Drawing Lines with SystemVerilog

Prof. Stephen A. Edwards
Columbia University

Spring 2026

Bresenham’s Line Algorithm

Bresenham'’s Line Algorithm

Objective:Draw a line...

Bresenham'’s Line Algorithm

...with well-approximating pixels...

e

Bresenham'’s Line Algorithm

...by maintaining error information..

MA\ Error = 1/)7

// Error = —3/7

Bresenham'’s Line Algorithm

...encoded using integers

5 1
A
s | 2 | 7
MA\Error=1/

// Err

or = —

3/7

Approach

1.

Understand the algorithm

I went to Wikipedia; doesn’t everybody?
Code and test the algorithm in software
| used C and the SDL library for graphics

. Define the interface for the hardware module

A communication protocol: consider the whole system
Schedule the operations

Draw a timing diagram!

In hardware, you must know in which cycle each thing happens.

. Code in RTL

Always envision the hardware you are asking for

Test in simulation

Create a testbench: code that mimicks the environment (e.g., generates
clocks, inputs).

Test on the FPGA

Simulating correctly is necessary but not sufficient.

The Pseudocode from Wikipedia

function line(x0, yO, x1, y1)

dx := abs(x1-x0)
dy := abs(yl-y0)

if x0 < x1 then sx :
if y0 < v1 then sy :

err := dx-dy

loop
setPixel (x0,y0)
if x0 = x1 and vy0

e2 := 2xerr

if e2 > -dy then
err := err - dy
x0 := x0 + sx

end if

if e2 < dx then
err := err + dx
y0 := y0O + sy

end if

end loop

1 else sx :
1 else sy :

yl exit loop

-1
-1

My C Code

void line(Uint16 x0, Uintl16 y0O, Uintl6 x1, Uintl6 v1)
{
Sintl6 dx, dy; // Width and height of bounding box

Uintl16 x, v; // Current point
Sintl6 err; // Loop-carried value
Sintl6 e2; // Temporary variable

int right, down;// Boolean

dx = x1 - x0; right = dx > 0; if (!lright) dx = -dx;
dy = y1 - y0; down = dy > O; if (down) dy = -dy;
err = dx + dy; x = x0; y = y0;
for (;;) {

plot(x, v);

if (x == x1 && v == yl) break; // Reached the end
e2 = err < 1; // err = 2

if (e2 > dy) { err += dy; if (right) x++; else x--;}
if (e2 < dx) { err += dx; if (down) vy++; else y--;}

Module Interface

module bresenham(input logic clk, reset,

input logic start,
input logic [10:0] xO0, yO, x1, vi1,

output logic plot,
output logic [10:0] x, v,

output logic done) ;

start indicates (x0, y0) and (x1, y7) are valid
plot indicates (x,y) is a point to plot

done indicates we are ready for the next start

Scheduling: Timing Diagram
clk

(x0,y0)
(x1,y1)

start

state ioLE) RUN | oL RUN IDLE

done /

plot

X 0 1 2 3 4 5 6
0 1 2 3
y
err 3 6 2 5 1 4 0
dx, dy | Zf4

RTL The IDLE state logic signed [11:0] dx, dy, err, e2;

/% C code #/ logic right, down;
Sintl6 dx; typedef enum logic {IDLE, RUN} state_t;
Sintl6 dy; state_t state;
Uintl6 x, v;
Sintl6 err; always_ff @(posedge clk) begin
Sintl6 e2; done <= 0;
int right; plot <= 0;
int down; if (reset) state <= IDLE;
else case (state)
dx = x1 - x0; IDLE:
right = dx > 0; if (start) begin
if (!right) dx = -dx; dx = x1 - x0; // Blocking!
dy = vy1 - yO0; right = dx >= 0;
down = dy > 0; if (~right) dx = -dx;
if (down) dy = -dy; dy = vyl - yO0;
down = dy >= 0;
err = dx + dy; if (down) dy = -dy;
X = x0; err = dx + dy;
vy = v0; X <= x0;
for (;3) { g e
lot(x, V); POt <=
p state <= RUN;

end

RTL: The RUN state

/# C Code =/

for (;;) {
plot(x, v);
if (x == x1 &
y =yl
break;
e2 = err << 1;
if (e2 > dy) {
err += dy;
if (right) x++;
else x—-;

}
if (e2 < dx) {
err += dx;
if (down) vy++;
else y—-;
}
}

RUN:
if (x == x1 & y ==
done <= 1;
state <= IDLE;
end else begin
plot <= 1;
e2 = err << 1;
if (e2 > dy) begin
err += dy;
if (right) x <= x + 10’d 1;
else X <=x - 10°’d 1
end
if (e2 < dx) begin
err += dx;
if (down) y <= 10°'d 1
else y <= 10°'d 1
end
end

yl) begin

default:
state <= IDLE;

endcase

end

Datapath for dx, dy, right, and down

I: if (start)

dx = x1 - x0;

right = dx >= 0;

if (~right) dx = -dx; x1
dy = vyl - yO; _ X0

down = dy >= 0;

if (down) dy = -dy;

err = dx + dy;

x <= x0;

y_<= y0;

plot <= 1;

state <= RUN;

R: if (x == x1 && vy == y1)
done <= 1;
state <= IDLE;
E1S$ y1

plot <= 1;

e2 = err << 1; y0

if (e2 > dy)
err += dy;
if (rlght) X <= X +
else X <= X -

if (e2 < dx)
err += dx;
if (down) vy
else y

—_

right

dx

down

Datapath for err

I: if (start)

dx = x1 - x0;

right = dx >= 0;

if (~right) dx = -dx;

dy = vl - yO;

down = dy >= 0;

if (down) dy = -dy;

err = dx + dy;

x <= x0;

y_<= y0;

plot <= 1;

state <= RUN;

R: if (x == x1 && vy == y1)
done <= 1;
state <= IDLE;
else

plot <= 1;

e2 = err << 1;

if (e2 > dy)
err += dy;
if (right) x <= x + 1
else X <=x -1

if (e2 < dx)
err += dx;
if (down) vy
else y

dx
dy

—{<<1

]

RUN

err

Datapath for x and y

I: if (start)
dx = x1 - x0;
right = dx >= 0;
if (~right) dx =
dy = vyl - yO0;
down = dy >= 0;
if (down) dy = -dy;
err = dx + dy;
X <= x0;
y_<= y0;
plot <= 1;
state <= RUN;

R: if (x x1 && v
done <= 1;
state <= IDLE;

else

plot <= 1;

e2 = err << 1;

if (e2 > dy)
err += dy;
if (right) x
else X

if (e2 < dx)
err += dx;
if (down)
else

-dx;

vL)

right e2 > dy RUN
1
+ EII x0 EII
N
1T—
X N)7 done
i I
[down e2 < dx RUN
! B >

The Framebuffer: Interface and Constants

module VGA_framebuffer(

input logic c1k50,

input logic [10:0] x, v,

input logic pixel_color, pixel_write,
output logic [7:0] VGA_R, VGA_G, VGA_B,
output logic VGA_CLK, VGA_HS, VGA_VS, VGA_BLANK_n,VGA_SYNC_n);
parameter HACTIVE = 11’d 1280,
HFRONT_PORCH = 11°’d 32,
HSYNC =11’d 192,
HBACK_PORCH = 11’d 96,
HTOTAL =
HACTIVE + HFRONT_PORCH + HSYNC + HBACK_PORCH; //1600
parameter VACTIVE = 10’d 480,
VFRONT_PORCH = 10’d 10,
VSYNC =10’4d 2,
VBACK_PORCH = 10’d 33,
VTOTAL =
VACTIVE + VFRONT_PORCH + VSYNC + VBACK_PORCH; //525

reset,
// Pixel coordinates

4

// Horizontal counter
logic [10:0]
logic

always_ff @(posedge clk50 or
if (reset) hcount
else if (endOfLine) hcount
else hcount

assign endOflLine = hcount ==

// Vertical counter
logic [9:0]
logic

always_ff @(posedge clk50 or
if (reset) vecount
else if (endOfLine)
if (endOfField)
else

vcount
vcount

assign endOfField = vcount ==

assign VGA_HS 1'((hcount[10
(hcount[6]

assign VGA_VS 1'(veount[9:1

The Framebuffer: Counters and Sync

hcount;
endOfLine;

posedge reset)

<= 0;

<= 0;

<= hcount + 11’d 1;

HTOTAL - 1;

vcount;
endOfField;

posedge reset)
<= 0;

0:

<= 0;
vcount + 10°d 1;

<=
VIOTAL - 1;

:7] == 4’b1010) &
| hcount[5]));

1 == (VACTIVE + VFRONT_PORCH) / 2);

The Framebuffer: Blanking, Memory, and RGB

assign VGA_SYNC_n = 1; // Sync on R, G, and B. Unused for VGA.

logic blank;
assign blank = (hcount[10] & (hcount[9] | hcount[8])) | // 1280
(vcount[9] | (vcount[8:5] == 4’b1111)); // 480

logic framebuffer [307199:0]; // 640 = 480
logic [18:0] read_address, write_address;

assign write_address = x + (y << 9) + (y << 7) ; // x +y * 640
assign read_address =
(hcount >> 1) + (vcount << 9) + (vcount << 7);

logic pixel_read;
always_ff @(posedge clk50) begin
if (pixel_write) framebuffer[write_address] <= pixel_color;
if (hcount[0]) begin
pixel_read <= framebuffer[read_address];
VGA_BLANK_n <= ~blank; // Sync blank with read pixel data
end
end

assign VGA_CLK = hcount[0]; // 25 MHz clock
assign {VGA_R, VGA_G, VGA_B} = pixel_read ? 24 hFF_FF_FF : 24’hO;
endmodule

The “Hallway” Line Generator

module hallway(input logic clk, reset,
input logic VGA_VS,
input logic done,
output logic [10:0] x0, yO0, x1, v1,
output logic start, pixel_color);
/AT
// Typical state:
S_TOP:
if (done) begin
start <= 1;

if (x0 < 620)
x0 <= x0 + 10’d 10;
else begin
state <= S_RIGHT;
x0 <= 639;
v0 <= 0;
end
end

Connecting the Pieces

// SoCKit_Top.sv

logic [10:0]
logic
logic
logic

VGA_framebuffer fb(.clk50(0SC_50_B3B),

bresenham liner(.clk(0SC_50_B3B), —

hallway hall(. c1k(§m

X, ¥, x0,y0,x1,y1;
pixel_color;
pixel_write;
done, start;

.reset (~RESET_n),
%)

.reset(~RESET_n),
.plot(pixel_write),

.reset(~RESET_n),
Sk)5

S

Connect the bresenham
reset port to

~___—aninverted RESET_n

Connect the other
bresenham ports to wires
with the same name

e.g., .x(x), .y(y),...

	Bresenham's Line Algorithm

