
Altera’s Avalon Interface

Stephen A. Edwards

Columbia University

Spring 2025



Host Host Host

Agent Agent

Agent Agent Agent

I Avalon Memory Mapped Host:
Initiates transactions (e.g.,
processor)

Complex protocol requests access
first

I Avalon Memory Mapped Agent:
Responds to hosts (e.g.,
peripheral, memory)

Simpler protocol: just responds

Also manager/subordinate, M/S,
initiator/target, requester/responder
See Avalon Interface Specifications

https://intel.com/content/www/us/en/docs/programmable/683091


The Simplest Agent Peripheral

Avalon-MM
 Interface

(Avalon-MM
 Agent Interface)

Application-
Specific
Interface

writedata[15..0]

write

clk

pio_out[15..0]

CLK_EN

D Q

Avalon-MM Peripheral

Basically, “latch when I’m selected and written to.”



Agent Signals

For a 16-bit connection that spans 32 halfwords,

Agent Avalon
← clk Clock to Agent
← reset Reset signal to Agent
← chipselect Asserted when bus accesses Agent
⇐ address[4:0] Register address (in words)
← read Bus is reading from Agent
← write Bus is writing to Agent
⇐ writedata[15:0] Data from bus to Agent
⇐ byteenable[1:0] Which bytes are being transferred

readdata[15:0]⇒ Data from Agent to bus
irq→ Interrupt request to processor

All are optional, as are many others for, e.g., flow-control and burst transfers.



In SystemVerilog

module myagent(input logic clk,
input logic reset,
input logic [7:0] writedata,
input logic write,
input logic chipselect,
input logic [2:0] address);



Basic Agent Read Transfer

clk

address

read

chipselect

readdata

Bus cycle starts on rising clock edge

Data latched at next rising edge

Such a peripheral must be purely combinational



Agent Read Transfer w/ 1 Wait State

clk

address

read

chipselect

readdata

Bus cycle starts on rising clock edge

Data latched two cycles later

Approach used for synchronous peripherals



Basic Async. Agent Write Transfer

clk

address

write

chipselect

writedata

Bus cycle starts on rising clock edge

Data available by next rising edge

Peripheral may be synchronous, but must be fast



Basic Async. Agent Write w/ 1 Wait State

clk

address

write

chipselect

writedata

Bus cycle starts on rising clock edge

Peripheral latches data two cycles later

For slower peripherals



VGA on the DE1-SoC



The Vga_ball Peripheral

module vga_ball(input logic clk,
input logic reset,
input logic [7:0] writedata,
input logic write,
input chipselect,
input logic [2:0] address,

output logic [7:0] VGA_R, VGA_G, VGA_B,
output logic VGA_CLK, VGA_HS, VGA_VS,

VGA_BLANK_n,
output logic VGA_SYNC_n);

logic [10:0] hcount;
logic [9:0] vcount;

logic [7:0] background_r, background_g, background_b;

vga_counters counters(.clk50(clk), .*);



Register Map

Offset 7 · · · 0 Meaning
0 Red Red component of background color (0–255)
1 Green Green component of background color (0–255)
2 Blue Blue component of background color (0–255)



The Vga_ball Peripheral

always_ff @(posedge clk)
if (reset) begin

background_r <= 8’h0;
background_g <= 8’h0;
background_b <= 8’h80;

end else if (chipselect && write)
case (address)
3’h0 : background_r <= writedata;
3’h1 : background_g <= writedata;
3’h2 : background_b <= writedata;

endcase

always_comb begin
{VGA_R, VGA_G, VGA_B} = {8’h0, 8’h0, 8’h0};
if (VGA_BLANK_n )

if (hcount[10:6] == 5’d3 && vcount[9:5] == 5’d3)
{VGA_R, VGA_G, VGA_B} = {8’hff, 8’hff, 8’hff};

else
{VGA_R, VGA_G, VGA_B} = {background_r, background_g, background_b};

end


