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Cube Representation in Haskell

data Cube = Cube {

    up    :: Face,

    down  :: Face,

    left  :: Face,

    right :: Face,

    front :: Face,

    back  :: Face

} deriving (Eq, Show)

type Face = [[Color]]

type Color = Char
initCube :: Int -> Cube

initCube n = Cube {

    up = replicate n (replicate n 'W'),

    down = replicate n (replicate n 'Y'),

    left = replicate n (replicate n 'O'),

    right = replicate n (replicate n 'R'),

    front = replicate n (replicate n 'G'),

    back = replicate n (replicate n 'B')

}

In our Haskell implementation, a Rubik's Cube is represented by a custom Cube data type with six labeled 
faces: up, down, left, right, front, and back. Each face is a 2D list of colors represented by characters ('R', 'G', 
'B', 'Y', 'O', 'W'). The initCube function initializes each face with a uniform color. This structure allows easy 
manipulation, display, and transformation of the cube's state.



Move Representation in Haskell
-- Define possible moves

data Move = F | Fi | R | Ri | U | Ui | B | Bi | L | Li | D | Di deriving (Eq, Show)

-- Function to map a Move to its corresponding Cube -> Cube function

applyMove :: Move -> Cube -> Cube

-- Function to apply a list of Moves sequentially to a Cube

applyMoves :: [Move] -> Cube -> Cube

applyMoves moves cube = foldl (\c m -> applyMove m c) cube moves

-- Perform a move that rotates the front face clockwise

moveF :: Cube -> Cube

moveF cube = cube {

    front = rotateFaceClockwise (front cube),

    up = replaceRow (up cube) (n-1) (reverse (getCol (left cube) (n-1))),

    left = replaceCol (left cube) (n-1) downFirstRow,

    down = replaceRow (down cube) 0 (reverse (getCol (right cube) 0)),

    right = replaceCol (right cube) 0 upLastRow

}

  where

    n = length (front cube)

    upLastRow = up cube !! (n-1)

    downFirstRow = down cube !! 0

The move logic for manipulating a virtual 
Rubik's Cube in Haskell involves defining a 
Move data type for possible moves (e.g., F, Fi, 
R, Ri, etc.) and implementing functions to 
rotate faces 90 degrees clockwise or 
counterclockwise. Each move function, such as 
moveF, updates the cube's state by 
manipulating two-dimensional arrays that 
represent each face of the cube.

Helper functions like replaceRow, 
replaceCol, and getCol facilitate these 
updates, ensuring that when a face is rotated, 
the adjacent faces are also correctly adjusted, 
maintaining the integrity of the cube's state.



IDA* Algorithm Using Pattern Database
What is IDA*?

● Iterative Deepening A* combines the space efficiency 
of depth-first search with the optimality of A*.

● Searches to a specific threshold f = depth+h, then 
increases f iteratively if no solution is found.

● Uses a heuristic function h(n) to guide the search.

Pattern Databases (PDBs)

● Precomputed databases of optimal distances (minimum number of 
moves) to the goal for subsets of the cube's pieces.

● Built by performing BFS from the solved state.

Why Use a PDB?

● Provides admissible and consistent heuristics: The heuristic 
never overestimates the cost to the goal. For unseen states, a 
fallback value is used (e.g. 8 for states not in a PDB with a 7-moves 
distance limit)

● Admissibility guarantees that solutions found by A*/IDA* are optimal

Applying IDA* with PDBs to the Rubik's Cube

1. Precompute PDB for subsets of the cube.
2. During search, estimate cost using the PDB heuristic.
3. Perform an IDA* search using this heuristic.
4. Iteratively deepen the search until the optimal solution is found.

a. This is guaranteed as the heuristic is admissible



● Color Conversion* Functions convert Rubik's Cube face 
colors (chars) to Word8 values and vice versa for efficient 
storage.

● Cube State Representation: cubeToKey converts a Rubik's 
Cube state into a Word8Vector, a compact vector of Word8 
values, for efficient manipulation and comparison.

● PDB Generation: generatePDB creates a pattern database 
mapping cube states to their distances from the solved state 
using BFS.

● PDB Storage: The pattern database (PDB) is stored as a Map 
from Word8Vector to Int, allowing for efficient lookups and 
insertions of cube states and their distances.

● File Operations: savePDB and loadPDB handle saving and 
loading the PDB to/from files using binary serialization for 
efficient storage and retrieval.

Details of PDB Caching
colorToWord8 :: Color -> Word8

word8ToColor :: Word8 -> Color

cubeToKey :: Cube -> Word8Vector

-- Bin.Binary instance: Defines how to serialize and 

deserialize Word8Vector.

instance Bin.Binary Word8Vector where

    put (Word8Vector vec) = Bin.put (V.toList vec)

    get = Word8Vector . V.fromList <$> Bin.get

-- Int representing the distance to the solved state.

type PDB = Map.Map Word8Vector Int

savePDB :: FilePath -> PDB -> IO ()

savePDB file pdb = Bin.encodeFile file pdb

loadPDB :: FilePath -> IO PDB

loadPDB file = Bin.decodeFile file



IDA* Algorithm Using Pattern Database Results
./IDAStarBatch pdb_2x2_7.dat 2 scrambles_3000.txt  +RTS  -N1 -ls -RTS

pdb_2x2_7.dat: The pattern database for the 2x2 cube contains all the states that are within 7 moves of 
the solved state

scrambles_3000.txt An input file containing 3000 scrambled cubes, each is obtained from performing 
30 random moves from the solved state.



We attempted to parallelize the solving process of the 2x2 Rubik's Cube using IDA*, 
but this did not improve efficiency. The main challenges included:

● The speed at which the 2 x 2 is solved with a linear algorithm did not leave 
much room for improvement

○ A huge percentage of the solution time was loading in the PDB which 
has to be done sequentially so as per Amdahl's law we didn’t see much 
benefit

● Solving a 3x3 cube is challenging due to the vast state space; our PDB 
doesn’t cover enough states. We will elaborate on this more later in the 
presentation.

● Maintaining a shared visited set is difficult and leads to contention from 
frequent read/write operations. This was necessary to avoid threads were 
repeatedly searching the same nodes/states.

Parallelization of IDA*

Parallelizing the solve step on a single cube 
offers little benefit because the 2-second PDB 
load time dominates the process. Even with 
perfect parallelization, the load time remains a 
sequential bottleneck.

-- Shared Visited States 

import qualified Data.HashTable.IO as H

type VisitedStates = H.BasicHashTable Cube 

Bool

initVisitedStates :: IO (MVar VisitedStates)

initVisitedStates = do

    visitedStates <- H.new :: IO 

VisitedStates

    newMVar visitedStates



Parallelization by Cube
● When running the IDA* algorithm to solve the 2x2 Rubik's Cube multiple times, we did observe significant 

speedup by assigning each cube to a different core using Control.Concurrent.Async (forConcurrently_)
○ This function is very similar to ParMap but has support for IO operations which made debugging 

much simpler
● Utilized multiple cores effectively, with each solving a separate instance.
● Diminishing returns caused by thread overhead, memory contention, and limited parallelism.
● Speedup peaked at 8 threads; performance leveled off or declined beyond that.

* Test computer has 
10 logical cores

* The orange 
at the 
beginning is 
loading the 
PDB



The 3x3 case: Possible States of the cube

The (solvable) states of the Rubik’s cube are determined by:

1) Corner arrangement
a) Corner permutations = Spatial arrangement of the 8 corners, within their 8 

available slots 
b) Corner orientations = Whether a corner is twisted correctly, CW, or CCW

2) Edge arrangement
a) Edge permutations = Spatial arrangement of the 12 edges, within their 12 

available slots
b) Edge orientations = Whether an edge is flipped or not

Haskell representation:
data CubeState = CubeState {
    edgesPermutation   :: [Int],    -- Edge indices (0 to 11) representing their current positions
    edgesOrientation   :: [Bool],   -- Edge flips (False = correct, True = flipped)
    cornersPermutation :: [Int],    -- Corner indices (0 to 7) representing their current positions
    cornersOrientation :: [Int]     —- Corner twists (0 = correct, 1 = 120° CW, 2 = 120° CCW)
} deriving (Eq, Show)



The number of (solvable) states explodes with dimensions

In a 2x2 cube we can only permute and orient the corners, yielding

8! x 37 / 24 ~ 3,674,160 (solvable) states

However, in a 3x3 cube we can also permute and orient all the edges, yielding

8! x 37 x 12! x 211 / 2 ~ 43,252,003,274,489,856,000
A 4x4 cube – “Rubik’s Revenge” would have ~ 1045 solvable states…



Size of Rubik’s Cube

State Space:

● 2x2 Cube: 3.6 million states
● 3x3 Cube: 43 quintillion states

Even with linear IDA* and state pruning 
techniques, traversing such an enormous 
number of states is impractical.

Hence, whilst the 2x2 Cube can be “brute 
forced,” it is clear that the 3x3 Cube requires 
a much more sophisticated algorithm.

Heuristic Issues

1. Pattern Database Limitation: We couldn't store a full 
pattern database because the state space is enormous, 
making it impractical to generate and store all possible 
configurations.

2. Ineffective Heuristics: Simpler heuristics (e.g., number of 
misplaced pieces or Manhattan distance) are ineffective 
because they underestimate the number of moves 
required and fail to capture the complexity of the cube’s 
state transitions.

Avg solve time of 2 x 2 or linear solution threadscope here



(Kociemba) Two-Phase-Algorithm
1) Solve the orientations

In this first run of IDA*, reach G1 state – any state that can be generated from the solved state by the 
orientation-preserving moves <U,D,R2,L2,F2,B2>. There are ~ 8! x 12! such G1 states.

Essentially, we want to reach a cube state where all the edge/corner orientations are zero (solved).

2) Solve the permutations

In this second run of IDA*, apply purely G1 moves – keeping the orientations locked to the solution – to 
reach the overall solved state.

Complex: requires two separate heuristic functions, stored in several MB’s of tables, for each IDA* 
application, and efficient manipulation of the ever-changing cube state



IDA* : A parallelization attempt

Initialize global search coordinator and search state
Initialize current bound with h(root)
Initialize worker threads
Enqueue initial task (starting node) into the task queue

For each worker thread: – parallel threads
Fetch a task from the task queue
Terminate worker thread if no tasks are left
Process the current task:

If solution found, notify search coordinator
If bound exceeded, update candidate bound
Enqueue successor tasks (nodes) to the task queue



IDA* : The “main loop”

Read results from worker threads:
If a solution is found in search coordinator

Terminate workers and return path
If a new minimum bound candidate is found:

Update new bound if exceeds current bound
If all tasks are processed: – workers cannot proceed within bound

Update current bound
Kill worker threads – we need to start a DFS search anew
Reinitialize root task for new bound
Relaunch new worker threads

See the big performance inefficiency here?



IDA* : Sequential vs Parallel


