SAT Solver

Kevin, Jonathan, Max

What is a CNF expression?

All of the following formulas in the variables A, B, C, D, E, and F are in conjunctive normal form:

e« (AV-BV-C)A(-DVEVFVDVF)
« (AVB)A(C)

« (AV B)

- (4)

The following formulas are not in conjunctive normal form:

« =(A A B), since an AND is nested within a NOT
« (A V B) A C, since an OR is nested within a NOT
« AN (BV (D A E)), since an AND is nested within an OR

Our Goal

Find a configuration for the variables that satisfy the expression.

Prove no configuration will ever solve the expression

nf 8 9
345617820
-3 -4 -5 0

DPLL Solver result: UNSAT

DIMACS Format

DPLL Solver result: SAT: [Just True,Just True,Nothing,Just False,Nothing,Just True,Just True,Nothing

Naive Attempt

-We developed a simple naive algorithm that generates all possible configurations and checks whether each
satisfies the given boolean expression. Being a brute force solution, this implementation was (expectedly) not

very efficient.

z (Pvaal@vzal(zvp)
F

ST iy) e R A
4|4 |[m|n|A|4 |7 | 7| e
4(m|a|m(4a|m|4]m

First try sequential

We attempted to group numbers with similar binary encodings into equivalence classes, exploiting shared

lower bits to simplify the Boolean expression using clause elimination, literal elimination, and early returns.

e This approach worked for small problems (e.g., 20 variables taking ~1 second), but became inefficient for larger
ones (e.g., 50 variables taking >2 minutes) due to the need to check all numbers within each equivalence class.

e The method proved too slow, prompting us to pivot to a different approach.

For example:

- 0,4,8allendin 00 or False, False
- 1,5,9allendin 01 or False, True
- 2,6,10all endin 10 or True, False
3,7,11allend in 11 or True, True

Second Try Sequential (Best)

Rather than naively enumerating all possibilities of assignments then conducting a linear search over the
possibilities, we can instead rely on our intuition when attempting to determine satisfiability by hand.

(p1V =p3V =ps) A (=p1 V p2) A (=p1 V =p3 V pa) A (=p1 V =p2 V p3) A (—ps V ps)

C1 Co Cs Cs Cs

Second Try Sequential (Best)

(p1V —p3V ps) A(=p1 Vp2) A(=p1 V —p3 V pa) A (-p1 V —p2 V p3) A(—pa V —pa)
C1 Cs Cs Cs Co

Suppose we assign true to p,. This leads to:

(p1V—p3V —p5) A(=p1Vp2) A(=p1V —p3V pa) A(=p1V —p2Vp3) A(—psV —p2)
< (TV-apsV-ps)A(LVp2) A(LV=p3Vps)A(LV-p2Vps)A(—psV —p2)
< T Ap2 A(=p3Vpa) A(=p2 V p3) A (=psV —p2)
< p2 A (=p3V pa) A (—p2V p3) A (—ps V —p2)

Clause C,, originally -p, v p,, is now simply p,. Thus, any satisfying interpretation must assign p,=true. In this
case, p, is called a “unit literal”. It occurs in a clause with no other literals.

Second Try Sequential (Best)

(p1V =p3V =p5) A(=p1Vp2) A(=p1V —p3V psa) A(=p1V —p2V p3) A(—psV —p2)
< (TV-p3V-ps)A(LVp2) A(LV-p3Vps) A(LV-paVp3)A(—psV-p2)
< T Ap2A(=p3Vpa) A(=p2V p3) A (—psV —p2)
< pa A (=p3V ps) A (=p2 V p3) A (—psa V —p2)

Simplifying our formula further with p,=true yields:

TA(=p3sVps) AN(=TVp3) A(—psV—T)
< (-p3Vpa) AN(LVps)A(=psV L)
<> (—p3 V pa) Ap3s A —p4

We again have two unit literals p, and -p,. Thus, we must assign p,=true.

Second Try Sequential (Best)

TA(p3VPs) AN(=TVp3)A(=psV—T)
< (-p3Vpa) AN(LVps)A(—psV 1)
< (—p3 V pa) Ap3s A —ps

Simplifying our formula again with p,=true yields:

(=T Vpy) AT A-py
< (LVpg) A—py
> Pa/\ Py

We are left with only clauses which are unit literals. This last formula, derived from the initial assignment
p,=true in the original formula, is unsatisfiable. So we cannot assign p,=true in the original formula because
of its implications. p,=false, and we can follow similar “unit propagation” / BCP logic to determine the
original formula is ultimately satisfiable (e.g. p,=F, p,=F, p,=F, p,=T, p5=T/F)

Second Try Sequential (Best)

If this were implemented as a recursive algorithm, one recursive probe would reveal p, =false. This is much
better than having to linearly search through 2° assignments. We found the
Davis-Putnam-Logemann-Loveland (DPLL) Algorithm, proposed in the 1960s, does exactly this BCP.

DPLL also performs Pure Literal Elimination: if a variable occurs with only one polarity in the formula, i.e.
occurs only as a positive literal x or only as a negative literal -, it is “pure”. Pure literals can be assigned a
value such that all clauses containing it become true. Thus, clauses containing pure literals may also be

removed from the formula along with those removed by BCP.

Second Try Sequential (Best)

Algorithm DPLL Note:
e e - Termination conditions

Output: A truth value indicating whether & is satisfiable. o . . Lo
Flexibility in branching heuristic

function DPLL(®)

// unit propagation: Implications:
while there is a unit clause {1} in & do . .
@ « unit-propagate(l, ®); - Family of algorithms
// pure literal elimination: . .
while there is a literal 1 that occurs pure in & do - Chronologlcal bathraCkmg

® « pure-literal-assign(l, &);

// stopping conditions:

if & is empty then
return true;

if & contains an empty clause then
return false;

// DPLL procedure:

1l « choose-literal(®);

return DPLL(® A {1}) or DPLL(® A {-1});

* "«" denotes assignment. For instance, "largest « item" means that the value of /argest changes to the value of item.

* "return" terminates the algorithm and outputs the following value.

First Parallel Attempt

For each variable we branched on both True and False configuration, using ‘par’ and ‘parseq’, sparking once
using par for the false assignment and using parseq to evaluate the second assignment within the same
parallel computation

[satFalse, falseAsgmt) ! (satTrue, trueAsgmt) if satTrue then (True, trueAsgmt) ¢ > if not satFalse then (False, V.empty) e (True, falseAsgmt)

(satFalse, falseAsgmt) = parDpll (d-1) tryFalseForm tryFalseAsg
(satTrue, trueAsgmt) = parDpll (d-1) tryTrueForm tryTrueAsg

First Parallel Attempt

80,735,068,960 bytes allocated in the heap
2,849,844,968 bytes copied during GC
1,369,816 bytes maximum residency (560 sample(s))
188,592 bytes maximum slop

_ThiS approaCh d|d not Work 63 MiB total memory in use (O MiB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause

7 ” Gen 0 18915 colls, 18915 par 5.889s 2.687s 0.0001s 0.0007s
-The Sparks were dUd, nOt Gen 1 560 colls, 559 par 0.719s 0.276s 0.0005s 0.0008s

eﬁ:ICIGntIy belng Used for para"el Parallel GC work balance: 5.51% (serial 0%, perfect 100%)

ComDUtatlon TASKS: 26 (1 bound, 25 peak workers (25 total), using -N12)

. . N SPARKS: 39471 (0 converted, © overflowed, 39471 dud, © GC'd, 0 fizzled)
-Trying different variations of our
INIT time 0.004s .002s elapsed)

code did not work so we moved MUT time 50.728s 0105 elapsed)
ﬁ_- GC time 6.608s .962s elapsed)
on to a different approach. EXIT time 0.002s 0065 elapsed)
Total time 57.341s .980s elapsed)

Alloc rate 1,591,543,055 bytes per MUT second

Productivity 88.5% of total user, 94.2% of total elapsed

Second Parallel Attempt (Best)

Since we branch on True and False we can use a technique parPair :: Strategy (a,b)
learned in class for dealing with pairs. parPair (a,b) = do

a' <- rpar a
We can apply this to the earlier code shown. b' <- rpar b

return (a',b')
satFalse = parDpll strat (d-1) tryFalseForm tryFalseAsg
satTrue = parDpll strat (d-1) tryTrueForm tryTrueAsg
specialOr ([satTrue, satFalse] i strat)

Second Parallel Attempt (Best)

391,084,639,464 bytes allocated in the heap
17,942,822,024 bytes copied during GC
As we can see this did much better. But 8,265,440 bytes maximum residency (609 sample(s))
341,640 bytes maximum slop
there was Stl” d |Ot Of Spar'kS being 74 MiB total memory in use (0 MiB lost due to fragmentation)

fizzled or GC'd. (thlS was for 150 Tot time (elapsed) Avg pause Max pause
i Gen 0 13643 colls, 13643 par 21.547s 3.981s 0.0003s 0.0022s
variables) Gen 1 609 colls, 608 par 7.832s 0.871s 0.0014s 0.0018s

Parallel GC work balance: 75.33% (serial 0%, perfect 100%)

Sequential result: 54.744 secs

TASKS: 26 (1 bound, 25 peak workers (25 total), using -N12)

SPARKS: 1016 (29 rted, © rflowed, O dud, 62 GC'd, 925 fizzled
Parallel result (best): 29.039 S : ‘ et

INIT time 0.007s .004s elapsed)
MUT time 439.422s .738s elapsed)
Parallel result (Worst): 91.518 GC time 29.380s .852s elapsed)
EXTLT time 0.206s .027s elapsed)
Total time 469.014s .621s elapsed)

Speedup: 1.88

Alloc rate 889,997,804 bytes per MUT second

Productivity 93.7% of total user, 89.3% of total elapsed

Second Parallel Attempt (Best)

Too large (40 depth) Too small (10 depth)

510,109,573,800 bytes allocated in the heap 394,742,930,024 bytes allocated in the heap
23,835,559,960 bytes copied during GC 18,348,805,032 bytes copied during GC
8,304,112 bytes maximum residency (824 sample(s)) 8,977,304 bytes maximum residency (621 sample(s))
330,984 bytes maximum slop 331,344 bytes maximum slop
75 MiB total memory in use (0 MiB lost due to fragmentation) 77 MiB total memory in use (0 MiB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause Tot time (elapsed) Avg pause Max pause

Gen ©O 18011 colls, 18011 par 28.755s 5.497s 0.0003s 0.0015s Gen © 13892 colls, 13892 par 22.057s 4.202s 0.0003s 0.0012s
Gen 1 824 colls, 823 par 10.500s 1.201s 0.0015s 0.0022s Gen 1 621 colls, 620 par 8.002s 0.903s 0.0015s 0.0020s
Parallel GC work balance: 74.67% (serial 0%, perfect 100%) Parallel GC work balance: 74.82% (serial 0%, perfect 100%)
TASKS: 26 (1 bound, 25 peak workers (25 total), using -N12) TASKS: 26 (1 bound, 25 peak workers (25 total), using -N12)
SPARKS: 497732 (41 converted, © overflowed, © dud, 142337 GC'd, 355354 fizzled) SPARKS: 317076 (166 converted, © overflowed, © dud, 79857 GC'd, 237053 fizzled)
INIT time 0.008s (.004s elapsed) INIT time 0.007s (.003s elapsed)

time 578.591s (.075s elapsed) time 444.274s (.266s elapsed)

time 39.255s (.699s elapsed) time 30.058s (.105s elapsed)

time 0.012s (.002s elapsed) time 0.190s (.026s elapsed)

time 617.866s (.780s elapsed) time 474.529s (.400s elapsed)
Alloc rate 881,640,688 bytes per MUT second Alloc rate 888,512,887 bytes per MUT second

Productivity 93.6% of total user, 89.0% of total elapsed Productivity 93.6% of total user, 88.9% of total elapsed

Time (secs)

Unsatisfiable Problems (100 variables, 430 clauses, 5 random samples):

O P N W H OO N O ©

Second Parallel Attempt (Best)

Parallel Speedup

Depth (0 means sequential)

equential DPLL Solver result: UNSAT
22,236,104,248 bytes allocated in the heap
701,733,048 bytes copied during GC
4,762,712 bytes maximum residency (54 sample(s))
202,464 bytes maximum slop

64 MiB total memory in use (0 MiB lost due to fragmentation)

Tot time (elapsed) Avg pause
Gen 0 609 colls, 609 par 0.929s 0.160s 0.0003s
Gen 1 54 colls, 53 par 0.273s 0.038s 0.0007s
Parallel GC work balance: 73.17% (serial 0%, perfect 100%)

TASKS: 26 (1 bound, 25 peak workers (25 total), using -N12)

Max pause
0.0010s
0.0013s

SPARKS: 488 (100 converted, 0 overflowed, 0 dud, 16 GC'd, 372 fizzled)

INIT time 0.004s 0.002s elapsed)

time 24.110s 2.175s elapsed)
time 1.202s (0.197s elapsed)
time 0.001s 0.006s elapsed)
time 25.317s 2.381s elapsed)

Alloc rate 922,288,082 bytes per MUT second

Productivity 95.2% of total user, 91.4% of total elapsed

Second Parallel Attempt (Best)

Threadscope for best depth:
5.299 speedup

Sequential: Average: 7.652, STD DEV: 3.644
Best Parallel: Average: 1.444, STD DEV: .626

| 1 i
s 1 1 1T 1 (Y A I AN R

= IR

) I N T

L Y VA O I

Spar
((((((((o ‘ A
rate 7

Y VU WV

ooooooo

Second Parallel Attempt (Best)

Too Small (5):

Too Large (20):

Sequentia

r result: UN
22,902,455,832 s allocated in the heap
707,573,048 copied during GC
4,688,880 maximum residency (54 sample(s))
214,712 maximum slop
65 MiB total memory in use (0 MiB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen © 609 colls, 609 par 0.921s 0.174s 0.0003s 0.0008s
Gen 1 54 colls, 53 par 0.258s 0.039s 0.0007s 0.0010s
Parallel GC work balance: 70.11% (serial 0%, perfect 100%)
TASKS: 26 (1 bound, 25 peak workers (25 total), using -N12)
SPARKS: 42226 (836 converted, @ overflowed, © dud, 20338 GC'd, 21052 fizzled)

INIT time
MUT time

010s (.005s elapsed)
886s (.210s elapsed)

EXIT time
Total time 2

002s .002s elapsed)
077s .430s elapsed)

0.
4.
GC time 13 79SEN(.213s elapsed)
0.
6.

Alloc rate 920,280,096 bytes per MUT second

£ | O 0 O R A A
00 00O

L O L 1 T

Sequential DPLL
22,231,960,432
711,084,944
4,501,488
194,736

63

Gen © 9
Gen 1
Parallel GC wo
TASKS: 26 (1 b
SPARKS: 70 (21
INIT time
MUT time
GC time
EXIT time
Total time

Alloc rate

Productivity

Solver result: UNSAT

bytes allocated in the heap

bytes copied during GC

bytes maximum residency (69 sample(s))

bytes maximum slop

MiB total memory in use (© MiB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
36 colls, 936 r 0.864s 0.188s 0.0002s 0.0007s
69 colls, 68 par 0.242s 0.041s 0.00086s 0.0011s
rk balance: 59.5 (serial 0%, perfect 100%)
ound, 25 peak workers (25 total), using -N12)
converted, @ overflowed, 0 dud, 8 GC'd, 41 fizzled)
0.011s (.005s elapsed)
0.400s (.562s elapsed)
1.107s (0.229s elapsed)
0.002s (.004s elapsed)
1.519s (.800s elapsed)
1,089,810,229 bytes per MUT second

94.8% of total user, 91.5% of total elapsed

=2 L] R A A T T
ot

eco
o

=) |

n

(sparks 096

Y

. E
=

Time (sec)

Satisfiable 5 random cnf examples 100 variables 430 clauses

Average: 3.193 STD DEV: 1.864

Best: 1.514 STD DEV: 1.038

Parallelism Speedup over Depth

3 5 8 9 10 12 14

Depth(0 for sequential)

Second Parallel Attempt (Best)

Time (sec)

Speedup For CNF

Second Parallel Attempt (Best)

05 055 1s 155 2 255 3 355 5 05 055 1s 155 2 255

3

355

5

ass

Time Heap GC Spark stats Spark sizes Process info Raw events

HEC Total Converted Overflowed Dud GCed Fizzled
Time Heap GC Spark stats Spark sizes Process info Raw events Total 474 97 o 30 347
HEC Total Converted Overflowed Dud GCed Fizzled
10] e 0 6

Total 16

Third Parallel Attempt

We were able to add a top-level k-split based on variable frequency. Given a command-line argument, k,
following the input file path, 2* disjoint subproblems are created, where each subproblem represents a
specific combination of true/false assignments for the k most frequent variables. These disjoint subproblems
were then evaluated in parallel, each starting with a partial assignment for the k variables. Within each
subproblem, the previous depth-limited parallel implementation explored the remaining search space by
simultaneously assigning true/false for the current variable under consideration at a given depth, selected
naively just as before.

Initial results were promising, but untuned, so we opted to stick with the previous depth-limited
implementation for testing. E.g., UF150.645.100/uf150-01.cnf with depth 25 and 14 threads would be solved
by the previous implementation in around 29 seconds, whereas the same file with depth 1024 and 14
threads was solved by this implementation in around 3.3 seconds (roughly 8.8x improvement).

Takeaways/Future

Haskell is hard.

If we were to continue on this problem we would look into finishing the parallel implementation for multiple
assignments and sparking these using a “parlist” or possibly some other technique for condensing the
number of sparks we generate.

We would also look into different heuristics and additional rules to improve the sequential algorithm, as well
as different data structures to hold the boolean expressions in a more efficient manner to determine if a
given configuration satisfies it or not.

