Haskell Parallel Chess
Engine

Nikolaus Holzer

Introduction

Minimax based chess engine

58%60 62 //
Bitboards -
%y; G5 00 = 0 5

) \ 42 44 46
Parallelization %0 //,,// _ /;V '

"33 5 39

26%28%30///
17%19% 21%23
o 0

/1
// 7
% //7

g h
Figure 1: Chess board squares with the corresponding number

Live demo

nww&mawm

Bitboards

- Each square corresponds to a bit in
a 64 bit word.

- We can easily map bits to squares

- Each piece can be shown as a 64
bit word

[oS T S - N - O -

Bitboards

startpos :: Board
startpos =
Board
{ pawnsWhite = 0x000000000000FF00 -- [a,h]2 entire row

pawnsBlack = 0xOOFF000000000000 -- [a,h]7 entire Tow 0x00 00 00 00 00 00 00 42
knightsWhite = 0x0000000000000042 -- b1 (bit 1) and g1 (bit 6)
knightsBlack = 0x4200000000000000 -- b8 (bit 57) and g8 (bit 62)
bishopsWhite = 0x0000000000000024 -- c1 (bit 2) and f1 (bit 5)

bishopsBlack = 0x2400000000000000 -- c8 (bit 58) and f8 (bit 61)

rooksWhite = 0x0000000000000081 -- al (bit 0) and h1 (bit 7) 0100 0010
rooksBlack = 0x8100000000000000 -- a8 (bit 56) and h8 (bit 63)

queensWhite = 0x0000000000000008 -- d1 (bit 3)

queensBlack = 0x0800000000000000 -- d8 (bt 59) Figure 3: Hex to bitboard mapping
kingsWhite = 0x0000000000000010 -- el (bit 4)

kingsBlack = 0x1000000000000000 -- 8 (bit 60)

Lo © v © v v v v 6 e o

Bitboards

1 000 O0OOO
01 00O0O0OO0OO
001 0O0O0OO0OTP O
1 0010O0O0O0
1 00 01001

0 000 O0OOO O

0 00O O0OOOD O

0 000 O0OOO

0 000 O0OODO

0 000OT1O0O0OFPO

0 00 0O0OO0OO0OTP O

1 00 0O0O0OOO

0 000 OO0OO 1

0 00 0O0OO0OO0OTP O

0 00O O0OOOO O

0 00O O0OOO O 1 000 O0T1DO01

001 010O0DO

1 00 0O0T11

1

0 000T1O0O0OTPO

0 00 O0OOO0OOTP O

0 00 O0OO0OO0OOTP O

0 001 0O0O0TO

(b) Captureable (stop on) (c) Queen moves from al, hl

(a) Occupancy (stop before)

Minimax Algorithm with optimizations

- Each turn the maximizing and min
player switch roles and choose the
most optimal branch

- Assumes each player plays
optimally

- Space complexity 2*n

Minimax Algorithm with optimizations

Caching

- Avoid recomputing expensive
bitboard operations and
comparisons

- Significant speedup at higher
depths

Minimax Algorithm with optimizations

Pruning

- Avoid computing branches that we
know the algorithm will never reach
to save computational resources

- Has much more overhead than just
caching but it takes runtime down
even more aggressively

Parallelization

Parallelize each top level minimax
operation

Leaves enough single threaded
work, and breaks down the big
work into sizeable chunks to take
advantage of overhead

Danger of exhausting system
memory (24gb M3)

Time Taken (seconds)

Preliminary Results

Minimax Algorithm Runtime Comparison

Algorithms
60 —@— Minimax Only
—&— Minimax with Caching
—&— Minimax with Caching & AB Pruning
50 Minimax caching and ab pruning parallel-2
—%— Minimax caching and ab pruning parallel-3
Minimax caching and ab pruning parallel-4
40 Minimax caching and ab pruning parallel-5
30
20
10
7
m——
0 — a
1 2 3

Search Depth

60000

50000

40000

30000

20000

Number of Cached Positions

10000

tHitd

Minimax Algorithm Cached Positions Comparison

Algorithms
Minimax Only
Minimax with Caching
Minimax with Caching & AB Pruning
Minimax caching and ab pruning parallel-2
Minimax caching and ab pruning parallel-3
Minimax caching and ab pruning parallel-4

Search Depth

Preliminary Results - potential issues

b4

- EXhaUStI ng resou rces Minimax Algorithm Runtime Comparison
Algorithms
- Timing may not be fully accurate o (1 i
Minimax with Caching & AB Pruning
Minimax caching and ab pruning parallel-3
Minimax caching and ab pruning parallel-4

Minimax Only
50 Minimax caching and ab pruning parallel-2
40 Minimax caching and ab pruning parallel-5

i

Time Taken (seconds)
8

10
7
—
0 =
1 2 3

Search Depth

