
Embedded Systems - Geometry Dash

Riju Dey, Sasha Isler, Charles Chen, Rachinta Marpaung

April 2025

1 Introduction

Figure 1: Block Diagram

We aim to create a version of the popular game, ”Geometry Dash”, on the
VGA display and with the DE-1 SoC. The map is preloaded into the FPGA and
its length is determined by the length of the song. Players run through the map
at a set speed, avoiding obstacles through jumping. The design responds to user
input through a button on the FPGA which triggers jumps/flying movement.
The game logic detects failure conditions such as obstacle collisions and manages
the physics of the game.

2 Design Details

2.1 Rendering

The player sprite and background will be rendered separately from the map.

Map Rendering

The level map will be contained in software and sent over to the hardware
block by block. This gives us the flexibility to have different maps of different
lengths, and they don’t need to be stored entirely in hardware.

1

The map will be written to hardware in units of map block which represent
a 10x10p section of the VGA screen. Each map block is one byte and contains
the object id of the object to be displayed in that block. This object id is
used to index into the object table in ROM which contains the images for
each object.

Each map block will be stored in hardware in a 2D array of memory in RAM
that we call the display buf.

To determine the required length of the display buf, we use:

• Screen width: 640 pixels

• Each pixel: 3 bytes (RGB)

• Each map block: 10 pixels

• We double the screen width to support smooth scrolling

640× 3× 2

10× 3
=

3840

30
= 128 blocks

To determine the required height of the display buf, we use:

• Screen height: 480 pixels

• Each pixel: 3 bytes (RGB)

• Each map block: 10 pixels

480

10
= 48 blocks

Therefore, the display buf will be 128x48, totaling 128 x 48 = 6,144

bytes.

Listing 1: Pixel Rendering Logic

// Compute block_x , block_y

block_x = x / 10; // 0 to 63 (for 640px wide screen)

block_y = y / 10; // 0 to 47 (for 480px tall screen)

// Compute pixel_in_block_x , pixel_in_block_y

px = x % 10;

py = y % 10;

// Get current map_block from display_buf

map_block = display_buf[block_x][block_y];

if (map_block == 0) {

vga_color = background_color;

} else {

object_id = map_block;

2

vga_color = object_table[object_id][py][px]; // ROM lookup

}

// Output to VGA

Sprite and Background Rendering

The player sprite will always remain in the center of the screen and the user
will control its movement on the y-axis. The rendering of the player sprite will
always take priority over the rendering of the background. There will never be
overlap between the player sprite and an obstacle, so there is no need to indicate
priority for that scenario.

2.2 Control Path

Load Game Playing

Ready Game Over

00

0X

X0

X1
11

00

Using the flags register, the software will manage a FSM with two flags:
ready and set. Initially, while the map and music are being loaded, the soft-
ware sets both flags to zero. When loading finishes, it sets the ready flag and
transitions into the Ready state. In this state, upon user input, the game will
transition to the Playing state. When the physics engine detects collisions be-
tween any obstacles in this state, both flags will be turned off and the game
enters the Game Over state. If the user presses the button again, they reenter
the Playing state, starting over from the beginning.

3

Algorithm 1 FSM Using Flags Register

ready ← 0
set ← 0
currentState ← LOADING
while true do

if currentState = LOADING then
loadMapAndMusic()
ready ← 1
currentState ← READY

else if currentState = READY then
if userInput() then

set ← 1
currentState ← PLAYING

end if
else if currentState = PLAYING then

runGamePhysics()
if collisionDetected() then

ready ← 0
set ← 0
resetX()
currentState ← GAME OVER

end if
else if currentState = GAME OVER then

if userInput() then
set ← 1
currentState ← PLAYING

end if
end if

end while

2.3 Hardware Software Interface

The register map for GameRenderEngine is shown below:

4

Table 1: Register Map for GameRenderEngine

Address Register Name Description

0 player y pos Player y position

2 player x pos Player x position

4 background r Red background color

6 background g Green background color

8 background b Blue background color

10 map block A section of map containing an obstacle id

12 flags Start, Acknowledgment

14 output Output flags

The Engine will use 16 bit addressing. The red, green, and blue registers
determine the background color. During loading, the software loads twice the
screen length of the map array, L, word by word into the RAM through the
map block register. Upon receiving and successfully storing a word, the hard-
ware sets the ACK flag and the software begins loading the next. Once the map
is fully loaded, the software sends the start signal to begin the map scroll.

For each clock cycle, the hardware reads the player x pos to determine the
player sprite’s x position.

2.4 Physics

The player sprite will implement the following attributes to simulate movement.
The physics logic will be implemented in software, to enable more efficient test-
ing.

Variable Description

gravity controls fall of player sprite

jump velocity controls jump of player sprite

The software will control scrolling and collisions. The game logic will maintain
the player x position, which will be communicated to the hardware, which will
be used to determine what section of the level is being rendered. The software
will also use the variable bps to calculate the speed at which the block moves
through the level. To track collisions, the software will look at a small range of
blocks around the player square and check if there are any collisions. Hitboxes
will be maintained in software.

5

3 Resource Budget

Object images are stored in preloaded ROMwhich we will call the object table:

Components Graphic

Player Sprite

Regular Spike

Short Spike

Platform

Square

Razor

Portal

Each 1 byte map block is stored in the display buf which is maintained
in RAM and has dimensions 128x48 and size 128 x 48 = 6,144 bytes.

3.1 Music

We start with a MIDI file, which contains a sequence of time-stamped note
events. Each event tells us when to start or stop playing a note. It does not
include audio, just timing and pitch data.

To generate sound, we use oscillators that produce waveforms like square
waves. Although basic, this gives us a foundation. To go further, we adopt a
sampling synthesizer approach using sound fonts.

• Attack: When the note is first pressed.

• Sustain: Looped waveform while the note is held.

• Release: The fading sound when the note is released.

Since MIDI files do not contain actual audio, we use a SoundFont2 (.sf2) file
to provide the corresponding instrument sounds. These sound fonts contain pre-
recorded waveforms organized by pitch and instrument type, enabling sample-
based audio generation.

We load this file into memory and access it like a wavetable synthesizer. The
MIDI file provides the when, and the SoundFont gives us the what.

6

To output the audio, we send the synthesized samples to a codec, which
expects data at a fixed sampling rate—48 kHz. Our system must ensure that
we feed the codec numbers at exactly this rate.

Software parses the MIDI file and schedules note events. Hardware performs
real-time synthesis using the SoundFont data and streams audio samples to the
codec.

3.1.1 System Implementation

The MIDI file is preloaded and parsed in software. A hardware synthesizer
component loads and stores the SF2 file in memory. Then it retrieves sample
data and handles interpolation as necessary. Then, it streams audio samples at
a fixed sampling rate to the audio codec.

4 Timeline/Milestones

We plan to split up the work into several sections with milestones outlined
below.

1. A hardware component that

(a) renders the player sprite

(b) renders obstacles

(c) renders a background

2. A music component that

(a) plays music upon receiving a start signal.

3. A game logic component that

(a) detects collisions between the player and obstacles

(b) implements physics and jumping mechanics

(c) keeps track of the game state (eg. playing, game over)

4. A user input component that

(a) detects button presses to trigger jumps

(b) debounces input signals for reliability

5. Stretch goals (if time allows)

(a) create a simple menu or restart feature

(b) add extra ’coin’ object for the player to collect on the map

7

