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» Avalon Memory Mapped Host:
Initiates transactions (e.g.,
processor)

Complex protocol requests access
first

» Avalon Memory Mapped Agent:
Responds to hosts (e.g.,
peripheral, memory)

Simpler protocol: just responds
Also manager/subordinate, M/S,

initiator/target, requester/responder
See Avalon Interface Specifications


https://intel.com/content/www/us/en/docs/programmable/683091

The Simplest Agent Peripheral
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Basically, “latch when I'm selected and written to.”
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Agent Signals

For a 16-bit connection that spans 32 halfwords,

Agent Avalon
«— clk Clock to Agent
<« reset Reset signal to Agent
<« chipselect Asserted when bus accesses Agent
<« address[4:0] Register address (in words)
< read Bus is reading from Agent
«— write Bus is writing to Agent
<~ writedata[15:0] Data from bus to Agent
< byteenable[1:0] Which bytes are being transferred
readdata[15:0] = Data from Agent to bus
irq — Interrupt request to processor

All are optional, as are many others for, e.g., flow-control and burst transfers.



In SystemVerilog

module myagent (input logic clk,
input logic reset,
input logic [7:0] writedata,
input logic write,
input logic chipselect,

input logic [2:0] address);




Basic Agent Read Transfer
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Bus cycle starts on rising clock edge

Data latched at next rising edge

Such a peripheral must be purely combinational



Agent Read Transfer w/ 1 Wait State

clk
address
read
chipselect

readdata

[

e

Bus cycle starts on rising clock edge

Data latched two cycles later

Approach used for synchronous peripherals
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Basic Async. Agent Write Transfer

clk !
address / _
write \_l__
chipselect \_l__

WACCEIER S S S —

Bus cycle starts on rising clock edge
Data available by next rising edge

Peripheral may be synchronous, but must be fast



Basic Async. Agent Write w/ 1 Wait State
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Bus cycle starts on rising clock edge
Peripheral latches data two cycles later

For slower peripherals



VGA on the DE1-SoC
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The Vga_ball Peripheral

module vga_ball(input logic clk,
input logic reset,
input logic [7:0] writedata,
input logic write,
input chipselect,

input logic [2:0] address,

output logic [7:0] VGA_R, VGA_G, VGA_B,

output logic VGA_CLK, VGA_HS, VGA_VS,
VGA_BLANK_n,
output logic VGA_SYNC_n);
logic [10:0] hcount;
logic [9:0] vcount;
logic [7:0] background_r, background_g, background_b;

vga_counters counters(.clk50(clk), .*);




Register Map

Offset 7
0
1
2

Red
Green
Blue

0 Meaning

Red component of background color (0-255)
Green component of background color (0-255)
Blue component of background color (0-255)




The Vga_ball Peripheral

always_ff @(posedge clk)
if (reset) begin
background_r <= 8’h0;
background_g <= 8’h0;
background_b <= 8’h80;
end else if (chipselect && write)
case (address)
3’h0 : background_r <= writedata;
3’hl : background_g <= writedata;
3’h2 : background_b <= writedata;
endcase

always_comb begin
{VGA_R, VGA_G, VGA_B} = {8’h0, 8’h0, 8’h0};
if (VGA_BLANK_n )
if (hcount[10:6] == 5’d3 && vcount[9:5] == 5’d3)
{VGA_R, VGA_G, VGA_B} = {8’hff, 8’hff, 8'hff};
else

{VGA_R, VGA_G, VGA_B} = {background_r, background_g

end

background_b};




