
Drawing Lines with SystemVerilog

Prof. Stephen A. Edwards

Columbia University

Spring 2026

Bresenham’s Line Algorithm

Bresenham’s Line Algorithm

Objective:Draw a line...

Bresenham’s Line Algorithm

...with well-approximating pixels...

Bresenham’s Line Algorithm

...by maintaining error information..

Error = −3/7

Error = 1/7

Bresenham’s Line Algorithm

...encoded using integers

3

6 2

5 1

4 0

3

Error = −3/7

Error = 1/7

Approach
1. Understand the algorithm

I went to Wikipedia; doesn’t everybody?
2. Code and test the algorithm in software

I used C and the SDL library for graphics
3. Define the interface for the hardware module

A communication protocol: consider the whole system
4. Schedule the operations

Draw a timing diagram!
In hardware, you must know in which cycle each thing happens.

5. Code in RTL
Always envision the hardware you are asking for

6. Test in simulation
Create a testbench: code that mimicks the environment (e.g., generates
clocks, inputs).

7. Test on the FPGA
Simulating correctly is necessary but not sufficient.

The Pseudocode from Wikipedia
function line(x0, y0, x1, y1)

dx := abs(x1-x0)
dy := abs(y1-y0)
if x0 < x1 then sx := 1 else sx := -1
if y0 < y1 then sy := 1 else sy := -1
err := dx-dy

loop
setPixel(x0,y0)
if x0 = x1 and y0 = y1 exit loop
e2 := 2*err
if e2 > -dy then
err := err - dy
x0 := x0 + sx

end if
if e2 < dx then
err := err + dx
y0 := y0 + sy

end if
end loop

My C Code
void line(Uint16 x0, Uint16 y0, Uint16 x1, Uint16 y1)
{

Sint16 dx, dy; // Width and height of bounding box
Uint16 x, y; // Current point
Sint16 err; // Loop-carried value
Sint16 e2; // Temporary variable
int right, down;// Boolean

dx = x1 - x0; right = dx > 0; if (!right) dx = -dx;
dy = y1 - y0; down = dy > 0; if (down) dy = -dy;
err = dx + dy; x = x0; y = y0;
for (;;) {

plot(x, y);
if (x == x1 && y == y1) break; // Reached the end
e2 = err << 1; // err * 2
if (e2 > dy) { err += dy; if (right) x++; else x--;}
if (e2 < dx) { err += dx; if (down) y++; else y--;}

}
}

Module Interface

module bresenham(input logic clk, reset,

input logic start,
input logic [10:0] x0, y0, x1, y1,

output logic plot,
output logic [10:0] x, y,

output logic done);

start indicates (x0, y0) and (x1, y1) are valid

plot indicates (x,y) is a point to plot

done indicates we are ready for the next start

Scheduling: Timing Diagram

clk

(x0,y0) (0,0) (5,3)

(x1,y1) (7,4) (6,4)

start

state IDLE RUN IDLE RUN IDLE

done

plot

x 0 1 2 3 4 5 6 7 5 6

y 0 1 2 3 4 3 4

err 3 6 2 5 1 4 0 3 0

dx, dy 7, −4 1, −1

RTL: The IDLE state
/* C code */
Sint16 dx;
Sint16 dy;
Uint16 x, y;
Sint16 err;
Sint16 e2;
int right;
int down;

dx = x1 - x0;
right = dx > 0;
if (!right) dx = -dx;
dy = y1 - y0;
down = dy > 0;
if (down) dy = -dy;

err = dx + dy;
x = x0;
y = y0;

for (;;) {
plot(x, y);

logic signed [11:0] dx, dy, err, e2;
logic right, down;

typedef enum logic {IDLE, RUN} state_t;
state_t state;

always_ff @(posedge clk) begin
done <= 0;
plot <= 0;
if (reset) state <= IDLE;
else case (state)

IDLE:
if (start) begin

dx = x1 - x0; // Blocking!
right = dx >= 0;
if (~right) dx = -dx;
dy = y1 - y0;
down = dy >= 0;
if (down) dy = -dy;
err = dx + dy;
x <= x0;
y <= y0;
plot <= 1;
state <= RUN;

end

RTL: The RUN state

/* C Code */

for (;;) {
plot(x, y);
if (x == x1 &&

y == y1)
break;

e2 = err << 1;
if (e2 > dy) {

err += dy;
if (right) x++;
else x--;

}
if (e2 < dx) {

err += dx;
if (down) y++;
else y--;

}
}

RUN:
if (x == x1 && y == y1) begin

done <= 1;
state <= IDLE;

end else begin
plot <= 1;
e2 = err << 1;
if (e2 > dy) begin
err += dy;
if (right) x <= x + 10’d 1;
else x <= x - 10’d 1;

end
if (e2 < dx) begin
err += dx;
if (down) y <= y + 10’d 1;
else y <= y - 10’d 1;

end
end

default:
state <= IDLE;

endcase
end

Datapath for dx, dy, right, and down
I: if (start)

dx = x1 - x0;
right = dx >= 0;
if (~right) dx = -dx;
dy = y1 - y0;
down = dy >= 0;
if (down) dy = -dy;
err = dx + dy;
x <= x0;
y <= y0;
plot <= 1;
state <= RUN;

R: if (x == x1 && y == y1)
done <= 1;
state <= IDLE;

else
plot <= 1;
e2 = err << 1;
if (e2 > dy)
err += dy;
if (right) x <= x + 10’d 1;
else x <= x - 10’d 1;

if (e2 < dx)
err += dx;
if (down) y <= y + 10’d 1;
else y <= y - 10’d 1;

− ≥ 0?

negate 0
1

x1
x0

right
x1 − x0

dx

− ≥ 0?

negate

0
1

y1
y0

down
y1 − y0

dy

Datapath for err
I: if (start)

dx = x1 - x0;
right = dx >= 0;
if (~right) dx = -dx;
dy = y1 - y0;
down = dy >= 0;
if (down) dy = -dy;
err = dx + dy;
x <= x0;
y <= y0;
plot <= 1;
state <= RUN;

R: if (x == x1 && y == y1)
done <= 1;
state <= IDLE;

else
plot <= 1;
e2 = err << 1;
if (e2 > dy)
err += dy;
if (right) x <= x + 10’d 1;
else x <= x - 10’d 1;

if (e2 < dx)
err += dx;
if (down) y <= y + 10’d 1;
else y <= y - 10’d 1;

+
dx
dy

+
dy

0
1

+
dx

0
1

0
1

<<1

<

>

e2

dy
e2 > dy

e2 < dx
dx

err

RUN

Datapath for x and y
I: if (start)

dx = x1 - x0;
right = dx >= 0;
if (~right) dx = -dx;
dy = y1 - y0;
down = dy >= 0;
if (down) dy = -dy;
err = dx + dy;
x <= x0;
y <= y0;
plot <= 1;
state <= RUN;

R: if (x == x1 && y == y1)
done <= 1;
state <= IDLE;

else
plot <= 1;
e2 = err << 1;
if (e2 > dy)
err += dy;
if (right) x <= x + 10’d 1;
else x <= x - 10’d 1;

if (e2 < dx)
err += dx;
if (down) y <= y + 10’d 1;
else y <= y - 10’d 1;

+1

−1

=

=

+1

−1

x
0
1

right

0
1

e2 > dy

1
0x0

RUN

y

0
1

down

0
1

e2 < dx

1
0y0

RUN

y1
x1

done

The Framebuffer: Interface and Constants
module VGA_framebuffer(
input logic clk50, reset,
input logic [10:0] x, y, // Pixel coordinates
input logic pixel_color, pixel_write,

output logic [7:0] VGA_R, VGA_G, VGA_B,
output logic VGA_CLK, VGA_HS, VGA_VS, VGA_BLANK_n,VGA_SYNC_n);

parameter HACTIVE = 11’d 1280,
HFRONT_PORCH = 11’d 32,
HSYNC = 11’d 192,
HBACK_PORCH = 11’d 96,
HTOTAL =

HACTIVE + HFRONT_PORCH + HSYNC + HBACK_PORCH; //1600

parameter VACTIVE = 10’d 480,
VFRONT_PORCH = 10’d 10,
VSYNC = 10’d 2,
VBACK_PORCH = 10’d 33,
VTOTAL =

VACTIVE + VFRONT_PORCH + VSYNC + VBACK_PORCH; //525

The Framebuffer: Counters and Sync
// Horizontal counter
logic [10:0] hcount;
logic endOfLine;

always_ff @(posedge clk50 or posedge reset)
if (reset) hcount <= 0;
else if (endOfLine) hcount <= 0;
else hcount <= hcount + 11’d 1;

assign endOfLine = hcount == HTOTAL - 1;

// Vertical counter
logic [9:0] vcount;
logic endOfField;

always_ff @(posedge clk50 or posedge reset)
if (reset) vcount <= 0;
else if (endOfLine)

if (endOfField) vcount <= 0;
else vcount <= vcount + 10’d 1;

assign endOfField = vcount == VTOTAL - 1;

assign VGA_HS = !((hcount[10:7] == 4’b1010) &
(hcount[6] | hcount[5]));

assign VGA_VS = !(vcount[9:1] == (VACTIVE + VFRONT_PORCH) / 2);

The Framebuffer: Blanking, Memory, and RGB
assign VGA_SYNC_n = 1; // Sync on R, G, and B. Unused for VGA.

logic blank;
assign blank = (hcount[10] & (hcount[9] | hcount[8])) | // 1280

(vcount[9] | (vcount[8:5] == 4’b1111)); // 480

logic framebuffer [307199:0]; // 640 * 480
logic [18:0] read_address, write_address;

assign write_address = x + (y << 9) + (y << 7) ; // x + y * 640
assign read_address =

(hcount >> 1) + (vcount << 9) + (vcount << 7);

logic pixel_read;
always_ff @(posedge clk50) begin

if (pixel_write) framebuffer[write_address] <= pixel_color;
if (hcount[0]) begin

pixel_read <= framebuffer[read_address];
VGA_BLANK_n <= ~blank; // Sync blank with read pixel data

end
end

assign VGA_CLK = hcount[0]; // 25 MHz clock
assign {VGA_R, VGA_G, VGA_B} = pixel_read ? 24’hFF_FF_FF : 24’h0;

endmodule

The “Hallway” Line Generator
module hallway(input logic clk, reset,

input logic VGA_VS,

input logic done,

output logic [10:0] x0, y0, x1, y1,
output logic start, pixel_color);

// ...

// Typical state:

S_TOP:
if (done) begin

start <= 1;
if (x0 < 620)
x0 <= x0 + 10’d 10;

else begin
state <= S_RIGHT;
x0 <= 639;
y0 <= 0;

end
end

Connecting the Pieces

// SoCKit_Top.sv

logic [10:0] x, y, x0,y0,x1,y1;
logic pixel_color;
logic pixel_write;
logic done, start;

VGA_framebuffer fb(.clk50(OSC_50_B3B),
.reset(~RESET_n),
.*);

bresenham liner(.clk(OSC_50_B3B),
.reset(~RESET_n)

Connect the bresenham
reset port to
an inverted RESET_n

.reset(~RESET_n),

.plot(pixel_write),

.*

Connect the other
bresenham ports to wires
with the same name
e.g., .x(x), .y(y),. . .

.*);

hallway hall(.clk(OSC_50_B3B),
.reset(~RESET_n),
.*);

	Bresenham's Line Algorithm

