Altera’s Avalon Interface

Stephen A. Edwards
Columbia University

Spring 2026

Ethernet
PHY
Chip

A

Avalon-MM System

Processor
32-hit
Avalon-MM
Host

Y

Ethernet MAC
32-bit
Avalon-MM
Host

Custom Logic

System Interconnect Fabric

32-hit
Avalon-MM
Agent

SDRAM
Controller

16-bit

Avalon-MM

Agent

64-bit
Avalon-MM
Host

64-bit

Avalon-MM

Agent

8-hit 16-hit

Avalon-MM Avalon-MM
Tristate Tristate
Agent Agent
Flash SRAM
Memory Memory

Chip Chip

» Avalon Memory Mapped Host:
Initiates transactions (e.g.,
processor)

Complex protocol requests access
first

» Avalon Memory Mapped Agent:
Responds to hosts (e.g.,
peripheral, memory)

Simpler protocol: just responds
Also manager/subordinate, M/S,

initiator/target, requester/responder
See Avalon Interface Specifications

https://intel.com/content/www/us/en/docs/programmable/683091

The Simplest Agent Peripheral

Avalon-MM
Interface
(Avalon-MM
Agent Interface)

Avaon-MM Peripheral

writedata[15..0] -

write

clk

pio_out[15..0]

D

CLK_EN

Basically, “latch when I'm selected and written to.”

Application-
Specific
Interface

Agent Signals

For a 16-bit connection that spans 32 halfwords,

Agent Avalon
«— clk Clock to Agent
<« reset Reset signal to Agent
<« chipselect Asserted when bus accesses Agent
<« address[4:0] Register address (in words)
< read Bus is reading from Agent
«— write Bus is writing to Agent
<~ writedata[15:0] Data from bus to Agent
< byteenable[1:0] Which bytes are being transferred
readdata[15:0] = Data from Agent to bus
irq — Interrupt request to processor

All are optional, as are many others for, e.g., flow-control and burst transfers.

In SystemVerilog

module myagent (input logic clk,
input logic reset,
input logic [7:0] writedata,
input logic write,
input logic chipselect,

input logic [2:0] address);

Basic Agent Read Transfer

clk
address
read
chipselect

readdata

/l_

Ll
L1

- .

Bus cycle starts on rising clock edge

Data latched at next rising edge

Such a peripheral must be purely combinational

Agent Read Transfer w/ 1 Wait State

clk
address
read
chipselect

readdata

[

e

Bus cycle starts on rising clock edge

Data latched two cycles later

Approach used for synchronous peripherals

alsis

Basic Async. Agent Write Transfer

clk !
address / _
write _l__
chipselect _l__

WACCEIER S S S —

Bus cycle starts on rising clock edge
Data available by next rising edge

Peripheral may be synchronous, but must be fast

Basic Async. Agent Write w/ 1 Wait State

[

clk
address I
/
write
chipselect (

mHH .

writedata _ ‘

Bus cycle starts on rising clock edge
Peripheral latches data two cycles later

For slower peripherals

VGA on the DE1-SoC

: us
| VGA_RI[7..0] i
|| VGA G[7.0] i
AINERA VGA_B[7..0] i
: » VGA DAC
Cyclone®V _VGACLK »| ADV7123
Boc VGA_SYNC_N _
VGA BLANK N
VGA_VS

VGA_HS

The Vga_ball Peripheral

module vga_ball(input logic clk,
input logic reset,
input logic [7:0] writedata,
input logic write,
input chipselect,

input logic [2:0] address,

output logic [7:0] VGA_R, VGA_G, VGA_B,

output logic VGA_CLK, VGA_HS, VGA_VS,
VGA_BLANK_n,
output logic VGA_SYNC_n);
logic [10:0] hcount;
logic [9:0] vcount;
logic [7:0] background_r, background_g, background_b;

vga_counters counters(.clk50(clk), .*);

Register Map

Offset 7
0
1
2

Red
Green
Blue

0 Meaning

Red component of background color (0-255)
Green component of background color (0-255)
Blue component of background color (0-255)

The Vga_ball Peripheral

always_ff @(posedge clk)
if (reset) begin
background_r <= 8’h0;
background_g <= 8’h0;
background_b <= 8’h80;
end else if (chipselect && write)
case (address)
3’h0 : background_r <= writedata;
3’hl : background_g <= writedata;
3’h2 : background_b <= writedata;
endcase

always_comb begin
{VGA_R, VGA_G, VGA_B} = {8’h0, 8’h0, 8’h0};
if (VGA_BLANK_n)
if (hcount[10:6] == 5’d3 && vcount[9:5] == 5’d3)
{VGA_R, VGA_G, VGA_B} = {8’hff, 8’hff, 8'hff};
else

{VGA_R, VGA_G, VGA_B} = {background_r, background_g

end

background_b};

