tsp-ga

Traveling Salesman Problem with Genetic Algorithms

Tim Johns

UNI: tcj2114

Coding Train Demo

https://editor.p5js.org/codingtrain/sketches/EGjTrkkf9

GA Pseudo-code

- 1) Create initial population of N random candidates
- 2) Calculate fitness for each candidate
- 3) If the candidate with the best fitness so far is good enough, return it
- 4) Create the next population as an evolution of the current population
- 5) Repeat steps 2 through 4 until step 3 eventually breaks out of the loop

Parallelism Approach

Parallelism Approach

Parallelism Approach

Achieving Parallelism – parList rseq

Achieving Parallelism – parList rdeepseq

Memory Profiling – Memory Leak

Memory Profiling – Too Many Thunks

Memory Profiling – Flat + Spiky

Sparks

Time	Heap G	C Spark st	ats	Spark siz	es F	rocess	info	Raw e
HEC	Total	Converted	Ove	erflowed	Dud	GCed	Fizz	led
Total	20000	19980	0		0	0	20	
HEC 0	0	1892	0		0	0	0	
HEC 1	0	2056	0		0	0	0	
HEC 2	0	2066	0		0	0	0	
HEC 3	1000	2041	0		0	0	1	
HEC 4	0	1955	0		0	0	0	
HEC 5	0	1980	0		0	0	0	
HEC 6	4000	2002	0		0	0	4	
HEC 7	0	1997	0		0	0	0	
HEC 8	15000	1996	0		0	0	14	
HEC 9	0	1995	0		0	0	1	

Garbage Collection

Garbage Collection

ime Heap	GC Spark st	ats Spark sizes	Process info	Raw events	s
Copied durin Parallel GC v	ST/ /	45.7 GiB : 38.00% (seria		1,776 bytes 100%)	
Generation	Collections	Par collections	Elapsed time	Avg pause	Max pause
GC Total	10292	8014	11.20s	0.0011s	0.0445s
Gen 0	7978	7978	7.90s	0.0010s	0.0032s
Gen 1	36	36	0.69s	0.0192s	0.0445s

Amdahl

$$S = \frac{1}{(1 - P) + \frac{P}{N}}$$

$$= \frac{1}{(1 - 0.78) + \frac{0.78}{10}}$$

$$= 3.36$$

Results – Performance

Results - small

Results – medium

Results – large

