Memory in SystemVerilog
CSEE W4840

Prof. Stephen A. Edwards
Columbia University

Spring 2026



Implementing Memory



Memory = Storage Element Array + Addressing

Bits are expensive
They should dumb, cheap, small, and tighly packed

Bits are numerous
Can't just connect a long wire to each one



Williams Tube

CRT-based random access memory, 1946.
Used on the Manchester Mark |. 2048 bits.



Mercury acoustic delay line

Used in the EDASC, 1947.

32 x 17 bits



Selectron Tube

RCA, 1948.

2 x 128 bits

Four-dimensional addressing

A four-input AND gate at each bit for
selection



Magnetic Core

IBM, 1952.



1950s & 60s. Secondary storage.



Modern Memory Choices

Family
Mask ROM
PROM
EPROM
FLASH
EEPROM
NVRAM
SRAM

DRAM

Programmed

at fabrication

once

1000s, UV erase
1000s, block erase
1000s, byte erase

oo

Persistence
o0

o0

10 years

10 years

10 years

5 years

while powered

64 ms
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Implementing ROMs
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Implementing ROMs
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Implementing ROMs
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A FIoa_t_in Gate MOSFET

CONTROL
GATE

FLOATING
GATE

CHANNEL DRAIN

SOURCE Pt e R Rl Lomal |306nn|.| by |

Cross section of a NOR FLASH transistor. Kawai et al., ISSCC 2008 (Renesas)



Floating Gate n-channel MOSFET

Floating gate uncharged; Control gate at OV: Off



Floating Gate n-channel MOSFET

Floating gate uncharged; Control gate positive: On



Floating Gate n-channel MOSFET

Floating gate negative; Control gate at 0V: Off



Floating Gate n-channel MOSFET

Floating gate negative; Control gate positive: Off



EPROMs and FLASH use Floating-Gate MOSFETs
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Static Random-Access Memory Cell

Bit line Bit line

| L2 L 2 Word line



Layout of a 6T SRAM Cell

GND BIT BIT_B GND

ol bk

- - 0k yox - -1 - -

- - - ek Yoc —.i :
Cell boundary T

Weste and Harris. Introduction to CMOS VLSI Design. Addison-Wesley, 2010.



1024 x 1 bit, 1972

= L.

Intel’s 2102 SRAM,




2102 Block Diagram
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SRAM Timing
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6264 SRAM Block Diagram
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Toshiba TC55V16256J) 256K x 16
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Ancient (c. 1982) DRAM: 4164 64K x 1

bbb
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Basic DRAM read and write cycles
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Page Mode DRAM read cycle
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Samsung 8M x 16 SDRAM
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SDRAM: Control Signals

X

oo_\_\_\oo_\>
w0
Q)

o_\aoo_\o_\>
w0

Action

NOP

Load mode register

Active (select row)

Read (select column, start burst)
Write (select column, start burst)
Terminate Burst

Precharge (deselect row)

Auto Refresh

Mode register: selects 1/2/4/8-word bursts, CAS latency, burst on write



SDRAM: Timing with 2-word bursts
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Using Memory in SystemVerilog



Synchronous SRAM

Address =]

Data In =

Write —>

Clock —

Memory

H> Data Out

Clock L/
Address _A° Read A0
Data In -

Write

Data Out ____ )\ bo_




Synchronous SRAM

Address =]

Data In =

Write —>

Clock —

Memory

H> Data Out
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Write ___[
Data Out



Synchronous SRAM
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Memory: A Fundamental Bottleneck

Plenty of bits, but
You can only see a small window each clock cycle
Using memory = scheduling memory accesses

Software hides this from you:
sequential programs naturally schedule accesses

In hardware, you must schedule memory accesses




Modeling Synchronous Memory in SystemVerilog

module memory ( Write enable

input logic clk P
input logic write ,
input logic [3:0] address |, |
input logic [7:0] data_in—]
output logic [7:0] data_out)5+——— 8-bit output bus
logic [7:0] mem-[15:01; |
always_ff @(posedge clk) |
begin —— Clocked
if (write)
mem[address] <= data_inj; |

data_out <= mem[address]; Write to array when asked
end T

4-bit address

_ 8-bitinputbus

— The memory array: 16 8-bit bytes

endmodule Always read (old) value from array




M10K Blocks in the Cyclone V

data_a[19..0]
address a[a..0]
Wren_a

q af19..0]

data b[19..0]
address b[&..0]
wren_b

g b[19.0]

B %#%

clock_a
clock_b

10 kilobits per block Dual ported: two addresses, write enable signals

Data busses can be 1-20 bits wide Our Cyclone 5CSEMAS5 has 397 = 496 KB



Memory in Quartus: the Megafunction Wizard

Which megafunction would you like to customize? \yhich device family will you be using? [Cyclone v =

Select a megafunction from the list below

S

®

(1 DSP
-] Gates
e o]
[ Interfaces
- (1 JTAG-accessible Extensions
-1 Memory Compiler

IR R e

SIS

S
“%, FIFO
% LPM_SHIFTREG
-5, RAM initializer
- RAM: 1-PORT

%, ROM: 1-PORT
-~ ROM: 2-PORT
- ¥4, Shift register (RAM-based)
B3 PLL

X

ol

Which type of output file do you want to create?
) AHDL

) VHDL

® Verilog HDL

What name do you want for the output file?

fhome/sedwards/svn/classes/2014/4840/dummy/memory E]

Output files will be generated using the classic file structure

Return to this page for another create operation
Note: To compile a project successfully in the Quartus Il software, your design
files must be in the project directery, in a library specified in the Libraries

page of the Options dialog box (Tools menu), or a library specified in the
Libraries page of the Settings dialog box (Assignments menu).

Your current user library directories are:

Cancel H < Back H Next > Finish




Memory: Single- or Dual-Ported
') RAM: 2-PORT

Documentation

Widths/Blk Type csfRd, > Clk clrs Qutputl = Qutput2 Mem Init

Currently selected device family:

Cyclone V' =

Match project/default

Address_a[12..0]

en_a How will you be using the dual port RAM?
gdata_b[7..0) With one read port and one write port
dd) b[12.07
%S'J—]_ @ With two read/write ports

How do you want to specify the memory size?
As a number of words

@ As a number of bits




Memory: Select Port Widths

'”ﬂ RAM: 2-PORT

data_a[0] D
Address_a[12..0]

en_a

ata_b[15..0]
address_b[8..0]

en_b

lock

Documentation

Outputl > Qutput2 Mem Init

How many bits of memory?

+| Use different data widths on different ports
Read/Write Ports

How wide should the "q_a' output bus be?

How wide should the "data_a' input bus be?

How wide should the "q_b' output bus be?

Note: You could enter arbitrary values for width and depth

What should the memory block type be?

Auto MLAB @ M1OK
M144K Options...

Set the maximum block depth to

words



Memory: One or Two Clocks

Documentation

'”ﬂ RAM: 2-PORT

Widths/Blk Ty > Clk s Output2 = Mem Init

What clocking method do you want to use?

memory
lata_a[0] .
;_Eddless 120 H Single clock
en_a DD Dual clock: use separate 'read’ and *
ata b[15.0] Dual clock: use separate 'input' and "output’ clocks
jaddress_big. 0] LH No clock (fully asynchronous)
en_b
FH ® Dual clock: use separate clocks for A and B ports
lock_a
lock_b Create 'rden_a' and 'rden_b' read enable signals

Create byte enable for port A
Create byte enable for port B

What is the width of a byte for byte enables? w | bits

ecting (ECC) to check an
double errors

Enable error checking and
single bit errors and detect



Memory: Output Ports Need Not Be Registered
'”ﬂ RAM: 2-PORT

Documentation

Outputz > Mem Init

memoary Which ports should be registered?
ta
ata_a[0] _D— a.al0l, Write input ports
Address_a[12..0] Y
en_a ‘data_a', ‘'wraddress_a'. and "wren_a’
—H
Read input ports
lata_b[15..0] —D' o o More Options...
address_b[B..0] o rdaddress’ and ‘rden
en_b L Read output port(s)
Jock 'g_a" and 'q_b'
ock_a
lock b Create one clock enable signal for each More Options
clock signal

Use different clock enables for registers

Create an "aclr’ asynchronous clear for N
the registered ports __More Options...



Memory: Wizard-Generated Verilog Module

This generates the following SystemVerilog module:

module memory ( // Port A:
input logic [12:0] address_a, // 8192 1-bit words
input logic clock_a,
input logic [0:0] data_a,
input logic wren_a, // Write enable
output logic [0:0] q_a,
// Port B:
input logic [8:0] address_b, // 512 16-bit words
input logic clock_b,
input logic [15:0] data_b,
input logic wren_b, // Write enable

output logic [15:0] g _b);

Instantiate like any module; Quartus treats specially



Two Ways to Ask for Memory

1. Use the Megafunction Wizard
+ Warns you in advance about resource usage
— Awkward to change

2. Let Quartus infer memory from your code

+ Better integrated with your code
— Easy to inadvertantly ask for garbage



The Perils of Memory Inference

Failure: Exploded!
Synthesized to an 854-page schematic with
aul : 10280 registers (no M10K blocks)
module twoport H H
s e @l Page 1 looked like this:

input logic [8:0] aa, ab, —
input logic [19:0] da, db,
input logic wa, wb,

output logic [19:0] ga, gb);

i

!

TTTTTITY

logic [19:0] mem [511:0];

NEREsRR R EaRRNE LS

1177

always_ff @(posedge clk) begin
if (wa) mem[aa] <= da;
ga <= mem[aa];
if (wb) mem[ab] <= db;
gb <= mem[ab];
end O

H G

T
”—JTF TITTTTT

endmodule t




The Perils of Memory Inference

module twoport2(
input logic clk,
input logic [8:0] aa, ab,
input logic [19:0] da, db,
input logic wa, wb,
output logic [19:0] ga, gb);

logic [19:0] mem [511:0];

always_ff @(posedge clk) begin
if (wa) mem[aa] <= da;
ga <= mem[aa];

end .
Failure

always_ff @(posedge clk) begin
if (wb) mem[ab] <= db;
gb <= mem[ab];

end

Still didn't work:

RAM logic “mem” is uninferred due to
‘ unsupported read-during-write behavior

endmodule




The Perils of Memory Inference

module twoport3( Finally!
input logic clk, y:
input logic [8:0] aa, ab, ; .
input logic [19:0] da, db, Togk this structure from a t.emplate.
input logic wa, wb, Edit—Insert Template—Verilog HDL—Full

output logic [19:0] qa, gb); Designs—RAMs and ROMs—True Dual-Port
logic [19:0] mem [511:01; RAM (single clock)

always_ff @(posedge clk) begin o[> mem ael0l-regl1s. 0
- ] DATAOUT[19..0] Q| _i > qa[19..0]
1f ( wa ) beg in PORTBDATAOUT(0)] LK
mem [ aa ] <= da 5 PORTBDATAOUT[1]
- - PORTBDATAOUT/[2]|
dqa1<— da; . - - 10 regl10.0
end else ga <= memfaal], ¢——IcLko PORTBDATAOUT[4]
d d ’ da(19..0] [ DATAIN[19.0] PORTBDATAOUT[S] 9 D abpio.0)
en L lporTaCLKO PORTBDATAOUTS] “
db[19..0] [)—————dfPORTBDATAIN[19.0]  PORTBDATAOUTI7)

a].waYS_ff @ (posedge C 1k) begin ab[s_,o]D—EPoRTERADDR[a 0 PORTBDATAOUTI8]|

PORTBWADDR[8.0]  PORTBDATAOUT[9]

if ( wb ) begin wh [ _>———{PORTBWE PORTBDATAOUT[10]

= . aafs. 0] >—ERADDR[B o PORTBDATAOUT[11]

mem[ab] <= db; WADDR[S.0] PORTEDATAOUTI12]

qb <= db H wa[ D>——{we PORTBDATAOUT[13]

end else gb <= mem[ab]; E——
PORTEDATAOUTI1S]

end poRTEDATAGUTES

PORTBDATAOUT[17)|
PORTBDATAOUT[18]|

endmodule ISR |




The Perils of Memory Inference
Also works: separate read and write addresses

module twoport4(
input logic clk,
input logic [8:0] ra, wa,
input logic write,
input logic [19:0] d,
output logic [19:0] q);

logic [19:0] mem [511:0];

always_ff @(posedge clk) begin
if (write) mem[wa] <= d;
g <= mem[ra]l;

end

endmodule

q[0]~reg[19..0]

D Q O di19.0

ck[—> IAAA

mem

d[19..0] [O—
ra[8..0) [—
waf8..0| [D——

write [ >——

CLKO
DATAIN[19..0]

RADDR[8.0]  DATAOUT[19..0]
WADDRIS..0]

WE

- —

Conclusion:

-
SYNC_RAM

CLK

Inference is fine for single port or one read and

one write p

ort.

Use the Megafunction Wizard for anything else.
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