
The Design Document for CSEE4840 Embedded

System Design

CNN Accelerator for Gesture Recognition

Yangfan Wang (yw4415)
Fengze Zhong (fz2393)
Xincheng Yu (xy2654)

Spring 2025

Contents

1 Introduction 2

2 System Overview 2
2.1 Software . 3
2.2 Hardware . 3

2.2.1 MAC . 3

3 CNN Structure 4

4 Resource Budgets 5

5 The Hardware/Software Interface 5

6 Milestones 6

1

1 Introduction

This project aims to implement an accelerator system that performs gesture recognition. The FPGA
platform offers substantial computing power with the versatility to communicate with the software. Also, as
the CNN relies on the fixed function unit to perform certain tasks, it is suitable to deploy it on FPGA with
only accelerating the computation part.

As indicated in Figure 1, the dataset we choose contains 10 classifications of gestures, and this ensures
that we can accomplish the recognition with a lightweight neural network.

Figure 1: Recognition Classes [1]

2 System Overview

The system we build contains the software control and the hardware acceleration. The software side will
be running on the HPS Linux mainly for file operations and CNN flow control. It defines the CNN layers
and all its parameters. The hardware side will be purely for computation including the kernel convolution,
max pooling and ReLU activation.

2

Figure 2: Block Diagram

2.1 Software

With an image pending for recognition, the software will firstly downsample and resize it to 32x32. Then
it will follow the structure of the CNN trained and read weights and biases from files and load to the hardware
according to the current layer.

2.2 Hardware

On the hardware, the control FSM will loop through all the source and destination channels for this layer
based on the configuration registers. It will first fetch the data of a 3x3 kernel size, weights, and bias from the
memory. Then it will dispatch the computation to the MAC unit. After each kernel computation completed,
the temporary output will write to the output memory. The registers act as the sliding window, therefore
after the initial 9 reads at the beginning of each row, the subsequent reads will all be 3. After it loops
through all the sources channels for all destination channels, it will assert a signal to indicate completion.
The FSM will also deal the extra cycle delay from the memory access.

2.2.1 MAC

MAC units will have 9 parallel Q8.8 fixed-point multiplier. We will expand the number MAC units in
parallel to expedite the computation, given 112 DSP blocks on the Cyclone V SE FPGA.

3

Figure 3: MAC Unit

3 CNN Structure

Due to the limited RAM on the FPGA, we chose to use a relatively lightweight network consisting of
four convolutional layers and two fully connected layers, as shown in Figure 4.

Figure 4: Convolution Neural Network Architecture

We used PyTorch to train our model on the Sign Language Digits Dataset, which contains 2,180 color
images of hand gestures representing digits from 0 to 9. Since the number of samples per class is relatively
small, we applied data augmentation techniques including random rotation, center cropping, and adjustments
to brightness and contrast, in order to improve the model’s generalization performance. We then split the
dataset into 80% for training and 20% for validation. The current model achieved an accuracy of 93% on

4

the original dataset and is capable of distinguishing hand gesture images that resemble those in the training
data with white background color.

4 Resource Budgets

The main constraint for this project is the BRAM needed to store the source data, weight, bias and
output. All the data involved will be represented in Q8.8 fixed point using 2 bytes. The following is the
estimated memory usage for each layer, and given the 4450 Kbits FPGA memory, we should be able to fit
each layer in.

Layer 1 72 KB
Layer 2 146 KB
Layer 3 68 KB
Layer 4 305 KB
Layer 5 33 KB
Layer 6 1.4 KB

Table 1: Memory Allocation

Regarding to the LUTs and DSPs, as mentioned above, the FSM will simply loop through the source
and destination channel therefore the logic will not consume much LUTs to implement. The MAC and
comparisons part will rely on the DPS units, which we have sufficient on the FPGA.

5 The Hardware/Software Interface

The software module will be responsible for setting up the memory and configuring the accelerator. The
programmable registers are defined as in Table 2. The write addresses range from 0x00 to 0x18. Writing to
the start field triggers the layer computation.

src chans number of source channels uint16
dst chans number of destination channels uint16
num cols number of columns in the source uint16
num rows number of rows in the source uint16
do pool enable pooling for the layer bool
pool size max pooling size uint8
pool stride max pooling stride uint8
data starting address starting address of the source data uint16
weight starting address starting address of the weight uint16
bias starting address starting address of the bias uint16
output starting address starting address of the output uint16
start start layer computation bool

Table 2: Variable Configuration

After the hardware completes the computation, it will assert an interrupt signal to the software to indicate
the readiness of the output value.

The software is also responsible for writing sources, weights, biases data and reading output from the
local BRAM in the FPGA. The memory controller from the hardware side handles the data transactions.
Considering the scale of the neural network, it is not feasible to load the weights for all the layers once to
the BRAM. Therefore, after each layer is completed, the software will read from the memory and rewrite
the memory structure.

5

Address map is defined as following:

data staring address
data

weight starting address
weight

bias starting address
bias

output starting address
output

6 Milestones

1. Complete the refinement of the neural network.

2. Implement the hardware component (MAC, Registers) in SystemVerilog.

3. Synthesize and resolve any timing and utilization problems.

4. Implement the C driver for dispatch layer tasks

References

[1] Arda Mavi. Sign language digits dataset. https://github.com/ardamavi/

Sign-Language-Digits-Dataset, 2017. Accessed: 2025-04-18.

6

