Device Drivers

Prof. Stephen A. Edwards
Columbia University

Spring 2026

Linux Operating System Structure

Applications

Function Calls | Callbacks 1

Libraries

System Calls | Signals 1

The Kernel
Processes Scheduling Networking
Memory Management File Systems

Device Drivers

iowrite32(), etc. | Interrupts 1

Hardware
Busses Memory
Peripherals

User Space vs. Kernel Space

User Space

Process abstraction central to most OSes
Independent PC, registers, and memory

Virtual memory hardware isolates processes, OS
Processes run in limited-resource “user mode”

Bug in a process only affects the process

Kernel Space
Kernel runs in “supervisor mode” with no access limitations

Bugs in kernel code take down the whole system

Unix Device Driver Model

“Everything is a file”
By convention, special “device” files stored in

/dev

Created by the mknod command or dynamically

1s -Ggl —-time-style=+ \
/dev/sd{a,al,a2,b} /dev/tty{,1,2} \

First SCSI drive
S
First partition of
- — first SCSI drive

Second SCSI drive

Current terminal

Second terminal

Block /dev/ttyUSBO
Devi
VI —prw-rw—-— 1 8, 0 /dev/sda
brw-rw—--—- 1 8, 1 /dev/sdal— |
¢h " brw-rw---- 1 8, 2 /dev/sda2
De?/ircaec " prw-rw--— 1 8, 16 /dev/sdb— |
—~crw-rw-rw- 1 5, 0 /dev/tty
crw-rw———— 1 4, 1 /dev/ttyl
crw-rw-—— 1 4, 2 /dev/tty2
crw-rw---- 1 188, 0. /dev/ttyUSBO
\ —
WorI:d Major Minor

S Device Device
PErmISSIONS Number Number

https://www.cs.columbia.edu/~smb/classes/s06-4118/123.pdf

Owner Group

First USB terminal

https://www.cs.columbia.edu/~smb/classes/s06-4118/l23.pdf

/proc/devices
Virtual file with a list of device drivers by major number

cat /proc/devices
Character devices:
4 /dev/vc/0
4 tty
4 ttyS
5 /dev/tty
10 misc
188 ttyUSB

Block devices:
8 sd

More virtual files and directories:

1ls /sys/bus

amba cpu hid mdio_bus platform sdio soc usb
clocksource event_source i2c mmc scsi serio spi

1s /sys/class/misc
cpu_dma_latency network_latency network_throughput psaux vga_ball

Kernel Modules
Device drivers can be compiled into the kernel
Really annoying for, e.g., “hotplug” USB devices
Solution: dynamically linked kernel modules

Similar to shared libraries/DLLs

1lsmod

Module Size Used by
insmod vga_ball.ko

1lsmod

Module Size Used by
vga_ball 16384 0

rmmod vga_ball

4K stack limit (don't use recursion)
No standard library; many equivalent functions available

init and exit functions compulsory; called when loaded/unloaded

Our First Driver

#include <linux/module.h>
#include <linux/version.h>
#include <linux/kernel.h>

static int __init ofd_init(void)

{
pr_info("ofd registered");
return 0O;
}
static void __exit ofd_exit(void)
{
pr_info("ofd unregistered");
}

module_init(ofd_init);
module_exit(ofd_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Stephen Edwards <sedwards@cs.columbia.edu>");
MODULE_DESCRIPTION("Our First Driver: Nothing");

4

https://web.archive.org/web/20161123163645/http://opensourceforu.com/2010/12/writing-your-£first-linux-driver

https://web.archive.org/web/20161123163645/http://opensourceforu.com/2010/12/writing-your-first-linux-driver

Debugging: pr_info and friends

In the kernel, there’s no printf (no stdio.h)

printk the traditional replacement:

printk (KERN_ERR "something went wrong, return code: %d\n", ret); J

KERN_ERR just the string “<3>"

Now deprecated in favor of equivalent

pr_info("Information\n");
pr_err("Error\n");

pr_alert("Really big problem\n");
pr_emerg("Life as we know it is over\n");

Kernel Logging

How do you see the output of printk et al.?

Send kernel logging to the console:

echo 8 > /proc/sys/kernel/printk
insmod vga_ball.ko
[1533.730421] vga_ball: init

Diagnostic messages from dmesg:

dmesg | tail -4

[990.780462] vga_ball: init
[1530.230146] vga_ball: exit
[1533.730421] vga_ball: init

Copying to/from user memory

#include <linux/uaccess.h>

unsigned long copy_from_user(void *to, const void __user =*from,
unsigned long n);

unsigned long copy_to_user(void __user *to, const void =*from,
unsigned long n);

Checks that pointers are valid before copying memory between user and
kernel space

Return number of bytes remaining to transfer (0 on success)

#include <linux/module.h> // A Very Simple Character Device
#include <linux/printk.h>

#include <linux/fs.h>

#include <linux/cdev.h>

#include <linux/uaccess.h>

#define MY_MAJOR 60
#define MY_MINOR O

static int schar_open(struct inode *inode, struct file =file)
{
pr_info("schar open\n");
return O;
}
static int schar_release(struct inode *inode, struct file =*f)
{
pr_info("schar release\n");
return O;
}
static ssize_t schar_write(struct file *f, const char __user xbuf,
size_t count, loff_t =f _pos)
{
pr_info("schar write %zu\n", count);
return O;

static char welcome_message[] = "Hello World!\n";
#define WELCOME_MESSAGE_LEN 13

static ssize_t schar_read(struct file *f, char __user =*buf,
size_t count, loff_t =f_pos)

{
pr_info("schar read %zu\n", count);
if ((+f_pos == 0) && count > WELCOME_MESSAGE_LEN) {
if (copy_to_user(buf, welcome_message,
WELCOME_MESSAGE_LEN)) {
Send data return -EFAULT;
to userspace I8
«f_pos = WELCOME_MESSAGE_LEN;
return WELCOME_MESSAGE_LEN;
return 0;
}

static long schar_ioctl(struct file *f, unsigned int cmd,
unsigned long arg)
{

pr_info("schar ioctl %d %lu\n", cmd, arg);
return O;

static struct file_operations schar_fops = {

.owner = THIS_MODULE, Function
.open = schar_open, pointer
.release = schar_relegiglﬂﬂﬂﬂ,_ﬂcaHed
.read = schar_read, by each
.write = schar_write, operation
.unlocked_ioctl = schar_ioctl };
static struct cdev schar_cdev = { .owner = THIS_MODULE,
.ops = &schar_fops };
static int __init schar_init(void) {
int result; Request
dev_t dev = MKDEV(MY_MAJOR, 0); minor numbers 0-1

pr_info("schar init\n"); _

result = register_chrdev_region(dev, 2 "schar");

if (result < 0) {
pr_warn("schar: unable to get major %d\n", MY_MAJOR);
return result; }

cdev_init(&schar_cdev, &schar_fops);

result = cdev_add(&schar_cdev, dev, 1);

if (result < 0) {
unregister_chrdev_region(dev, 2);
pr_notice("schar: unable to add cdev\n");
return result; }

return 0O;

static void __exit schar_exit(void)

{
cdev_del (&schar_cdev);
unregister_chrdev_region(MKDEV(MY_MAJOR, 0), 2);
pr_info("schar unregistered\n");

}

module_init(schar_init);
module_exit(schar_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR ("Stephen Edwards <sedwards@cs.columbia.edu>");
MODULE_DESCRIPTION("Really Simple Character Driver");

// End of the Very Simple Character Device

Simple Char Driver: Behavior

echo 8 > /proc/sys/kernel/printk
cd /dev

mknod schar c 60 0O

1s -Ggl --time-style=+ schar
crw-r--r-—- 1 60, O schar

cd ~/schar

insmod schar.ko

schar
cat
schar
schar
schar
schar
cat
Hello

init

/dev/schar > foo
open

read 65536

read 65536
release

foo

World!

rmmod schar.ko

<cchar

unreocistered

The ioctl() System Call

#include <sys/ioctl.h>

int ioctl(int fd, int request, void =argp);

A catch-all for “out-of-band” communication with a device

E.g., setting the baud rate of a serial port, reading and setting a real-time
clock

Ultimately passes a number and a userspace pointer to a device driver

ioctl requests include some “magic numbers” to prevent accidental
invocation. Macros do the encoding:

_IO0O(magic, number) /#* No argument =/

_IOW(magic, number, type) /# Data sent to driver =/
_IOR(magic, number, type) /# Data returned by driver =/
_IOWR(magic, number, type) /» Data sent and returned =/

The Misc Class
Thin layer around character devices
Major number 10; minor numbers assigned dynamically
Subsystem automatically creates special file in /dev directory
#include <linux/miscdevice.h>
struct miscdevice {
int minor; /# MISC_DYNAMIC_MINOR assigns it dynamically =/
const char name; /* e.g., vga_ball =/
struct struct file_operations =fops;

}s

int misc_register(struct miscdevice =misc);
int misc_deregister(struct miscdevice =misc);

1s -Ggl --time-style=+ /dev/vga_ball
CTW——————— 1 10, 60 /dev/vga_ball
cat /proc/misc

60 vga_ball

61 network_throughput

62 network_latency

63 cpu_dma_latency

1 psaux

http://www.linuxjournal.com/article/2920

The Platform Bus

Linux has subsystems for busses that know their devices (1susb, 1spci, etc.)
The “Platform Bus” is for everything else
#include <linux/platform_device.h>

struct platform_driver {
int (#probe)(struct platform_device =*);
int (*remove) (struct platform_device =*);
void (*shutdown) (struct platform_device =*);
int (+suspend)(struct platform_device *, pm_message_t state);
int (+resume)(struct platform_device *);
struct device_driver driver;
const struct platform_device_id *id_table;

I3

int platform_driver_register(struct platform_driver =driver);
/% Or, for non hot-pluggable devices =/
int platform_driver_probe(struct platform_driver =driver,
int (#probe)(struct platform_device =));

void platform_driver_unregister(struct platform_driver =driver);

http://lwn.net/Articles/448499/

http://lwn.net/Articles/448499/

Device Tree

Where are our device’s registers?

#define PARPORT_BASE OX378J

Compiling this into the kernel is too fragile: different kernel for each system?

Alternative: a standard data structure holding a description of the hardware
platform.

Device Tree: Standard derived from Open Firmware, originally from Sun

http://devicetree.org/

http://devicetree.org/Device_Tree_Usage
http://elinux.org/images/a/a3/Elce2013-petazzoni-devicetree-for-dummies.pdf
http://lwn.net/Articles/572692/

http://xillybus.com/tutorials/device-tree-zyng-1

http://devicetree.org/
http://devicetree.org/Device_Tree_Usage
http://elinux.org/images/a/a3/Elce2013-petazzoni-devicetree-for-dummies.pdf
http://lwn.net/Articles/572692/
http://xillybus.com/tutorials/device-tree-zynq-1

Raspberry Pi DTS Excerpt
Uses a Broadcom BCM2835 SoC with a 700 MHz ARM processor

/A
compatible = "brcm,bcm2835";

model = "BCM2835";
interrupt-parent = <&intc>;

soc {
compatible = "simple-bus";
#address-cells = <1>; from to size

#size-cells = <1>; address _ address)
ranges = <0x7e000000 OXZOOOO//O 0x02000000>;

Search key
uart@20191000 {

compatible = "brcm bcm2835 -pl0o11",
base "arm,pl011", "arm,primecell";

address
mmzomoo omo&
i i

interrupts = <2 25>; s
clock-frequency = <3000000>;
};
s

Vga_ball in the soc_system DTS
Connected through the “lightweight AXI bridge”
Avalon bus address 0 appears to the ARM at 0xff200000

sopcO: sopc@0 {

device_type = "soc";
hps_0_bridges: bridge@0xc0000000 {
compatible = "altr,bridge-18.1", "simple-bus";
reg = <0xc0000000 0x20000000>,
<0x££200000 0x00200000>;

reg-names = "axi_h2f", "axi_h2f_1w";
clocks = <&clk_0 &clk_0>;
clock-names = "h2f_axi_clock", "h2f_lw_axi_clock";

#address-cells = <2>;
#size-cells = <1>;
ranges = <0x00000001 0x00000000 0xff200000 0x00000008>;

vga_ball_0: vga@0x100000000 {
compatible = "csee4840,vga_ball-1.0";
reg = <0x00000001 0x00000000 0x00000008>;
clocks = <&clk_0>;

15

Accessing the Device Tree

#include <linux/of.h> /* "Open Firmware" =/
#include <linux/of_address.h>

/% Table of "compatible" values to search for =*/

static const struct of_device_id vga_ball_of_match[] = {
{ .compatible = "csee4840,vga_ball-1.0" },
{3,

15

MODULE_DEVICE_TABLE(of, vga_ball_of_match);

/# Platform device info =*/
static struct platform_driver vga_ball_driver = {
.driver = {
.name "vga_ball",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(vga_ball_of_match),

}’
.remove = __exit_p(vga_ball_remove),

};

/% Locate a device’s registers, return a pointer to their base */
void __iomem *of_jomap(struct device_node *node, int index);

I/0 Memory Management

Resource allocation a central OS facility

Interface for requesting/releasing memory regions:
#include <linux/ioport.h>

struct resource *request_mem_region(unsigned long start,

unsigned long extent,
const char =name);

void release_mem_region(unsigned long start, unsigned long extent);

I/0 Memory Access

Mapping I/O regions in memory; accessing them:

#include <linux/io.h>

void *ioremap(unsigned long offset, unsigned long size);
void iounmap(void *addr);

u8 ioread8(const __iomem *addr);
ul6é ioreadl6(const __iomem +addr);
u32 ioread32(const __iomem =addr);

void iowrite8(u8 val, void __iomem =addr);
void iowritel6(ul6 val, void __iomem =addr);
void iowrite32(u32 val, void __iomem =addr);

/proc/iomem

insmod vga_ball.ko

vga_ball: init

cat /proc/iomem

00000000-3fffffff : System RAM
00008000-00bfffff : Kernel code
00d00000- 00da24ff : Kernel data

££200000-££f200007 : vga_ball
£f£702000-f£f703fff : ethernet@0xff702000
£f£704000-£f£704fff : flash@0xff704000
f£f706000-f£f706fff : axi_slaveO
£f£708000-f£f7080ff : gpio@Oxff708000
f£709000-£f£7090ff : gpio@0xff709000
£f£70a000-£f£70a0ff : gpio@0xff70a000
ffb40000-ffb7ffff : usb@0xffb40000
f£fb90000-ffb900ff : axi_slavel
f£c02000-ffc0201f : serial
FFfc04000-FFcO40fFf - 12c@OxfFfc04000

The Vga_ball Driver: Header File

#ifndef _VGA_BALL_H
#define _VGA_BALL_H

#include <linux/ioctl.h>

typedef struct {
unsigned char red, green, blue;
} vga_ball_color_t;

typedef struct {
vga_ball_color_t background;
} vga_ball_arg_t;

#define VGA_BALL_MAGIC ’q’

/# ioctls and their arguments %/

#define VGA_BALL_WRITE_BACKGROUND \
_IOW(VGA_BALL_MAGIC, 1, vga_ball_arg_t =)

#define VGA_BALIL_READ_BACKGROUND \
_IOR(VGA_BALL_MAGIC, 2, vga_ball_arg_ t =)

#endif

The Vga_ball Driver: write_background

#include <linux/module.h>

/% ... many more #includes ... %/
#include <linux/uaccess.h>
#include "vga_ball.h"

#define DRIVER_NAME "vga_ball"

/* Device registers =/
#define BG_RED(x) (x)
#define BG_GREEN(x) ((x)+1)
#define BG_BLUE(x) ((x)+2)

struct vga_ball_dev {
struct resource res; /* Resource: our registers */
void __iomem xvirtbase; /* Where registers are in memory %/
vga_ball_color_t background;

} dev;

static void write_background(vga_ball_color_t =background)

{
iowrite8(background->red, BG_RED(dev.virtbase));
iowrite8(background->green, BG_GREEN(dev.virtbase));
iowrite8(background->blue, BG_BLUE(dev.virtbase));
dev.background = «background;

L

static long vga_ball_ioctl(struct file *f, unsigned int cmd,

{

unsigned long arg)
vga_ball_arg t vla;

switch (cmd) {
case VGA_BALL_WRITE_BACKGROUND:
if (copy_from_user(&vla, (vga_ball_arg_ t %) arg,
sizeof(vga_ball_arg_t)))
return -EACCES;
write_background(&vla.background);
break;

case VGA_BALL_READ_BACKGROUND:
vla.background = dev.background;
if (copy_to_user((vga_ball_arg t *) arg, &vla,
sizeof(vga_ball_arg_t)))
return -EACCES;
break;

default:
return -EINVAL;

}

return O;

The Vga_ball Driver: file_operations

static const struct file_operations vga_ball_fops = {
.owner THIS_MODULE,
.unlocked_ioctl = vga_ball_ioctl,

}s

static struct miscdevice vga_ball_misc_device = {

.minor = MISC_DYNAMIC_MINOR,
.nhame = DRIVER_NAME,
.fops = &vga_ball_fops,

1

The Vga_ball Driver: vga_ball_probe

static int __init vga_ball_probe(struct platform_device xpdev)

{

vga_ball_color_t beige = { 0xf9, Oxe4, Oxb7 };
int ret;

/# Register ourselves as a misc device: creates /dev/vga_ball
ret = misc_register(&vga_ball_misc_device);

/#* Get the address of our registers from the device tree =/
ret = of_address_to_resource(pdev->dev.of_node, 0, &dev.res);
if (ret) {

ret = —ENOENT;

goto out_deregister;

}

/% Make sure we can use these registers */
if (request_mem_region(dev.res.start, resource_size(&dev.res),
DRIVER_NAME) == NULL) {
ret = -EBUSY;
goto out_deregister;

// continued on next slide...

7’:/

/* Arrange access to our registers */
dev.virtbase = of_iomap(pdev->dev.of_node, 0);
if (dev.virtbase == NULL) {

ret = -ENOMEM;

goto out_release_mem_region;

}

/* Set an initial color =/
write_background(&beige);

return 0;

out_release_mem_region:

release_mem_region(dev.res.start, resource_size(&dev.res));

out_deregister:

3

misc_deregister(&vga_ball_misc_device);
return ret;

static int vga_ball_remove(struct platform_device xpdev)

{

iounmap(dev.virtbase);

release_mem_region(dev.res.start, resource_size(&dev.res));
misc_deregister(&vga_ball_misc_device);

return 0;

static

}s

const struct of_device_id vga_ball_of match[] = {
{ .compatible = "csee4840,vga_ball-1.0" },
{3,

MODULE_DEVICE_TABLE(of, vga_ball_of_match);

static

1

static

{

3

static

{

struct platform_driver vga_ball_driver = {
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
.of_match_table = of match_ptr(vga_ball_of match),
}’

.remove = __exit_p(vga_ball_remove),

int __init vga_ball_init(void)

pr_info(DRIVER_NAME ": init\n");
return platform_driver_probe(&vga_ball_driver, vga_ball_probe);

void __exit vga_ball_exit(void)

platform_driver_unregister(&vga_ball_driver);
pr_info(DRIVER_NAME ": exit\n");

The Vga_ball Driver

module_init(vga_ball_init);
module_exit(vga_ball_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Stephen A. Edwards, Columbia University");
MODULE_DESCRIPTION("VGA ball driver");

References

http://free-electrons.com/
http://www.opersys.com/training/linux-device-drivers

Rubini, Corbet, and Kroah-Hartman, Linux Device Drivers, 3ed, O'Reilly
https://lwn.net/Kernel/LDD3/

The Linux Kernel Source, and its Documentation/driver-model directory.

http://free-electrons.com/
http://www.opersys.com/training/linux-device-drivers
https://lwn.net/Kernel/LDD3/

