

Design Document for Spaceship Defender Game

CSEE 4840 Embedded System Design

Stephen A. Edwards (se2007) Spring 2025

Mingzhi Li (ml5160), Noah Hartzfeld (nah2178), Hiroki Endo (he2305),

Jingyi Lai (jl6932), Zhengtao Hu (zh2651)

April 18, 2025

Contents

1 Introduction

2 System Block Diagram

3 Algorithms

4 Resource Budgets

5 The Hardware/Software Interface

1 Introduction
Welcome to the high-flying world of our Spaceship Defender Game! This project creates an
engaging space shooter experience utilizing FPGA hardware acceleration for smooth
gameplay and graphics rendering.

In this project, our team will create a single-player arcade-style game based on Galaxian. The
user will control a single spaceship at the bottom of the screen, firing towards rows of
enemies above. They must avoid enemies firing back at them, as well as dive bombing
towards the ship. With limited lives and a mission to defend against the alien invasion, only
the most skilled pilot will emerge triumphant!

Our system combines hardware acceleration with software game logic, running on a
DE1-SoC platform with VGA output and controller input support. The user will interface
with the software through an SNES gamepad, communicating over its own USB protocol.
The software will communicate with the FPGA using a software kernel driver, while the
FPGA will handle displaying the graphics for the game, as well as the audio. The 60 FPS
gameplay provides responsive controls and fluid animation, delivering an authentic arcade
experience reminiscent of classic space shooter games.

2 System Block Diagram

Figure 1: Modular Decomposition of the Space Shooter Game System Architecture

This diagram provides a comprehensive decomposition of the Space Shooter game system,
clearly delineating the software and hardware components that, together, create a complete
gaming experience. The left side illustrates the software stack, consisting of multiple
hierarchical layers that handle game logic, state management, and the interface to hardware.
The right side depicts the hardware implementation that manages image rendering, memory,
and physical display output.

The software section showcases the user-space program (space_shooter.c) responsible for
game mechanics. This includes gamestate tracking and modifying, the requisite animation
decisions, and input processing. Not shown in the diagram is the program to find and open a
connected controller so that inputs can be processed (controller.c).

Below this, the kernel driver (vga_spaceship.c) bridges user applications and hardware,
implementing IOCTL handlers, memory mapping registers to the hardware, and defining
access functions for these registers. The interface layer (vga_spaceship.h) defines data
structures and IOCTL commands that standardize communication between software layers.
At the bottom, the game objects represent just some of the conceptual entities within the
game state, manipulated by the software.

The hardware section illustrates the FPGA implementation, beginning with the VGA
controller (vga_spaceship.sv), which handles register interfacing, timing logic, color
generation, and sprite rendering. The object rendering logic translates the abstract game state
into visible entities on screen. The memory interface provides the necessary address mapping
and bus connectivity, while the hardware outputs section manages the physical VGA signals

and RGB color output.

3 Algorithms

Hardware:

The main hardware algorithm is the logic required to generate and display graphics on the
VGA monitor. This will be achieved using the TMS9918 architecture with sprite and tile
graphics.

Our background will be stationary and solid black with different patterns of stars, and will be
displayed using a grid of preloaded background tiles stored in a background table, alongside
their memory addresses, in RAM. Similarly, we will have a sprites table in RAM to easily
store and select sprites for displaying. All the images, including spaceship, enemies, bullets,
and explosion effects, are treated as sprites placed on a static tiled background.

A line-by-line scan-based rendering logic will be used. For each pixel, the system will
compute the current coordinates and determine whether any sprite or tile needs to be
displayed at that location. If so, the address is calculated and the corresponding color value is
read from ROM.

All .png images are preprocessed into .mif files and compiled into on-chip ROMs. Sprite
attributes such as position and type are controlled through memory-mapped registers.

Inputs are synced with v_sync to avoid image tearing, as no positional changes will be made
during drawing. Sprites will be rendered on top of background tiles when they overlap.

Software:

Basic game logic

This is a single-player game. The player will control a spaceship object on the screen using
an SNES Gamepad controller. The objective of the player is to survive as long as possible;
shoot as many enemies before being hit by enemy bullets or directly by an approaching
enemy, and running out of lives. Each player will start with 5 lives. Once they are hit, they
lose a life and gain a short period of invincibility. Once one player loses all five lives, the
game is over.

The start position of the spaceship is centered in the bottom half of the screen, and the
controllable region for the player is bounded only by the limits of the screen. The plane has
free movement across the screen, up, down, left, right, and diagonally. The player can press a
button to fire shots vertically up towards enemies.

Each round will contain a set number of enemies, aligned in rows, beginning at the top of the
screen. As the ship moves back and forth, enemies in the same vertical column as the ship
will shoot bullets back down towards it.

If an enemy is struck by a ship’s bullet it is killed and the bullet is terminated. If an enemy’s
bullet strikes the ship it loses a life. If any bullet reaches the screen boundry it is terminated.
Both enemy and ship bullets will move in a straight line trajectory; moving until it hits an
enemy or the ship, an opposition bullet, or reaches the screen boundary.

The player will be allowed a maximum of five bullets on the screen at a time, and will have a
small refresh time between each bullet. A single bullet is allowed for each enemy, and only
near enemies can fire.

As the round goes on individual enemies will leave their rows and dive towards the ship. If an
enemy strikes the ship it will lose a life and the enemy is killed. If the enemy reaches the
bottom of the screen without hitting the ship, it will respawn at the top of the screen and
return to its position in row. Once all enemies have been destroyed the round is complete, and
new and more enemies will be spawned in.

Power ups

We plan to implement a progressive difficulty mechanic for this game. When the player starts
a new game, there will be a round counter. Enemies will grow progressively stronger, with
faster bullet speed, firing rate, etc every new round. In return, the player can also get
reinforcements by eliminating enemies. Every 10-20 enemies killed will drop a power‑up
such as faster firing rate, a brief protective shield, or a life bonus.

4 Resource Budgets

Table 1: Resource Budgets

Category Item Size

Graphics Spaceship Player 32*32*24 = 24576 bits = 3 KB

Five Enemies 16*16*5*24 = 30720bits 、

 Bullet*3 8*8*24*3 = 4608bits

 Explosion Effect
32*32*24 = 24576 bits = 3 KB

Audio 0.5s Explode (8kHz, 16bit) 0.5×8000×16 = 64000 bits = 8 KB

0.25s Laser (8kHz, 16bit) 0.25*8000*16 = 32000 bits = 4 KB

 3.0s Engine loop (8kHz,
16bit)

3×8000×16 = 384000 bits = 48 KB

 0.75s Powerup (8kHz,
16bit)

0.75×8000×16 = 96000 bits = 12
KB

 1.5s Gameover (8kHz,
16bit)

1.5×8000×16 = 192000 bits = 24
KB

5 The Hardware/Software Interface
Table 2: Address distribution

Address Range Description Details

0-2 Background color RGB components (8-bit each)

3-6 Ship position X(11-bit), Y(10-bit) coordinates

7-26 Player bullets 5 bullets × 4 registers each

27 Player bullets status 5-bit bitmap for active bullets

28-35 Player bullets status 2 enemies × 4 registers each

36 Enemy status 2-bit bitmap for active enemies

37-60 Enemy bullets 6 bullets × 4 registers each

61 Enemy bullets status 6-bit bitmap for active bullets

62-63 Image position X coordinate (partial)

5.1 Controller

We will be using an iNNEXT SNES gamepad controller to interact with the game. The
controller is connected to the SoC via a USB port.

Figure 3: The iNNEXT SNES gamepad controller

The software will communicate with the controller using the libusb library to capture input
and pass it to the software in a readable format. The user can control the movement of the
ship with the controller’s D-pad, and fire bullets by pressing the Y-button or either of the
bumpers.

5.2 Audio

On the DE1‑SoC board, all game audio is routed through the on‑board Wolfson WM8731
CODEC, which offers two 24‑bit DAC channels (and ADCs) plus a headphone amplifier,
supporting sample rates from 8 kHz up to 96 kHz. The WM8731 is configured over an I2C
control bus (shared between HPS and FPGA via the on‑board multiplexer) by the Altera
“Audio and Video Config” IP core.

Figure 4: Interface between FPGA and Audio CODEC

Our spaceship shooter will feature five effects: laser blasts, explosions, a looping engine hum,
power‑up chimes, and a game‑over jingle. They are all stored as 16‑bit mono PCM at 8 kHz
in left‑justified format, so both channels play the same data.

	Contents
	
	
	1 Introduction
	
	2 System Block Diagram
	3 Algorithms
	
	4 Resource Budgets
	
	5 The Hardware/Software Interface
	5.1 Controller
	5.2 Audio

