
1 | P a g e

The Design Document for CSEE 4840 Embedded System Design

Chess Game

Spring 2025

Team members:

Pengfei Yan (py2324)

Hongchi Liu (hl3813)

Hooman Khaloo (hhk2123)

Contents:

1. Introduction P2

 2. System Block Diagram P3

 3. Algorithms P4

 4. Resource Budgets P7

 5. Hardware/Software Interface P8

 6. Appendix (Chess Glossary) P9

2 | P a g e

1. Introduction

1.1. Problem Statement and Project Goal

Chess is one of the most enduring and popular board games worldwide. Implementing a
digital version of chess was among the earliest uses of board games in the realm of computer
science. Here, we plan to develop the chess for FPGA users.

In this project, we aim to build an interactive chess system on the DE1-SoC FPGA board.
The system allows a user to make moves via a Wacom DTF-510 graphics tablet, while all
processing related to chess logic, board rendering, and graphics are integrated between
software and hardware.

1.2. Motivation and Importance

• Embedded Systems Architecture Learning: This project merges hardware design
(on FPGA), bus interfaces (Avalon or memory-mapped IO), and high-level code (in
C) for game logic.

• FPGA-Based Graphics: Rendering a real-time 1024×768 display via a VGA module
in an FPGA environment demonstrates how limited FPGA resources can be leveraged
for 2D graphics.

• User Interaction via a Graphics Tablet: The project uses a Wacom tablet with
touch screen. It allows exploration of I/O driver challenges in embedded systems.

1.3. Scope and Key Modules

This project separates responsibilities between hardware and software. The software (HPS)
handles all chess logic, input parsing, and move validation, while the hardware (FPGA) is
responsible for rendering the board and pieces in real time. This clean separation simplifies
debugging and ensures efficient use of FPGA resources.

Hardware:

• In FPGA kernel, the hardware will display 8×8 chessboard with 64×64 pixel squares,
rendered in real-time at 1024×768 resolution.

• Display and movement of chess pieces using Sprite or shape data stored in on-chip
ROM.

• Capability to update the board graphics after each move, with potential future
enhancements for smooth piece movement (animations).

Software:

• Chess logic implemented in C software running on the ARM processor (HPS) that
maintains and validates the game state.

• In C software, integrate the driver of a Wacom DTF-510 tablet for user input
(touch/pen coordinates). And keyboard for secondary input.

3 | P a g e

2. System Block Diagram

2.1. System Block Diagram

Figure 1. The overall system block diagram

2.2. Hardware Components Explanation

1. Quartus Project and Verilog source file: this part is modified from the sample code
from lab3. We design the new structure for vga_board component, making it
communicate with chess program in software. In addition, the VGA counter driver in
Verilog is modified to hand the correct program resolutions 1024×768 @ 60Hz.

2. Linux Kernel in rbf format: after compiling the Quartus project, a rbf file will be
uploaded to SD card on the FPGA board. This file will communicate the actual
hardware and generate VGA output.

3. Shape ROM (Hex Array in Verilog)

1. Stores the graphical data for each chess piece (Pawn, Rook, Knight, Bishop,
Queen, King) in both black and white.

2. Each piece’s pattern is typically 64×64 pixels or a compressed variant.

4 | P a g e

2.3. Software Components Explanation

1. Chess Logic in C: the complete chess program including main menus, different game
mode (PvP and PvE), and replay of a game. Runs on the ARM processor in the HPS
(Hard Processor System). It also includes data structures for chess pieces, rules
validation, and final checks (checkmate, draw, etc.), then notifies the hardware side
accordingly.

2. Touch Screen Driver: the tablet driver collects user inputs and convert them into the
xy coordinates on the chess board. Then, send these coordinates to chess program.
The specific input format will be explained in next part.

3. USB Keyboard Driver: this part is used as the secondary input method in case of
touch screen is not working or for developing purpose. The source code is retrieved
from lab 2 sample code.

3. Algorithms

3.1. Chessboard Rendering Algorithm (in hardware)

Figure 2. chessboard algorithm

1. Obtain hcount, vcount: The VGA Controller uses horizontal (hcount) and vertical
(vcount) counters that indicate which pixel is currently being generated.

2. Board or background: Since each box is 64*64, the whole board on the center is
512*512 pixel. The range for the chessboard is (128, 640) for vcount, (256, 768) for
hcount. Pixels outside the board are the background.

5 | P a g e

3. Compute square index:

o Each square is 64×64 pixels, so x_box_no = (hcount-256) / 64, y_box_no =
(vcount-128) / 64.

o x_box_no and y_box_no range from 0 to 7, for an 8×8 board.

4. Determine black or white square:

o x_parity = x_box_no % 2

o y_parity = y_box_no % 2

o color = x_ parity XOR y_ parity→ If color = 0, the square is white; if 1, the
square is black.

This lightweight algorithm relies on basic division and XOR operations, meaning no large
texture is required to store the entire board.

3.2. Piece Rendering Algorithm (in hardware)

To display pieces, a layer on top of the board background must be used. The piece’s pixels
override or blend with the background squares:

1. Retrieve piece location: Each frame (or whenever updated), the software writes the
piece’s location (square x,y) into a shared hardware memory or register.

2. Piece type lookup: The Sprite/Board Generator uses the piece type (Pawn, Rook,
Knight, etc.) and color (white/black) to consult the Shape ROM.

3. Local pixel address in ROM: If the pixel (hcount, vcount) lies within a piece’s
bounding box, compute local coordinates inside the piece graphic:

o local_x = (hcount - 256 - (box_x * 64))

o local_y = (vcount - 128 - (box_y * 64))

o (box_x * 64, box_y * 64) represents the top-left corner of the board square.

4. ROM data fetch: The system checks (piece_type, color, local_y, local_x) in Shape
ROM. If the stored bit is 1, that pixel belongs to the piece; if 0, the background is used.

This approach overlays the piece sprite onto the XOR-based board pattern without needing a
full frame buffer.

6 | P a g e

3.3. Chess Logic in C (in software)

1. Data Structure:

o We use enum to store different types of pieces.

o We use for each piece, the color is also important in chess game.

o We define the pieces with type and color.

o A chess board is 8*8 2-dimentional arrays of Piece.

Figure 3: data structure and chess board

2. Initial Setup:

o Rows 1 and 2 for white pieces, rows 7 and 8 for black pieces, following standard
chess notation.

3. Coordinates Input:

o Moves are entered as 4-character strings (e.g., "A2A4"), representing start and
end squares refer to figure 3. The program parses these using:

 decode_x() to convert file letters ('A'-'H') to column indices (0–7).

 8 - (rank) to convert rank numbers ('1'-'8') to row indices.

 Invalid inputs (wrong length or out-of-bounds) prompt an error message.
This format supports both keyboard and touchscreen input, with
touchscreen coordinates converted into board indices.

4. Validate Move:

o Checking bounds and ensuring a piece exists.

o Verifying the piece matches the player’s color.

o Rejecting self-capture.

o Applying piece-specific rules (see appendix for specific rules).

5. Special Move: Special movement en passant and castling (explained in appendix) are
supported through some global flag variables.

7 | P a g e

6. Apply Changes & Notify FPGA:

o If the move is valid, the software updates the 8×8 array accordingly (clears the
origin square, sets the destination square to the piece code).

o This new arrangement is written to shared memory/FPGA registers.

o Special rules like castling, en passant, or promotion can be added for advanced
logic. Checkmate or check states can also be flagged.

o The software will sent the movement to rbf kernel. Then, the hardware will draw
the new board.

4. Resource Budgets

4.1. Memory and Storage

1. On-Chip Memory

o DE1-SoC’s Cyclone V FPGA typically provides 10-100 kB of on-chip memory.

o Storing a full 1024×768 frame buffer in on-chip memory is not feasible, so we
use an on-the-fly rendering approach, removing the need for a large buffer.

o For piece graphics (shapes), the memory is generally sufficient: each piece is
64×64 pixels. Even at 4 bits per pixel, that’s 4 KB per piece. With 6 types in 2
colors (12 total), that’s about 48 KB. Still feasible for internal ROM.

2. External RAM

o If advanced features like high-quality backgrounds or advanced animation are
desired, data may be loaded from external SDRAM or the HPS’s main DDR3
memory.

o This project’s design mainly relies on internal memory for storing shape
patterns, requiring no large, dedicated external frame buffer.

3. Software Memory

o The chess logic runs on the HPS (ARM), which has access to larger external
DDR3 (hundreds of MB). This is more than enough for a C program that handles
the game logic.

4.2. Bandwidth and Computational Constraints

• VGA Pixel Rate: For 1024×768 at 60 Hz, ~60 × 1024 × 768 ≈ 47 million pixel
operations per second (strictly counting visible pixels; blanking intervals add more).
With a pixel clock around 65–75 MHz, the FPGA can generate these signals.

• Avalon Bus Bandwidth: Only 8×8 squares are updated per move, so the bus traffic is
minimal and not a bottleneck.

• Chess Logic Computation: The CPU overhead from checking 20–30 possible moves
each turn is small and does not strain the HPS.

Overall, the design fits comfortably within the DE1-SoC’s resource limits.

8 | P a g e

5. Hardware/Software Interface

We are still developing this part. These are some initial attempts.

5.1. Registers

We designed a 64-register interface, with each register corresponding to one of the 64
chessboard squares.

• Each register stores a 4-bit value:

o Bits [3:1]: Piece type (e.g., Pawn = 1, Rook = 2, etc.)

o Bit [0]: Piece color (0 = Black, 1 = White)

• Address 0x00 → top-left (square A8), address 0x3F → bottom-right (square H1)

• This format allows all 64 squares to be updated using 64 bytes (1 byte per register).

5.2 Write Sequence (from Software)

After each valid move:

• The software updates its internal 8×8 Piece array.

• It encodes each square’s piece and color into a 4-bit value.

• It writes all 64 values to memory-mapped FPGA registers (e.g., using *(base + offset)
= value).

• Optionally, it writes to a control register to trigger a redraw or confirm update.

This approach allows the FPGA to refresh the board state without needing to interpret game
logic.

5.3 FPGA Decoder Logic (in Hardware)

The hardware (VGA module or sprite generator) continuously reads the 64 registers:

• For each screen pixel, it checks which square it falls into the board

• Then, it reads that square’s 4-bit register value to decide:

o Which piece sprite to display (based on piece type)

o What color (white/black) to render

9 | P a g e

6. Appendix (Chess Glossary)

6.1. Piece Types

Source of Pictures: https://commons.wikimedia.org/wiki/Category:SVG_chess_pieces

1. Pawn

Movement: Moves forward 1 square. From its starting position, it can move forward 2
squares.

Capturing: Diagonally forward 1 square.

2. Rook

Movement and Capturing: Any number of squares horizontally or vertically.

3. Knight

Movement and Capturing: In an L-shape: 2 squares in one direction, then 1 square
perpendicular.

4. Bishop

Movement and Capturing: Any number of squares diagonally.

5. Queen

Movement and Capturing: Any number of squares vertically, horizontally, or diagonally.
(Rook or Bishop)

https://commons.wikimedia.org/wiki/Category:SVG_chess_pieces

10 | P a g e

6. King

Movement and Capturing: 1 square in any direction.

6.2. Special Rules

1. En Passant

This rule allows a pawn to capture an opponent’s pawn that has just moved two squares
forward from its starting position. The capture is made as if the pawn had only moved one
square. It must be done immediately on the next move or the opportunity is lost.

2. Pawn Promotion

When a pawn reaches the farthest row on the opponent's side (rank 8 for white, rank 1 for
black), it is promoted. In our system, it is automatically promoted to a queen. This occurs
instantly after the pawn moves to the last rank.

3. Castling

Castling is a special move involving the king and either rook. The king moves two squares
toward a rook, and the rook jumps over the king to the square next to it. Castling is only
allowed if neither piece has moved, no pieces are between them, and the king is not in,
through, or moving into check.

