
Memory in SystemVerilog
CSEE W4840

Prof. Stephen A. Edwards

Columbia University

Spring 2026



Implementing Memory



Memory = Storage Element Array + Addressing

Bits are expensive

They should dumb, cheap, small, and tighly packed

Bits are numerous

Can’t just connect a long wire to each one



Williams Tube

CRT-based random access memory, 1946.
Used on the Manchester Mark I. 2048 bits.



Mercury acoustic delay line

Used in the EDASC, 1947.

32 × 17 bits



Selectron Tube

RCA, 1948.

2 × 128 bits

Four-dimensional addressing

A four-input AND gate at each bit for
selection



Magnetic Core

IBM, 1952.



Magnetic Drum Memory

1950s & 60s. Secondary storage.



Modern Memory Choices
Family Programmed Persistence

Mask ROM at fabrication ∞

PROM once ∞

EPROM 1000s, UV erase 10 years

FLASH 1000s, block erase 10 years

EEPROM 1000s, byte erase 10 years

NVRAM ∞ 5 years

SRAM ∞ while powered

DRAM ∞ 64 ms



Implementing ROMs

0/1

0

Z: “not
connected”

0

1

0

1

1

1

Add. Data

00 011
01 110
10 100
11 010

2-to-4
Decoder

A1

A0

0 1 1

1 1 0

1 0 0

0 1 0

Wordline 00

Wordline 11

Wordline 22

Wordline 33

Bitline 0

D0

Bitline 1

D1

Bitline 2

D2



Implementing ROMs

0/1

0

Z: “not
connected”

0

1

0

1

1

1

Add. Data

00 011
01 110
10 100
11 010

2-to-4
Decoder

1A1
0A0

0 1 1

1 1 0

1 0 0

0 1 0

Wordline 00

Wordline 11

Wordline 22

Wordline 33

Bitline 0

D0

Bitline 1

D1

Bitline 2

D2

1 0 0

0

0

1

0



Implementing ROMs

0/1

0

Z: “not
connected”

0

1

0

1

1

1

Add. Data

00 011
01 110
10 100
11 010

2-to-4
Decoder

A1

A0

0

1

2

3

D0D1D2



Implementing ROMs

0/1

0

Z: “not
connected”

0

1

0

1

1

1

Add. Data

00 011
01 110
10 100
11 010

2-to-4
Decoder

A1

A0

0

1

2

3

D0D1D2

0 01

1

1

0

1



Mask ROM Die Photo



A Floating Gate MOSFET

Cross section of a NOR FLASH transistor. Kawai et al., ISSCC 2008 (Renesas)



Floating Gate n-channel MOSFET

Channel

Drain Source

Floating Gate

Control GateSiO2

Floating gate uncharged; Control gate at 0V: Off



Floating Gate n-channel MOSFET

Channel

Drain Source

Floating Gate

Control GateSiO2
+++++++++

− − − − − − −−
+++++++++

− − − − − − −−

Floating gate uncharged; Control gate positive: On



Floating Gate n-channel MOSFET

Channel

Drain Source

Floating Gate

Control GateSiO2

− − −−

− − −−
++++

++++

Floating gate negative; Control gate at 0V: Off



Floating Gate n-channel MOSFET

Channel

Drain Source

Floating Gate

Control GateSiO2
++++++++

− − − − − − −

−−
++

Floating gate negative; Control gate positive: Off



EPROMs and FLASH use Floating-Gate MOSFETs



Static Random-Access Memory Cell

Word line

Bit line Bit line



Layout of a 6T SRAM Cell

��

���

 !�  !�$%� $%�&$

'()�

�����"#����	�

Weste and Harris. Introduction to CMOS VLSI Design. Addison-Wesley, 2010.



Intel’s 2102 SRAM, 1024 × 1 bit, 1972



2102 Block Diagram



SRAM Timing

A12
A11

A2
A1
A0

CS2

D7
D6

D1
D0

...
...

CS1

WE
OE

6264
8K × 8
SRAM

CS1

CS2

WE

OE

Addr 1 2

Data write 1 read 2



6264 SRAM Block Diagram

CY6264-1

A1
A2
A3
A4
A5
A6
A7
A8

I/O0

256 x 32 x 8
ARRAY

INPUT BUFFER

COLUMN DECODER
POWER
DOWN

I/O1

I/O2

I/O3

I/O4

I/O5

I/O6

I/O7
CE1
CE2
WE

OE



Toshiba TC55V16256J 256K × 16

A17
A16

A2
A1
A0

D15
D14

D1
D0

...
...

UB
LB
WE
OE
CE

256K × 16
SRAM



Dynamic RAM Cell

Row

Column



Ancient (c. 1982) DRAM: 4164 64K × 1

A7
A6

A2
A1
A0

Din Dout

...

WE
CAS
RAS

4164
64K × 1
DRAM



Basic DRAM read and write cycles

RAS

CAS

Addr Row Col Row Col

WE

Din to write

Dout read



Page Mode DRAM read cycle

RAS

CAS

Addr Row Col Col Col

WE

Din

Dout read read read



Samsung 8M × 16 SDRAM

BA1
BA0
A11
A10

A2
A1
A0

UDQM
LDQM

CKE
CLK

DQ15
DQ14

DQ1
DQ0

...

...

WE
CAS
RAS
CS

8M × 16
SDRAM

Bank Select

Data Input Register

8M x 4 / 4M x 8 / 2M x 16

8M x 4 / 4M x 8 / 2M x 16

S
e
n
s
e
 A

M
P

O
u
tp

u
t B

u
ffe

r
I/O

 C
o
n
tro

l

Column Decoder

Latency & Burst Length

Programming Register

A
d
d
re

s
s
 R

e
g
is

te
r

R
o
w

 B
u
ffe

r

R
e

fre
s
h

 C
o
u

n
te

r

R
o
w

 D
e
c
o
d
e
r

C
o
l. B

u
ffe

r

L
R

A
S

L
C

B
R

LCKE

LRAS LCBR LWE LDQM

CLK CKE CS RAS CAS WE L(U)DQM

LWE

LDQM

DQi

CLK

ADD

LCAS LWCBR

8M x 4 / 4M x 8 / 2M x 16

8M x 4 / 4M x 8 / 2M x 16

Timing Register



SDRAM: Control Signals

RAS CAS WE Action

1 1 1 NOP
0 0 0 Load mode register
0 1 1 Active (select row)
1 0 1 Read (select column, start burst)
1 0 0 Write (select column, start burst)
1 1 0 Terminate Burst
0 1 0 Precharge (deselect row)
0 0 1 Auto Refresh

Mode register: selects 1/2/4/8-word bursts, CAS latency, burst on write



SDRAM: Timing with 2-word bursts

Clk

RAS

CAS

WE

Addr Op R C C

BA B B B

DQ W W R R

Load Active Write Read Refresh



Using Memory in SystemVerilog



Synchronous SRAM

Address

Data In

Write

Clock

Data Out
Memory

Clock

Address A0 A1 A1

Data In D1

Write

Data Out D0 old D1 D1

Read A0



Synchronous SRAM

Address

Data In

Write

Clock

Data Out
Memory

Clock

Address A0 A1 A1

Data In D1

Write

Data Out D0 old D1 D1

Write A1



Synchronous SRAM

Address

Data In

Write

Clock

Data Out
Memory

Clock

Address A0 A1 A1

Data In D1

Write

Data Out D0 old D1 D1

Read A1



Memory: A Fundamental Bottleneck

Plenty of bits, but

You can only see a small window each clock cycle

Using memory = scheduling memory accesses

Software hides this from you:
sequential programs naturally schedule accesses

In hardware, you must schedule memory accesses



Modeling Synchronous Memory in SystemVerilog

module memory(
input logic clk ,
input logic write

Write enable

write ,
input logic [3:0] address

4-bit address

address ,
input logic [7:0] data_in

8-bit input bus
data_in ,

output logic [7:0] data_out 8-bit output busdata_out);

logic [7:0] mem
The memory array: 16 8-bit bytes

mem [15:0];

always_ff @(posedge clk
Clocked

posedge clk)
begin
if (write)
mem[address] <= data_in

Write to array when asked
data_in;

data_out <= mem[address]

Always read (old) value from array

mem[address];
end

endmodule



M10K Blocks in the Cyclone V

10 kilobits per block Dual ported: two addresses, write enable signals

Data busses can be 1–20 bits wide Our Cyclone 5CSEMA5 has 397 = 496 KB



Memory in Quartus: the Megafunction Wizard



Memory: Single- or Dual-Ported



Memory: Select Port Widths



Memory: One or Two Clocks



Memory: Output Ports Need Not Be Registered



Memory: Wizard-Generated Verilog Module

This generates the following SystemVerilog module:

module memory ( // Port A:
input logic [12:0] address_a, // 8192 1-bit words
input logic clock_a,
input logic [0:0] data_a,
input logic wren_a, // Write enable
output logic [0:0] q_a,

// Port B:
input logic [8:0] address_b, // 512 16-bit words
input logic clock_b,
input logic [15:0] data_b,
input logic wren_b, // Write enable
output logic [15:0] q_b);

Instantiate like any module; Quartus treats specially



Two Ways to Ask for Memory

1. Use the Megafunction Wizard
+ Warns you in advance about resource usage
− Awkward to change

2. Let Quartus infer memory from your code
+ Better integrated with your code
− Easy to inadvertantly ask for garbage



The Perils of Memory Inference

module twoport(
input logic clk,
input logic [8:0] aa, ab,
input logic [19:0] da, db,
input logic wa, wb,
output logic [19:0] qa, qb);

logic [19:0] mem [511:0];

always_ff @(posedge clk) begin
if (wa) mem[aa] <= da;
qa <= mem[aa];
if (wb) mem[ab] <= db;
qb <= mem[ab];

end

endmodule

Failure: Exploded!
Synthesized to an 854-page schematic with
10280 registers (no M10K blocks)
Page 1 looked like this:



The Perils of Memory Inference
module twoport2(
input logic clk,
input logic [8:0] aa, ab,
input logic [19:0] da, db,
input logic wa, wb,
output logic [19:0] qa, qb);

logic [19:0] mem [511:0];

always_ff @(posedge clk) begin
if (wa) mem[aa] <= da;
qa <= mem[aa];

end

always_ff @(posedge clk) begin
if (wb) mem[ab] <= db;
qb <= mem[ab];

end

endmodule

Failure

Still didn’t work:

RAM logic “mem” is uninferred due to
unsupported read-during-write behavior



The Perils of Memory Inference
module twoport3(
input logic clk,
input logic [8:0] aa, ab,
input logic [19:0] da, db,
input logic wa, wb,
output logic [19:0] qa, qb);

logic [19:0] mem [511:0];

always_ff @(posedge clk) begin
if (wa) begin

mem[aa] <= da;
qa <= da;

end else qa <= mem[aa];
end

always_ff @(posedge clk) begin
if (wb) begin

mem[ab] <= db;
qb <= db;

end else qb <= mem[ab];
end

endmodule

Finally!

Took this structure from a template:
Edit→Insert Template→Verilog HDL→Full
Designs→RAMs and ROMs→True Dual-Port
RAM (single clock)

clk qa[0]~reg[19..0]

D

CLK

Q

mem

SYNC_RAM

WE

CLK0

PORTBWE

PORTBCLK0

DATAIN[19..0]

WADDR[8..0]

RADDR[8..0]

PORTBDATAIN[19..0]

PORTBWADDR[8..0]

PORTBRADDR[8..0]

PORTBDATAOUT[0]

PORTBDATAOUT[1]

PORTBDATAOUT[2]

PORTBDATAOUT[3]

PORTBDATAOUT[4]

PORTBDATAOUT[5]

PORTBDATAOUT[6]

PORTBDATAOUT[7]

PORTBDATAOUT[8]

PORTBDATAOUT[9]

PORTBDATAOUT[10]

PORTBDATAOUT[11]

PORTBDATAOUT[12]

PORTBDATAOUT[13]

PORTBDATAOUT[14]

PORTBDATAOUT[15]

PORTBDATAOUT[16]

PORTBDATAOUT[17]

PORTBDATAOUT[18]

PORTBDATAOUT[19]

DATAOUT[19..0] qa[19..0]

qb[0]~reg[19..0]

D

CLK

Q qb[19..0]
da[19..0]

db[19..0]

ab[8..0]

wb

aa[8..0]

wa



The Perils of Memory Inference

module twoport4(
input logic clk,
input logic [8:0] ra, wa,
input logic write,
input logic [19:0] d,
output logic [19:0] q);

logic [19:0] mem [511:0];

always_ff @(posedge clk) begin
if (write) mem[wa] <= d;
q <= mem[ra];

end

endmodule

Also works: separate read and write addresses

clk

d[19..0]

q[19..0]

q[0]~reg[19..0]

D

CLK

Q

mem

SYNC_RAM

WE

CLK0

DATAIN[19..0]

WADDR[8..0]

RADDR[8..0] DATAOUT[19..0]ra[8..0]

wa[8..0]

write

Conclusion:

Inference is fine for single port or one read and
one write port.

Use the Megafunction Wizard for anything else.


	Implementing Memory
	Using Memory in SystemVerilog

