Parallel Maze Solver

Solving mazes in parallel with A*
Mohsin Rizvi
COMS 4995 Parallel Functional Programming

The problem

Given a grid-based maze, find the shortest path
from a known start to a known goal

® Mazes are represented as a series of tiles, where
some tiles are impassable (“walls”)

e Each maze tile is identifiable by its coordinates

® Apathisa list of tiles to move to, from the start tile

to the goal tile

The A* algorithm

A* (or A-star) is a generic pathfinding

algorithm for finding a path from one

weighted graph node to another

e Various applications, including video games,
network routing, and robotics

e To use A*, we can think of a grid-based maze

as a dense graph

o All edges have weight 1

The A* algorithm

Relies on a heuristic function to estimate a node’s distance to the goal
o For grid-based mazes, we can use the Euclidean distance to the goal
e Performs a graph search from the start node, adding adjacent nodes to a priority queue
o Priority is a node’s heuristic value plus the node’s shortest known distance from the start
e Nodes are processed from the priority queue until we find the goal or run out of nodes to
search

Parallelization

Finding the shortest path is hard to do fast with parallelization
You don’t know that a route is the shortest one until you’ve inspected all the alternatives
Especially difficult if threads don’t have access to a shared priority queue

| tried two strategies for parallelization, each with their own tradeoffs

Strategy 1: multiple starts

Launch several A* searches from different points at a fixed distance from the start tile

Take the shortest result from all the searches A*

Inspired by existing literature [1] Start Goal

Results:
o The good: Returned an optimal path A*
o The bad: slower than a serial search
m Each thread still did a full search, so nothing gets sped up

[1]
https://www.semanticscholar.org/paper/Parallelizing-A*-Path-Finding-Algorithm-Zaghloul-Al-Jami/8c62a239
505647143e3f04fb20d9e5a748a5e47d

https://www.semanticscholar.org/paper/Parallelizing-A*-Path-Finding-Algorithm-Zaghloul-Al-Jami/8c62a239505647143e3f04fb20d9e5a748a5e47d
https://www.semanticscholar.org/paper/Parallelizing-A*-Path-Finding-Algorithm-Zaghloul-Al-Jami/8c62a239505647143e3f04fb20d9e5a748a5e47d

Strategy 2: checkpoint partitioning

This idea came from thinking of how to keep each processor from doing a full search
The idea: first, come up with “checkpoints” along the ideal path between the start and goal, as
if there were no walls in the maze
o Easy to compute because we have the coordinates of the start and goal
e Next, have each thread compute the path between two checkpoints using a regular A* search
o EasytodousingparList with rseq
e When threads are finished, stitch together the resulting paths

Start Cc1 C2 C3 Goal

Strategy 2: checkpoint partitioning

e Results:
o The good: much faster than serial (more on performance soon)
m Each thread only did a portion of the full search
O The bad: paths were slightly longer than optimal
m Sometimes took unnecessary detours to reach checkpoints
m If a checkpoint isn’t reachable from the start or goal, it fails to return any path

Strategy 2: checkpoint partitioning

e | was able to reduce the path length from detours with post-processing

o If atile appeared twice in the final path, remove all tiles between the two occurrences
e Tradeoff of this approach: time to compute vs path length

o This method is suitable if you'd rather compute paths quickly than get an optimal path

o Also doesn’t work if there are unreachable parts of the maze

o Overall, speed improvement was proportionally much greater than the increase in path

length
m Resulted in an almost optimal path

Speedup vs Threads

@ Actual == Ideal

Speedup

Parallel performance

® | chose to use strategy 2 (checkpoint partitioning) because of its speed
e Ona200x1000 tile map using up to 20 cores:

Threads

16 17

18 19 20

Path Length vs Threads

Path Length

1250

1200

1150

1100

1050

1000

10 11 12 13 14 15 16 17 18 19 20

Threads

Parallel performance

® Processor utilization was very good to a point

O

O

O

O

Using 8 cores led to about an 8 times speedup
Speed stopped increasing after about 12 cores

e Speed improvement far outweighed path length increase

For 12 cores, observed a 10.7 times speedup and only 6% increase in path length
Reasonable for use in applications that need to compute a lot of paths

S LI LT

Processor activity e | | e |

UL ey

oL T

e Workload was not evenly distributed o s lian T A —

amongst processors man e
[LLI LT

e Most processors ended up waiting on J g
one or two more to finish searching = L

e With this approach, work distribution i ammm
is highly dependent on maze layout : LALLI A -

e If we could ensure even work, overall wensm vmmm o LSS

HHHHH LN T TR

speed would likely increase
| Enn

LR L L L "
‘‘‘‘‘ oo LR LR

= 0 L] 1 ARl et
HHHHH

IE— T T TR ——

o UL R

nnnnn uabs oL LI ERR

./mazeSolver test/20x20.txt 8

The final program

Path (length 26): [(9,14),(10,14),(10,13),(11,13),(

Takes in a path to a file containing a maze
and a level of parallelism to use

Can optionally render the final path over the
maze using the —-show option

For example, . /mazeSolver
test/20x20.txt 8 —-show +RTS
-N8

