Device
Device
Device
Device
Device
Device
Device
Device
Device
Device
Device
Device
Device

001:
002:
006:
001:
002:
039:
005:
041:
004:
006:
007:
042:
043:

ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID

1d6b:
0471:
04d9:
1d6b:
0409:
03£f0:
0409:
03£f0:
11521
Obda:
12101
09fb:
0403:

O4cc

OaSc

0001
0815
1203
0002
005a
b116
005a
3724

0119

6810
6001

Linux Foundation 1.1 root hub

Philips (or NXP) eHome Infrared Receiver

Holtek Semiconductor, Inc. Keyboard

Linux Foundation 2.0 root hub

NEC Corp. HighSpeed Hub

Hewlett-Packard Webcam

NEC Corp. HighSpeed Hub

Hewlett-Packard Webcam

ST-Ericsson USB 2.0 Hub

Realtek Semiconductor Corp. Storage Device (SD card reader)
Broadcom Corp. BCM2045 Bluetooth

Altera

Future Technology Devices International, Ltd FT232 USB-Serial (UART) IC

Isusb -t output

/: Bus 02.Port 1: Dev
Port 3: Dev 2,
Port 5: Dev 6,
Port 5: Dev 6,
0l.Port 1: Dev
Port 2: Dev 2,

Front: USB keyboard |—
Back: IR receiver /: Bus
Back: Monitor hub w/
webcam
microphone
Back: 7-port hub w/
SD card reader
Bluetooth dongle
SoCKit board (USB Blaster)
SoCKit board (Serial)

__ Port

__ Port

Port
__ Port
__ Port
l—

=W www

Dev

: Dev
: Dev
: Dev
: Dev
Port 2: Dev 41, If O, Class Mass Storage, Driver=usb-storage, 480M

1, Class=root_hub, Driver=ohci-pci/10p, 12M

If 0, Class=Vendor Specific Class, Driver=mceusb, 12M
If 0, Class=Human Interface Device, Driver=usbhid, 1.5M
If 1, Class=Human Interface Device, Driver=usbhid, 1.5M
1, Class=root_hub, Driver=ehci-pci/10p, 480M

If 0, Class=Hub, Driver=hub/4p, 480M

39, If 0, Class=Video, Driver=uvcvideo, 480M

39, If 1, Class=Video, Driver=uvcvideo, 480M

39, If 2, Class=Audio, Driver=snd-usb-audio, 480M
39, If 3, Class=Audio, Driver=snd-usb-audio, 480M
5, If 0, Class=Hub, Driver=hub/2p, 480M

Port 4: Dev 4, If 0, Class—Hub Driver=hub/7p, 480M

Port
Port
Port
Port
Port
Port
Port

DUWWWWN

: Dev
: Dev
: Dev
: Dev
: Dev
: Dev
: Dev

6, If 0, Class=Mass Storage, Driver=usb-storage, 480M

7, If 0, Class=Wireless, Driver=btusb, 12M

7, If 1, Class=Wireless, Driver:btusb, 12M

7, If 2, Class=Vendor Specific Class, Driver=, 12M

7, If 3, Class=Application Specific Interface, Driver=, 12M
42, If 0, Class=Vendor Specific Class, Driver=, 480M

43, If 0, Class=Vendor Specific Class, Driver=ftdi_sio, 12M

Devices, Configurations, Interfaces, and Endpoints

Devices Keyboards, Mice: physical object
Configurations usually one
Interfaces “logical device”: usually one; my webcam has 4

Endpoints one per input/output stream

[Addi[Endpoint][irectian]

USB Addresses and Endpoints

Addr=2

1158 Device

Addr=3

EFD Out |—n
EF1In -
——| EF10ut

oy Funetion

|
|
I
|
|
| —

Source: http://www.beyondlogic.org/usbnutshell/usb3.shtml

tuby Funection

http://www.beyondlogic.org/usbnutshell/usb3.shtml

USB Keyboard: Isusb (highlights)

Bus 002 Device 007: ID 413c:2003 Dell Computer Corp. Keyboard
Device Descriptor:

bDeviceClass 0 (Defined at Interface level)
idVendor 0x413c Dell Computer Corp.
idProduct 0x2003 Keyboard
bNumConfigurations 1
Configuration Descriptor:
bNumInterfaces
Interface Descriptor:
bInterfaceNumber 0
bNumEndpoints 1
bInterfaceClass 3 Human Interface Device
bInterfaceSubClass 1 Boot Interface Subclass
bInterfaceProtocol 1 Keyboard
iInterface 0
HID Device Descriptor:
bcdHID 1.10
bNumDescriptors 1
bDescriptorType 34 Report
wDescriptorLength 65
Endpoint Descriptor:
bEndpointAddress 0x81 EP 1 IN
bmAttributes 3
Transfer Type Interrupt
Synch Type None
Usage Type Data

wMaxPacketSize 0x0008 1x 8 bytes

Bus 001 Device 006: ID Obda:0119 Realtek Semiconductor Corp. Storage Device (SD card reader)
Device Descriptor:

bDeviceClass 0 (Defined at Interface level)
idVendor 0xObda Realtek Semiconductor Corp.
idProduct 0x0119 Storage Device (SD card reader)
bNumConfigurations 1
Configuration Descriptor:
bNumInterfaces
bConfigurationValue 1
iConfiguration 4 CARD READER
bmAttributes 0x80
(Bus Powered)
MaxPower 500mA
Interface Descriptor:
bNumEndpoints 2
bInterfaceClass 8 Mass Storage
bInterfaceSubClass 6 SCSI
bInterfaceProtocol 80 Bulk-Only
Endpoint Descriptor:
bEndpointAddress 0x01 EP 1 OUT
bmAttributes 2
Transfer Type Bulk
Synch Type None
Usage Type Data
wMaxPacketSize 0x0200 1x 512 bytes
Endpoint Descriptor:
bLength 7
bDescriptorType 5
bEndpointAddress 0x82 EP 2 IN
bmAttributes 2
Transfer Type Bulk
Synch Type None
Usage Type Data

wMaxPacketSize 0x0200 1x 512 bytes

libusb 1.0

Libusb 1.0

User-level C library for USB device access. Isusb built on it.
www.libusb.org
1.0 API supplants earlier libusb 0.1

Nice tutorial: http://www.dreamincode.net/forums/topic/
148707-introduction-to-using-1ibusb-10/

www.libusb.org
http://www.dreamincode.net/forums/topic/148707-introduction-to-using-libusb-10/
http://www.dreamincode.net/forums/topic/148707-introduction-to-using-libusb-10/

Using libusb

1. Initialize the library with libusb_init()

N

©® NV~ W

Select your device from the list returned by libusb_get_device_list().
Later, free the list with libusb_free _device_list().

Initiate contact with libusb_open()

Claim the interface with libusb_claim_interface()
Communicate using the various libusb_. .. _transfer() functions
Release the interface with libusb_release_interface()

Close the device with libusb_close()

Close the library with lubusb_exit()

libusb: Finding a Keyboard

libusb_device =*+*devs;

struct libusb_device_descriptor desc;

struct libusb_device_handle xkeyboard = NULL;

ssize_t num_devs, d; uint8_t i, k;

uint8_t #endpoint_address;

num_devs = libusb_get_device_list(NULL, &devs);

for (d =0 ; d < num_devs ; d++) {
libusb_device *dev = devs[d];
libusb_get_device_descriptor(dev, &desc);

if (desc.bDeviceClass == LIBUSB_CLASS_PER_INTERFACE) {
struct libusb_config_descriptor =config;
libusb_get_config_descriptor(dev, 0, &config);
for (i = 0 ; i < config->bNumInterfaces ; i++)
for (k = 0 ; k < config->interface[i].num_altsetting ; k++) {
const struct libusb_interface_descriptor *inter =
config->interface[i].altsetting + Kk;
if (inter->bInterfaceClass == LIBUSB_CLASS_HID &&
inter->bInterfaceProtocol == USB_HID_KEYBOARD_PROTOCOL) {
libusb_open(dev, &keyboard);
xendpoint_address = inter->endpoint[0].bEndpointAddress;
libusb_claim_interface(keyboard, i);
ubusb_free_device_list(devs, 1);
return keyboard;

libusb: Reading from a Keyboard

#define USB_LCTRL (1 << 0)
#define USB_LSHIFT (1 << 1)
#define USB_LALT (1 << 2)
#define USB_LGUI (1 << 3)
#define USB_RCTRL (1 << 4)
#define USB_RSHIFT (1 << 5)
#define USB_RALT (1 << 6)
#define USB_RGUI (1< 7)

struct usb_keyboard_packet {
uint8_t modifiers;
uint8_t reserved;
uint8_t keycode[6];

18

struct libusb_device_handle xkeyboard;
uint8_t endpoint_address;

libusb_interrupt_transfer(keyboard, endpoint_address,
(unsigned char =) &packet,
sizeof(packet),
&transferred, 0);
if (transferred == sizeof(packet))
// Got a new keyboard event

USB HID Keyboard Protocol Packet

Page 60 of http://www.usb.org/developers/hidpage/HID1_11.pdf

Byte Meaning

0 Modifier keys
1 Reserved
2 Keycode 1

7 Keycode 6

http://www.usb.org/developers/hidpage/HID1_11.pdf

USB HID Keycodes
Page 53: http://www.usb.org/developers/hidpage/Hutl_12v2.pdf
Code Meaning

0 No event

4 aorA .

5 borB 00 00 00 00 00---00 Nothing pressed
_ 00 00 04 00 00---00 “A" pressed
: 02 00 04 00 00---00 Shift+A

29 zorZ 03 00 04 00 00---00 Shift+Ctrl+A

30 1or! 02 00 04 00 00---00 Shift+A
: 02 00 04 05 00---00 Shift+A+B

38 9 or (

39 Oor)

40 Enter

http://www.usb.org/developers/hidpage/Hut1_12v2.pdf

POSIX Threads (pthreads)

Creation and Termination

#include <stdio.h>
#include <pthread.h>

void xmythread(void *ptr)

printf("%s\n", (char =*)ptr);
return NULL;

}
int main()
{
pthread_t threadl, thread?2;
const char *messagel = "Thread_1", *message2 = "Thread_2";

pthread_create(&threadl, NULL, mythread, (void *)messagel);
pthread_create(&thread2, NULL, mythread, (void *)message2);

pthread_join(threadl, NULL);
pthread_join(thread2, NULL);

return 0;

4

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

Mutexes: Ensuring atomic access

#include <stdio.h>
#include <pthread.h>

pthread_mutex_t mutexl = PTHREAD_MUTEX_INITIALIZER;
int counter = 0; /* Caution: shared variable =/

void *incCounter() {
int tmp;
pthread_mutex_lock(&mutexl); /+ Grab the lock =/
tmp = counter; /* Needlessly complicated to make a point =/
tmp = tmp + 1;
counter = tmp;
pthread_mutex_unlock(&mutexl); /+ Release the lock +*/
return NULL;
}

int main() {
pthread_t threadl, thread2;
pthread_create(&threadl, NULL, &incCounter, NULL);
pthread_create(&thread2, NULL, &incCounter, NULL);
pthread_join(threadl, NULL);
pthread_join(thread2, NULL);
return O;

Condition Variables: Notifying waiters

pthread_mutex_t mutexl = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t condl = PTHREAD_COND_INITIALIZER;
int count; int valid = 0;
void *writeCounter() {
int i;
for (i =0 ; 1 < 10 ; i++) {
pthread_mutex_lock(&mutexl);
while (valid) pthread_cond_wait(&condl, &mutexl);
count = i; valid = 1;
pthread_cond_signal (&condl);
pthread_mutex_unlock(&mutexl) ;

}
return NULL; }
void *readCounter() {

int done = 0;

do {
pthread_mutex_lock(&mutexl);
while (!valid) pthread_cond_wait(&condl, &mutexl);
printf("%d\n", count);
valid = 0; done = count == 9;
pthread_cond_signal (&condl);
pthread_mutex_unlock(&mutexl);

} while (!done);

return NULL: }

	Ethernet and the Internet
	Sockets
	USB: The Universal Serial Bus
	libusb 1.0
	POSIX Threads (pthreads)

