
Tetris Project Design Document

Michael Lippe (ml5201), Bhargav Sriram (bs3586), Garvit Vyas (gv2361)

Spring 2025

1. Introduction
Tetris is a classic puzzle video game revolving around the strategic placement of falling

geometric shapes known as Tetrominos. The goal is to rotate and arrange these pieces in such a manner
that forms complete horizontal lines, which are then cleared from the screen, and points are given based
on the number of lines cleared. As the game goes on, the falling speed of the blocks increases, and thus so
does the difficulty.

Our project aims to implement a hardware-software system capable of playing Tetris. To
accomplish our goal of playing Tetris, we will use an SNES-style USB controller, the DE1-SoC FPGA
board, a VGA monitor, and some speakers.

1.1 Tetrominos Overview

In Tetris, gameplay revolves around manipulating geometric shapes known as Tetrominos, each
consisting of exactly four squares arranged in seven distinct configurations. These configurations are
labeled based on their shapes: I, O, T, S, Z, J, and L.

Figure 1: The Seven Standard Tetrominos

Each Tetromino can be rotated by 90-degree increments, allowing four possible orientations for

each piece (except the O-Tetromino, which remains unchanged upon rotation). Players strategically rotate
and position these pieces as they descend, aiming to fill horizontal rows completely to clear them from the
playing field and score points.

The specifics for each Tetromino are:

● I-Tetromino: Straight-line shape, can rotate between vertical and horizontal orientations.
● O-Tetromino: Square shape, rotation does not affect its configuration.
● T-Tetromino: T-shaped configuration, has four distinct rotational states.
● S- and Z-Tetrominos: Mirror-image zigzag shapes, each has two rotational states due to

symmetry.
● J- and L-Tetrominos: Mirrored L-shaped configurations, each with four rotational states.

2. System

2.1 System Block Diagram

The project can be broken down into five major sections: Input devices, software run on the HPS,
hardware instantiated on the FPGA, built-in peripherals on the DE1-SoC board, and output devices. The
block diagram from the project is shown in Figure 2, where the various components have been grouped
together into the five major sections.

Figure 2: Tetris Project Block Diagram

2.2. PPU Hardware Summary

The Picture Processing Unit (PPU) is designed to drive a 640×480 VGA display at 60Hz.
Graphics are built from 16×16 tiles where each pixel is encoded in 4 bits, and each tile is referenced via
16 bits of combined attribute data, specifically a 6‑bit palette ID and a 10‑bit tile ID. We support storing
1024 unique background titles in memory and 1024 unique sprite tiles. The tile buffer holds 1,200 tiles
since the tile resolution of the screen is 40 x 30. Each color palette has 16 colors, and there are a total of
64 palettes. Our system allows for up to 256 sprites on screen at once, with a maximum of 16 sprites per
scan line. Object Attribute Memory (OAM) is used for storing data about each of the 256 sprites, where
each sprite is described with an 8‑byte entry and is addressed via 16-bit words. Word 0 contains both the
6‑bit palette ID and the 10‑bit tile ID, word 1 stores the X coordinate, word 2 stores the Y coordinate, and
word 3 holds the bits corresponding to horizontal and vertical flipping of the sprite’s graphics. Table 1
shows the per-sprite mapping of OAM.

Table 1: OAM Map Per Sprite

Word Range Field

Word 0 Sprite Graphics Palette ID and Tile ID

Word 1 X Coordinate

Word 2 Y Coordinate

Word 3 Rotation Flags

3. Algorithms

3.1. Hardware Algorithms

The PPU hardware implements an algorithm, referred to as Pixel Draw, which provides a
mechanism for translating the tile, background, and sprite data from VRAM into an output frame. Pseudo
code for the general pixel draw algorithm is shown below:

/* This procedure is executed every clock cycle with inputs H (current horizontal

pixel) and V (current vertical pixel) provided by the VGA controller.

Preprocessing is assumed to load sprite graphics into OAM.

A separate process (or pipeline stage) handles the sprite line determination when V

changes. */

if (V has just changed) then:

 // --- SPRITE LINE DETERMINATION (per scanline update) ---

 // Clear the list of active sprites for the current scanline.

 activeSprites = []

 // Check each sprite in OAM (from slot 0 to 255, order defines priority)

 for spriteSlot from 0 to 255 do:

 sprite = OAM[spriteSlot]

 if (V >= sprite.Y) and (V < sprite.Y + 16) then:

 // Calculate the row index within the sprite graphics.

 if sprite.verticalFlip is set then:

 rowIndex = (15 - (V - sprite.Y)) << 4 // Multiply by 16 to get byte

offset.

 else:

 rowIndex = (V - sprite.Y) << 4

 // Retrieve the corresponding 16-bit chunk from sprite graphics.

 if sprite.horizontalFlip is set then:

 // Load the 16-pixel data in reverse order.

 spriteLineData = loadReversedSpriteData(sprite, rowIndex)

 else:

 // Load the data in normal order.

 spriteLineData = loadSpriteData(sprite, rowIndex)

 // Append sprite info (maintaining OAM order for priority) with its data

and X coordinate.

 activeSprites.append({

 slot: spriteSlot, // lower slot number means higher priority

 X: sprite.X,

 shiftRegister: spriteLineData, // initial content for the shift

register.

 enabled: False // shift register initially disabled.

 })

 // Only consider up to the first 16 active sprites (by OAM order).

 if activeSprites.length == 16 then break

// --- SHIFT REGISTER CONTROL AND PIXEL OUTPUT (every clock cycle) ---

// For every clock cycle, using current H (and preloaded activeSprites for current V):

for each spriteInfo in activeSprites do:

 // Enable the sprite's shift register when H equals the sprite's starting X

coordinate.

 if H == spriteInfo.X then:

 spriteInfo.enabled = True

 // Disable the sprite's shift register when H reaches the end (X + 15) of the

sprite.

 if H == spriteInfo.X + 15 then:

 spriteInfo.enabled = False

// Now determine the final pixel color using the current outputs of the enabled sprite

shift registers.

outputPixelColor = None

// Check activeSprites in ascending OAM order (sprite slot 0 highest priority, etc.).

for each spriteInfo in activeSprites do:

 if spriteInfo.enabled then:

 // The current pixel color is taken from the shift register output.

 // The shift register is assumed to shift its data with each clock,

 // so its present output corresponds to the pixel at (H - spriteInfo.X).

 spritePixelColor = spriteInfo.shiftRegister.currentOutput()

 // If the sprite pixel is not transparent (nonzero), it is selected.

 if spritePixelColor != 0 then:

 outputPixelColor = spritePixelColor

 break // Use the highest-priority sprite pixel available.

// If no sprite produced a nontransparent pixel, compute the background pixel.

if outputPixelColor is None then:

 // --- BACKGROUND PIXEL COMPUTATION ---

 // Calculate the tile buffer index using the high-order bits of the coordinates.

 tileBufferIndex = ((V >> 4) * (SCREEN_WIDTH >> 4)) + (H >> 4)

 // Calculate the pixel offset within the tile from the lower-order bits.

 tilePixelOffset = ((V & 0xF) << 4) + (H & 0xF)meaid

 // Retrieve background pixel from the tile graphics.

 outputPixelColor = getTilePixel(tileBufferIndex, tilePixelOffset)

// Finally, output the computed pixel color at (H, V).

drawPixel(H, V, outputPixelColor)

To minimize the critical path for the circuit that determines which of the 16 sprites or the background a
given pixel should come from, we will use divide and conquer so that rather than a chain of 17 muxes, it
will be a chain of length 5.

3.2. Software Algorithms

Our software will be split among three virtual threads. One thread will handle the game logic, one thread
will handle the Vblank routine, and the last thread will feed raw audio data from the SD card to the audio
CODEC for the background music. Because the game logic and Vblank routines are mutually exclusive,
only two threads will be running at a given time, making it easy for the OS to schedule our three virtual
threads onto the two physical threads of the HPS.

The following pseudo-code details the functions needed to implement the Tetris logic, based on analysis
of existing Tetris code and a general understanding of how the game works.

ROWS 20 // play‑field height

COLS 15 // play‑field width

// Block shapes

SHAPES = { I, O, T, S, Z, J, L }

// Matrices

BlockMatrix[4][4] // current falling tetromino

Playfield[COLS][ROWS] // fixed blocks on the board

main() {

 initMatrix() // clear the playfield

 prepareFirstBlock() // choose initial shape & colour

 loop until Quit OR GameOver

 userInput() // non‑blocking; may set flags

 stepTimer() // advances a tick

 end loop

 if GameOver

 showGameOver()

 end if

}

initMatrix()

// Set every cell of Playfield to BLANK (empty)

prepareFirstBlock()

// 1. Pick a random shape & colour for CurrentBlock

// 2. Initialise BlockMatrix accordingly

// 3. Place CurrentBlock at top‑centre start position

userInput()

// Get most recent button presses polled during Vblank

stepTimer()

// Called once per frame during vblank

// Move or rotate the current block based on userInput() unless user input is Down

// If accumulatedDelay < CurrentSpeed and userInput() is not Down

// 1. accumulatedDelay++

// Else

// accumulatedDelay = 0

// 1. moveBlock(DOWN)

// 2. If the move failed due to collision with bottom of playfield or fixed blocks:

// • fixCurrentBlockIntoPlayfield()

// • checkForLineClears()

// • spawnNextBlock() (may set GameOver)

// 3. update score display

moveBlock(direction)

// Attempt to translate CurrentBlock by one cell in the specified direction

// Call detectCollision() first; if collision then return FAILURE

// Otherwise update newBlockX / newBlockY and return SUCCESS

rotateBlock()

// Compute the 90° rotated version of BlockMatrix

// If the rotated piece collides with walls or fixed blocks then cancel

// Else copy rotated data back into BlockMatrix

detectCollision(candidateX, candidateY)

// Given a hypothetical position of CurrentBlock:

// • Check left/right boundaries

// • Check bottom boundary

// • Check overlap with filled cells in Playfield

// Return TRUE if any collision is detected, FALSE otherwise

fixCurrentBlockIntoPlayfield()

// Copy all non‑blank cells from BlockMatrix into Playfield

// at the current (BlockX, BlockY) offset

checkForLineClears()

// Iterate every row of Playfield

// If a row is completely filled:

// • removeLine(rowIndex)

// • increment LinesCleared and call calculateScore()

// • after every 20 cleared lines call increaseSpeed()

removeLine(rowIndex)

// Delete the specified row by shifting all rows above it downward by one

// Insert a new blank row at the top of Playfield

increaseSpeed()

// Decrease the logical delay between automatic DOWN steps

// Increment Level counter (both affect difficulty)

spawnNextBlock()

// 1. Select NextShape & colour (random)

// 2. Reset BlockX, BlockY to the spawn coordinates

// 3. Initialise BlockMatrix for the new shape

// 4. If the new block immediately collides then set GameOver

calculateScore()

//Calculates score based on the number lines cleared at once and the current falling

speed

4. Resource Budget

4.1. Memory Usage

Using the M10K blocks, we have about 480KB of memory to work with. Table 2 shows how we
have utilized that memory.

Table 2: Total Memory Used

 Size

Tile Buffer 2.4KB

Tile Graphics 131.072KB

Sprite Graphics 131.072KB

Color Pallets 3.072KB

OAM 2.048KB

Total 269.664KB

5. Hardware/Software Interface

5.1. PPU Memories

The main memory blocks in the PPU are the Tile Buffer, Tile Graphics Memory, Sprite Graphics
Memory, Color Palette Memory, and Object Attribute Memory; each is implemented individually, with
different widths based on the data it stores. The various PPU memories are exposed to the HPS as a single
virtual VRAM. Table 3 shows the virtual VRAM mapping, width, and size of each memory.

Table 3: VRAM Map:

 Start End Width Size Number of Addresses
(Dec, Hex)

Tile Buffer 0x00000000 0x000004B0 16-bits 2.4KB 1200, 4B0

Tile Graphics 0x10000000 0x10004000 64-bits 131.072KB 16384, 4000

Sprite
Graphics

0x20000000 0x20004000 64-bits 131.072KB 16384, 4000

Color Palettes 0x30000000 0x30000400 24-bits 3.072KB 1024, 400

OAM 0x40000000 0x40000400 16-bits 2.048KB 1024, 400

5.1.2. Avalon Bus and PPU Registers
Ideally, we would use a 64-bit wide bus to communicate between the HPS and PPU, so that we

could write the data for the widest memories in a single transfer. However, we are limited to a 32-bit bus
width since the ARM SoC in the HPS is 32-bit. Thus, we will have two 32-bit registers for data,
PPUDATA_LOW and PPUDATA_HIGH. We will also have PPUADDR for specifying the VRAM
address and PPUCTRL to control the automatic address incrementation, Vblank interrupt, and Vblank
CPU write blocking. Table 4 shows the PPU registers, their read/write direction, and their purpose.

Table 4: PPU Registers

Register Read/Write Function Misc

PPUCTRL W PPU Control The lowest 16 bits are used to control the
PPUADDR autoincrement settings. Setting
them to 0 disables autoincrement, while
setting them to any other value sets the
number of addresses to autoincrement by
after a write. The MSB of this register is
used to enable or disable the Vblank
interrupt. The second MSB of this register is
used to enable or disable allowing CPU
writes to VRAM during non-Vblank periods.

PPUADDR W Specify VRAM
Address

The address given is the virtual VRAM
address.

PPUDATA_LOW W Lower 32 bits of
VRAM data

Writing to this register initiates a write to
VRAM, so it should only be written to after
PPUADDR and PPUDATA_HIGH are set
correctly. If autoincrement is enabled, the
PPUADDR register will then automatically
be updated by the specified increment value.

PPUDATA_HIGH W Upper 32 bits of
VRAM data

Only relevant for the tile and sprite graphics
memories.

Writing to VRAM thus goes as follows:

1. Set the lower 16-bits of PPUCTRL as desired to control autoincrement.
2. Write the virtual VRAM address you want to start the write at to PPUADDR.
3. If writing to the Tile Graphics or Sprite Graphics memory, set PPUDATA_HIGH to the upper

32-bits of the 64-bit data value you wish to write.
4. Set PPU_LOW to the lower 32-bits of the value you wish to write. If the memory you are writing

to has a width of less than 32-bits, the extra topmost bits of PPUDATA_LOW will be truncated
and ignored.

5. If you have set the auto increment to a value other than zero, repeat steps 3 and 4 for as long as
you wish to continue this write burst.

For the Vblank interrupt from the PPU to the HPS, we will use the irq signal from the Avalon Bus.

