
CSEE 4840 - Embedded Systems
Design Document: Piano Heroes

Anita Bui-Martinez (adb2221), Michael John Flynn (mf3657),
Zakiy Tywon Manigo (ztm2106), Robel Wondwossen (rw3043)

Spring 2025

1 Introduction

Our project’s goal is to create a video game inspired by Piano Tiles - Don’t Tap the
White Tile created by Hu Wen Zeng in 2014. We will expand the game to include up
to two octaves of a piano in which the player will have to play the correct corresponding
notes on the USB piano keyboard. Users must play the correct keys in the right order
before they scroll off the screen. When each key is pressed, a piano note will be played,
and the pressed note will be signified on the display. Otherwise, the player will lose the
game.

Figure 1: Display Inspiration

1

2 Block Diagram

Figure 2: Project Block Diagram

3 Algorithm

1. Game Logic

• Our project will allow users to choose a song to attempt to play, along with
the choice of different levels of difficulty. Once a song is chosen, the game will
begin.

• The correct notes for the chosen song will scroll down from the top of the
screen. As the notes get to the bottom of the screen, the user must play the
corresponding notes in the correct order on the USB keyboard. When notes
are played by the user, the game will also play the audio of the corresponding
note. If the user plays an incorrect note or doesn’t play the correct note in
time, they will lose the game.

• While the game displays the falling notes on the VGA display, it will also wait
for input from the USB keyboard.

• The vertical speed of each tile, v, is computed from the song’s tempo (BPM)
and the frame rate f:

v =
pixels per beat

f ×
(

60
BPM

)
In this context, pixels per beat denotes the number of vertical pixels a tile
must move for each musical beat (quarter note) so that the scrolling animation
stays in sync with the song. This will depend on our play field height and how
many beats of “lead time” we want before notes reach the hit line. For example,
our play field is 480px tall and we would like tiles to take 4 beats to traverse
it, we would set

pixels per beat =
playfield height

beats of lead time
=

480 px

4 beats
= 120 px/beat.

2

With this value, the per-frame descent

v =
pixels per beat

f × (60/BPM)

ensures each tile moves exactly 120 px every beat (i.e. every 60/BPM seconds).

2. Data Flow - Reading Input from Keyboard

• The FPGA receives this data through two addresses:

– 0x00001000 for MIDI data

– 0x00001004 for the timestamp

• To facilitate communication between the Linux software and the FPGA, phys-
ical memory is mapped into the user-space program using /dev/mem. The
FPGA exposes registers beginning at base address 0xFF200000, with a total
mapping span of 2 MB (0x00200000).

• Relevant addresses:

– MIDI Data Register: 0xFF201000

– Timestamp Register: 0xFF201004

• Each MIDI message + timestamp can be written in packed 32-bit words or
individually:

– FPGA base addr — 0xFF200000

– Register span — 0x00200000 (2 MB)

– MIDI data offset — 0x00001000

– Timestamp offset — 0x00001004

Byte Value Meaning
0 0A USB header (CIN = 0x0A) – ”Note On” message, not part of core MIDI
1 90 Status byte: 0x90 = Note On, Channel 0
2 3C Note number: 0x3C = 60 = Middle C (C4)
3 7F Velocity: 0x7F = 127 = maximum key press strength

Table 1: Example Output Explanation

3. Displaying the Keyboard

• We can use a 2D array of 3-bit values where the entries are the hcount and the
6th vcount bit. The 3 bits to encode are the corresponding colors: WHITE,
BLACK, LIGHT BLUE, DARK BLUE, LIGHT GREEN, DARK GREEN,
LIGHT RED, and DARK RED.

• We also only need to store one octave and repeat the display of that octave.

3

Figure 3: Display Map

Figure 4: One Octave with Corresponding Notes

4. Displaying the Falling Tiles

• Tile Data Structure

– We would maintain an array or circular buffer of active tiles.

– Each tile stores:

∗ column (0 . . . N − 1, where N is the number of piano keys)

∗ spawn time (timestamp when tile appears at y = 0)

∗ speed (pixels/frame, derived from BPM and frame rate)

∗ color (3-bit code matching the key’s color)

• Position Calculation
On each VGA frame, we would read the current time tnow. For each active tile
we would have to compute

y =
(
tnow − spawn time

)
× speed.

4

If y exceeds the play field height (480 px), mark the tile “missed” and recycle
its entry.

• Hit-Detection Overlay
We will draw a “hit line” at fixed vcount = vhit by forcing that scanline to a
special indicator color whenever vcount == vhit.

5. Playing the Sounds

Figure 5: Audio Production Flow

The ARM C program captures MIDI events, and collects them into a temporal
set of keystrokes before writing the data to the Avalon bridge. On the FPGA
side, the polyphonic driver updates one of eight (supporting 8 simultaneous key
presses, subject to change) phase accumulator key registers containing information
on the pitch, gain, and note-on/off status. This information is utilised to modify
one of 3 WAV samples stored in RAM, this is possible as modification of various
C notes (C3, C4, C5, C6, C7, etc...) will faithfully recreate the other notes within
an octave. Our reasoning for this design choice is to maximise audio quality with
48KHz 16 bit audio samples, while saving valuable space within the RAM. As every
key stroke invokes the register to re-read these same three samples and pitch-shifts
them over their associated octaves, total RAM usage for audio is less than 300
KB, far less than storing a separate waveform per key. On each edge event of the
Wolfson WM8731 codec’s 48 kHz advance signal, the interface cycles through the
active keys, fetches the appropriate sample, applies gain, accumulates the results
in a mixer, and finally outputs 24-bit left/right signals to the codec.

4 Resource Budget

1. SONGS:

• Midi file that gets transferred from the C code.

2. VIDEO:

• Each key is 8 or 16 bits across - 16x24 keys

• Using the 2D array of 3-bit values, each 3 bits corresponding to the different
colors we will use and given that the keyboard will be 128 pixels tall, it will
take 3.4KB to store all the states of the keyboard.

5

• There will be 1 pixel wide vertical lines between each whole note to differentiate
them by making every 24th pixel of the background black.

• The text on the right side of the screen indicating the score and the song
information would be part of the frame buffer.

Figure 6: Pixel Sizing

3. AUDIO:

• 3 x 1 second 16-bit samples of C notes (C3, C4, C5), at 48KHz.

• Approximately 280 KB of RAM, jsut over half of the available on chip FPGA
RAM.

5 Hardware-Software Components

1. Hardware

(a) DE1 SoC FPGA Board
The FPGA implements the core game engine logic in hardware. It receives
parsed note data and associated timestamps and uses them to spawn visual
elements, perform hit detection, and compute player scoring in real time.

(b) VGA Output Display
The VGA monitor connected to the board displays the gameplay by showing
falling notes and reactive feedback when the player presses keys at the correct
times.

(c) USB Keyboard - Novation Launchkey Mini [MK3]
This keyboard is connected to the DE1-SoC FPGA development board, which
runs an embedded Linux environment. USB MIDI messages from the keyboard
are captured using the libusb library

2. Software

(a) C - The language we will use to create the game logic is C
The software running on the Linux side includes a lightweight C-based MIDI
logger program. This program uses several libraries:

6

i. libusb-1.0: Used for USB communication with the Launchkey Mini, en-
abling direct access to raw MIDI packets over a bulk endpoint.

ii. sys/time.h: Provides access to microsecond-accurate timestamps, allowing
the system to measure note timing precisely.

iii. fcntl.h and sys/mman.h: Used to perform memory mapping from user-
space to the FPGA’s memory-mapped registers.

iv. unistd.h: Used for system-level utilities such as introducing brief delays
to avoid overwhelming the FPGA with data bursts.

These libraries together allow for real-time parsing, logging, and communica-
tion of MIDI input from the USB device to the hardware logic.

7

