
VGA Tile Graphics on an FPGA: A Tutorial

Stephen A. Edwards

Spring 2025

Tile-based graphics display images by repeating sub-images and thus using less memory

than framebu�ers. Countless video arcade games took this approach in the 1970s and ’80s,

such as Namco’s Pac-Man (Fig. 1), as well as video game consoles, such as the Nintendo

Entertainment System. Although such hardware is rarely mandatory in 21st century sys-

tems with the ready availability of gigabytes of video memory, its simplicity and power

make it a good digital design exercise for fpgas. This tutorial shows how to implement

a tile-based vga display on Terasic’s DE1-SoC board based around Altera’s Cyclone V SE

5CSEMA5F31C6 fpga, which includes an hps that includes a pair of arm processor cores.

(a) (b) (c)

Figure 1: Pac-Man, Namco 1980. (a) Starting game screen, 224 × 288; (b) Tile set: 256 8 × 8
tiles, 2 bpp; and (c) Game tile detail: 28 × 36 tiles, 2 bytes per tile (8b index, 5b palette)

1

1 Framebu�ers and Tiles

Modern computers generally display raster images from frame bu�ers, which provides

individual control over the color of each possible on-screen pixel. This provides �exibility

at the cost of memory consumption. For example, modern displays often represent colors

with 24-bit rgb values, which for a 640 × 480 vga display, requires

640 × 480 × 3 bytes = 921, 600 bytes = 900K.

This was a substantial amount of memory when vga was introduced in 1987, so sys-

tems often reduced these demands by reducing the number of bits per pixel and employing

a palette: a small, very fast memory that translated color codes to color values. For ex-

ample, a framebu�er might use 8 bits per pixel (bpp) to represent a color index, allowing

it to display 256 di�erent colors at a time, but would use a 256 × 24 palette memory that

allowed each of the 256 colors to be selected from a 24-bit color gamut. This would reduce

framebu�er memory to

640 × 480 × 1 bytes = 307, 200 bytes = 300 K

plus 256 × 3 = 768 bytes for the palette. The aging gif �le format only supports indexed

color, which can lead to artifacts.

At the extreme, a 1 bpp (monochrome) framebu�er still consumes

640 × 480 = 307, 000 bits = 38, 400 bytes = 37.5 K.

Tiles are e�ectively the palette approach applied also to sub-images. A text-mode

display (i.e., that can only display letters and numbers) illustrates the idea: software is

only able to control the identity of each character on the screen rather than each pixel.

Consider an 80 × 30 character grid in which each character is taken from a font of 256.

Each character is then 640 ÷ 80 = 8 pixels wide and 480 ÷ 30 = 16 pixels high (e.g., Fig. 2).

The character grid requires

80 × 30 = 2, 400 bytes = 2.34 K,

and the font, if it is only black-and-white, requires

256 × 1 byte × 16 rows = 4096 bytes = 4 K,

which is a substantial reduction over the 37 K requirement for a monochrome framebu�er

with the same resolution.

The original vga text mode actually used 16 bits per character: 8 to select one of 256

di�erent glyphs, four to select the background color, three for the foreground color, and

one bit to make the character blink.

2

Figure 2: An 8 × 16 pixel font similar to that used on ibm pcs in the vga era. Source:

https://fontstruct.com/fontstructions/show/1481905/dos-vga-9x16-1

3

https://fontstruct.com/fontstructions/show/1481905/dos-vga-9x16-1

(0,0)

Active Region

800 htotal

640 hactive

525 vtotal

480 vactive

48 Horizontal Back Porch Horizontal Front Porch 16

hsync

96

33 Vertical Back Porch

10 Vertical Front Porch
vsync 2 lines

Figure 3: vga signal timing. Horizontal dimensions are in pixels (25.175 MHz); vertical

dimensions are in lines (31.46875 kHz).

Data from http://www.tinyvga.com/vga-timing/640x480@60Hz

2 The Video Graphics Array (VGA) Standard

Most video arcade games and consoles in the ’70s and ’80s produced raster-scanned, non-

interlaced (progressive scan) ntsc-like video: 60 frames per second, 262 lines, but we will

follow the slightly more modern Video Graphics Array (vga) standard, which ibm intro-

duced with their ps/2 line of personal computers in 1987 and remains available.

The basic vga resolution is 640×480 at 60 fps with a 25.175 MHz dot clock: its timing is

like a progressivly scanned version of interlaced ntsc color video. Modern lcd monitors

display vga signals by adapting to a wide variety of horizontal and vertical frequencies

while digitizing the analog rgb vga signal.

Fig. 3 illustrates vga timing. Each line is 800 pixel periods wide, but only 640 of those

are displayed; the remaining time is devoted to porches (blank periods) and synchroniza-

tion. A new frame is displayed once every 525 line periods, but only 480 lines are displayed.

Ten lines after the last active line is a two-line-long vertical synchronization pulse followed

by 33 lines of additional “back porch” before the �rst line of the next frame.

4

http://www.tinyvga.com/vga-timing/640x480@60Hz

VGA
COUNTERS

VIDEO GENERATOR

HCOUNT /
10

VCOUNT /
9

BLANK

/
8

RED

/
8

GREEN

/
8

BLUE

HSYNC HSYNC
VSYNC VSYNC

Figure 4: An abstract model of any vga video generator, such as one for tiles. Counters

generate horizontal and vertical coordinates as well as blanking and synchronization sig-

nals. The video generator translates these into three color signals.

3 VGA Counter Hardware

Fig. 4 illustrates the structure of a vga video generator: counters generate horizontal and

vertical coordinate values along with blanking signals, which are fed to a block that de-

termines the color of the pixel at those coordinates.

Fig. 5 shows System Verilog that generates the horizontal and vertical synchronization

signals along with blanking (true only during the active region) and horizontal and vertical

coordinates.

The logic for the horizontal synchronization signal is subtle to save logic. Horizontal

synchronization occurs from count 640 + 16 = 656 through count 640 + 16 + 96 − 1 = 751,

which, in binary, are

10 1001 0000
10 1110 1111

That is, hcount[9:7] is 101 and hcount[6:4] is not 000 or 111. The logic for the blanking

signal employs similar trickery.

I wrote a simple Verilator testbench for this code, which applies a 25 MHz clock and

reset and writes the simulation results as a .vcd �le, which are displayed graphically in

Fig. 6. These verify certain important behaviors.

5

module vga_counters(
input logic VGA_CLK, VGA_RESET,
output logic [9:0] hcount, // 0-639 active, 640-799 blank/sync
output logic [9:0] vcount, // 0-479 active, 480-524 blank/sync
output logic VGA_HS, VGA_VS, VGA_BLANK_n);

logic endOfLine;
assign endOfLine = hcount == 10'd 799;

always_ff @(posedge VGA_CLK or posedge VGA_RESET)
if (VGA_RESET) hcount <= 10'd 797;
else if (endOfLine) hcount <= 0;
else hcount <= hcount + 10'd 1;

logic endOfFrame;
assign endOfFrame = vcount == 10'd 524;

always_ff @(posedge VGA_CLK or posedge VGA_RESET)
if (VGA_RESET) vcount <= 10'd 524;
else if (endOfLine)
if (endOfFrame) vcount <= 10'd 0;
else vcount <= vcount + 10'd 1;

// 656 <= hcount <= 751
assign VGA_HS = !(hcount[9:7] == 3'b101 &

hcount[6:4] != 3'b000 & hcount[6:4] != 3'b111);
assign VGA_VS = !(vcount[9:1] == 9'd 245); // Lines 490 and 491

// hcount < 640 && vcount < 480
assign VGA_BLANK_n = !(hcount[9] & (hcount[8] | hcount[7])) &

!(vcount[9] | (vcount[8:5] == 4'b1111));
endmodule

Figure 5: vga_counters.sv: Video counter module for vga in System Verilog

6

VGA_RESET

VGA_CLK

hcount 0 797 798 799 0 1 2 3 4 5 6 7 8

vcount 0 524 0

VGA_BLANK_n

VGA_HS

VGA_VS

(a) Leaving reset; starting next frame after line 524; start of line 0

VGA_CLK

hcount 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

vcount 0

VGA_BLANK_n

VGA_HS

VGA_VS

(b) End of Line 0 active: blanking then horizontal sync

VGA_CLK

hcount 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769

vcount 0

VGA_BLANK_n

VGA_HS

VGA_VS

(c) End of horizontal sync on line 0

VGA_CLK

hcount 793 794 795 796 797 798 799 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

vcount 0 1

VGA_BLANK_n

VGA_HS

VGA_VS

(d) Start of line 1; blanking ends

vcount 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

VGA_BLANK_n

VGA_HS

VGA_VS

(e) End of active region; vertical sync

Figure 6: Waveforms of the vga counters.

After a script https://github.com/phillbush/vcd2svg

7

https://github.com/phillbush/vcd2svg

x + 640y
/
10

HCOUNT

/
9

VCOUNT
/
20

512K × 24
FRAME
BUFFER
MEMORY

/
24

[23:16]
RED

[15:8]
GREEN

[7:0]
BLUE

Figure 7: A 24 bpp vga framebu�er built around a 1.5 MB memory

x + 640y
/
10

HCOUNT

/
9

VCOUNT
/
20

512K × 8
FRAME
BUFFER
MEMORY

/
8 256 × 24

PALETTE
MEMORY

/
24

[23:16]
RED

[15:8]
GREEN

[7:0]
BLUE

Figure 8: An 8 bpp vga framebu�er that uses indexed colors from a palette memory. Chain-

ing a second memory to the �rst reduces memory consumption by nearly 2/3 without

reducing the resolution or number of available colors.

4 Framebu�er Design

Fig. 7 shows a design for a framebu�er: an address generator fetching data from frame

bu�er memory. Each word in the memory contains the color code for a single pixel,

here, 24 bits. The address of each pixel is hcount + vcount × 640. Multiplying by 640 is

fairly easy since 640 = 512+128, so this could be implemented by adding hcount, vcount

shifted left 7 bits, and vcount shifted left 9 bits.

Indexed color using, say, 8 bpp, uses a smaller, 8-bit-wide framebu�er memory then

feeds the 8-bit color code to a 256 × 24 palette memory, which ultimately produces a 24-

bit color. Fig. 8 illustrates the structure of an indexed-color framebu�er, which has traded

some control over pixel colors for a substantial reduction in memory. Note that the overall

function being computed remains the same: the coordinate of each pixel in a 640×480 grid

is being mapped to a 24-bit color.

8

(a) Image

0 1 2 3 4

0

1

2

3

D1 DA DA DA DA

D3 10 10 10 10

D3 10 E7 DE DE

D3 14 E9 FC FC

c

r

(b) Tile Map

(c) Tile Set (excerpt)

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

x

y

Tile pixel

coordinates

(i, j)

(0,0) (1,0)

(0,1)

(0,7)

(0,0)

(0,1)

(7,0) (0,0) (1,0)

(7,7) (0,7)

(7,0) (0,0) (1,0)

(0,1)

(d) Pixel Coordinates

Figure 9: Tiles in Pac-Man: (a) Maze detail (b) Tile map: code for each tile (c) Partial tile

set (d) Pixel and tile pixel coordinates

5 Tile Generator Design

A palette e�ectively compresses colors by expressing them using a small number of codes;

tiles take this one step further: a tile map memory holds a two-dimensional array of tile

codes, one for each tile on the screen; each code is used to index into memory that holds

the pixel color codes in the tile set, a three-dimensional array. Finally, the color code is

fed to a palette memory to look up the �nal color. Fig. 10 shows a block diagram of a tile

video generator.

Fig. 9 illustrates the relationships among the tile set, tile map, tile numbers, and pixels

TILEMAP
ADDRESS

8192 × 8
TILEMAP
RAM

/
13 TILESET

ADDRESS
/
8 16K × 4

TILESET
RAM

/
14 16 × 24

PALETTE
RAM

/
4

/
24

RGB

HCOUNT

VCOUNT

/
10

/
3

/
9

/
3

Figure 10: An 8 × 8 tile vga generator. hcount and vcount deliver current pixel coor-

dinates (x, y). tilemap address transforms these to tile coordinates (c, r) to compute to

address in tilemap ram for the tile number t . tileset address combines t with local tile

coordinates (i, j) to form the address for the pixel in tileset ram, which returns a 4-bit

color code c′ that the palette ram translates to a 24-bit rgb value.

9

(w, ℎ) Tile width and height (pixels)

(x, y) Screen pixel coordinates

(c, r) = (⌊x ÷ w⌋, ⌊y ÷ ℎ⌋) Tile column and row (tiles)

t = tilemap[c, r] Tile number (from tile map)

(i, j) = (x mod w, y mod ℎ) Tile local coordinates (pixels)

c′ = tileset[i, j, t] Pixel color code (from tile set)

(r , g, b) = palette[c′] Pixel color (from palette)

Figure 11: Calculating the color (r , g, b) of the pixel at coordinates (x, y) in an array of

w × ℎ-pixel tiles. tilemap[c, r] is the tile number at column c and row r ; tileset[t, i, j] is the

color code for pixel (i, j) in tile t ; and palette[c′] is the rgb color for color code c′.

in an 8×8 tile system like that in Pac-Man. Fig. 9(a) shows a fragment of the maze in the top

left corner of the screen; each square is an 8 × 8 pixel tile. Fig. 9(b) is the top left fragment

of the tile map: the 2D array holding the code selecting each on-screen tile. Codes and

the tiles they represent are shown in Fig. 9(c). Fig. 9(d) shows the relationship between

pixel coordinates and tile coordinates. The tile in row 0, column 0 starts at pixel (0, 0) and

extends to pixel (7, 7). The tile to the right of this, at row 0, column 1, starts at pixel (8, 0),
which is tile pixel (0, 0).

Fig. 11 lists the rules for determining the pixel at screen coordinates (x, y) in a regular

array of w × ℎ-pixel tiles. The column and row (c, r) of the tile containing the pixel is

simply the quotients from dividing each coordinate by the size of the tile. These are used

to look up the tile number in the tilemap array. The coordinates of the pixel within that

tile (i.e., relative to the tile’s top left corner) (i, j) is the remainder of these divisions. These

coordinates and the tile number are used to look up the color code of the pixel in the tile

set. Finally, the color code is used to look up the actual rgb color of the pixel.

Implementing a tile generator in hardware amounts to implementing the rules in

Fig. 11. First, we will choose �xed-size 8 × 8 tiles: (w, ℎ) = (8, 8). Choosing these numbers

to be �xed powers of two greatly simpli�es the implemention of the division operations

as well as the address calculations for the tile map and tile set memories. Square tiles are

also natural for designing graphics, although they are a little awkward for Roman letters.

Next, we need to determine the exact number of bits for data and memory in Fig. 11.

For vga, x ranges from 0 to 639, which we will represent as a 10-bit binary number whose

bits we will write x9 x8⋯ x0 (little-endian subscripts). Similarly, y ranges from 0 to 479,

which takes 9 bits y8 y7⋯ y0. Note that these are active screen coordinates; vcount actu-

ally uses 10 bits because it needs to count to 524.

Because 640 ÷ 8 = 80 and 480 ÷ 8 = 60, c we need 7 bits for c: c6 c5⋯ c0, and 6 bits for r :

r5 r4⋯ r0. Furthermore, the tile local coordinates (i, j) will each be 3 bits since each range

over 0–7.

10

Thanks to our choice of 8-pixel-square tiles, dividing by the tile size amounts to shift-

ing right by 3 bits. Calculating the tile column and row (c, r) along with the tile-local pixel

coordinates (i, j) amounts to splitting each pixel coordinate into a 3-bit local tile coordinate

and a 7- or 6-bit tile column and row:

(x9 x8⋯ x3⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
c6 c5⋯c0

x2 x1 x0⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
i2 i1i0

, y8 y7⋯ y3⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
r5 r4⋯r0

y2 y1 y0⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
j2 j1 j0

). (1)

The tile map needs to hold an 80 × 60 array, so its entries could be addressed as c +80r ,

but this requires a constant multiplication and addition. While this could be done with

three additions because 80 = 64 + 16, it is easier to round 80 up to the next power of

two: 128. This wastes some memory (128 × 64 = 8192 versus 80 × 60 = 4800), but this

memory is a small fraction of the total available on the fpga, which contains minimum-

sized memory chunks, anyway. Also, 4800 is greater than 4096, which was the previous

natural power-of-two size for the memory.

To support 256 tiles with a 128×64 tile map, the tile number t will be 8 bits, the address

to tile map memory will be 13 bits (128 × 64 = 8192 = 213), and the address for the tile map

memory will consist of the 6 r bits for the msbs followed by the 7 c bits:

t7 t6⋯ t0 = tilemap[r5 r4⋯ r0 c6 c5⋯ c0]. (2)

Putting the column number in the least signi�cant bits gives a row-major layout: tiles in

a row appear in successive memory locations; tiles in the row below appear in memory

after all the tiles for the row above.

Pac-Man used 4-bit color codes; to store the color codes for 256 8 × 8 tiles takes a 4-bit-

wide memory with 256×8×8 = 16384 = 214 entries. Again, addressing this memory is easy

because the tiles are a power of two: the least signi�cant bits of the 15-bit address starts

with 3 bits of i (the horizontal tile-local coordinate) followed by 3 bits of j (the vertical

tile-local coordinate) followed by the 8 bit tile number.

c′3 c′2 c′1 c′0 = tileset[t7 t6⋯ t0 j2 j1 j0 i2 i1 i0]. (3)

This is also a row-major layout: the pixels for a tile appear as eight rows of pixels; data

for each tile starts at a multiple of 64 pixels.

11

(a) Image

02 00 00 00 00 00 00 00 00 00 ... 00
00 01 01 01 01 01 00 01 01 01 ... 00
00 00 00 01 00 00 00 00 01 00 ... 00
00 00 00 01 00 00 00 00 01 00 ... 00
00 00 00 01 00 00 00 00 01 00 ... 00
00 00 00 01 00 00 00 00 01 00 ... 00
00 00 00 01 00 00 00 00 01 00 ... 00
00 00 00 01 00 00 00 01 01 01 ... 00
00 00 00 00 00 00 00 00 00 00 ... 00
...

(b) Tilemap

...
00 00 00 0f 0f 0f 00 00
00 00 0f 0f 00 0f 0f 00
00 0f 0f 00 00 00 0f 0f
00 0f 0f 00 00 00 0f 0f
00 0f 0f 0f 0f 0f 0f 0f
00 0f 0f 00 00 00 0f 0f
00 0f 0f 00 00 00 0f 0f
00 00 00 00 00 00 00 00

00 0f 0f 0f 0f 0f 0f 00
00 0f 0f 00 00 00 0f 0f
00 0f 0f 00 00 00 0f 0f
00 0f 0f 0f 0f 0f 0f 00
00 0f 0f 00 00 00 0f 0f
00 0f 0f 00 00 00 0f 0f
00 0f 0f 0f 0f 0f 0f 00
00 00 00 00 00 00 00 00
...

(c) Tileset

00 00 00 00
FF 00 00 00
00 FF 00 00
00 00 FF 00
FF FF 00 00
00 FF FF 00
FF 00 FF 00
80 80 80 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
FF FF FF 00

(d) Palette

Figure 12: (a) Image generated by tiles2ppm. (b) The Tilemap �le: 02 is a green square; the

01s (white squares) spell out “TI.” (c) “A” and “B” tiles in the Tileset. (d) The 16-color palette

(black, red, green, blue, yellow, etc.). Each 24-bit value is padded to be 32-bit aligned.

6 A So�ware Prototype for the Tile Generator

Complex hardware is always designed by creating an increasingly detailed series of mod-

els. The �rst is very abstract (e.g., a statement like “let’s display graphics with tiles”);

the last is the implementation itself. At each step, earlier models guide the implemention

of the next, details are added, and each model is checked for conformance with the last.

Fig. 10 is one such model of our tile generator; it will guide our eventual System Verilog

model that we will use to implement the circuit on an fpga.

Designers often use an executable software model as part of the development process.

It can be very abstract and only model the algorithm, it can be a very detailed “cycle-

accurate” model that models clock-by-clock hardware behavior, or something in between.

Fig. 13 shows an abstract software model coded in C designed to verify the “algorithm”:

e�ectively Fig. 10 and equations (1), (2), and (3). It is also useful for testing binary palette,

tileset, and tilemap data, the �lenames for which are supplied on the command line. It

runs the algorithm to generate a 640 × 480 image and writes the result as a ppm �le,
1

an

uncompressed image format suitable for previewing. The body of the nested for loops in

main() implement the rules in Fig. 11; all the rest is testbench sca�olding.

Fig. 12 shows the output of this program for a test tilemap, tileset, and palette. With a

text editor, I created text �les for each then converted them to binary using the xxd Linux

command-line utility. The tilemap �le is 64 lines of 128 bytes each; the tileset �le is 256

tiles, each 8 lines of 8 bytes each (4 bits only); the palette �le is 16 lines of four bytes each.

1https://netpbm.sourceforge.net/doc/ppm.html

12

https://netpbm.sourceforge.net/doc/ppm.html

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/mman.h>

#define HACTIVE 640
#define VACTIVE 480

typedef struct { uint8_t red, green, blue; uint8_t _padto32; } rgb_t; // 24-bit color

void *mapfile(const char *filename, size_t length)
{
int fd = open(filename, O_RDONLY);
if (fd == -1)

fprintf(stderr, "Error opening \"%s\": ", filename), perror(NULL), exit(1);
void *p = mmap(NULL, length, PROT_READ, MAP_SHARED, fd, 0);
if (p == MAP_FAILED)

fprintf(stderr, "Error mapping \"%s\": ", filename), perror(NULL), exit(1);
close(fd);
return p;

}

int main(int argc, const char *argv[])
{
if (argc != 4)

fprintf(stderr, "Usage: tiles2ppm <tilemap> <tileset> <palette>\n"), exit(1);

uint8_t *tilemap = (uint8_t *) mapfile(argv[1], 8192);
uint8_t *tileset = (uint8_t *) mapfile(argv[2], 16384);
rgb_t *palette = (rgb_t *) mapfile(argv[3], 16 * sizeof(rgb_t));

printf("P3\n%d %d\n255\n", HACTIVE, VACTIVE); // Plain PPM header, 24 bpp

uint16_t x, y;
for (y = 0 ; y < VACTIVE ; y++)

for (x = 0 ; x < HACTIVE ; x++) { // The tile algorithm:
uint8_t r = y >> 3; // Row 0-59
uint8_t c = x >> 3; // Column 0-79
uint8_t t = tilemap[r << 7 | c]; // Tile number 0-255
uint8_t i = x & 0x7; // Tile local x 0-7
uint8_t j = y & 0x7; // Tile local y 0-7
uint8_t color = tileset[t << 6 | j << 3 | i]; // Color 0-15
rgb_t rgb = palette[color]; // RGB color 24 bits
printf("%d %d %d\n", rgb.red, rgb.green, rgb.blue);

}

return 0;
}

Figure 13: tiles2ppm.c: An untimed C model of the tile video generator that loads tilemap,

tileset, and palette binary �les using mmap() then calculates the color of each pixel and

writes it as a ppm format �le.

13

7 Tile Hardware Pipeline Design

From Fig. 10, the tile generator needs three small memories: tilemap, tileset, and palette.

Each is a di�erent size (both word size and number of words), but similar in that they

both need to retrieve information for the video generator and we want to be able to read

and write to them from software. Arbitrating memory access between cpu and graphics

controller has long been a challenge, but our fpga provides a convenient solution: the

on-chip block rams are dual-ported, meaning they can perform two independent read or

write operations every cycle, one in each clock domain. We will dedicate one port to the

video generator (which will only read) and the other to the cpu (technically, an the Avalon

agent bus interface coming from the hps); each will run on their own clock.

We will use the parametric two-port bram module in Fig. 14 for these three mem-

ories. To instantiate it, you supply two compile-time two parameters: data_bits and

address_bits. The body is coded so that Quartus will marshal the appropriate collection

of M10K blocks to implement it.

Fig. 15 shows a block diagram for the core of the vga tile generator. This is Fig. 10 aug-

mented with the vga counters block, second memory ports for software access to the three

synchronous block rams, and pipeline registers on the hcount, blank, and hs signals.

The block diagram of Fig. 10 only models function, not timing; Fig. 15 models timing

and adds pipeline registers to remain consistent. The block rams on the fpga are syn-

chronous: a read operation always takes a cycle, so the output of the tilemap memory

comes a cycle after its address. Because the hcount signal changes every pixel cycle,

feeding hcount directly to the tileset address generator would be inconsistent (it would

be one higher than it should be, causing a graphical glitch), so I inserted a pipeline register

on hcount between the output of the vga counter and the tileset address generator. Sim-

ilar concerns apply to the blank and hs signals, which need to be generated in alignment

with the pixel color data.

It would be natural to add pipeline registers on vcount and vs, but because vcount

only changes at the end of each scanline, we can just use its unpipelined value without any

change in behavior. Omitting pipeline registers on the vs signal does change its timing

slightly, but the monitor ignores a 3 cycle (119 ns) delay on this 60 Hz signal.

Fig. 16 is the �rst half of code implementing the pipelined tile generator in Fig. 15. It

consists of the module interface (clock and reset, vga signals, and three memory ports),

local wires and registers, and an instance of the vga counter module from Fig. 5.

Fig. 17 is the second half of the tile generator hardware. It instantiates the three mem-

ories and implements the three groups of pipeline registers. The �rst port of each memory

is used for video generation and operated in read-only mode.

The Tilemap address generator is just the expression { vcount[8:3], hcount[9:3] } fed to

the tilemap’s addr1, which is too small to warrant a separate module. Similarly, the Tileset

address generator is the expression { tilenumber, vcount[2:0], hcount1 }.

14

module twoportbram
#(parameter int DATA_BITS = 8, ADDRESS_BITS = 10)
(input logic clk1, clk2,
input logic [ADDRESS_BITS-1:0] addr1, addr2,
input logic [DATA_BITS-1:0] din1, din2,
input logic we1, we2,
output logic [DATA_BITS-1:0] dout1, dout2);

localparam WORDS = 1 << ADDRESS_BITS;

/* verilator lint_off MULTIDRIVEN */
logic [DATA_BITS-1:0] mem [WORDS-1:0];
/* verilator lint_on MULTIDRIVEN */

always_ff @(posedge clk1)
if (we1) begin

mem[addr1] <= din1;
dout1 <= din1;

end else dout1 <= mem[addr1];

always_ff @(posedge clk2)
if (we2) begin

mem[addr2] <= din2;
dout2 <= din2;

end else dout2 <= mem[addr2];

endmodule

Figure 14: twoportbram.sv: Parametric two-port synchronous bram module for imple-

menting the tilemap, tileset, and palette memories. The second port will enable software

access to the memory. Note that each port has its own clock.

VGA
COUNTERS

TILEMAP
ADDRESS

8192 × 8
TILEMAP
RAM

/
13 TILESET

ADDRESS
/
8 16K × 4

TILESET
RAM

/
14 16 × 24

PALETTE
RAM

/
4

/
24

RGB

HCOUNT

VCOUNT

BLANK
HS
VS

/
10

/
3

/
9

/
3

BLANK
HS
VS

TM PORT 13/8 TS PORT 14/4 PALETTE PORT 4/24

Figure 15: A pipelined 8 × 8 tile vga generator with ports for accessing the tilemap, tileset,

and palette memories and a blank signal needed by the vga dac.

15

module tiles
(input logic VGA_CLK, VGA_RESET,
output logic [7:0] VGA_R, VGA_G, VGA_B,
output logic VGA_HS, VGA_VS, VGA_BLANK_n,

input logic mem_clk, // Clock for memory ports

input logic [12:0] tm_address, // Tilemap memory port
input logic tm_we,
input logic [7:0] tm_din,
output logic [7:0] tm_dout,

input logic [13:0] ts_address, // Tileset memory port
input logic ts_we,
input logic [3:0] ts_din,
output logic [3:0] ts_dout,

input logic [3:0] palette_address, // Palette memory port
input logic palette_we,
input logic [23:0] palette_din,
output logic [23:0] palette_dout);

logic [9:0] hcount; // From counters
logic [8:0] vcount;

logic [2:0] hcount1; // Pipeline registers
logic VGA_HS0, VGA_HS1, VGA_HS2;
logic VGA_BLANK_n0, VGA_BLANK_n1, VGA_BLANK_n2;

logic [7:0] tilenumber; // Memory outputs
logic [3:0] colorindex;

/* verilator lint_off UNUSED */
logic unconnected; // Extra vcount bit from counters
/* verilator lint_on UNUSED */

Figure 16: tiles.sv: The tile video generator (part 1/2). This interface takes in the vga pixel

clock and generates the vga color and synchronization signals. It also exposes read/write

memory ports for the tilemap, tileset, and palette.

16

vga_counters cntrs(.vcount({unconnected, vcount}), // VGA Counters
.VGA_BLANK_n(VGA_BLANK_n0),
.VGA_HS(VGA_HS0),
.*);

twoportbram #(.DATA_BITS(8), .ADDRESS_BITS(13)) // Tile Map
tilemap(.clk1 (VGA_CLK), .clk2 (mem_clk),

.addr1 ({ vcount[8:3], hcount[9:3] }),

.we1 (1'b0), .din1(8'h X), .dout1(tilenumber),

.addr2 (tm_address),

.we2 (tm_we), .din2(tm_din), .dout2(tm_dout));

always_ff @(posedge VGA_CLK) // Pipeline registers
{ hcount1, VGA_BLANK_n1, VGA_HS1 } <=
{ hcount[2:0], VGA_BLANK_n0, VGA_HS0 };

twoportbram #(.DATA_BITS(4), .ADDRESS_BITS(14)) // Tile Set
tileset(.clk1 (VGA_CLK), .clk2 (mem_clk),

.addr1 ({ tilenumber, vcount[2:0], hcount1 }),

.we1 (1'b0), .din1(4'h X), .dout1(colorindex),

.addr2 (ts_address),

.we2 (ts_we), .din2(ts_din), .dout2(ts_dout));

always_ff @(posedge VGA_CLK) // Pipeline registers
{ VGA_BLANK_n2, VGA_HS2 } <= { VGA_BLANK_n1, VGA_HS1 };

twoportbram #(.DATA_BITS(24), .ADDRESS_BITS(4)) // Palette
palette(.clk1 (VGA_CLK), .clk2 (mem_clk),

.addr1 (colorindex),

.we1 (1'b0), .din1(24'h X), .dout1({ VGA_B, VGA_G, VGA_R }),

.addr2 (palette_address),

.we2 (palette_we), .din2(palette_din), .dout2(palette_dout));

always_ff @(posedge VGA_CLK) // Pipeline registers
{ VGA_BLANK_n, VGA_HS } <= { VGA_BLANK_n2, VGA_HS2 };

endmodule

Figure 17: tiles.sv: The tile video generator (part 2/2). This instatiates the vga counters

and connects the three memories and pipeline register groups following Fig. 15. Note that

the memory ports have their own clock.

17

VGA TILE PIPELINE

DI:8 WE
TILEMAP

A:13

DO:8

DI:4 WE
TILESET

A:14

DO:4

DI:24 WE
PALETTE

A:4

DO:24

CREG

WRITEDATA /
8

ADDRESS /
15

WRITE

CHIPSELECT

/
8

READDATA

/
24

RGB
BLANK
HS
VS

Figure 18: The vga tile generator component with an Avalon MM Agent interface

a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0
0 0 m12 m11m10m9m8 m7m6m5m4 m3m2m1m0 Tilemap

0 1 0 0 0 0 0 0 0 p3 p2 p1 p0 b1 b0 Palette

1 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0 Tileset

(a) Address Encoding: the a are bus (byte) address bits; m are Tilemap address bits; p are

Palette (color number) bits, b are “byte” bits, and the s are Tileset address bits.

Byte O�set Region Contents
0000 - 1FFF Tilemap 8K, 8 bit tile numbers

2000 - 203F Palette 64 bytes, 4 bytes per 24-bit color

4000 - 7FFF Tileset 16K, 4 bit color numbers (LSBs)

(b) Memory Map

0 1 2 3

0 red 0 green 0 blue 0 write 0

4 red 1 green 1 blue 1 write 1

⋮
60 red 15 green 15 blue 15 write 15

Reading from red n/green n/blue n returns the

component from color n in memory.

Writing to red n/green n/blue n stores the

component in creg; n ignored.

Reading from write n returns 0.

Writing to write n writes creg to color n; the

written value is ignored.

(c) Bytes in the Palette region

Figure 19: Software model of the tile component

18

8 Implementing VGA Tiles: an Avalon MM Agent

We want to control the tile generator from software, so we will create a Platform Designer

component for the tile generator that includes an Avalon Memory-Mapped Agent port.

The basic challenge is adapting this protocol to the three memory port interfaces in Fig. 17.

Fig. 18 shows the datapath for the interface. We will choose an 8-bit wide bus interface

because the tilemap memory is 8 bits wide and the tileset memory is 4 bits wide. The 24-bit

wide palette memory is a little problematic, but this is easier to deal with than adapting

the software to work with a 32-bit interface.

The tilemap memory port is the easiest to connect: the address and data-in bits can

come straight from the bus. When the software reads from this memory, the mux in the

lower right will route its data-out bits to readdata on the interface.

The tileset memory is almost as easy: the address bits can come straight from the bus.

We only need 4 data bits, so we can take those from the lowest 4 bus bits. This may seem

like a waste, but the extra bits are never stored in the tileset memory.

The 24-bit-wide palette memory is more challenging. While the brams have the ability

to have di�erent width ports, we will solve it by allowing the software to write a byte at a

time to a single 24-bit register (creg in Fig. 18) that can ultimately be written to the palette

memory. Reading palette memory gives 3 bytes; another mux selects one of them.

Fig. 19 shows the software model, which will dictate the datapath control for Fig. 18.

Fig. 19(a) shows the encoding of bus addresses. We have three memory regions: the

8K Tilemap; the 16K Tileset, and the 16-entry Palette. We start with the largest region

(Tileset), which requires 14 address bits, and add a leading 1 to distinguish it from the

other regions. The Tilemap region only requires 13 address bits, so we set its top two

address bits to 00. This leaves the code 01, which will select the palette. Because each

color is 24 bits, we need at least three byte addresses per color, but it is easier to use a

power of two, so we will use 4 bytes per color. The two least signi�cant bits will indicate

the color component (byte) and the next four will select the color number (0–15).

Fig. 19(b) is a memory map, essentially the address encoding in hexadecimal.

To make it possible to write palette colors into memory sequentially one byte at a

time, writing to the �rst three bytes of each four-byte color only writes into one of the

three bytes of the creg register, not to palette memory. When the fourth byte is written

(addresses 3, 7, 11, . . .), the 24-bit creg is written to palette memory at the byte address

shifted right 2 bits. Fig. 19(c) depicts the byte-by-byte layout of the palette region.

Fig. 20 shows the System Verilog code for the tile component in Fig. 15. The combina-

tional block performs address decoding by examining chipselect and address bits. Avalon’s

single-cycle writes demands this be combinational: the bramwrite enable signals must ap-

pear in the same cycle as write. The multiplexers that steer data to the readdata port are

implicit in the various assignments to readdata. The sequential block implements creg; the

bits of creg_write select which byte is loaded from writedata on a write to palette addresses.

19

module vga_tiles
(input logic clk, reset, // Avalon MM Agent port
input logic chipselect, write, // read == chipselect & !write
input logic [14:0] address, // 32K window
input logic [7:0] writedata, // 8-bit interface
output logic [7:0] readdata,

input logic vga_clk_in, VGA_RESET, // VGA signals
output logic [7:0] VGA_R, VGA_G, VGA_B,
output logic VGA_CLK, VGA_HS, VGA_VS, VGA_BLANK_n);

logic [2:0] creg_write; // Latch enable per byte
logic tm_we, ts_we, palette_we; // Memory write enables
logic [7:0] tm_dout; // Data from tilemap
logic [3:0] ts_dout; // Data from tileset
logic [23:0] creg, palette_dout; // Data to/from palette

tiles tiles(.mem_clk (clk),
.tm_address (address[12:0]), .tm_din (writedata),
.ts_address (address[13:0]), .ts_din (writedata[3:0]),
.palette_address(address[5:2]), .palette_din(creg), .*);

assign VGA_CLK = vga_clk_in;

always_comb begin // Address Decoder
{tm_we, ts_we, palette_we, creg_write, readdata } = { 6'b 0, 8'h xx };
if (chipselect)

if (address[14] == 1'b 1) begin // Tileset 1--------------
ts_we = write; // Write to tileset mem
readdata = { 4'h 0, ts_dout }; // Read lower 4 bits; pad upper

end else if (address[13] == 1'b 0) begin // Tilemap 00-------------
tm_we = write; // Write to tilemap mem
readdata = tm_dout; // Read 8 bits

end else if (address[12:6] == 7'b 0_0000_00) // Palette 010000000------
case (address[1:0])

2'h 0 : begin readdata = palette_dout[7:0]; // Read red byte
creg_write[0] = write; // creg <- red

end
2'h 1 : begin readdata = palette_dout[15:8]; // Read green byte

creg_write[1] = write; // creg <- green
end

2'h 2 : begin readdata = palette_dout[23:16]; // Read blue byte
creg_write[2] = write; // creg <- blue

end
2'h 3 : begin readdata = 8'h 00; // Always reads as 00

palette_we = write; // mem <- creg
end

endcase
end

always_ff @(posedge clk or posedge reset)
if (reset) creg <= 24'b 0; else begin

if (creg_write[0]) creg[7:0] <= writedata; // Write byte (color)
if (creg_write[1]) creg[15:8] <= writedata; // to creg according to
if (creg_write[2]) creg[23:16] <= writedata; // creg_write bits

end
endmodule

Figure 20: vga_tiles.sv: The tile generator component, which adds an Avalon MM Agent

port to the video generation hardware

20

Figure 21: Signals & Interfaces for the vga_tiles component. This shows the con�guration

of the Avalon MM Agent port.

21

Use Connections Name Description Export Clock Base End IRQ Tags Opc...

clk_0 Clock Source

clk_in Clock Input clk expor ted

clk_in_reset Reset Input rese t

clk Clock Output Double−click

 t o export

clk_0

clk_reset Reset Output Double−click

 t o exporthps_0 Arria V/Cyclone V Hard Proce...

h2f_user1_clock Clock Output Double−click

 t o export

hps_0_h2f_user1_cl...

memory Conduit hps_ddr3

hps_io Conduit hps

h2f_reset Reset Output Double−click

 t o exporth2f_axi_clock Clock Input Double−click

 t o export

clk_0

h2f_axi_master AXI Master Double−click

 t o export

[h2f_axi_clock]

f2h_axi_clock Clock Input Double−click

 t o export

clk_0

f2h_axi_slave AXI Slave Double−click

 t o export

[f2h_axi_clock]

h2f_lw_axi_clock Clock Input Double−click

 t o export

clk_0

h2f_lw_axi_master AXI Master Double−click

 t o export

[h2f_lw_axi_clock]

vga_clk_pll PLL Intel FPGA IP

refclk Clock Input Double−click

 t o export

clk_0

reset Reset Input Double−click

 t o exportoutclk0 Clock Output Double−click

 t o export

vga_clk_pll_outclk0

vga_tiles vga_tiles

clock Clock Input Double−click

 t o export

clk_0

reset Reset Input Double−click

 t o export

[clock]

VGA Conduit v g a [vga_clock]

avalon Avalon Memory Mapped Slave Double−click

 t o export

[clock] 0x0000_0000 0x0000_7fff

vga_clock Clock Input Double−click

 t o export

vga_clk_pll_outclk0

vga_reset Reset Input Double−click

 t o export

[vga_clock]

Figure 22: The Platform Designer system for the tile generator

9 Making a Platform Designer System

I copied the Make�le, soc_system.tcl, soc_system.qsys, and soc_system.srf from Lab 3 and

ran Platform Designer (qsys-edit).
I added Fig. 20 as an ip component in Platform Designer to connect it to the hps. I

followed the procedure in Lab 3: create a new vga_tiles component; add the vga_tiles.sv,

tiles.sv, vga_counters.sv, and twoportbram.sv �les; add a VGA conduit; move and rename

the vga signals to it; and ensure its read wait timing was set to 1, to allow time to read the

synchronous brams and its write wait to 0 (the defaults). Fig. 21 shows the signals.

I added the following lines to vga_tiles_hw.tcl to add the component to the device tree:

set_module_assignment embeddedsw.dts.group vga
set_module_assignment embeddedsw.dts.name vga_tiles
set_module_assignment embeddedsw.dts.vendor csee4840

Unlike Lab 3, this vga video system runs at the vga pixel clock frequency, which I

generated with one of the six phased-locked loops (plls) on our fpga. These are clever

digital/analog circuits that drive a voltage-controlled oscillator from a phase detector in a

feedback loop with a programmable clock divider M . The reference clock passes through

a divider N before going to the phase detector; the output passes through another divider

C . This produces a clock whose frequency is the reference clock’s multiplied by M ÷
(N × C), where M , N , and C are integers (1–512). Our fpga has a 50 MHz clock, and we

want 25.175 MHz. Giving Platform Designer these two frequencies, it suggests 50 MHz ×
215 ÷ (7 × 61) = 25.175644 MHz, which is close enough for a monitor.

I added the pll and tile components and connected them as shown in Fig. 22. Note

that the refclk for the pll comes from the 50 MHz clock from the clk_50 Clock Source and

that the pll’s outclk0 is sent to both the tile component and the h2f_lw_axi_clock input:

the clock for the lightweight bus bridge on the hps that is connected to the Avalon MM

agent port on the Tile component. I also exported the vga conduit to make a connection.

22

The rather fragile sopc2dts program does not recognize the altera_pll component and

the clock it generates, so edit the clocks line in the vga_tiles component soc_system.dts �le

to remove the reference to vga_clk_pll, i.e.,

clocks = <&clk_0>;

10 Testing the VGA Tiles Component with U-Boot

While this component is designed to work with Linux, it is convenient to test it separately

from device drivers. U-Boot, the �rst-stage bootloader, can do this since it provides a

low-level command-line interface capable of writing to and reading from memory.

I copied the soc_system.rbf �le over to the boot partition on the sd card and started

booting Linux, which starts with loading the rbf �le to the fpga. This gave a blank display.

Before Linux started completely, I rebooted by pressing the HPS reset button the board and

pressed a key when prompted to Hit any key to stop autoboot.
First, I set a base address, which is added to all address speci�cations to reduce typing:

SOCFPGA_CYCLONE5 # base ff200000
Base Address: 0xff200000

Three commands are convenient for reading and modifying memory: md.b, which

displays a range of memory; mw.b, which writes a single byte or a range of identical bytes

to memory; and mm.b, which modi�es a range of memory by allowing you to enter a new

byte at each address.

The palette region (at o�set 2000) should not change until a fourth byte is written.

Note that in the below, the three color component values at 2000, 2001, and 2002 are not

written until 2003 is written. This changed the screen to magenta since I modi�ed color 0.

In the tileset, tile 0 is all color 0, and the tilemap is all tile 0.

SOCFPGA_CYCLONE5 # md.b 2000 40
ff202000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ff202010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ff202020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ff202030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
SOCFPGA_CYCLONE5 # mw.b 2000 ff
SOCFPGA_CYCLONE5 # md.b 2000 10
ff202000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
SOCFPGA_CYCLONE5 # mw.b 2001 80
SOCFPGA_CYCLONE5 # mw.b 2002 fe
SOCFPGA_CYCLONE5 # md.b 2000 10
ff202000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
SOCFPGA_CYCLONE5 # mw.b 2003 0
SOCFPGA_CYCLONE5 # md.b 2000 10
ff202000: ff 80 fe 00 00 00 00 00 00 00 00 00 00 00 00 00

23

I tested the Tilemap region (at o�set 0) by writing a sequence of “random” bytes then

verifying they could be read back.

SOCFPGA_CYCLONE5 # md.b 0 10
ff200000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
SOCFPGA_CYCLONE5 # mm.b 0
ff200000: 00 ? 1
ff200001: 00 ? 5
ff200002: 00 ? 10
ff200003: 00 ? 55
ff200004: 00 ? 43
ff200005: 00 ? 72
ff200006: 00 ? aa
ff200007: 00 ? ee
ff200008: 00 ? f0
ff200009: 00 ? 0f
ff20000a: 00 ? ff
ff20000b: 00 ? 00
ff20000c: 00 ? x
SOCFPGA_CYCLONE5 # md.b 0 10
ff200000: 01 05 10 55 43 72 aa ee f0 0f ff 00 00 00 00 00 ...UCr..........

I tested the Tileset region (at o�set 4000) and veri�ed only the top 4 bits of each byte

were retained:

SOCFPGA_CYCLONE5 # mm.b 4000
ff204000: 00 ? 1
ff204001: 00 ? 2
ff204002: 00 ? 4
ff204003: 00 ? 8
ff204004: 00 ? a
ff204005: 00 ? F
ff204006: 00 ? 10
ff204007: 00 ? f0
ff204008: 00 ? ff
ff204009: 00 ? f1
ff20400a: 00 ? f3
ff20400b: 00 ? x
SOCFPGA_CYCLONE5 # md.b 4000 10
ff204000: 01 02 04 08 0a 0f 00 00 0f 01 03 00 00 00 00 00

24

U-Boot is able to read into memory �les from the fat (Microsoft) �lesystem on the

sd card. The boot scripts do this as part of con�guring the fpga; it can also help test our

peripheral. By design, the hardware uses the same data layout as the software prototype

(Fig. 13) for the tilemap, tileset, and palette regions. In particular, palette colors are padded

to align on 4-byte boundaries (see the software model in Fig. 19).

The boot partition on the sd card is mmc 0:1 to U-Boot; fatls lists the �les there:

SOCFPGA_CYCLONE5 # fatls mmc 0:1
237800 u-boot.img

226 u-boot.scr
7007204 soc_system.rbf

31245 soc_system.dtb
4877224 zimage

64 palette1.bin
8192 tilemap1.bin
16384 tileset1.bin

U-Boot supports environment variables. The fpgadata variable comes set an address

to load �le data. We will set three additional variables to the base of each region and stop

using the base feature.

SOCFPGA_CYCLONE5 # tilemap=ff200000
SOCFPGA_CYCLONE5 # palette=ff202000
SOCFPGA_CYCLONE5 # tileset=ff204000
SOCFPGA_CYCLONE5 # base 0
Base Address: 0x00000000

The fatload command reads a �le into memory; the cp.b command copies memory

regions. Using this, we can load each of the binary �les into memory, then into the pe-

ripheral:

SOCFPGA_CYCLONE5 # fatload mmc 0:1 $fpgadata palette1.bin
reading palette1.bin
64 bytes read in 4 ms (15.6 KiB/s)
SOCFPGA_CYCLONE5 # cp.b $fpgadata $palette 40

SOCFPGA_CYCLONE5 # fatload mmc 0:1 $fpgadata tilemap1.bin
reading tilemap1.bin
8192 bytes read in 6 ms (1.3 MiB/s)
SOCFPGA_CYCLONE5 # cp.b $fpgadata $tilemap 2000

SOCFPGA_CYCLONE5 # fatload mmc 0:1 $fpgadata tileset1.bin
reading tileset1.bin
16384 bytes read in 5 ms (3.1 MiB/s)
SOCFPGA_CYCLONE5 # cp.b $fpgadata $tileset 4000

Fig. 23 shows the image that appeared, which matched Fig. 12(a).

25

Figure 23: The tile generator displayed on a small vga lcd monitor

Flow Status Successful - Sun May 4 20:13:58 2025

Quartus Prime Version 21.1.0 Build 842 10/21/2021 SJ Lite Edition

Revision Name soc_system

Top-level Entity Name soc_system_top

Family Cyclone V

Device 5CSEMA5F31C6

Timing Models Final

Logic utilization (in ALMs) 406 / 32,070 (1 %)

Total registers 598

Total pins 362 / 457 (79 %)

Total virtual pins 0

Total block memory bits 131,456 / 4,065,280 (3 %)

Total DSP Blocks 0 / 87 (0 %)

Total HSSI RX PCSs 0

Total HSSI PMA RX Deserializers 0

Total HSSI TX PCSs 0

Total HSSI PMA TX Serializers 0

Total PLLs 1 / 6 (17 %)

Total DLLs 1 / 4 (25 %)

Figure 24: Quartus compilation report. This con�rms we used one pll and the three

memory regions (Tilemap, Tileset, and Palette) were implemented with block memory

(8K × 8 + 16K × 4 + 16 × 24). The logic use (406 alms) was minimal.

26

	Framebuffers and Tiles
	The Video Graphics Array (VGA) Standard
	VGA Counter Hardware
	Framebuffer Design
	Tile Generator Design
	A Software Prototype for the Tile Generator
	Tile Hardware Pipeline Design
	Implementing VGA Tiles: an Avalon MM Agent
	Making a Platform Designer System
	Testing the VGA Tiles Component with U-Boot

