
Parallel SAT Solver

COMS 4995 Parallel Functional Programming

Yixuan Li(yl3803), Jiaqian Li(cl4283), Phoebe Wang(kw3036)

1 Abstract

The Boolean Satisfiability Problem (SAT) is an NP-complete problem widely used in areas

such as formal verification, artificial intelligence, and cryptography. SAT is an excellent candidate

for parallelization because its search space can be naturally divided into independent subproblems.

When branching on a variable, each branch can be explored concurrently, as the assignments for

different branches do not interfere with each other.

In our final project, we explore multiple approaches to solving SAT, starting with a parallel

brute-force method and then implementing the DPLL (Davis-Putnam-Logemann-Loveland) algo-

rithm, a more efficient SAT-solving approach. We parallelize DPLL using Haskell’s parMap and

parListChunk strategies to distribute subproblems across multiple threads, as well as a worker

queue strategy, which splits tasks and adds them to a shared task queue for parallel processing.

Both brute-force and DPLL parallel implementations demonstrate performance improvements com-

pared to running the program with a single thread, proving the power of parallel processing.

2 Methods

2.1 SAT Problem Definition

The Boolean Satisfiability Problem (SAT) asks whether there exists an assignment of true or

false values to variables that satisfies a given Boolean formula, typically expressed in Conjunctive

Normal Form (CNF): A CNF formula is a conjunction (AND) of clauses, where each clause is a

disjunction (OR) of literals.

Example: (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) .

The primary goal of our project is to improve the traditional approaches for solving the SAT

problem using parallelization. By dividing the search space into independent subproblems and

solving each of them in parallel, we hope to achieve performance improvements over sequential

methods.

2.2 Brute Force Method

2.2.1 Description

The naive approach is to generate all 2n possible truth assignments for n variables. Each as-

signment is evaluated against the CNF formula to determine if it satisfies all clauses. To parallelize

this brute-force method, we divide the 2n possible assignments into k chunks, where k corresponds

to the number of threads or available cores. Next, each chunk of assignments is evaluated con-

currently using Haskell’s parMap or parListChunk strategies, and the results from all threads are

combined to return the first satisfying solution.

1

parListChunk is different from the parList strategy we discussed in class. parListChunk is

particularly effective for this task as it processes chunks of assignments in parallel while evaluating

each chunk sequentially. This approach improves load balancing and reduces overhead.

The brute-force method evaluates all 2n possible assignments for n variables to determine if

any satisfies the given Boolean formula. For each assignment, the algorithm checks the formula by

iterating over its clauses and literals. If there are m clauses and each clause contains at most k

literals, the complexity for the sequential brute force is approximately O(2n ∗m ∗ k).

When the brute-force method is parallelized, the search space of 2n assignments is divided into

p chunks. Each thread evaluates 2
n

p
assignments independently. The parallelized time complexity

for each thread is reduced to O(2
n

p
∗ m ∗ k). Overall, this brute-force approach is simple but

inefficient for large problems due to exponential growth of the search space with n.

2.2.2 Implementation Details

1. Generate all possible truth assignments for n variables and split them into smaller chunks for

parallel processing.

generateAllAssignments :: Int -> [[Assignment]]

generateAllAssignments n =

let allAssignments = [zip [1..n] bools | bools <- replicateM n [False, True]]

chunkSize = 128

in chunksOf chunkSize allAssignments

2. Check whether a literal is satisfied under the current assignment.

evaluateLiteral :: Assignment -> Literal -> Bool

evaluateLiteral assignment lit =

let variable = abs lit

value = fromJust (lookup variable assignment)

in if lit > 0 then value else not value

For assignment = [(1, False), (2, False)] and lit = −1, the result is True.

3. Check whether a clause is satisfied under the current assignment.

evaluateClause :: Assignment -> Clause -> Bool

evaluateClause assignment clause = any (evaluateLiteral assignment) clause

For assignment = [(1, False), (2, False)] and clause = [-1, 2], the result is True because 2 is False,

but -1 is True.

4. Check whether the CNF formula is satisfied under the current assignment.

evaluateCNF :: Assignment -> CNF -> Bool

evaluateCNF assignment cnf = all (evaluateClause assignment) cnf

5. Check a chunk of truth assignments to find a satisfying assignment for the given CNF formula.

evaluateChunk :: CNF -> [Assignment] -> Maybe Assignment

evaluateChunk cnf assignments =

findFirstSatisfying assignments

where

findFirstSatisfying [] = Nothing

findFirstSatisfying (assign:rest)

| evaluateCNF assign cnf = Just assign

| otherwise = findFirstSatisfying rest

2

6. Solve the SAT problem in parallel with parMap and use the < | > operator to terminate the

search once a satisfying assignment is found.

solveSATParallel :: CNF -> Int -> Maybe Assignment

solveSATParallel cnf numVars =

let chunks = generateAllAssignments(numVars)

results = parMap rdeepseq (evaluateChunk cnf) chunks

in foldr (<|>) Nothing results

2.3 DPLL Algorithm

Description

The DPLL algorithm is a backtracking-based algorithm for the SAT problem. The algorithm

starts by iteratively applying unit propagation, which assigns truth values to variables in unit

clauses (clauses with only one unassigned literal) to satisfy those clauses. After simplifying the

formula, the algorithm proceeds by choosing a variable (based on some heuristic such as the

Variable State Independent Decaying Sum), making a binary decision (assigning true or false),

and recursively exploring the resulting subproblems. If a conflict is encountered, the algorithm

backtracks to the previous decision level and explores the alternative branch. If all branches are

exhausted without finding a solution, the formula is declared unsatisfiable. Otherwise, a satisfying

assignment is returned.

Compared with the brute-force method implemented in Section 2.2, the DPLL algorithm is

more space-efficient. It explores the search tree in a systematic, depth-first manner rather than

explicitly generating all possible assignments upfront. The unit-propagation together with the

variable selection heuristic helps the SAT solver focus on more promising parts of the search space

and thus skip redundant computation. This allows more advanced parallel strategies such as

dynamic work-stealing and search space partitioning.

Implementation Details

1. The main data structure used in the SAT solver is defined as follows:

data SatSolver = SatSolver

{ clauses :: ![Clause], -- Clauses to solve

bindings :: !(IM.IntMap Bool) -- Current variable assignments

}

Fields:

• clauses: List of clauses in CNF.

• bindings: Mapping of variable indices to their truth values.

2. The solve function first simplifies the solver then solves recursively until a solution is found or

proven unsatisfiable:

solve :: (Monad m, Alternative m) => SatSolver -> m SatSolver

solve solver = maybe empty solveRecursively (simplify solver)

3. The formula is solved recursively by branching on variables and exploring both truth assign-

ments:

solveRecursively :: (Monad m, Alternative m) => SatSolver -> m SatSolver

solveRecursively solver

| isSolved solver = pure solver

3

| otherwise = do

let varToBranch = selectBranchVar solver

branchOnUnbound varToBranch solver >>= solveRecursively

For the variable selection, we choose the first literal from the shortest clause (which can be

changed to other heuristic):

selectBranchVar :: SatSolver -> Var

selectBranchVar solver =

var $ head $ literals $ head $ sortBy shorterClause (clauses solver)

Both True and False assignments for a variable are explored:

branchOnUnbound :: (Monad m, Alternative m) => Var -> SatSolver -> m SatSolver

branchOnUnbound name solver =

guessAndRecurse (mkLit name True) solver

<|>

guessAndRecurse (mkLit name False) solver

4. Upon guessing the value of a literal, we can simplify the formula by iteratively using unit

propagation:

simplify :: (Monad m, Alternative m) => SatSolver -> m SatSolver

simplify solver = do

case findUnitClause (clauses solver) of

Nothing -> pure solver

Just lit -> do

let updatedSolver = solver {

bindings = IM.insert (var lit) (not (sign lit)) (bindings solver) }

case propagate lit (clauses updatedSolver) of

Nothing -> empty

Just updatedClauses -> simplify $ updatedSolver { clauses = updatedClauses }

propagate :: Lit -> [Clause] -> Maybe [Clause]

propagate lit inputClauses =

let updatedClauses = mapMaybe (processClause lit) inputClauses

in if any (null . literals) updatedClauses

then Nothing

else Just updatedClauses

2.4 Parallel DPLL

2.4.1 Static Parallelism

Description

In our parallel implementation of the DPLL algorithm, the search space is divided by branch-

ing on a small subset of variables at the start. Each combination of truth assignments for these

variables defines an independent subproblem, which is assigned to a separate thread for evaluation.

To distribute the subproblems , we used Haskell’s parMap and parListChunk strategies. While

parMap evaluates all subproblems concurrently, parListChunk processes larger batches of subprob-

lems sequentially within each thread while evaluating the chunks in parallel across threads. Once

the subproblems are distributed, each thread executes the DPLL algorithm independently on its

4

assigned subproblem. The solver terminates as soon as the first satisfying assignment is found or

concludes that the formula is unsatisfiable after exploring all subproblems.

The time complexity of the parallel DPLL algorithm remains exponential in the worst case, as

the SAT problem is NP-complete. If the search space is divided into k independent subproblems, the

theoretical time complexity per thread is reduced to: O(2
n

k
) where n is the number of variables, and

k is the number of threads or subproblems. This assumes perfect load balancing and no overhead.

Implementation Details

1. Randomly select 5 variables based on index from the SAT problem to use for branching.

selectRandomVars :: StdGen -> SatSolver -> [Var]

selectRandomVars gen solver =

let allVars = IS.toList $ IS.fromList

[var lit | clause <- clauses solver, lit <- literals clause]

indices = take 5 $ randomRs (0, length allVars - 1) gen -- take 5 random vars

in map (allVars !!) indices

2. Generate a list of subproblems by applying all possible truth assignments to the selected

variables. We use mapMaybe to apply applyAssignment to each assignment in the list, and discard

the assignment if applyAssignment returns Nothing.

generateSubproblems :: [Var] -> SatSolver -> [SatSolver]

generateSubproblems vars solver =

-- some assignments may fail due to conflicts, filter them

mapMaybe (`applyAssignment` solver) (generateAssignments vars)

3. Generate all possible truth assignments for a given list of variables. We use sequence to produce

the Cartesian product of truth values to get 2k assignments for k variables.

generateAssignments :: [Var] -> [[Lit]]

generateAssignments vars =

[[mkLit v val | (v, val) <- zip vars vals] |

vals <- sequence (replicate (length vars) [True, False])]

If lengthvars = 3, replicate will produce [[T, F], [T, F], [T, F]], and sequence will produce all 8

assignments. E.g. [[T, T, T], [T, T, F], . . .]

4. Apply the assignment, which is a list of literals, to the SAT solver, resulting in a new solver

state or Nothing if there is conflict. We use foldM to iterate over the list of literals (lits), applying

each one to the SAT solver (baseSolver) using the function guess from sequential DPLL.

applyAssignment :: [Lit] -> SatSolver -> Maybe SatSolver

applyAssignment lits baseSolver =

foldM (\solver lit -> guess lit solver) baseSolver lits

5. Solve the SAT problem in parallel with parMap. We use mapMaybe to collect the results that

are Just values and listToMaybe to return the first element if the list is not empty.

parallelSolveOne :: StdGen -> SatSolver -> Maybe SatSolver

parallelSolveOne gen solver =

let vars = selectRandomVars gen solver

subproblems = generateSubproblems vars solver

results = parMap rdeepseq solve subproblems

in listToMaybe (mapMaybe id results) -- return first solution

5

2.4.2 Worker Queue Strategy

Description

For the worker queue strategy, the search space is divided by branching on a small subset of

variables at the start. Instead of directly assigning these subproblems to threads, they are added

to a shared task queue. Multiple threads are launched to fetch subproblems from this queue

and execute the DPLL algorithm independently. This ensures a dynamic workload distribution,

as threads will fetch new tasks as soon as they complete their current ones. The shared queue

is managed using Haskell’s Software Transactional Memory (STM) primitives: writeTQueue is

used to add tasks, and tryReadTQueue allows threads to fetch tasks atomically, both wrapped in

atomically blocks to ensure thread-safe operations.

Unlike static strategies like parMap or parListChunk, where all subproblems are distributed

upfront, the worker queue allows idle threads to pick up remaining tasks dynamically, avoiding

load imbalance. When one thread finds a satisfying assignment, it updates a shared result variable

to terminate all threads immediately, reducing redundant computation. If no solution is found,

the algorithm guarantees all subproblems are explored before concluding unsatisfiability.

The worker queue’s time complexity is also O(2n) in the worst case, but its dynamic nature

significantly improves practical runtime by balancing computation across threads. However, the

worker queue dynamically adapts to the workload, making the practical runtime more efficient

compared to static approaches. Although the task synchronization adds a small overhead, the

dynamic load balancing makes this strategy effective for solving large SAT problems, especially

when the workload is uneven.

Implementation Details

1. Select random variables by selectRandomVars for branching and use generateSubproblems to

find all possible truth assignments for the selected variables.

(For details about selectRandomVars, generateSubproblems and related functions, see Imple-

mentation Details 1-4 in Static Parallelism)

let vars = selectRandomVars gen solver

let subproblems = generateSubproblems vars solver

2. Initialize the shared task queue TQueue to store the generated subproblems. The subproblems

are added to the task queue atomically, and multiple worker threads are launched using forkIO

to process the tasks concurrently.

taskQueue <- newTQueueIO

atomically $ mapM_ (writeTQueue taskQueue) subproblems

replicateM_ numThreads $ forkIO $ worker taskQueue resultsVar

3. Each thread repeatedly fetches tasks from the shared queue and attempts to solve them using

the solve function. If a solution is found, it is store in the results variable resultsVar to signal

termination. If the task fails, the thread fetches the next task from the queue.

takeMVar resultsVar -- blocked until a result is added

worker taskQueue resultsVar = do

maybeTask <- atomically $ tryReadTQueue taskQueue -- read a task

case maybeTask of

Nothing -> return () -- exit with no left work

Just subproblem -> do

let result = solve subproblem

case result of

6

Just solution -> putMVar resultsVar (Just solution)

Nothing -> worker taskQueue resultsVar -- keep working

The solver terminates as soon as a solution is found, or all tasks in the queue are explored with no

satisfying solutions.

2.5 SAT Solver Test Generator

Description

In SatGen.hs, we implemented a generator that creates a satisfiable Conjunctive Normal Form

(CNF) formula to test the SAT solver. The generator takes three inputs: the number of variables

(numVars), the number of clauses (numClauses), and the number of literals per clause (clauseLen).

For each clause, a satisfying literal is chosen based on this assignment, and the rest of the literals

are randomly generated to meet the specified clause length. Duplicate clauses are removed to

ensure the output is clean. The resulting CNF formula is guaranteed to be satisfiable and can be

output in DIMACS format, which is a standard format for SAT solvers.

Implementation Details

1. In the generator, we have three data types:

• Literal: represents a positive or negative variable.

• Clause: A list of literals forming a single clause.

• CNF: A list of clauses that form the final formula.

2. Generates a random literal with a variable index and sign by randomLiteral.

randomLiteral :: Int -> IO Literal

randomLiteral numVars = do

var <- randomRIO (1, numVars)

sign <- randomRIO (False, True)

return $ if sign then var else -var

3. Generates a clause that includes a specific satisfying literal satLit by generateSatisfiableCNF.

This function ensures no duplicate or negated literals appear within the same clause.

generateClauseWithSat :: Int -> Int -> Literal -> IO Clause

generateClauseWithSat numVars len satLit = go (Set.singleton satLit)

where

go used

| Set.size used == len = pure $ Set.toList used

| otherwise = do

lit <- randomLiteral numVars

if Set.member lit used || Set.member (-lit) used

then go used

else go (Set.insert lit used)

4. Creates a list of clauses that together form a satisfiable CNF in generateSatisfiableCNF. It

generates a random truth assignment for all variables, and then constructs each clause using the

generateClauseWithSat function.

generateSatisfiableCNF :: Int -> Int -> Int -> IO CNF

generateSatisfiableCNF numVars numClauses clauseLen =

do

randVals <- replicateM numVars (randomRIO (0, 1) :: IO Int)

7

-- convert from numbers to booleans

let assignment = map (==1) randVals

let satisfying = zipWith (\v b -> if b then v else -v) [1..numVars] assignment

clauses <- replicateM numClauses $ do

-- pick a random satisfying literal

satLit <- (satisfying !!) <$> randomRIO (0, numVars - 1)

-- genrate the clause using this literal

generateClauseWithSat numVars clauseLen satLit

-- remove duplicates

pure $ Set.toList $ Set.fromList clauses

A random truth assignment is generated at the start to determine the satisfying literals for the

clauses; each clause includes one satisfying literal to ensure it evaluates to True, along with other

random literals. Duplicate clauses are removed using a set to produce a clean CNF formula.

5. Converts the CNF formula into the standard DIMACS format for SAT solvers by cnfToDimacs.

cnfToDimacs :: Int -> CNF -> String

cnfToDimacs numVars cnf =

let

header = "p cnf " ++ show numVars ++ " " ++ show (length cnf)

clauseToString :: Clause -> String

clauseToString clause =

let numbers = map show clause -- convert numbers to strings

joined = unwords numbers -- join with spaces

in joined ++ " 0"

clauseStrings = map clauseToString cnf

allLines = header : clauseStrings

in

unlines allLines

3 Evaluation

3.1 Environment Setup

The experiments were conducted on a machine equipped with an Apple M3 Pro processor

featuring 11 physical cores and threads, supported by 18 GB of RAM. This provides us

enough computational power for parallel SAT solving.

For the benchmark problems, we developed two sets of test data using our custom SAT genera-

tor. Due to the high memory and time complexity of the brute-force approach, it was evaluated on

a smaller SAT problem consisting of 25 variables, 75 clauses, and 5 literals per clause. In contrast,

the more efficient DPLL algorithm, designed to handle larger and more complex inputs, was tested

on significantly larger problems with 100 variables, 50,000 clauses, and 5 literals per clause. This

distinction in problem sizes allowed us to demonstrate the scalability of the DPLL solver compared

to the brute-force approach and to evaluate the effectiveness of parallelism in both methods.

3.2 Results

3.2.1 Brute Force Method

The basic brute-force parallel solver was evaluated using different parallel strategies parMap

and parListChunk across varying numbers of threads and chunk sizes. The CNF formula used for

8

testing consisted of 25 variables, 75 clauses, and 5 literals per clause.

When running the solver with parMap and 128 chunks across 1 to 11 threads, the results

showed significant fluctuations in speedup. The peak speedup achieved was 1.2x at 4 threads,

but the performance dropped inconsistently as the number of threads increased. The following

Speedup Graph shows that the performance does not consistently improve as more threads are

added, and a potential reason may be the garbage collection (GC) takes up a significant amount

of time, slowing down the solver.

Figure 1: Brute-Force Speedup

To analyze the impact of chunk sizes, the solver was executed with parListChunk using chunk

sizes of 16, 32, and 64 on 8 threads. The results showed a clear trade-off between load balancing and

GC performance. With smaller chunk sizes, such as 16, the total runtime was 6.885s, but the

garbage collection time accounted for 5.953s, indicating that frequent memory management

was a significant bottleneck.

9

Figure 2: parListChunk 4 rdeepseq: chunk size = 16

Increasing the chunk size to 32 resulted in the best overall performance, with a total runtime

of 6.029s and a reduced GC time of 5.048s.

Figure 3: parListChunk 4 rdeepseq: chunk size = 32

However, when the chunk size was increased to 64, the GC time dropped significantly

to 2.971s, but the overall runtime increased to 7.525s due to uneven load distribution, as

threads became underutilized.

10

Figure 4: parListChunk 4 rdeepseq: chunk size = 64

This demonstrates that while larger chunks reduce GC overhead, they can lead to poor parallel

efficiency if the workload is not evenly distributed.

And now, when comparing the two strategies, parMap outperformed parListChunk in terms of

runtime. With the same input and chunk configuration, parMap achieved a runtime of 5.267s

and GC time of 4.078s, while parListChunk with chunk size 128 required runtime of 6.029s

and GC time of 5.048s with higher GC overhead. The better performance of parMap can be

attributed to its ability to evaluate all subproblems concurrently, whereas parListChunk processes

larger groups of tasks sequentially within each thread.

parListChunk parMap

Figure 5: Running on 8 threads with chunk size = 128

However, despite the runtime advantage, parMap still suffered from significant GC overhead,

which suggests that the brute-force solver generates too many intermediate results, leading to

memory pressure.

In conclusion, the basic brute-force parallel solver demonstrated only limited performance im-

provements due to GC overhead and load balancing issues. The best performance was ob-

served with parMap and a chunk size of 32, striking a balance between load distribution and

11

memory management. While parallelization improved efficiency compared to sequential execution,

further optimization is needed to address garbage collection inefficiencies and dynamically balance

workloads to achieve consistent scalability across threads.

3.2.2 Parallel DPLL Static

The DPLL parallel solver utilizes parMap and parListChunk to distribute subproblems across

multiple threads, solving each using the DPLL algorithm. The testing CNF formula consisted of

100 variables, 50,000 clauses, and 5 literals per clause. The solver demonstrated significant

performance improvements over the brute-force approach, achieving a peak speedup of 6x with 6

threads. This result highlights the solver’s ability to scale efficiently under parallelization while

effectively balancing tasks across threads.

The speedup graph shows that performance improves with increasing thread counts, peaking at

6 threads. However, the results are not perfectly linear due to the inherent randomness in selecting

variables and literals. Occasionally, a satisfying solution is found early in the search, leading to

sudden performance boosts. While this introduces some variability in the observed speedup, it

does not detract from the overall scalability and effectiveness of the parallel approach.

Figure 6: DPLL Speedup - static

We also explored fixing different numbers of variables to divide the search space into smaller,

independent subproblems. The runtime and garbage collection times varied depending on the

number of fixed variables. Fixing 4 variables resulted in a runtime of 14.653s and a GC time

of 3.076s. All results were obtained using parMap with 8 threads.

12

Figure 7: DPLL: Fix 4 variables

Fixing 5 variables provided the best balance, with a runtime of 14.948s and the lowest GC

time of 2.961s.

Figure 8: DPLL: Fix 5 variables

Fixing 6 variables increased the runtime to 29.927s, with GC time rising to 6.239s, as

the solver had to manage a larger number of smaller subproblems.

13

Figure 9: DPLL: Fix 6 variables

This analysis shows that fixing fewer variables increases the chances of finding solutions quickly

due to randomness, while fixing too many variables introduces overhead without consistent per-

formance gains.

The Threadscope analysis shows that parMap performs better than parListChunk for distribut-

ing tasks across threads. parMap distributes tasks evenly, achieving a runtime of 14.948s and

GC time of 2.961s. Threads work independently, maximizing CPU usage and benefiting from

early termination when solutions are found. For parListChunk which divides tasks into fixed-

size chunks, although threads remain active, the sequential processing of each chunk can delay

some threads from moving to new tasks. While the difference isn’t significant, it slightly increases

runtime compared to parMap.

parListChunk parMap

Figure 10: Running on 8 threads with 5 fixed variables

The results indicate that parMap performed better for parallelized DPLL solver, due to its

finer-grained parallelism and reduced overhead compared to chunk-based processing.

14

3.2.3 Parallel DPLL Queue

The worker queue-based DPLL parallel solver dynamically distributes subproblems across mul-

tiple threads using a shared task queue, which ensures that idle threads can pick up remaining

tasks dynamically, achieving effective load balancing. Same as previous method, the testing CNF

formula consisted of 100 variables, 50,000 clauses, and 5 literals per clause.

According to the speedup graph, there is a significant improvement at 7 threads with a peak

of more than 20x speedup.

Figure 11: DPLL Speedup - queue

While this performance gain reflects the benefits of dynamic task distribution, it can also be

influenced by randomness in variable selection. If the solver finds a satisfying solution early due

to a fortunate choice of variables, the computation terminates quickly, leading to an exaggerated

speedup. Despite this variability, the results clearly show the worker queue’s ability to efficiently

distribute work across threads.

The Threadscope analysis also provides additional evidence of the method’s efficiency. At the

beginning, the first thread performs sequential work to initialize tasks and atomically add them to

the shared queue. During this phase, other threads experience a slight delay as they wait for tasks

to become available. However, once tasks are distributed, the threads operate consistently with no

significant idle time, as reflected in the balanced workload across all threads.

This approach minimizes load imbalance and ensures that all threads remain productive once

the queue is populated. The use of STM (Software Transactional Memory) enables safe and efficient

task synchronization, contributing to the method’s overall performance.

15

Figure 12: DPLL Queue - threadscope

4 Discussion and Conclusion

4.1 Comparison of Parallel Strategies

Brute-force SAT solver provides a simple baseline by searching all possible variable assign-

ments, but it scales poorly due to its exponential time complexity. In contrast, the DPLL

solver using static parallelism (parMap and parListChunk) improves performance by dividing

the search space into fixed subproblems and distributing them across multiple threads. However,

this approach can suffer from load imbalance when some subproblems are significantly harder to

solve than others, leading to idle threads. The worker queue-based DPLL solver overcomes

this limitation by dynamically distributing tasks through a shared queue. This method ensures

better load balancing, as idle threads can fetch new tasks, and it achieves higher speedup by

adapting to varying problem complexity. While static parallelism provides consistent workload dis-

tribution upfront, the worker queue approach demonstrates a better scalability and flexibility

in managing computational resources.

4.2 Future Works

There are several optimizations for improving the performance and scalability of the SAT

solver that we did not have time to explore. One area is the development of advanced heuristics

for branching decisions, such as the Variable State Independent Decaying Sum (VSIDS) heuristic,

a dynamic heuristic used in modern SAT solvers, or Most Occurrences in Clauses (MOM), which

selects the variable that appears most frequently. These heuristics have the potential to reduce the

size of the search space, and improve the time efficiency of the DPLL algorithm.

Another enhancement would be the implementation of Conflict-Driven Clause Learning (CDCL),

which is an extension of DPLL that analyzes conflicts to learn new clauses, preventing the solver

from revisiting the same conflicts. CDCL also uses non-chronological backtracking, which allows

the solver to jump back multiple levels in the decision tree to resolve conflicts more efficiently. To

parallelize CDCL, the solver can explore and learn from multiple branches simultaneously.

16

5 Reference

[1] Martins, R., Manquinho, V., & Lynce, I. (2012). An overview of parallel SAT solving. Con-

straints, 17(3), 304–347. Springer.

[2] Davis, M., Logemann, G., & Loveland, D. (1962). A machine program for theorem-proving.

Communications of the ACM, 5(7), 394–397. ACM New York, NY, USA.

[3] SATLIB - Benchmark Problems

Appendix A: Usage

Code used can be found in this Github Repo.

1. Clone the repository:

https://github.com/phoebeww/SAT-Solver.git

cd SAT-Solver

2. Install dependencies and compile the project:

stack install

stack build

3. Run the program:

stack run

4. Run tests on multiple threads:

./test_threads.sh

Appendix B: Code Listing

./app/Main.hs

1 -- ./app/Main.hs

2 module Main (main) where

3

4 import Control.DeepSeq (force)

5 import qualified DPLL.Clause as DClause

6 import qualified DPLL.DpllSolver as Solver

7 import qualified DPLL.Literal as DLiteral

8 import qualified DPLL.ParallelDpll as ParallelSolver

9 import qualified Data.IntMap as IM

10 import Data.Maybe (mapMaybe)

11 import GHC.Conc (getNumCapabilities)

12 import SatGen (CNF, cnfToDimacs, generateSatisfiableCNF)

13 import SatBruteForce (solveSATParallel)

14 import System.Random (newStdGen)

15 import System.Directory (doesFileExist)

16

17 convertCNF :: CNF -> [DClause.Clause]

18 convertCNF cnf =

19 map (\lits -> DClause.mkClause False (map litFromInt lits)) cnf

20 where

21 litFromInt x

17

https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
https://github.com/phoebeww/SAT-Solver

22 | x > 0 = DLiteral.mkLit x False

23 | otherwise = DLiteral.mkLit (-x) True

24

25 saveCNFAsDimacs :: FilePath -> Int -> CNF -> IO ()

26 saveCNFAsDimacs path numVars cnf = do

27 let dimacs = cnfToDimacs numVars cnf

28 writeFile path dimacs

29 putStrLn $ "CNF saved in DIMACS format to " ++ path

30

31 loadDimacs :: FilePath -> IO (Maybe CNF)

32 loadDimacs path = do

33 content <- readFile path

34 let parseClause line =

35 let literals = takeWhile (/= 0) . map read . words $ line

36 in if null literals then Nothing else Just literals

37 let cnf = mapMaybe parseClause . filter (not . null) . filter ((/= 'p') . head) .

38 lines $ content

39 return $ if null cnf then Nothing else Just cnf

40

41 generateAndSaveCNF :: FilePath -> Int -> Int -> Int -> IO ()

42 generateAndSaveCNF dimacsPath numVars numClauses clauseLen = do

43 putStrLn $ "Generating CNF with " ++ show numVars ++ " variables, " ++

44 show numClauses ++ " clauses, clause length " ++ show clauseLen

45 cnf <- generateSatisfiableCNF numVars numClauses clauseLen

46 saveCNFAsDimacs dimacsPath numVars cnf

47

48 solveBruteForceCNF :: FilePath -> IO ()

49 solveBruteForceCNF path = do

50 maybeCnf <- loadDimacs path

51 case maybeCnf of

52 Nothing -> putStrLn "Failed to load CNF from DIMACS file."

53 Just cnf -> do

54 let numVars = countVariables cnf

55 let forcedCnf = force cnf

56 case solveSATParallel forcedCnf numVars of

57 Nothing -> putStrLn "Brute Force Solver returned UNSATISFIABLE."

58 Just result -> do

59 putStrLn "Brute Force Solver returned SATISFIABLE."

60 putStrLn $ "Satisfying Assignment: " ++ show result

61

62 countVariables :: CNF -> Int

63 countVariables cnf =

64 maximum [abs lit | clause <- cnf, lit <- clause]

65

66 solveParallelCNF :: FilePath -> IO ()

67 solveParallelCNF path = do

68 maybeCnf <- loadDimacs path

69 case maybeCnf of

70 Nothing -> putStrLn "Failed to load CNF from DIMACS file."

71 Just cnf -> do

72 let clauses = force $ convertCNF cnf

73 let solver = force $ Solver.newSatSolver {Solver.clauses = clauses}

74

18

75 gen <- newStdGen

76 case ParallelSolver.parallelSolveOne gen solver of

77 Nothing -> putStrLn "Parallel Solver returned UNSATISFIABLE"

78 Just result -> do

79 putStrLn "Parallel Solver returned SATISFIABLE"

80 let solverBindings = Solver.bindings result

81 validateSolution cnf solverBindings

82

83 solveParallelQueueCNF :: FilePath -> IO ()

84 solveParallelQueueCNF path = do

85 maybeCnf <- loadDimacs path

86 case maybeCnf of

87 Nothing -> putStrLn "Failed to load CNF from DIMACS file."

88 Just cnf -> do

89 let clauses = force $ convertCNF cnf

90 let solver = force $ Solver.newSatSolver {Solver.clauses = clauses}

91

92 gen <- newStdGen

93 numThreads <- getNumCapabilities

94 parallelResult <- ParallelSolver.parallelSolveQueue numThreads gen solver

95 case parallelResult of

96 Nothing -> putStrLn "Parallel Solver returned UNSATISFIABLE"

97 Just result -> do

98 putStrLn "Parallel Solver returned SATISFIABLE"

99 let solverBindings = Solver.bindings result

100 validateSolution cnf solverBindings

101

102 validateSolution :: CNF -> IM.IntMap Bool -> IO ()

103 validateSolution cnf bindings = do

104 let checkClause clause =

105 any

106 (\lit ->

107 (lit > 0 && IM.findWithDefault False lit bindings)

108 || (lit < 0 && not (IM.findWithDefault False (-lit) bindings))

109)

110 clause

111 let allSatisfied = all checkClause cnf

112 if allSatisfied

113 then putStrLn "Solution is valid"

114 else putStrLn "Solution is INVALID"

115

116 main :: IO ()

117 main = do

118 numThreads <- getNumCapabilities

119 putStrLn $ "Number of threads available: " ++ show numThreads

120

121 let dimacsPath = "generated.cnf"

122 fileExists <- doesFileExist dimacsPath

123 if not fileExists

124 then do

125 -- if file exists, use the current file. else generate new one

126 putStrLn "Generating CNF..."

127 -- uncomment for brute force data

19

128 -- generateAndSaveCNF dimacsPath 25 75 5

129 generateAndSaveCNF dimacsPath 100 50000 5

130 else putStrLn "CNF file already exists. Using the existing CNF."

131

132 putStrLn "\nSolving Parallel CNF:"

133 -- solveBruteForceCNF "generated.cnf"

134 -- solveParallelCNF "generated.cnf"

135 solveParallelQueueCNF "generated.cnf"

./src/SatGen.hs

1 module SatGen

2 (generateSatisfiableCNF,

3 cnfToDimacs,

4 CNF,

5 Clause,

6 Literal

7) where

8

9 import System.Random

10 import Control.Monad

11 import qualified Data.Set as Set

12

13 type Literal = Int

14 type Clause = [Literal]

15 type CNF = [Clause]

16

17 randomLiteral :: Int -> IO Literal

18 randomLiteral numVars = do

19 var <- randomRIO (1, numVars)

20 sign <- randomRIO (False, True)

21 return $ if sign then var else -var

22

23 generateClauseWithSat :: Int -> Int -> Literal -> IO Clause

24 generateClauseWithSat numVars len satLit = go (Set.singleton satLit)

25 where

26 go used

27 | Set.size used == len = pure $ Set.toList used

28 | otherwise = do

29 lit <- randomLiteral numVars

30 if Set.member lit used || Set.member (-lit) used

31 then go used

32 else go (Set.insert lit used)

33

34 generateSatisfiableCNF :: Int -> Int -> Int -> IO CNF

35 generateSatisfiableCNF numVars numClauses clauseLen =

36 do

37 randVals <- replicateM numVars (randomRIO (0, 1) :: IO Int)

38 -- convert from numbers to booleans

39 let assignment = map (==1) randVals

40 let satisfying = zipWith (\v b -> if b then v else -v) [1..numVars] assignment

41

42 clauses <- replicateM numClauses $ do

43 -- pick a random satisfying literal

20

44 satLit <- (satisfying !!) <$> randomRIO (0, numVars - 1)

45 -- genrate the clause using this literal

46 generateClauseWithSat numVars clauseLen satLit

47

48 -- remove duplicates

49 pure $ Set.toList $ Set.fromList clauses

50

51 cnfToDimacs :: Int -> CNF -> String

52 cnfToDimacs numVars cnf =

53 let

54 header = "p cnf " ++ show numVars ++ " " ++ show (length cnf)

55

56 clauseToString :: Clause -> String

57 clauseToString clause =

58 let numbers = map show clause -- convert numbers to strings

59 joined = unwords numbers -- join with spaces

60 in joined ++ " 0"

61

62 clauseStrings = map clauseToString cnf

63 allLines = header : clauseStrings

64 in

65 unlines allLines

./src/SatBruteForce.hs

1 module SatBruteForce (solveSATParallel) where

2

3 import Control.Parallel.Strategies

4 import Control.Monad (replicateM)

5 import Control.Applicative (Alternative(..))

6 import Data.Maybe (fromJust)

7 import Data.List.Split (chunksOf)

8 import SatGen (CNF, Clause, Literal)

9

10 type Assignment = [(Int, Bool)]

11

12 generateAllAssignments :: Int -> [[Assignment]]

13 generateAllAssignments n =

14 let allAssignments = [zip [1..n] bools | bools <- replicateM n [False, True]]

15 chunkSize = 128

16 in chunksOf chunkSize allAssignments

17

18 evaluateLiteral :: Assignment -> Literal -> Bool

19 evaluateLiteral assignment lit =

20 let variable = abs lit

21 value = fromJust (lookup variable assignment)

22 in if lit > 0 then value else not value

23

24 evaluateClause :: Assignment -> Clause -> Bool

25 evaluateClause assignment clause = any (evaluateLiteral assignment) clause

26

27 evaluateCNF :: Assignment -> CNF -> Bool

28 evaluateCNF assignment cnf = all (evaluateClause assignment) cnf

29

21

30 evaluateChunk :: CNF -> [Assignment] -> Maybe Assignment

31 evaluateChunk cnf assignments =

32 findFirstSatisfying assignments

33 where

34 findFirstSatisfying [] = Nothing

35 findFirstSatisfying (assign:rest)

36 | evaluateCNF assign cnf = Just assign

37 | otherwise = findFirstSatisfying rest

38

39 solveSATParallel :: CNF -> Int -> Maybe Assignment

40 solveSATParallel cnf numVars =

41 let chunks = generateAllAssignments(numVars)

42 results = parMap rdeepseq (evaluateChunk cnf) chunks

43 in foldr (<|>) Nothing results

./src/DPLL/Literal.hs

1 {-# LANGUAGE DeriveAnyClass #-}

2 {-# LANGUAGE DeriveGeneric #-}

3

4 module DPLL.Literal

5 (Var,

6 var_Undef,

7 Lit (..),

8 lit_Undef,

9 lit_Error,

10 mkLit,

11 neg,

12 sign,

13 var,

14 index,

15 toLit,

16 unsign,

17 idLit,

18 toDimacs,

19)

20 where

21

22 import Data.Bits (complement, shiftR, xor, (.&.))

23 import GHC.Generics (Generic)

24 import Control.DeepSeq (NFData)

25

26 type Var = Int

27

28 var_Undef :: Int

29 var_Undef = -1

30

31 data Lit = Lit {x :: Int}

32 deriving (Eq, Show, Generic, NFData)

33

34 lit_Undef :: Lit

35 lit_Undef = Lit (2 * var_Undef)

36

37 lit_Error :: Lit

22

38 lit_Error = Lit (2 * var_Undef + 1)

39

40 mkLit :: Var -> Bool -> Lit

41 mkLit v sgn = Lit ((v + v) + if sgn then 1 else 0)

42

43 neg :: Lit -> Lit

44 neg p = Lit (x p `xor` 1)

45

46 sign :: Lit -> Bool

47 sign p = x p .&. 1 == 1

48

49 var :: Lit -> Int

50 var p = x p `shiftR` 1

51

52 index :: Lit -> Int

53 index p = x p

54

55 toLit :: Int -> Lit

56 toLit i = Lit i

57

58 unsign :: Lit -> Lit

59 unsign p = Lit (x p .&. complement 1)

60

61 idLit :: Lit -> Bool -> Lit

62 idLit p sgn = Lit (x p `xor` (if sgn then 1 else 0))

63

64 toDimacs :: Lit -> Int

65 toDimacs p = if sign p then -(var p) - 1 else var p + 1

66

./src/DPLL/Clause.hs

1 {-# LANGUAGE DeriveAnyClass #-}

2 {-# LANGUAGE DeriveGeneric #-}

3

4 module DPLL.Clause

5 (Clause (..),

6 mkClause,

7 clauseSize,

8 getLit,

9 isLearnt,

10 setActivity,

11 getActivity,

12)

13 where

14

15 import DPLL.Literal (Lit)

16 import GHC.Generics (Generic)

17 import Control.DeepSeq (NFData)

18

19 data Clause = Clause

20 { literals :: [Lit],

21 learnt :: Bool,

22 activity :: Maybe Float

23

23 }

24 deriving (Show, Eq, Generic, NFData)

25

26 mkClause :: Bool -> [Lit] -> Clause

27 mkClause isLearned ps = Clause {literals = ps, learnt = isLearned, activity = Nothing}

28

29 clauseSize :: Clause -> Int

30 clauseSize clause = length (literals clause)

31

32 getLit :: Clause -> Int -> Maybe Lit

33 getLit clause i

34 | i >= 0 && i < clauseSize clause = Just (literals clause !! i)

35 | otherwise = Nothing

36

37 isLearnt :: Clause -> Bool

38 isLearnt = learnt

39

40 setActivity :: Clause -> Float -> Clause

41 setActivity clause act = clause {activity = Just act}

42

43 getActivity :: Clause -> Maybe Float

44 getActivity = activity

45

./src/DPLL/DpllSolver.hs

1 module DPLL.DpllSolver (

2 SatSolver(..),

3 newSatSolver, isSolved,

4 selectBranchVar, solve,

5 guess

6) where

7

8 import Data.Maybe (mapMaybe)

9 import DPLL.Clause

10 import DPLL.Literal

11 import qualified Data.IntMap as IM

12 import Control.Applicative (Alternative(..))

13 import Data.List (sortBy)

14 import Control.DeepSeq (NFData, rnf)

15

16 data SatSolver = SatSolver

17 { clauses :: ![Clause], -- Force strict evaluation of clauses

18 bindings :: !(IM.IntMap Bool) -- Force strict evaluation of bindings

19 }

20 deriving (Show, Eq)

21

22 instance NFData SatSolver where

23 rnf solver = rnf (clauses solver) `seq` rnf (bindings solver)

24

25 newSatSolver :: SatSolver

26 newSatSolver = SatSolver [] IM.empty

27

28 selectBranchVar :: SatSolver -> Var

24

29 selectBranchVar solver =

30 var $ head $ literals $ head $ sortBy shorterClause (clauses solver)

31

32 isSolved :: SatSolver -> Bool

33 isSolved = null . clauses

34

35 solve :: (Monad m, Alternative m) => SatSolver -> m SatSolver

36 solve solver =

37 maybe empty solveRecursively (simplify solver)

38

39 solveRecursively :: (Monad m, Alternative m) => SatSolver -> m SatSolver

40 solveRecursively solver

41 | isSolved solver = pure solver

42 | otherwise = do

43 let varToBranch = selectBranchVar solver

44 branchOnUnbound varToBranch solver >>= solveRecursively

45

46 branchOnUnbound :: (Monad m, Alternative m) => Var -> SatSolver -> m SatSolver

47 branchOnUnbound name solver =

48 guessAndRecurse (mkLit name True) solver

49 <|>

50 guessAndRecurse (mkLit name False) solver

51

52 guessAndRecurse :: (Monad m, Alternative m) => Lit -> SatSolver -> m SatSolver

53 guessAndRecurse lit solver = do

54 case guess lit solver of

55 Nothing -> empty -- Conflict detected, backtrack

56 -- Continue solving recursively

57 Just simplifiedSolver -> solveRecursively simplifiedSolver

58

59 guess :: Lit -> SatSolver -> Maybe SatSolver

60 guess lit solver =

61 let updatedBindings = IM.insert (var lit) (not (sign lit)) (bindings solver)

62 updatedClauses = mapMaybe (filterClause lit) (clauses solver)

63 in simplify $ solver { clauses = updatedClauses, bindings = updatedBindings }

64

65 simplify :: (Monad m, Alternative m) => SatSolver -> m SatSolver

66 simplify solver = do

67 case findUnitClause (clauses solver) of

68 Nothing -> pure solver

69 Just lit -> do

70 let updatedSolver = solver { bindings = IM.insert (var lit) (not (sign lit))

71 (bindings solver) }

72 case propagate lit (clauses updatedSolver) of

73 Nothing -> empty

74 Just updatedClauses ->

75 simplify $ updatedSolver { clauses = updatedClauses }

76

77 propagate :: Lit -> [Clause] -> Maybe [Clause]

78 propagate lit inputClauses =

79 let updatedClauses = mapMaybe (processClause lit) inputClauses

80 in if any (null . literals) updatedClauses

81 then Nothing

25

82 else Just updatedClauses

83

84 findUnitClause :: [Clause] -> Maybe Lit

85 findUnitClause [] = Nothing

86 findUnitClause (c:cs)

87 | clauseSize c == 1 = Just (head (literals c))

88 | otherwise = findUnitClause cs

89

90 processClause :: Lit -> Clause -> Maybe Clause

91 processClause lit clause

92 | lit `elem` literals clause = Nothing

93 | neg lit `elem` literals clause =

94 let newLits = filter (\l -> l /= neg lit) (literals clause)

95 in if null newLits

96 then Just $ Clause [] (learnt clause) (activity clause)

97 else Just $ Clause newLits (learnt clause) (activity clause)

98 | otherwise = Just clause

99

100 filterClause :: Lit -> Clause -> Maybe Clause

101 filterClause lit clause

102 | lit `elem` literals clause = Nothing

103 | neg lit `elem` literals clause =

104 Just $ Clause (filter (\l -> l /= neg lit) (literals clause)) (learnt clause)

105 (activity clause)

106 | otherwise = Just clause

107

108 shorterClause :: Clause -> Clause -> Ordering

109 shorterClause c1 c2 = compare (clauseSize c1) (clauseSize c2)

110

./src/DPLL/ParallelDpll.hs

1 module DPLL.ParallelDpll (

2 SatSolver(..),

3 parallelSolveOne,

4 parallelSolveQueue,

5 parallelSolveDynamicQ

6) where

7

8 import Control.Concurrent

9 import Control.Concurrent.STM

10 import Control.Parallel.Strategies

11 import Data.Maybe (mapMaybe, listToMaybe)

12 import qualified Data.IntMap.Strict as IM

13 import qualified Data.IntSet as IS

14 import System.Random (StdGen, randomRs)

15 import Control.Monad (replicateM_, foldM)

16 import DPLL.DpllSolver

17 import DPLL.Literal

18 import DPLL.Clause

19

20 parallelSolveDynamicQ :: Int -> StdGen -> SatSolver -> IO (Maybe SatSolver)

21 parallelSolveDynamicQ numThreads gen solver = do

22 taskQueue <- newTQueueIO

26

23 resultsVar <- newEmptyMVar

24

25 let vars = selectRandomVars gen solver

26 let subproblems = generateSubproblems vars solver

27 atomically $ mapM_ (writeTQueue taskQueue) subproblems

28

29 replicateM_ numThreads $ forkIO $ worker taskQueue resultsVar

30 takeMVar resultsVar

31 where

32 worker taskQueue resultsVar = do

33 maybeTask <- atomically $ tryReadTQueue taskQueue

34 case maybeTask of

35 Nothing -> return () -- No more work

36 Just subproblem -> do

37 case solve subproblem of

38 Just solution -> putMVar resultsVar (Just solution)

39 Nothing -> do

40 -- find & add new subproblem dynamically

41 let newSubproblems = splitSubproblem solver

42 atomically $ mapM_ (writeTQueue taskQueue) newSubproblems

43 worker taskQueue resultsVar -- Continue working

44

45 splitSubproblem :: SatSolver -> [SatSolver]

46 splitSubproblem solver =

47 let variable = selectBranchVar solver

48 in [solver { bindings = IM.insert variable True (bindings solver) },

49 solver { bindings = IM.insert variable False (bindings solver) }

50]

51

52 parallelSolveQueue :: Int -> StdGen -> SatSolver -> IO (Maybe SatSolver)

53 parallelSolveQueue numThreads gen solver = do

54 taskQueue <- newTQueueIO -- shared work queue

55 resultsVar <- newEmptyMVar -- result

56

57 let vars = selectRandomVars gen solver

58 let subproblems = generateSubproblems vars solver

59

60 -- add the subproblems to the queue. *atomically* used for atomic transaction

61 atomically $ mapM_ (writeTQueue taskQueue) subproblems

62

63 -- start parallel processing

64 replicateM_ numThreads $ forkIO $ worker taskQueue resultsVar

65 takeMVar resultsVar -- blocked until a result is added

66 where

67 worker taskQueue resultsVar = do

68 maybeTask <- atomically $ tryReadTQueue taskQueue -- read a task

69 case maybeTask of

70 Nothing -> return () -- exit with no left work

71 Just subproblem -> do

72 let result = solve subproblem

73 case result of

74 Just solution -> putMVar resultsVar (Just solution)

75 Nothing -> worker taskQueue resultsVar

27

76

77 parallelSolveOne :: StdGen -> SatSolver -> Maybe SatSolver

78 parallelSolveOne gen solver =

79 let vars = selectRandomVars gen solver

80 subproblems = generateSubproblems vars solver

81 results = parMap rdeepseq solve subproblems

82 in listToMaybe (mapMaybe id results) -- return first solution

83

84 selectRandomVars :: StdGen -> SatSolver -> [Var]

85 selectRandomVars gen solver =

86 let allVars = IS.toList $ IS.fromList

87 [var lit | clause <- clauses solver, lit <- literals clause]

88 indices = take 5 $ randomRs (0, length allVars - 1) gen -- take 5 random vars

89 in map (allVars !!) indices

90

91 generateSubproblems :: [Var] -> SatSolver -> [SatSolver]

92 generateSubproblems vars solver =

93 -- some assignments may fail due to conflicts, filter them

94 mapMaybe (`applyAssignment` solver) (generateAssignments vars)

95

96 generateAssignments :: [Var] -> [[Lit]]

97 generateAssignments vars =

98 [[mkLit v val | (v, val) <- zip vars vals] | vals <- sequence (replicate

99 (length vars) [True, False])]

100

101 applyAssignment :: [Lit] -> SatSolver -> Maybe SatSolver

102 applyAssignment lits baseSolver =

103 foldM (\solver lit -> guess lit solver) baseSolver lits

28

	Abstract
	Methods
	SAT Problem Definition
	Brute Force Method
	Description
	Implementation Details

	DPLL Algorithm
	Parallel DPLL
	Static Parallelism
	Worker Queue Strategy

	SAT Solver Test Generator

	Evaluation
	Environment Setup
	Results
	Brute Force Method
	Parallel DPLL Static
	Parallel DPLL Queue

	Discussion and Conclusion
	Comparison of Parallel Strategies
	Future Works

	Reference

