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Introduction

Minimax based chess engine
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Figure 1: Chess board squares with the corresponding number
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Bitboards

- Each square corresponds to a bit in
a 64 bit word.

- We can easily map bits to squares

- Each piece can be shown as a 64
bit word
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Bitboards

startpos :: Board
startpos =
Board
{ pawnsWhite = 0x000000000000FF00 -- [a,h]2 entire row

pawnsBlack = 0xOOFF000000000000 -- [a,h]7 entire Tow 0x00 00 00 00 00 00 00 42
knightsWhite = 0x0000000000000042 -- b1 (bit 1) and g1 (bit 6)
knightsBlack = 0x4200000000000000 -- b8 (bit 57) and g8 (bit 62)
bishopsWhite = 0x0000000000000024 -- c1 (bit 2) and f1 (bit 5)

bishopsBlack = 0x2400000000000000 -- c8 (bit 58) and f8 (bit 61)

rooksWhite = 0x0000000000000081 -- al (bit 0) and h1 (bit 7) 0100 0010
rooksBlack = 0x8100000000000000 -- a8 (bit 56) and h8 (bit 63)

queensWhite = 0x0000000000000008 -- d1 (bit 3)

queensBlack = 0x0800000000000000 -- d8 (bt 59) Figure 3: Hex to bitboard mapping
kingsWhite = 0x0000000000000010 -- el (bit 4)

kingsBlack = 0x1000000000000000 -- 8 (bit 60)
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Bitboards
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Minimax Algorithm with optimizations

- Each turn the maximizing and min
player switch roles and choose the
most optimal branch

- Assumes each player plays
optimally

- Space complexity 2*n




Minimax Algorithm with optimizations

Caching

- Avoid recomputing expensive
bitboard operations and
comparisons

- Significant speedup at higher
depths




Minimax Algorithm with optimizations

Pruning

- Avoid computing branches that we
know the algorithm will never reach
to save computational resources

- Has much more overhead than just
caching but it takes runtime down
even more aggressively




Parallelization

Parallelize each top level minimax
operation

Leaves enough single threaded
work, and breaks down the big
work into sizeable chunks to take
advantage of overhead

Danger of exhausting system
memory (24gb M3)
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Preliminary Results

Minimax Algorithm Runtime Comparison
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Preliminary Results - potential issues
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