Hardware-Software Interfaces
CSEE W4840

Prof. Stephen A. Edwards
Columbia University

Spring 2026

Processor System Block Diagram

Processor

Address Bus

Data Bus

NSNS

Memory

Peripheral

Peripheral

Simple Bus Timing

Read Cycle Write Cycle
RW __| L RW __1 [
Enable Enable []
Addr Addr B

Data Data —(:)—

Strobe vs. Handshake

Handshake
Strobe

Req

Req {
Ack
Data

Data

a? “““ ﬁﬁi@‘mu?]
i 1 |

The ISA Bus: Memory Read

Clk

Addr

BALE

C1

Cc2

Wait

a3

ca

MEMR

IOCHRDY

Data

The ISA Bus: Memory Write

Clk

Addr

BALE

C1

Cc2

Wait

a3

ca

MEMW

IOCHRDY

Data

The PC/104 Form Factor: ISA Lives

Memory-Mapped I/0

» To a processor, everything is memory.
» Peripherals appear as magical memory locations.
» Status registers: when read, report state of peripheral

» Control registers: when written, change state of peripheral

Typical Peripheral: The PC Parallel Port

Printer

Signal Adapter
Name Pin Number
-~ Strobe 1
+Data Bit O 2
+Data Bit 1 3
+Data Bit 2 4
+Data Bit 3 5
+Data Bit 4 6
+Data Bit 5 7
+Data Bit 6 8
+Data Bit 7 9
~ Acknowledge 10
+Busy 11
+P.End (out of paper) 12
+Select 13
- Auto Feed 14
~Error 15
- Initialize Printer 16
- Select Input 17
Ground 18-25

Strobe
Busy

Printer
Adapter Ack
Data

Printer Adapter

Output to address hex 378

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
Pin9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2
Printer Adapter
Input from address hex 379
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
Pin11 | Pin10 | Pin12 | Pin13 | Pin15 | — —_— _—
Printer Adapter
Output to address hex 37A
Bit 4 Bit 3 Bit 2 Bit 1 Bit O
IRQ Pin 17 Pin16 | Pin 14 Pin 1

Enable

IBM Personal Computer
Technical Reference
Manual, 1983

Table 2-2: Parallel port bits, arranged by register.

Base Address)

lRata Register (|
Bit

Pin: D-sub Signal Name |Source Inverted at Pin: Centron-
? |ics
0 2 Data bit 0 PC no 2
1 3 Data bit 1 PC no 3
2 4 Data bit 2 PC no 4
3 5 Data bit 3 PC no 5
4 6 Data bit 4 PC no 6
5 7 Data bit 5 PC no 7
6 8 Data bit 6 PC no 8
7 9 Data bit 7 PC no 9
Some Data ports are bidirectional. (See Control register, bit 5 below.)
|Status Register (Base Address +1)
Bit Pin: D-sub Signal Name |Source Inverted at Pin: Centron-
connector? ics
3 15 nError (nFault) |Peripheral no 32
4 13 Select Peripheral no 13
5 12 PaperEnd Peripheral no 12
6 10 nAck Peripheral no 10
7 11 Busy Peripheral yes 11
Additional bits not available at the connector:
0: may indicate timeout (1=timeout).
1, 2: unused.
Control Register (Base Address +2)
Bit Pin: D-sub Signal Name |Source Inverted at Pin: Centron-
connector? ics
0 1 nStrobe PC! yes 1
1 14 nAutoLF pC! yes 14
2 16 nInit PC! no 31
3 17 nSelectIn pPC! yes 36

to interrupt cont

6,7: unused

roller.

5: Direction control for bidirectional Data ports.
can read external logic voltages.

"When high, PC can read external input (SPP only).
Additional bits not available at the connector:
4: Interrupt enable. 1=IRQs pass from nAck to system’s interrupt controller. 0=IRQs do not pass

outputs enabled. 1=outputs disabled; Data port

Jan Axelson, Parallel Port Complete, 2002

DATA PORT BASE ADDRESS + 00H

STATUS PORT BASE ADDRESS + 01H
CONTROL PORT BASE ADDRESS + 02H
The bit map of these registers is:

DO D1 D2 D3 D4 D5 D6 D7
DATA PORT PDO PD1 PD2 PD3 PD4 PD5 PD6 PD7
STATUS TMOUT 0 0 nERR SLCT PE nACK nBUSY
PORT
CONTROL STROBE | AUTOFD | nINIT SLC IRQE PCD 0 0
PORT

SMSC FDC37M81x PC98/99 Compliant Enhanced Super I/0 Controller with Keyboard/Mouse Wakeup Datasheet, 2000

Parallel Port Registers

D7 D6 D5 D4 D3 D2 D1 DO
Busy | Ack Paper | Sel Err
Sel Init Auto | Strobe
Strobe m—
1. Write Data
usy [L
2. Assert Strobe Busy
3. Wait for Busy to clear Ack L
4. Wait for Acknowledge Data I

0x378 Data
0x379 Status
0x37A Control

A Parallel Port Driver

#define DATA 0x378
#define STATUS 0x379
#define CONTROL O0x37A

#define NBSY 0x80
#define NACK 0x40
#define OUT 0x20
#define SEL 0x10
#define NERR 0x08
#define STROBE 0x01

#define INVERT (NBSY | NACK | SEL | NERR)
#define MASK (NBSY | NACK | OUT | SEL | NERR)
#define NOT_READY(x) ((inb(x)AINVERT)&MASK)

void write_single_character(char c) {
while (NOT_READY(STATUS)) ;
outb(DATA, c);
outb(CONTROL, control | STROBE); /* Assert STROBE =/
outb(CONTROL, control); /# Clear STROBE =/
}

25-Pin D-Shell

Connector
Bus Buffer Data Latch
8 8
| Enable r Clock
«Ep] Trans- 85
ceiver
DIiR
DiR o.c.
Read Drivers SLCTIN
REDy Data StRoBE
Write Data AUTO
¢ FDXT
Decoder | Write Control INIT
Read Status
Read
Control
Bus Control
Buffers Latch
5
'»| Enable Ly clock
5
Enable
> ¥ clear
ERROR
SLCT
PE_
ACK
Reset AokY

Printer Adapter Block Diagram

IBM Personal Computer
Technical Reference
Manual, 1983

CARDEGRETABS 49

IBM Personal Computer
Technical Reference
Manual, 1983

25 PIN
0 SHELL
9% 0022, CONNECTOR
l!
{18}
20}
(2
1. ¢2)
2
(26
A (B o Ls2ak -
- iae 2vils
o Y Holl o
== AT b 807
=g OAT il
Ty DATA . ”;,
1) DATA ”3"
DATA A L i
=gy UATA 1A
T -SthoBE u s
N ~EAROR B
s ~AUTO FO X7 1Tz
1 - 1054 7K +5V)
e LT > s . Lsmm o
o o 206 T o sLeTim
€1 et 05 = L 2 WY
S +5LOT .’W FHfe el
> %‘nqsv (O T z
_— T v
4 e D%
! Lsas|
G
o 2 18
10
«IRQ EX oy
RO EN s
13
iz
1hy7 15125

77 Z 77 Z Z 77 ITIIISIIINININILIRNS

W rrca

I systen VGA Out

Mic Line Line
In In Out Video-In 24- b\ DAC

JTAG Header

Audio Codec
Video Decoder
PS2

USB-Blaster II 2x20 GPIO x2

Power DC Jack

Power ON'OFF —(@) |

64MB SDRAM
ADC

ADC Header

Altera 28-nm
Cyclone V FPGA
with ARM Cortex-A9

7-Segment Display
LED x10

—||—\r—7ﬁy—w|ﬁr—|ﬁﬁ

Switch x10 Button x4

Table 3-23 Pin Assignment of LEDs, Switches and Push-buttons

Signal Name HPS GPIO Register/bit Function
HPS_KEY GPI1054 GPI101[25] lfe}
HPS_LED GPIO53 GPIO1[24] 110

m DE1-SoC User Manual 44 www. terasic.com
wraslc Tom August 24, 2016

Figure 22-1: Cyclone V SoC GPIO

Reset gpio_rst_nfn] GPIO Interface
Manager Cortex A9 Subsyst
i0 il ortex upsystem
imerupt g, || PO | Core Generic Imyerrupt
Clock ok Control Controller
Manager 4 I
Register
GPIO[28:0] SPI00 Block
0 20 7
GPIOST29) =550
| GPIO[E6:58]
GPIO2 Siave
HLGPI[13:0] Iegace
_, L4 Peripheral Bus N
Table 22-1: GPIO Interface pin table
Pin Mux Name Mapped to signal name Comments
GPIO [28:0] GPIO 0 [28:0] Input / Output
GPIO [57:29] GPIO 1 [28:0] Input / Output
GPIO [66:58] GPIO 2 [8:0] Input / Output
HLGPI [13:0] GPIO 2 [26:13] Input only

Cyclone V Device Handbook
Volume 3: Hard Processor
System Technical Reference
Manual

Altera, 2013

Cyclone V HPS Register Address Map and Definitions - GPIO Module Address Map

GPIO Module Address Map
Registers in the GPIO module

Module Instance| Base Address
gpiod 0xFF708000
gpiol 0xFF709000
gpio2 0xFF70A000
GPIO Module

Register Offset Width Access Reset Value Description
gpio_swport: r 0x0 32 RW 0x0 Port A Data Register
gpio_swporta_ddr 0x4 32 RW 0x0 Port A Data Direction Register
gpio_inten 0x30 32 RW 0x0 Interrupt Enable Register
gpio_intmask 0x34 32 RW 0x0 Interrupt Mask Register
gpio_inttype level 0x38 32 RW 0xe Interrupt Level Register
gpio_int_polarity 0x3C 32 RW 0x0 Interrupt Polarity Register
gpio_intstatus 0x40 32 RO 0xe Interrupt Status Register
gpio_raw_intstatus 0x44 32 RO 0x0 Raw Interrupt Status Register
gpio_debounce 0x48 32 RW 0xe Debounce Enable Register
gpio_porta_eoi 0x4C 32 wo 0x0 Clear Interrupt Register
gpio_ext_porta 0x50 32 RO 0x0 External Port A Register
gpio_ls_sync 0x60 32 RW 0xe Synchronization Level Register
gpio_id_code 0x64 32 RO 0x0 ID Code Register
gpio_ver_id_code 0x6C 32 RO 0x3230382A | GPIO Version Register
gpio_config_reg2 0x70 32 RO 0x39CFC Configuration Register 2
gpio_config_regl 0x74 32 RO 0x1FFOF2 Configuration Register 1

https://www.intel.com/content/www/us/en/programmable/hps/cyclone-v/hps.html

https://www.intel.com/content/www/us/en/programmable/hps/cyclone-v/hps.html

gpio_ver_id_code

GPIO Component Version

Module Instance | Base Address | Register Address
gpio0® 0xFF708000 0xFF70806C
gpiol 0xFF709000 0xFF76906C
gpio2 OxFF70A000 OxFF70A06C
Offset: 0x6C

Access: RO

Bit Fields

31‘30|29‘28|27|26‘25|24|23|22|21‘20|19|18‘17‘16

gpio_ver_id_code

RO 0x3230382A

15]14]13]12|uf10[9[8[7|6]5[4]3]2]1]0

gpio_ver_id_code

RO 0x3230382A

example. 32_30_31_2A represents the version 2.01

gpio_ver_id_code Fields
Bit |Name Description Access Reset
31:.0 |gpio_ver_id_code RO 0x3230382A
ASCI! value for each number in the version, followed by *. For

gpio_swporta_dr |
This GPI Dalareglsterlsuse looulpul lata on the GPI signals. ieck the GPIO cl apler in the handbook for details on how GPI s

implemented.

Module Instance = Base Address | Register Address
gpiod 0xFF708000 0xFF708000
gpiol 0xFF709000 0xFF709000
gpio2 0xFF70A000 OxFF70A000
Offset: 0x0

Access: RW

@ Important: To prevent indeterminate system behavior, reserved areas of memory must not be accessed by software or hardware. Any
area of the memory map that is not explicitly defined as a register space or accessible memory is considered reserved.

Bit Fields
31|30| 20| 28| 27| 26 |25 | 24| 23| 22| 21| 20 19 18|17 16

Reserved gpio_swporta_dr

RW 0x0

15[14]13]12|1f10[9[8[7[6[5[4][3][2]1]0

gpio_swporta_dr

RW 0x0

gpio_swporta_dr Fields

Access | Reset
RW 0x0

Bit Name Description

28:0 |gpio_swporta dr

Values written to this register are output on the I/O signals of the GPIO
Data Register, if the corresponding data direction bits for GPIO Data
Direction Field are set to Output mode. The value read back is equal to
the last value written to this register. Note that only bits[26:0] are

implemented for gpio2.

Start the serial console before powering on the board
screen /dev/ttyUSBO 115200
Interrupt the boot process by quickly pressing a key

U-Boot SPL 2013.01.01 (Jan 12 2019 - 19:40:48)
BOARD : Altera SOCFPGA Cyclone V Board

Net: mii0
Warning: failed to set MAC address

Hit any key to stop autoboot: O
SOCFPGA_CYCLONES #

This is the U-Boot command line

SOCFPGA_CYCLONES5 # help
md - memory display
mw - memory write (fill)

Read the GPIO Version Register gpio_ver_id_code

SOCFPGA_CYCLONES5 # md ££70906c 1
f£f70906¢c: 3230382a *802

Read the state of the HPS USER BUTTON gpio_ext_porta

SOCFPGA_CYCLONES # md ££709050 1
f£709050: 1df7ffff

SOCFPGA_CYCLONES # md f£f709050 1
f£709050: 1ff7ffff

Set the data direction register to output for HPS USER LED gpio_swporta_ddr
SOCFPGA_CYCLONES # mw ££709004 1000000
Blink the LED gpio_swporta_dr

SOCFPGA_CYCLONES5 # mw ££709000 1000000
SOCFPGA_CYCLONES5 # mw ££709000 O

Interrupts and Polling

Two ways to get data from a peripheral:
» Polling: “Are we there yet?”
» Interrupts: Ringing Telephone

Interrupts

Basic idea:
1. Peripheral asserts a processor’s interrupt input
2. Processor temporarily transfers control to interrupt service routine
3. ISR gathers data from peripheral and acknowledges interrupt
4. ISR returns control to previously-executing program

Many Different Interrupts

peripheral

. Int
peripheral — Processor

peripheral

What's a processor to do?

Many Different Interrupts

peripheral

peripheral Processor

peripheral

What's a processor to do?
ISR polls all potential interrupt sources, then dispatches handler.

Intel 8259 PIC clk

l

INTA

l

Int

T

Control Logic

A

I

i)

Priority
Resolver

\ 4

A

Interrupt

Request

Register
(IRR)

Din[7:0] —
Dout[7:0] @ DataBUS | gup
. Buffer
Data Valid
4_
T 3
Read In
_’ o
Write — | Read/ RS: r\i/slggr <
cs , Write < 9 -
Logic (ISR)
AO 5
Reset —
A
CAS Cascade < _ R

(IMR)

Interrupt Mask Register

Prioritizes incoming requests & notifies processor
ISR reads 8-bit interrupt vector number of winner
IBM PC/AT: two 8259s; became standard

Interrupts on the Cyclone V

Interrupt controller is part of the Cortex-A9 MPCore subsystem

The Generic Interrupt Controller supports 180 interrupt sources, including 64
from FPGA peripherals

Described in ARM's Cortex-A9 MPCore Technical Reference Manual (124
pages) and the ARM Generic Interrupt Controller Architecture Specification
(952 pages)

Complicated by multiple cores, protection levels, and virtual machines

Many, many configuration registers. Each interrupt has a priority, enable flag,
status, and control

A perfect thing to let the operating system manage:
https://docs.kernel.org/core-api/genericirq.html

https://developer.arm.com/documentation/ddi0407/latest/
https://developer.arm.com/documentation/ihi0069/hb/?lang=en
https://docs.kernel.org/core-api/genericirq.html

The NoCallerID Project, 2023

Asking the kernel to route interrupts from the device to our code:

// Get the interrupt number for our device from the Device Tree
int irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
dev.irg_num = irq;

// Claim the interrupt and register our ISR
ret = request_irq(irq, (irqg_handler_t) irqg_handler, O,
"csee4840_audio", NULL);

Code the kernel will call when the interrupt occurs:

// Our Interrupt Service Routine, called by the kernel
irg_handler_t irq_handler(int irq, void =*dev_id,
struct pt_regs *reg) {

wake_up_interruptible(&wq); // Unblock the program waiting on us

return IRQ_RETVAL(1);
}

