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1. Introduction 
Tetris is a classic puzzle video game revolving around the strategic placement of falling 

geometric shapes known as Tetrominos. The goal is to rotate and arrange these pieces in such a manner 
that forms complete horizontal lines, which are then cleared from the screen, and points are given based 
on the number of lines cleared. As the game goes on, the falling speed of the blocks increases, and thus so 
does the difficulty. 

Our project aims to implement a hardware-software system capable of playing Tetris. To 
accomplish our goal of playing Tetris, we will use an SNES-style USB controller, the DE1-SoC FPGA 
board, a VGA monitor, and some speakers. 
 
1.1 Tetrominos Overview 

In Tetris, gameplay revolves around manipulating geometric shapes known as Tetrominos, each 
consisting of exactly four squares arranged in seven distinct configurations. These configurations are 
labeled based on their shapes: I, O, T, S, Z, J, and L. 

 

 
Figure 1: The Seven Standard Tetrominos 

 
Each Tetromino can be rotated by 90-degree increments, allowing four possible orientations for 

each piece (except the O-Tetromino, which remains unchanged upon rotation). Players strategically rotate 
and position these pieces as they descend, aiming to fill horizontal rows completely to clear them from the 
playing field and score points. 

The specifics for each Tetromino are: 

● I-Tetromino: Straight-line shape, can rotate between vertical and horizontal orientations. 
● O-Tetromino: Square shape, rotation does not affect its configuration. 
● T-Tetromino: T-shaped configuration, has four distinct rotational states. 
● S- and Z-Tetrominos: Mirror-image zigzag shapes, each has two rotational states due to 

symmetry. 
● J- and L-Tetrominos: Mirrored L-shaped configurations, each with four rotational states. 



2. System 
 
2.1 System Block Diagram 

The project can be broken down into five major sections: Input devices, software run on the HPS, 
hardware instantiated on the FPGA, built-in peripherals on the DE1-SoC board, and output devices. The 
block diagram from the project is shown in Figure 2, where the various components have been grouped 
together into the five major sections. 
 

 
Figure 2: Tetris Project Block Diagram 

 
2.2. PPU Hardware Summary 

The Picture Processing Unit (PPU) is designed to drive a 640×480 VGA display at 60Hz. 
Graphics are built from 16×16 tiles where each pixel is encoded in 4 bits, and each tile is referenced via 
16 bits of combined attribute data, specifically a 6‑bit palette ID and a 10‑bit tile ID. We support storing 
1024 unique background titles in memory and 1024 unique sprite tiles. The tile buffer holds 1,200 tiles 
since the tile resolution of the screen is 40 x 30. Each color palette has 16 colors, and there are a total of 
64 palettes. Our system allows for up to 256 sprites on screen at once, with a maximum of 16 sprites per 
scan line. Object Attribute Memory (OAM) is used for storing data about each of the 256 sprites, where 
each sprite is described with an 8‑byte entry and is addressed via 16-bit words. Word 0 contains both the 
6‑bit palette ID and the 10‑bit tile ID, word 1 stores the X coordinate, word 2 stores the Y coordinate, and 
word 3 holds the bits corresponding to horizontal and vertical flipping of the sprite’s graphics. Table 1 
shows the per-sprite mapping of OAM. 



Table 1: OAM Map Per Sprite 

Word Range Field 

Word 0 Sprite Graphics Palette ID and Tile ID  

Word 1 X Coordinate 

Word 2 Y Coordinate 

Word 3 Rotation Flags 

 
3. Algorithms 
 
3.1. Hardware Algorithms 

The PPU hardware implements an algorithm, referred to as Pixel Draw, which provides a 
mechanism for translating the tile, background, and sprite data from VRAM into an output frame. Pseudo 
code for the general pixel draw algorithm is shown below: 
 
/* This procedure is executed every clock cycle with inputs H (current horizontal 

pixel) and V (current vertical pixel) provided by the VGA controller. 

Preprocessing is assumed to load sprite graphics into OAM. 

A separate process (or pipeline stage) handles the sprite line determination when V 

changes. */ 

 

if (V has just changed) then: 

   // --- SPRITE LINE DETERMINATION (per scanline update) --- 

   // Clear the list of active sprites for the current scanline. 

   activeSprites = []  

 

   // Check each sprite in OAM (from slot 0 to 255, order defines priority) 

   for spriteSlot from 0 to 255 do: 

       sprite = OAM[spriteSlot] 

       if (V >= sprite.Y) and (V < sprite.Y + 16) then: 

           // Calculate the row index within the sprite graphics. 

           if sprite.verticalFlip is set then: 

               rowIndex = (15 - (V - sprite.Y)) << 4   // Multiply by 16 to get byte 

offset. 

           else: 

               rowIndex = (V - sprite.Y) << 4 

 

           // Retrieve the corresponding 16-bit chunk from sprite graphics. 

           if sprite.horizontalFlip is set then: 

               // Load the 16-pixel data in reverse order. 

               spriteLineData = loadReversedSpriteData(sprite, rowIndex) 



           else: 

               // Load the data in normal order. 

               spriteLineData = loadSpriteData(sprite, rowIndex) 

           

           // Append sprite info (maintaining OAM order for priority) with its data 

and X coordinate. 

           activeSprites.append({ 

               slot: spriteSlot,          // lower slot number means higher priority 

               X: sprite.X, 

               shiftRegister: spriteLineData, // initial content for the shift 

register. 

               enabled: False             // shift register initially disabled. 

           }) 

           

           // Only consider up to the first 16 active sprites (by OAM order). 

           if activeSprites.length == 16 then break 

 

// --- SHIFT REGISTER CONTROL AND PIXEL OUTPUT (every clock cycle) --- 

 

// For every clock cycle, using current H (and preloaded activeSprites for current V): 

for each spriteInfo in activeSprites do: 

   // Enable the sprite's shift register when H equals the sprite's starting X 

coordinate. 

   if H == spriteInfo.X then: 

       spriteInfo.enabled = True 

 

   // Disable the sprite's shift register when H reaches the end (X + 15) of the 

sprite. 

   if H == spriteInfo.X + 15 then: 

       spriteInfo.enabled = False 

 

// Now determine the final pixel color using the current outputs of the enabled sprite 

shift registers. 

outputPixelColor = None 

 

// Check activeSprites in ascending OAM order (sprite slot 0 highest priority, etc.). 

for each spriteInfo in activeSprites do: 

   if spriteInfo.enabled then: 

       // The current pixel color is taken from the shift register output. 

       // The shift register is assumed to shift its data with each clock, 

       // so its present output corresponds to the pixel at (H - spriteInfo.X). 

       spritePixelColor = spriteInfo.shiftRegister.currentOutput() 



 

       // If the sprite pixel is not transparent (nonzero), it is selected. 

       if spritePixelColor != 0 then: 

           outputPixelColor = spritePixelColor 

           break  // Use the highest-priority sprite pixel available. 

 

// If no sprite produced a nontransparent pixel, compute the background pixel. 

if outputPixelColor is None then: 

   // --- BACKGROUND PIXEL COMPUTATION --- 

   // Calculate the tile buffer index using the high-order bits of the coordinates. 

   tileBufferIndex = ((V >> 4) * (SCREEN_WIDTH >> 4)) + (H >> 4) 

   // Calculate the pixel offset within the tile from the lower-order bits. 

   tilePixelOffset = ((V & 0xF) << 4) + (H & 0xF)meaid 

   // Retrieve background pixel from the tile graphics. 

   outputPixelColor = getTilePixel(tileBufferIndex, tilePixelOffset) 

 

// Finally, output the computed pixel color at (H, V). 

drawPixel(H, V, outputPixelColor) 

 

 
To minimize the critical path for the circuit that determines which of the 16 sprites or the background a 
given pixel should come from, we will use divide and conquer so that rather than a chain of 17 muxes, it 
will be a chain of length 5. 
 
3.2. Software Algorithms 
 
Our software will be split among three virtual threads. One thread will handle the game logic, one thread 
will handle the Vblank routine, and the last thread will feed raw audio data from the SD card to the audio 
CODEC for the background music. Because the game logic and Vblank routines are mutually exclusive, 
only two threads will be running at a given time, making it easy for the OS to schedule our three virtual 
threads onto the two physical threads of the HPS.  
 
The following pseudo-code details the functions needed to implement the Tetris logic, based on analysis 
of existing Tetris code and a general understanding of how the game works. 
 
ROWS 20 // play‑field height 

COLS 15 // play‑field width 

 

// Block shapes 

SHAPES = { I, O, T, S, Z, J, L } 

 

// Matrices 

BlockMatrix[4][4] // current falling tetromino 



Playfield[COLS][ROWS] // fixed blocks on the board 

main() { 

   initMatrix() // clear the playfield 

   prepareFirstBlock() // choose initial shape & colour 

   loop until Quit OR GameOver 

       userInput() // non‑blocking; may set flags 

       stepTimer() // advances a tick 

   end loop 

   if GameOver 

       showGameOver() 

   end if 

} 

 

initMatrix() 

// Set every cell of Playfield to BLANK (empty) 

 

prepareFirstBlock() 

// 1. Pick a random shape & colour for CurrentBlock 

// 2. Initialise BlockMatrix accordingly 

// 3. Place CurrentBlock at top‑centre start position 

 

userInput() 

// Get most recent button presses polled during Vblank 

 

stepTimer() 

// Called once per frame during vblank 

// Move or rotate the current block based on userInput() unless user input is Down 

// If accumulatedDelay < CurrentSpeed and userInput() is not Down 

// 1. accumulatedDelay++ 

// Else 

// accumulatedDelay = 0 

// 1. moveBlock(DOWN) 

// 2. If the move failed due to collision with bottom of playfield or fixed blocks: 

//      • fixCurrentBlockIntoPlayfield() 

//      • checkForLineClears() 

//      • spawnNextBlock() (may set GameOver) 

// 3. update score display 

 

moveBlock(direction) 

// Attempt to translate CurrentBlock by one cell in the specified direction 

// Call detectCollision() first; if collision then return FAILURE 

// Otherwise update newBlockX / newBlockY and return SUCCESS 



 

rotateBlock() 

// Compute the 90° rotated version of BlockMatrix 

// If the rotated piece collides with walls or fixed blocks then cancel 

// Else copy rotated data back into BlockMatrix 

 

detectCollision(candidateX, candidateY) 

// Given a hypothetical position of CurrentBlock: 

//   • Check left/right boundaries 

//   • Check bottom boundary 

//   • Check overlap with filled cells in Playfield 

// Return TRUE if any collision is detected, FALSE otherwise 

 

fixCurrentBlockIntoPlayfield() 

// Copy all non‑blank cells from BlockMatrix into Playfield 

// at the current (BlockX, BlockY) offset 

 

checkForLineClears() 

// Iterate every row of Playfield 

// If a row is completely filled: 

//     • removeLine(rowIndex) 

//     • increment LinesCleared and call calculateScore() 

//     • after every 20 cleared lines call increaseSpeed() 

 

removeLine(rowIndex) 

// Delete the specified row by shifting all rows above it downward by one 

// Insert a new blank row at the top of Playfield 

 

increaseSpeed() 

// Decrease the logical delay between automatic DOWN steps 

// Increment Level counter (both affect difficulty) 

 

spawnNextBlock() 

// 1. Select NextShape & colour (random) 

// 2. Reset BlockX, BlockY to the spawn coordinates 

// 3. Initialise BlockMatrix for the new shape 

// 4. If the new block immediately collides then set GameOver 

 

calculateScore() 

//Calculates score based on the number lines cleared at once and the current falling 

speed 

 



4. Resource Budget 
 
4.1. Memory Usage 

Using the M10K blocks, we have about 480KB of memory to work with. Table 2 shows how we 
have utilized that memory. 
 
Table 2: Total Memory Used 

 Size 

Tile Buffer 2.4KB 

Tile Graphics 131.072KB 

Sprite Graphics 131.072KB 

Color Pallets 3.072KB 

OAM 2.048KB 

Total 269.664KB 

 
5. Hardware/Software Interface 
 
5.1. PPU Memories 

The main memory blocks in the PPU are the Tile Buffer, Tile Graphics Memory, Sprite Graphics 
Memory, Color Palette Memory, and Object Attribute Memory; each is implemented individually, with 
different widths based on the data it stores. The various PPU memories are exposed to the HPS as a single 
virtual VRAM. Table 3 shows the virtual VRAM mapping, width, and size of each memory. 
 
Table 3: VRAM Map: 

 Start End Width Size Number of Addresses 
(Dec, Hex) 

Tile Buffer 0x00000000 0x000004B0 16-bits 2.4KB 1200, 4B0 

Tile Graphics 0x10000000 0x10004000 64-bits 131.072KB 16384, 4000 

Sprite 
Graphics 

0x20000000 0x20004000 64-bits 131.072KB 16384, 4000 
 

Color Palettes 0x30000000 0x30000400 24-bits 3.072KB 1024, 400 

OAM 0x40000000 0x40000400 16-bits 2.048KB 1024, 400 

 
 
 



5.1.2. Avalon Bus and PPU Registers 
Ideally, we would use a 64-bit wide bus to communicate between the HPS and PPU, so that we 

could write the data for the widest memories in a single transfer. However, we are limited to a 32-bit bus 
width since the ARM SoC in the HPS is 32-bit. Thus, we will have two 32-bit registers for data, 
PPUDATA_LOW and PPUDATA_HIGH. We will also have PPUADDR for specifying the VRAM 
address and PPUCTRL to control the automatic address incrementation, Vblank interrupt, and Vblank 
CPU write blocking. Table 4 shows the PPU registers, their read/write direction, and their purpose. 
 
Table 4: PPU Registers 

Register Read/Write Function Misc 

PPUCTRL W PPU Control The lowest 16 bits are used to control the 
PPUADDR autoincrement settings. Setting 
them to 0 disables autoincrement, while 
setting them to any other value sets the 
number of addresses to autoincrement by 
after a write. The MSB of this register is 
used to enable or disable the Vblank 
interrupt. The second MSB of this register is 
used to enable or disable allowing CPU 
writes to VRAM during non-Vblank periods. 

PPUADDR W Specify VRAM 
Address 

The address given is the virtual VRAM 
address. 

PPUDATA_LOW W Lower 32 bits of 
VRAM data 

Writing to this register initiates a write to 
VRAM, so it should only be written to after 
PPUADDR and PPUDATA_HIGH are set 
correctly. If autoincrement is enabled, the 
PPUADDR register will then automatically 
be updated by the specified increment value. 

PPUDATA_HIGH W Upper 32 bits of 
VRAM data 

Only relevant for the tile and sprite graphics 
memories. 

 
Writing to VRAM thus goes as follows: 

1. Set the lower 16-bits of PPUCTRL as desired to control autoincrement. 
2. Write the virtual VRAM address you want to start the write at to PPUADDR. 
3. If writing to the Tile Graphics or Sprite Graphics memory, set PPUDATA_HIGH to the upper 

32-bits of the 64-bit data value you wish to write. 
4. Set PPU_LOW to the lower 32-bits of the value you wish to write. If the memory you are writing 

to has a width of less than 32-bits, the extra topmost bits of PPUDATA_LOW will be truncated 
and ignored. 

5. If you have set the auto increment to a value other than zero, repeat steps 3 and 4 for as long as 
you wish to continue this write burst. 

 
For the Vblank interrupt from the PPU to the HPS, we will use the irq signal from the Avalon Bus. 


