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Implementing Memory



Memory = Storage Element Array + Addressing

Bits are expensive

They should dumb, cheap, small, and tighly packed

Bits are numerous

Can’t just connect a long wire to each one



Williams Tube

CRT-based random access memory, 1946.
Used on the Manchester Mark I. 2048 bits.



Mercury acoustic delay line

Used in the EDASC, 1947.

32 × 17 bits



Selectron Tube

RCA, 1948.

2 × 128 bits

Four-dimensional addressing

A four-input AND gate at each bit for
selection



Magnetic Core

IBM, 1952.



Magnetic Drum Memory

1950s & 60s. Secondary storage.



Modern Memory Choices
Family Programmed Persistence

Mask ROM at fabrication ∞

PROM once ∞

EPROM 1000s, UV erase 10 years

FLASH 1000s, block erase 10 years

EEPROM 1000s, byte erase 10 years

NVRAM ∞ 5 years

SRAM ∞ while powered

DRAM ∞ 64 ms
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Mask ROM Die Photo



A Floating Gate MOSFET

Cross section of a NOR FLASH transistor. Kawai et al., ISSCC 2008 (Renesas)



Floating Gate n-channel MOSFET

Channel

Drain Source

Floating Gate

Control GateSiO2

Floating gate uncharged; Control gate at 0V: Off



Floating Gate n-channel MOSFET

Channel

Drain Source

Floating Gate

Control GateSiO2
+++++++++

− − − − − − −−
+++++++++

− − − − − − −−

Floating gate uncharged; Control gate positive: On



Floating Gate n-channel MOSFET
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Floating Gate n-channel MOSFET
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EPROMs and FLASH use Floating-Gate MOSFETs



Static Random-Access Memory Cell

Word line

Bit line Bit line



Layout of a 6T SRAM Cell
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Weste and Harris. Introduction to CMOS VLSI Design. Addison-Wesley, 2010.



Intel’s 2102 SRAM, 1024 × 1 bit, 1972



2102 Block Diagram



SRAM Timing
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6264 SRAM Block Diagram
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Toshiba TC55V16256J 256K × 16
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Dynamic RAM Cell
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Ancient (c. 1982) DRAM: 4164 64K × 1
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Basic DRAM read and write cycles
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Page Mode DRAM read cycle
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Samsung 8M × 16 SDRAM
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SDRAM: Control Signals

RAS CAS WE Action

1 1 1 NOP
0 0 0 Load mode register
0 1 1 Active (select row)
1 0 1 Read (select column, start burst)
1 0 0 Write (select column, start burst)
1 1 0 Terminate Burst
0 1 0 Precharge (deselect row)
0 0 1 Auto Refresh

Mode register: selects 1/2/4/8-word bursts, CAS latency, burst on write



SDRAM: Timing with 2-word bursts
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Using Memory in SystemVerilog
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Memory: A Fundamental Bottleneck

Plenty of bits, but

You can only see a small window each clock cycle

Using memory = scheduling memory accesses

Software hides this from you:
sequential programs naturally schedule accesses

In hardware, you must schedule memory accesses



Modeling Synchronous Memory in SystemVerilog

module memory(
input logic clk ,
input logic write

Write enable

write ,
input logic [3:0] address

4-bit address

address ,
input logic [7:0] data_in

8-bit input bus
data_in ,

output logic [7:0] data_out 8-bit output busdata_out);

logic [7:0] mem
The memory array: 16 8-bit bytes

mem [15:0];

always_ff @(posedge clk
Clocked

posedge clk)
begin
if (write)
mem[address] <= data_in

Write to array when asked
data_in;

data_out <= mem[address]

Always read (old) value from array

mem[address];
end

endmodule



M10K Blocks in the Cyclone V

10 kilobits per block Dual ported: two addresses, write enable signals

Data busses can be 1–20 bits wide Our Cyclone 5CSEMA5 has 397 = 496 KB



Memory in Quartus: the Megafunction Wizard



Memory: Single- or Dual-Ported



Memory: Select Port Widths



Memory: One or Two Clocks



Memory: Output Ports Need Not Be Registered



Memory: Wizard-Generated Verilog Module

This generates the following SystemVerilog module:

module memory ( // Port A:
input logic [12:0] address_a, // 8192 1-bit words
input logic clock_a,
input logic [0:0] data_a,
input logic wren_a, // Write enable
output logic [0:0] q_a,

// Port B:
input logic [8:0] address_b, // 512 16-bit words
input logic clock_b,
input logic [15:0] data_b,
input logic wren_b, // Write enable
output logic [15:0] q_b);

Instantiate like any module; Quartus treats specially



Two Ways to Ask for Memory

1. Use the Megafunction Wizard
+ Warns you in advance about resource usage
− Awkward to change

2. Let Quartus infer memory from your code
+ Better integrated with your code
− Easy to inadvertantly ask for garbage



The Perils of Memory Inference

module twoport(
input logic clk,
input logic [8:0] aa, ab,
input logic [19:0] da, db,
input logic wa, wb,
output logic [19:0] qa, qb);

logic [19:0] mem [511:0];

always_ff @(posedge clk) begin
if (wa) mem[aa] <= da;
qa <= mem[aa];
if (wb) mem[ab] <= db;
qb <= mem[ab];

end

endmodule

Failure: Exploded!
Synthesized to an 854-page schematic with
10280 registers (no M10K blocks)
Page 1 looked like this:



The Perils of Memory Inference
module twoport2(
input logic clk,
input logic [8:0] aa, ab,
input logic [19:0] da, db,
input logic wa, wb,
output logic [19:0] qa, qb);

logic [19:0] mem [511:0];

always_ff @(posedge clk) begin
if (wa) mem[aa] <= da;
qa <= mem[aa];

end

always_ff @(posedge clk) begin
if (wb) mem[ab] <= db;
qb <= mem[ab];

end

endmodule

Failure

Still didn’t work:

RAM logic “mem” is uninferred due to
unsupported read-during-write behavior



The Perils of Memory Inference
module twoport3(
input logic clk,
input logic [8:0] aa, ab,
input logic [19:0] da, db,
input logic wa, wb,
output logic [19:0] qa, qb);

logic [19:0] mem [511:0];

always_ff @(posedge clk) begin
if (wa) begin

mem[aa] <= da;
qa <= da;

end else qa <= mem[aa];
end

always_ff @(posedge clk) begin
if (wb) begin

mem[ab] <= db;
qb <= db;

end else qb <= mem[ab];
end

endmodule

Finally!

Took this structure from a template:
Edit→Insert Template→Verilog HDL→Full
Designs→RAMs and ROMs→True Dual-Port
RAM (single clock)

clk qa[0]~reg[19..0]

D

CLK

Q

mem

SYNC_RAM

WE

CLK0

PORTBWE

PORTBCLK0

DATAIN[19..0]

WADDR[8..0]

RADDR[8..0]

PORTBDATAIN[19..0]

PORTBWADDR[8..0]

PORTBRADDR[8..0]

PORTBDATAOUT[0]

PORTBDATAOUT[1]

PORTBDATAOUT[2]

PORTBDATAOUT[3]

PORTBDATAOUT[4]

PORTBDATAOUT[5]

PORTBDATAOUT[6]

PORTBDATAOUT[7]

PORTBDATAOUT[8]

PORTBDATAOUT[9]
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PORTBDATAOUT[11]
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PORTBDATAOUT[18]

PORTBDATAOUT[19]

DATAOUT[19..0] qa[19..0]

qb[0]~reg[19..0]

D

CLK

Q qb[19..0]
da[19..0]

db[19..0]

ab[8..0]

wb

aa[8..0]

wa



The Perils of Memory Inference

module twoport4(
input logic clk,
input logic [8:0] ra, wa,
input logic write,
input logic [19:0] d,
output logic [19:0] q);

logic [19:0] mem [511:0];

always_ff @(posedge clk) begin
if (write) mem[wa] <= d;
q <= mem[ra];

end

endmodule

Also works: separate read and write addresses

clk

d[19..0]

q[19..0]

q[0]~reg[19..0]

D

CLK

Q

mem

SYNC_RAM

WE

CLK0

DATAIN[19..0]

WADDR[8..0]

RADDR[8..0] DATAOUT[19..0]ra[8..0]

wa[8..0]

write

Conclusion:

Inference is fine for single port or one read and
one write port.

Use the Megafunction Wizard for anything else.


	Implementing Memory
	Using Memory in SystemVerilog

