
SAT Solver Parallelization (tsp-sat)
Final Presentation

COMS W 4995: Parallel Functional Programming

Yixuan Li
Phoebe Wang

Jiaqian Li

Dec 17, 2024



Team

2 | SAT Solver Parallelization

Team Members Contribution Highlights

Phoebe Wang Brute force SAT solver optimization, 
Worker queue implementation for 
DPLL.

Jiaqian Li DPLL implementation and 
optimization.

Yixuan Li Brute force SAT solver 
implementation and DPLL 
parallelization.



Introduction

3 | SAT Solver Parallelization

What is SAT Solving?
● whether the variables of a given Boolean formula can be consistently replaced by the 

values TRUE or FALSE in such a way that the formula evaluates to TRUE.

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ ¬x1
If we choose x1 = FALSE, x2 = FALSE , and x3 arbitrarily

(FALSE ∨ ¬FALSE) ∧ (¬FALSE ∨ FALSE ∨ x3) ∧ ¬FALSE

Real world applications
● Software Verification: validate program correctness.
● Machine Learning: check if a neural network behaves as expected under specific 

conditions.
● Constraint Satisfaction Problems (CSPs): find winning strategies in games like Sudoku, or 

chess.



Basic SAT Solver Implementation

The basic approach to solving a SAT problem is to enumerate all possible assignments for 
the variables in the formula.
● For a problem with n variables, this involves testing all 2^n possible assignments to see if 

any satisfies the formula.

Algorithm:
● Generate all possible assignments for the variables.
● Divide assignments into small chunks. (chunkSize = 16/32/64)
● For each chunk:

○ Evaluate all assignments in the chunk.
○ Return the first satisfying assignment, if found.

● Combine results from all chunks in parallel. (parListChunk / parMap)
○ We use rdeepseq to prevent lazy evaluation from leaving unevaluated thunks in 

memory

4 | SAT Solver Parallelization



Basic SAT Solver Result - Chunk Size

5 | SAT Solver Parallelization

Chunk size = 16
Time: 6.885s
GC: 5.953s

Chunk size = 32
Time: 6.029s
GC: 5.048s

Chunk size = 64
Time: 7.525s
GC: 2.971s

Running on 8 threads with map (evaluateChunk cnf) chunks `using` parListChunk 
4 rdeepseq:



Basic SAT Solver Result - Parallel Strategy

6 | SAT Solver Parallelization

parListChunk
Time: 6.029s
GC: 5.048s

Running on 8 threads with chunkSize = 128:

parMap
Time: 5.267s
GC: 4.078s



Basic SAT Solver Result - Speedup

7 | SAT Solver Parallelization

Running on 1 to 11 threads with parMap and 
128 chunks:
● Total number of variables: 25
● Total number of clauses: 75
● Number of literals per clause: 5

Analysis of all graphs:
Threadscope Graph
● Pro: The parallel workload is fairly well 

distributed.
● Con: Garbage collection (GC) 

dominates the runtime.

Speedup Graph
● The speedup fluctuates between 1-11 

(peak speedup of 1.2x at 4 threads).
● No obvious improvement running with 

parallelization.
○ Potential reason: High GC 

Overhead



DPLL For SAT Solver

8 | SAT Solver Parallelization

Main issues with the basic implementation
● Infeasible to handle large inputs (time complexity: O(2^n))
● Memory-intensive (unnecessary check once assignment is invalid) 

Sequential DPLL Algorithm:
Base Cases:
If the formula has no clauses → satisfiable
If the formula contains an empty clause → not satisfiable.
1. Pick a literal not yet assigned and guess its value 

(e.g., TRUE).
2. Recursively find other variables in the formula after 

assigning the decision literal.
3. If the formula becomes unsatisfiable, backtrack and 

try the opposite value.



DPLL Parallelization 

9 | SAT Solver Parallelization

Unit Propagation: 
● If a clause has a single literal, assign it a 

value that satisfies it. 
● Simplify the formula by removing satisfied 

clauses and the negated literal from 
others.

From (not x3), assign x3 = False

Parallel Approach 1 (with inspiration from brute force):
● Randomly select a small subset of variables (k = 4/5/6) from the formula.
● Create all possible combinations of truth assignments (2^k = 16/32/64 

combinations) for the selected variables.
● Solve the generated subproblems parallelly (parMap)

Time Complexity: Worse case O(2^n)but 
unit propagation often simply the formula.



DPLL Parallelization Results

10 | SAT Solver Parallelization

Running on 8 threads using parMap fixing 4/5/6 num variables:

Fix 4 variables
Time: 14.653s

GC: 3.076s

Fix 5 variables
Time: 14.948s

GC: 2.961s

Fix 6 variables
Time: 29.927s

GC: 6.239s



DPLL Parallelization Results

11 | SAT Solver Parallelization

Running on 8 threads using parMap and parListChunk fixing 5 variables:

parListChunk
Chunk = subproblems/numThreads

Time: 18.098s
GC: 3.580s

parMap
Time: 14.948s

GC: 2.961s



DPLL Parallelization Results

12 | SAT Solver Parallelization

Running on 1 to 11 threads with 
parMap and fixing 5 variables:
● Total number of variables: 100
● Total number of clauses: 50,000
● Number of literals per clause: 5

Analysis of all graphs:
Threadscope Graph
● All threads have consistent workload 

distribution.
● Garbage collection (GC) has reduced 

significantly. (productivity increased to 80%)

Speedup Graph
● The speedup is better compared to the brute 

force approach, and peaks at 6 threads with 
more than 6x speedup.

Efficiency:
● Can handle large inputs.
● Takes 24.845ms (previously 5.267s) on 8 

threads on the 25 numVars, 75 numClauses.



DPLL Parallelization With Worker Queue

13 | SAT Solver Parallelization

Parallel Approach 2: Shared Work Queue

Task Queue

● A shared queue is used to store and manage subproblems
● Threads pull tasks (subproblems) from the queue
● Synchronization is handled using Control.Concurrent.STM

Steps

● Generate initial subproblems by selecting a small subset of variables
● Add resulting subproblems to the task queue
● Each thread fetches a task from the queue and attempts to solve
● Threads keep working until the queue is empty or a solution is found

Time Complexity
● The time complexity remains O(2^n) in the worst case, but the worker queue reduces idle time and 

improves practical performance by dynamically balancing the workload across threads



DPLL Parallelization With Worker Queue Results

14 | SAT Solver Parallelization

Running on 8 threads with 
worker queue with the same 
test data as the previous test:

Analysis of both graphs:
Threadscope Graph
● All threads have consistent workload distribution.
● More sequential work at the beginning on the 1st thread.

Speedup Graph
● The speedup is better compared to the previous DPLL approach, and peaks at 7 

threads with more than 20x speedup.



SAT Solver Test Data Generator

Input
● numVars: Number of variables in the formula.
● numClauses: Number of clauses in the formula.
● clauseLen: Number of literals per clause.

1. Generate a random truth assignment for all variables.
2. Generate clauses

a. For each clause, pick a random satisfying literal 
from the assignment

b. Creates a clause of length clauseLen 
containing the satisfying literal and other random 
literals

3. Remove the duplicate clauses
Output: a list of clauses

15 | SAT Solver Parallelization

numVars = 4, numClauses = 3, 
clauseLen = 3

Assignment: [T, F, T, F].
Literals: [1, -2, 3, -4].

Clause 1: (1 ∨ 2 ∨ -3) (includes 
satisfying literal 1).

Clause 2: (-2 ∨ 4 ∨ -1) (includes 
satisfying literal -2).

Clause 3: (3 ∨ -4 ∨ 2) (includes 
satisfying literal 3).



Future Work

16 | SAT Solver Parallelization

Heuristics for Variable Selection
● Current limitation: we chooses variables in a random manner.
● Implement advanced heuristics such as:

○ Most Occurrences in Clauses (MOM): Select the variable that appears most 
frequently.

○ VSIDS (Variable State Independent Decaying Sum): A dynamic heuristic used in 
modern SAT solvers.

Conflict-Driven Clause Learning (CDCL)
● Current limitation: If a branch fails, go back to the previous level.
● Benefits of CDCL:

○ CDCL analyzes conflicts to determine why the conflict occurred and generates a 
learned clause.

○ Jump back multiple levels to the cause of the conflict.



17 | SAT Solver Parallelization

Thank You!


