
Hardware-Software Interfaces
CSEE W4840

Prof. Stephen A. Edwards

Columbia University

Spring 2026

Processor System Block Diagram

Address Bus

Data BusProcessor

Memory Peripheral Peripheral

Simple Bus Timing

Read Cycle

R/W

Enable

Addr

Data

Write Cycle

R/W

Enable

Addr

Data

Strobe vs. Handshake

Strobe

Req

Data

Handshake

Req

Ack

Data

1982:

The
IBM
PC

Intel
8088
4.77
MHz

8-bit
ISA
bus

The ISA Bus: Memory Read

C1 C2 Wait C3 C4

Clk

Addr

BALE

MEMR

IOCHRDY

Data

The ISA Bus: Memory Write

C1 C2 Wait C3 C4

Clk

Addr

BALE

MEMW

IOCHRDY

Data

The PC/104 Form Factor: ISA Lives

Memory-Mapped I/O

▶ To a processor, everything is memory.

▶ Peripherals appear as magical memory locations.

▶ Status registers: when read, report state of peripheral

▶ Control registers: when written, change state of peripheral

Typical Peripheral: The PC Parallel Port

Strobe

Busy

Ack

Data

IBM Personal Computer
Technical Reference
Manual, 1983

Table 2-2: Parallel port bits, arranged by register.
Data Register (Base Address)

Bit Pin: D-sub Signal Name Source Inverted at
connector?

Pin: Centron-
ics

0 2 Data bit 0 PC no 2

1 3 Data bit 1 PC no 3

2 4 Data bit 2 PC no 4

3 5 Data bit 3 PC no 5

4 6 Data bit 4 PC no 6

5 7 Data bit 5 PC no 7

6 8 Data bit 6 PC no 8

7 9 Data bit 7 PC no 9

Some Data ports are bidirectional. (See Control register, bit 5 below.)

Status Register (Base Address +1)

Bit Pin: D-sub Signal Name Source Inverted at
connector?

Pin: Centron-
ics

3 15 nError (nFault) Peripheral no 32

4 13 Select Peripheral no 13

5 12 PaperEnd Peripheral no 12

6 10 nAck Peripheral no 10

7 11 Busy Peripheral yes 11

Additional bits not available at the connector:
0: may indicate timeout (1=timeout).
1, 2: unused.

Control Register (Base Address +2)

Bit Pin: D-sub Signal Name Source Inverted at
connector?

Pin: Centron-
ics

0 1 nStrobe PC1 yes 1

1 14 nAutoLF PC1 yes 14

2 16 nInit PC1 no 31

3 17 nSelectIn PC1 yes 36
1When high, PC can read external input (SPP only).
Additional bits not available at the connector:
4: Interrupt enable. 1=IRQs pass from nAck to system’s interrupt controller. 0=IRQs do not pass
to interrupt controller.
5: Direction control for bidirectional Data ports. 0=outputs enabled. 1=outputs disabled; Data port
can read external logic voltages.
6,7: unused

Jan Axelson, Parallel Port Complete, 2002

DATA PORT BASE ADDRESS + 00H
 STATUS PORT BASE ADDRESS + 01H
 CONTROL PORT BASE ADDRESS + 02H

 The bit map of these registers is:

 D0 D1 D2 D3 D4 D5 D6 D7

 DATA PORT PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7

 STATUS
PORT

 TMOUT 0 0 nERR SLCT PE nACK nBUSY

 CONTROL
PORT

 STROBE AUTOFD nINIT SLC IRQE PCD 0 0

SMSC FDC37M81x PC98/99 Compliant Enhanced Super I/O Controller with Keyboard/Mouse Wakeup Datasheet, 2000

Parallel Port Registers

D7 D6 D5 D4 D3 D2 D1 D0 0x378 Data

Busy Ack Paper Sel Err 0x379 Status

Sel Init Auto Strobe 0x37A Control

1. Write Data

2. Assert Strobe

3. Wait for Busy to clear

4. Wait for Acknowledge

Strobe

Busy

Ack

Data

A Parallel Port Driver
#define DATA 0x378
#define STATUS 0x379
#define CONTROL 0x37A

#define NBSY 0x80
#define NACK 0x40
#define OUT 0x20
#define SEL 0x10
#define NERR 0x08
#define STROBE 0x01

#define INVERT (NBSY | NACK | SEL | NERR)
#define MASK (NBSY | NACK | OUT | SEL | NERR)
#define NOT_READY(x) ((inb(x)^INVERT)&MASK)

void write_single_character(char c) {
while (NOT_READY(STATUS)) ;
outb(DATA, c);
outb(CONTROL, control | STROBE); /* Assert STROBE */
outb(CONTROL, control); /* Clear STROBE */

}

IBM Personal Computer
Technical Reference
Manual, 1983

IBM Personal Computer
Technical Reference
Manual, 1983

DE1-SoC User Manual 44 www.terasic.com

August 24, 2016

Table 3-23 Pin Assignment of LEDs, Switches and Push-buttons

Signal Name HPS GPIO Register/bit Function

HPS_KEY GPIO54 GPIO1[25] I/O

HPS_LED GPIO53 GPIO1[24] I/O

Figure 22-1: Cyclone V SoC GPIO

Reset
Manager

Clock
Manager

Interrupt &
Control

Register
Block

Cortex A9 Subsystem
Core Generic Interrupt

Controller

Slave
Interface

L4 Peripheral Bus

gpio_intr_in

gpio_rst_n[n]

clk

GPIO Interface

I/O GPIO 0

GPIO 1

GPIO 2

GPIO[28:0]

GPIO[57:29]

GPIO[66:58]

HLGPI[13:0]

Table 22-1: GPIO Interface pin table

CommentsMapped to signal namePin Mux Name

Input / OutputGPIO 0 [28:0]GPIO [28:0]

Input / OutputGPIO 1 [28:0]GPIO [57:29]

Input / OutputGPIO 2 [8:0]GPIO [66:58]

Input onlyGPIO 2 [26:13]HLGPI [13:0]

Cyclone V Device Handbook
Volume 3: Hard Processor
System Technical Reference
Manual
Altera, 2013

GPIO Module Address Map
Registers in the GPIO module

Module Instance Base Address

gpio0 0xFF708000

gpio1 0xFF709000

gpio2 0xFF70A000

GPIO Module

Register Offset Width Access Reset Value Description

gpio_swporta_dr 0x0 32 RW 0x0 Port A Data Register

gpio_swporta_ddr 0x4 32 RW 0x0 Port A Data Direction Register

gpio_inten 0x30 32 RW 0x0 Interrupt Enable Register

gpio_intmask 0x34 32 RW 0x0 Interrupt Mask Register

gpio_inttype_level 0x38 32 RW 0x0 Interrupt Level Register

gpio_int_polarity 0x3C 32 RW 0x0 Interrupt Polarity Register

gpio_intstatus 0x40 32 RO 0x0 Interrupt Status Register

gpio_raw_intstatus 0x44 32 RO 0x0 Raw Interrupt Status Register

gpio_debounce 0x48 32 RW 0x0 Debounce Enable Register

gpio_porta_eoi 0x4C 32 WO 0x0 Clear Interrupt Register

gpio_ext_porta 0x50 32 RO 0x0 External Port A Register

gpio_ls_sync 0x60 32 RW 0x0 Synchronization Level Register

gpio_id_code 0x64 32 RO 0x0 ID Code Register

gpio_ver_id_code 0x6C 32 RO 0x3230382A GPIO Version Register

gpio_config_reg2 0x70 32 RO 0x39CFC Configuration Register 2

gpio_config_reg1 0x74 32 RO 0x1FF0F2 Configuration Register 1

Cyclone V HPS Register Address Map and Definitions - GPIO Module Address Map

https://www.intel.com/content/www/us/en/programmable/hps/cyclone-v/hps.html

https://www.intel.com/content/www/us/en/programmable/hps/cyclone-v/hps.html

gpio_ver_id_code
GPIO Component Version

Module Instance Base Address Register Address

gpio0 0xFF708000 0xFF70806C

gpio1 0xFF709000 0xFF70906C

gpio2 0xFF70A000 0xFF70A06C

Offset: 0x6C

Access: RO

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

gpio_ver_id_code

RO 0x3230382A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

gpio_ver_id_code

RO 0x3230382A

gpio_ver_id_code Fields

Bit Name Description Access Reset

31:0 gpio_ver_id_code

ASCII value for each number in the version, followed by *. For
example. 32_30_31_2A represents the version 2.01

RO 0x3230382A

gpio_swporta_dr
This GPIO Data register is used to output data on the GPIO signals. Check the GPIO chapter in the handbook for details on how GPIO2 is
implemented.

Module Instance Base Address Register Address

gpio0 0xFF708000 0xFF708000

gpio1 0xFF709000 0xFF709000

gpio2 0xFF70A000 0xFF70A000

Offset: 0x0

Access: RW

Important: To prevent indeterminate system behavior, reserved areas of memory must not be accessed by software or hardware. Any
area of the memory map that is not explicitly defined as a register space or accessible memory is considered reserved.

Bit Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved gpio_swporta_dr

RW 0x0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

gpio_swporta_dr

RW 0x0

gpio_swporta_dr Fields

Bit Name Description Access Reset

28:0 gpio_swporta_dr

Values written to this register are output on the I/O signals of the GPIO
Data Register, if the corresponding data direction bits for GPIO Data
Direction Field are set to Output mode. The value read back is equal to
the last value written to this register. Note that only bits[26:0] are
implemented for gpio2.

RW 0x0

Start the serial console before powering on the board

screen /dev/ttyUSB0 115200

Interrupt the boot process by quickly pressing a key

U-Boot SPL 2013.01.01 (Jan 12 2019 - 19:40:48)
BOARD : Altera SOCFPGA Cyclone V Board

...

Net: mii0
Warning: failed to set MAC address

Hit any key to stop autoboot: 0
SOCFPGA_CYCLONE5 #

This is the U-Boot command line

SOCFPGA_CYCLONE5 # help
md - memory display
mw - memory write (fill)

Read the GPIO Version Register gpio_ver_id_code

SOCFPGA_CYCLONE5 # md ff70906c 1
ff70906c: 3230382a *802

Read the state of the HPS USER BUTTON gpio_ext_porta

SOCFPGA_CYCLONE5 # md ff709050 1
ff709050: 1df7ffff

SOCFPGA_CYCLONE5 # md ff709050 1
ff709050: 1ff7ffff

Set the data direction register to output for HPS USER LED gpio_swporta_ddr

SOCFPGA_CYCLONE5 # mw ff709004 1000000

Blink the LED gpio_swporta_dr

SOCFPGA_CYCLONE5 # mw ff709000 1000000
SOCFPGA_CYCLONE5 # mw ff709000 0

Interrupts and Polling

Two ways to get data from a peripheral:
▶ Polling: “Are we there yet?”
▶ Interrupts: Ringing Telephone

Interrupts

Basic idea:

1. Peripheral asserts a processor’s interrupt input

2. Processor temporarily transfers control to interrupt service routine

3. ISR gathers data from peripheral and acknowledges interrupt

4. ISR returns control to previously-executing program

Many Different Interrupts

Processor
Int

peripheral

peripheral

peripheral

What’s a processor to do?

ISR polls all potential interrupt sources, then dispatches handler.

Many Different Interrupts

Processor
Int

peripheral

peripheral

peripheral

What’s a processor to do?
ISR polls all potential interrupt sources, then dispatches handler.

Intel 8259 PIC

Data Bus
Buffer

Cascade

Read /
Write
Logic

Control Logic

In
Service
Register

(ISR)

Priority
Resolver

Interrupt
Request
Register

(IRR)

Interrupt Mask Register
(IMR)

Read
Write
CS
A0
Reset

CAS

Dout[7:0]

INTA Int

Din[7:0]

Data Valid

clk

Prioritizes incoming requests & notifies processor

ISR reads 8-bit interrupt vector number of winner

IBM PC/AT: two 8259s; became standard

Interrupts on the Cyclone V

Interrupt controller is part of the Cortex-A9 MPCore subsystem

The Generic Interrupt Controller supports 180 interrupt sources, including 64
from FPGA peripherals

Described in ARM’s Cortex-A9 MPCore Technical Reference Manual (124
pages) and the ARM Generic Interrupt Controller Architecture Specification
(952 pages)

Complicated by multiple cores, protection levels, and virtual machines

Many, many configuration registers. Each interrupt has a priority, enable flag,
status, and control

A perfect thing to let the operating system manage:

https://docs.kernel.org/core-api/genericirq.html

https://developer.arm.com/documentation/ddi0407/latest/
https://developer.arm.com/documentation/ihi0069/hb/?lang=en
https://docs.kernel.org/core-api/genericirq.html

The NoCallerID Project, 2023

Asking the kernel to route interrupts from the device to our code:
// Get the interrupt number for our device from the Device Tree
int irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
dev.irq_num = irq;

// Claim the interrupt and register our ISR
ret = request_irq(irq, (irq_handler_t) irq_handler, 0,

"csee4840_audio", NULL);

Code the kernel will call when the interrupt occurs:
// Our Interrupt Service Routine, called by the kernel
irq_handler_t irq_handler(int irq, void *dev_id,

struct pt_regs *reg) {
...
wake_up_interruptible(&wq); // Unblock the program waiting on us

return IRQ_RETVAL(1);
}

