
1

DINO RUN

Design Document for CSEE 4840 Embedded System Design

Swapnil Banerjee (sb5041), Roshan Prakash (rp3187), Anne Rose Sankar Raj (as7525)

Uh-Oh!

2

Contents
1 Introduction 3

2 Outline 3

3 Basic Block Diagram 5

4 Movement logic 6

5 Game Play logic 7

6 Display logic 9

7 Audio logic 9

8 Player Input 10

9 Sprites 11

10 Audio 13

11 Address Mapping 13

12 Milestones 14

3

Introduction:

In this project we will aim to recreate the Dino Run game on the FPGA, adding several twists to

enhance gameplay. The graphics and background have been overhauled to enhance the visual

experience. The game will consist of basic character movement, powerup activations, obstacle

detection, and a running score system. We will use an up-arrow key to make the dino jump and

a down arrow to make the dino duck. The game will end when the character collides with an

obstacle. Dino will gain different abilities from the powerups that it collides with. The Godzilla

powerup will make the dino invincible for a certain time. The Slow Mo powerup will slow down the

game speed. The Shrink power-up will make the dino tiny such that it can avoid the pterodactyls.

The game will run entirely on FPGA hardware and a VGA display.

Outline:

Input Module:

● Interfaces with the De1-Soc

● Reads:

○ Directional Input (Up, Down)

● Translates the inputs into higher level commands

○ Jump

○ Duck

Game Module:

● 2D scrolling: The dino will stay on the left of the screen during movement

● Gravity physics

● Power up logic

● Obstacle logic:

○ Spawns and updates the obstacles

○ Stores the active states

● Collision Detection:

○ The Dino will be blocked by the ground.

○ The Dino will interact with enemies and power ups that will execute their

interaction after contact with the dino.

● Game States:

○ Playing, Game over, reset

● Increments and displays the score

4

Display Module:

● Sprite Buffer

● VGA signal generation

● Frame rendering

VGA Output:

● Uses ADV7123 DAC in order to generate analog VGA signal

● Sends visuals to monitor

Animation: Score animation, jumping animation, death animation.

Audio Output: The game will have music on start and audio effects (noise on crash).

I/O Device:

Video Output: VGA

Audio Output: Speaker

Controller Input: Joystick

Platform:

5

Basic Block Diagram:

We use the HPS to handle sequential logic. For example, we handle the jumping and the score

in c-code. We use the FPGA to render the sprites and to check pixel collisions in parallel.

The Avalon Bus is essentially the connection between our Verilog and c-code.

6

Movement Logic:

Top Edge: Collision Detection

Bottom Edge: Collision Detection

Right Edge: Collision Detection

Left Edge: No Collision Detection

7

Gameplay Logic:
Game{

while(1):

draw_obstacles();

move_obstacles();

 IF User Presses Jump Key:

 jump()

 IF User Presses duck Key:

 duck()

 IF collision detection==true:

 IF powerup:

 switch(case):

 Case ‘Godzilla’:

 while(300):

 Change sprite to godzilla

 Remove obstacle sprites on its way

Case ‘Slow-mo’:

 while(300):

Game-speed=Gamespeed-1

 powerup=1

 Case ‘Shrink’:

 while(300):

 Reduce sprite size

 Power_time = 300

 IF Obstacle collides with Dinosaur:

 END Game()

 update_score()

}

Display "Game Over" Screen

Display Final Score

Offer Restart or Quit Option

}

8

9

Display Logic:

Our plan is to render the images by converting the PNG images to HEX files and reading them

from rom. To prevent loading up the memory, we have estimated how much memory each image

would potentially take up and we also came up with logic for the sprite creation to save up

memory.

We will design a VGA controller to generate the required CGA signals from the FPGA. It will read

pixel data from different sources depending on the current state of the game. It will also include

horizontal sync, vertical sync signals. This controller an Implementation will be done using all

necessary signals to control and render the VGA monitor. Screen resolution is 680*480 with 60Hz.

Audio Logic:

The de1soc comes with a Wolfson codec audio chip for handling 24-bit audio. This chip contains

2 ADCs and 2 DACs to interface with analog jacks and the FPGA with a digital interface. We will

configure it via the I2C bus and provide a clock rate of 12MHz. We will only use of the DAC

channels of the codec to transmit the signal for our Audio speaker. Altera provides two IP blocks

for use to control the audio.

Fig: Wolfson chip connections with the board

10

Player Input:

The logic for input will be based on using libsub to receive and decode the button presses on the

us- connected joystick.

11

Sprites:

Category Graphics Size (bits) Number of
images

Total size (bits)

Score

8*80(8*8 for
each digit)

1 24*8*80 = 15360

Dino

40*50(each
dino)

3 24*3*40*50 =
48000

Dino Jump

40*50 1 24*40*50 =
48000

Dino Duck

40*50 1 24*40*50 =
48000

12

Dino Dead

40*50 1 24*40*50 =
48000

Godzilla

100*80 1 24*100*80 =
192000

Small Cactus

30*20 2 24*2*30*20=288
00

Cacti Together

150*40 1 24*150*40=1440
00

Lava

40*30 1 24*40*30=28800

Powerup

20×30 3 24*3*20*30=432
00

Pterodactyl

40*50 2 24*2*40*50 =
48000

13

Total 836160

Audio:

 Time Fs (KHz) 12 (9 bits) Total size (bits)

Dino Die 3 12 9*(3*8000) = 216000

Jump 1 12 9*(1*8000) = 72000

Background Music 1 12 9*(1*8000) = 72000

Dino crash with
cactus

1 12 9*(1*8000) = 72000

Dino crash with
pterodactyl

1 12 9*(1*8000) = 72000

Dino crash with lava 1 12 9*(1*8000) = 72000

Dino crash with
Powerup

1 12 9*(1*8000) = 72000

Total 648000

Total bits required is 1,484,160.

We know that total bits provided by the de1-soc is 4,450 Kbits. Our memory requirement is only

1,484 Kbits. So initial design should fit well with the provided resources.

Address Mapping:

Address Name Description

0 dino_position_y X position is fixed

1 score Dino’s score

14

2 dino_knocked If dino collides with obstacle
then dino_knocked == 1 else
0

3
background_color_R R background color

4
background_color_G G background color

5
background_color_B

B background color

6 console_command If command/input received,
then console_command == 1
else 0

7 obstacle_position_x Y position will be fixed for the
obstacles

Milestones:

Milestone1:

Implement the sprites with dino, powerups and all the obstacles.

Milestone2:

Implement the joystick control and the movement logic for the dino.

Milestone3:

Implement the entire game logic with audio output.

