
Unset

COMS4995 Report - A* Search For TSP
Adele Bai (ayb2121)
Vincent Mutolo (vm2724)

Introduction & Problem
The goal is to parallelize an A-star search implementation on the Traveling Salesman Problem.

● Traveling Salesman Problem - given a connected graph, find the shortest path that
touches all the vertices and returns to the starting point.

● A-star search - this is basically dijkstra's shortest path algorithm but with a heuristic
added to the cost. In our implementation we set the heuristic value to 0 (for simplicity) so
we basically implemented dijkstra's algorithm.

Runs are benchmarked on the following machines:

Machine 1 (Adele's PC)
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit

CPU(s): 12
On-line CPU(s) list: 0-11

Vendor ID: GenuineIntel
Model name: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz

Machine 2 (DigitalOcean)
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit

CPU(s): 16
On-line CPU(s) list: 0-15

Vendor ID: GenuineIntel
BIOS Vendor ID: QEMU
Model name: Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz

BIOS Model name: pc-i440fx-6.1 CPU @ 2.0GHz
Model: 85
Thread(s) per core: 1

Datasets
We used fully connected graphs sourced from a collection of common TSP problems with
known solutions. A small 5-city set (5! = 120 permutations) was used to quickly verify the
implementation’s correctness.

The main dataset for assessing performance is a fully connected graph with 17 cities with a
minimum cost of 2085. A 17 city TSP problem has 17! = 355 trillion permutations so a
brute-force solution would take 41 days (assuming 10^8 iterations per second).

This problem size is sufficiently large to keep the execution CPU heavy without trading off the
velocity of our working process (i.e. our serial A* implementation took around 25 seconds). The
input file (/data/17_cities_edges.csv) is trivially small so there is no IO bottleneck when parsing
the graph itself.

A* Serial Implementation
We first implemented A* search to solve the Traveling Salesman Problem (TSP) serially. TSP
involves finding the shortest possible route that visits each city in a given list exactly once and
returns to the starting city. The algorithm begins by selecting an arbitrary starting city and
initializes the search frontier with a node representing this starting point. The goal is defined as
a state where all cities have been visited, forming a complete route that returns to the start.

Crucial here is how we define our states (i.e. vertices in the search, which are distinct from the
cities in TSP). A state consists of the tuple of the current city of the traveler and the set of cities
they have visited. Defining a state this way lets us avoid wasted work in re-exploring essentially
equivalent states. The algorithm keeps track of a global starting node, so any two states that
consist of the same set of already-visited cities (and the same current city) are effectively
equivalent because the only decisions are how to visit the rest of the cities from the current one.

The search operates by exploring paths in the order of their estimated total cost, which is the
sum of the cost to reach the current node and a heuristic estimate of the cost to reach the goal

https://people.sc.fsu.edu/~jburkardt/datasets/tsp/tsp.html
https://github.com/adelebai/a-star-tsp-haskell/tree/main/data

from that node. The heuristic can be either a constant zero for simplicity or something more
complex like an MST-based estimate for TSP. The only hard requirement is that the heuristic be
"admissible", meaning it never overestimates the cost. Again, each node in the search
represents a partial route, including the current city, the path taken so far, and the total cost up
to that point. The heuristic function guides the search by providing an optimistic estimate of the
remaining cost, helping to prioritize nodes that are likely to lead to the optimal solution.

As the algorithm progresses, it expands nodes by generating successor states, i.e. possible
next cities to visit that haven't been visited yet. It adds these successors to the frontier (priority
queue), where they are ordered based on their estimated total cost. The algorithm keeps track
of visited states to avoid revisiting the same configurations and to prevent cycles. It continues
expanding nodes and exploring new paths until it finds a node that reaches the goal state,
meaning all cities have been visited and the path returns to the starting city. At this point, the
algorithm returns the optimal route found, which represents the shortest possible tour covering
all cities exactly once.

The below diagram illustrates how a city graph turns into a logical graph over “states” of TSP
representing what cities have already been visited and how they’re arranged by cost in the
priority queue to visit next. The diagram below assumes a constant heuristic of 0, an arbitrary
starting point of W, and that only the successors of W have been added to the queue. The main
point is to illustrate the structure of how states are stored as a tuple of current city and previous
cities (and current cost so it doesn’t have to be recomputed all the time).

Parallelization Approach & Challenges
The goal of the parallelization is to speed up the work processing for the same-sized problem
rather than speed up the processing of multiple problems. The main approach we explored that
gave promising results was processing nodes off the priority queue in parallel. This method
stays true to the spirit of A* by continuing to prioritize good nodes. In the serial approach, only
the head of the queue is explored at a time (to depth 1). In the parallel approach, we explore up
to k nodes off the queue in a batch. This was done with the
Control.Parallel.Strategies library.

See below for a visualization of an iteration under this approach.

The main implementation challenges and features of this approach are outlined below.

Ensuring correctness of the visited states collection
In the serial implementation it was trivial to maintain a set of visited states. To check whether a
node had already been visited - you just check its membership in the set. After it has been
explored, it is added to the visited set. This works because when only a single item is explored
at once, it is guaranteed that nothing will generate a better version of its equivalent ‘state’ and
we can discard all future equivalent encounters. This is no longer true if multiple nodes are
explored at the same time.

In the parallel version, a node near the front of the queue could generate equivalent states of
other (further) nodes in the same batch. In order to keep the visited set correct, we had to use a
Data.HashMap to track the best cost of equivalent states. A node is only considered visited if

1. It has a cost better than the equivalent entry in the map or
2. It does not exist in the map.

Unset

Unset

Luckily, the performance impact of using a HashMap vs HashSet was negligible since they use
the same underlying data structure.

Forcing deep parallel evaluation using deepseq
In the figure x above, step 2 and 3 are the easiest to parallelize since both involve an fmap
operation on a list that could be independently executed across list entries. We played around
different strategies (rpar, rseq, rdeepseq) but ultimately had to use rdeepseq to force the
evaluation of the full structures because the shallow WHNF evaluation of rpar/rseq wasn’t
sufficient.

instance NFData Node where
rnf (Node c p g f) = rnf c `seq` rnf p `seq` rnf g `seq` rnf f

Step 2 above (checking HashMap membership) was a large chunk of the execution (see
a-star-tsp-haskell.exe.prof) and only full evaluation of this operation in parallel allows the
program to scale. The main reason for this is that our implementation relies on immediate
results to be available in order to resync them back into the priority-queue before the next
iteration can start, rather than some recursive approach that lets us rely on the default lazy
WNHF evaluation.

Controlling the number of sparks
Spinning off millions of short-lived sparks for every node in a batch initially showed weak scaling
and many sparks being fizzled or garbage collected. To control the amount of work per spark,
we used two mechanisms:

1. Batch size per iteration - this was the number of nodes to pop off the queue at once.
2. ParListChunk - this is a list strategy that divides a list into blocks of size m and

evaluates the blocks in parallel. Using this in combination with (1) was critical in allowing
more work to be done per spark.

The spark distribution before optimization with ParListChunk is as follows. All the work does end
up converted, but the execution time is 5x slower than if they were chunked. This was with a
batch size of 4000, chunk size of 1.

SPARKS: 5840192 (5631904 converted, 0 overflowed, 0 dud, 1713 GC'd, 206575
fizzled)

https://github.com/adelebai/a-star-tsp-haskell/blob/main/a-star-tsp-haskell-exe.prof

Unset

Unset

The optimal number of sparks for our benchmarks was somewhere between 20k-50k, with a
batch size of 2400, and chunk size of 200:

SPARKS: 31748 (26665 converted, 0 overflowed, 0 dud, 46 GC'd, 5037 fizzled)

Mitigating GC throughput
The final challenge we discovered was the large (30%) of time spent on garbage collection
when multiple cores (-N) were specified. Unfortunately we could not find an implementation
solution for this as all the usage in the heap allocation map seemed organic - i.e. we know that
nodes and sets (which are the key of the HashMap) make up the majority of memory allocation.

The memory churn resulted in about only 40% parallel GC work balance:

stack run 'data/17_cities_edges.csv' 'parattempt3' -- +RTS -N8 -s
Parallel GC work balance: 42.46% (serial 0%, perfect 100%)
INIT time 0.009s (0.033s elapsed)
MUT time 32.948s (16.350s elapsed)
GC time 17.466s (8.315s elapsed)

Unset

EXIT time 0.047s (0.005s elapsed)
Total time 50.469s (24.703s elapsed)

The way we mitigated this was by using an RTS flag to increase the GC allocation size (from the
default 4MB to 32MB). This was done using the -A32m flag. I think this decreases the frequency
of garbage collections.
For us, it reduced the GC time by 4x and increased GC efficiency to 95%.

stack run 'data/17_cities_edges.csv' 'parattempt3' -- +RTS -N8 -s -A32m
Parallel GC work balance: 95.13% (serial 0%, perfect 100%)
INIT time 0.007s (0.028s elapsed)
MUT time 33.093s (16.267s elapsed)
GC time 13.885s (2.162s elapsed)
EXIT time 0.044s (0.007s elapsed)
Total time 47.029s (18.464s elapsed)

Results - Generating successors of depth 1.
Note - these results were generated using heuristic = 0 on Machine 1.

We observed some scaling using the approach above and exploring every node to depth=1.
The scaling tapered off at around N=7.

Unset

We could not get close to ideal scaling, but could beat the
serial implementation (18.75s) at N=3.

The main problem with our approach is probably load
balancing. With the batch size configuration of 2400 and
chunks of 200, there 12 ‘blocking’ sparks every iteration so
most workers are sitting idle, waiting on the slowest spark
every iteration.

Summarized profiling rows show most of the bottleneck in the
HashMap lookup (48.9%) and the priority queue rebalancing
from popping multiple nodes off (splitAt, 25.6%).

Function, Type, % time (including inherited)
lookup#, Data.HashMap.Internal, 48.9%
splitAt, Data.PQueue.Min, 25.6%
hasVisitedBefore.element, ParQueueProcessing, 14.7% (this is allocating
elements of the HashMap)
misc 10% (other stuff like rnf/rdeepseq)

A close up threadscope view shows 1) that sparks are short-lived (expected) resulting in spiky
core usage and 2) potentially a lot of serial execution on a single core that could still be
parallelized, but our guess is that core is actually doing the priority queue balancing, which can’t
be parallelized.

Areas of improvement - could try to make each spark longer-lived and do more work. The risk
here is the deeper the work, the higher the chance of it doing something not useful.

Solution - Adding a MST heuristic.
When applying A* to TSP, we have the option to specify a heuristic to guide the cost function A*
uses in its priority queue. We started by leaving this heuristic a constant zero. This is valid since
the only requirement on the heuristic is that it is "admissible", i.e. it never overestimates the cost
of a solution.

However, we were searching for ways to scale better, and we thought that finding ways to
distribute more individual work to sparks might help our scaling. That is, we wanted to find work
that didn't require later synchronization. We figured that since we were parallelizing at the level
of popping from the priority queue and searching, adding useful work to that search would give
a better scaling ratio.

To that end, we implemented the Minimum Spanning Tree (MST) heuristic for A* search over
TSP. So now the search considers the current city and calculates the cost to complete the tour
by adding the cost from the current city to the nearest unvisited city (cost so far) and the cost of
the MST covering all unvisited cities (estimate of remaining cost). This provides a bound on the
remaining tour cost because the MST connects all unvisited cities with the minimal total edge
weight without forming cycles. Since the MST cost underestimates or equals the minimal tour
cost through the unvisited cities, the heuristic is admissible; it never overestimates the true
minimal cost to reach the goal. This admissibility ensures that A* will find an optimal solution if
one exists.

Figure to the left is
benchmarking on
Machine-2, showing
minimal speedup from the
heuristic. We now see
decent linear scaling at
about 0.5N from around
N=1..5 cores, and then
the scaling gradually
tapers off to constant,
ending in an overall 2.5x
speedup over serial. So
the heuristic both
improved the overall
speed of the search
(shown by the green

Unset

dotted line representing the serial implementation) and the parallel scaling properties.

Results - Generating successors of depth k with a
heuristic.
The idea behind this approach is to give each spark more work when it explores each node in
parallel, to reduce the percentage of time spent checking the visited states membership. Adding
the heuristic worked reasonably well in speeding up the program overall and reducing the
number of membership checks.

Based on the profiling results below, a large % of time is now spent on computing the MST
heuristic rather than doing HashMap lookups.

COST CENTRE MODULE SRC %time %alloc
mstCost.sortedEdges AStarLib.hs:81:5-77 42.3 36.7
kruskal AStarLib.hs:(97,1)-(105,40) 14.2 2.7
find AStarLib.hs:(109,1)-(113,33) 12.0 0.0
getEdgesBetween.collectEdges AStarLib.hs:(92,5)-(94,41) 8.1 15.2
getEdgesBetween.edges AStarLib.hs:91:5-54 3.6 13.2

The batch size and chunk size had to be re-tuned to account for the higher workload per
exploration step. The chunk size had to be reduced to be effective. A combination that worked
well was batch_size=600 and chunk_size=10.
Below shows benchmarking on Machine-1 using a depth=1 and depth=2.

Unfortunately it seems that exploring more depth does not improve the overall runtime, but the
result of the heuristic is extremely effective especially when compared to prior benchmarking.
The serial execution took around 6.5s while the best parallel execution now takes 2.5s.

Threadscope also shows much better CPU utilization with more consistency (probably due to
the lower chunk size, allowing for better load balancing). Even though there’s still room for
improvement (i.e. not all cores are in use 100% of the time), this looks much better than before.

Other Unsuccessful Attempts (Naive Sharding)
One other approach we tried was naively sharding the search space to some depth k, and
running the full exploration of each shard in parallel. The idea is that we do more work overall,
but each shard has their exploration space reduced by a factor. For the 17 city problem this is
expected to generate 17 sparks for depth=1, and 17*17 sparks for depth=2 and so on.

This approach scaled quite well, but in the end was still slower than the serial implementation.
There are a few reasons this didn’t work:

1. These are long-running sparks and I’m spinning off more than the number of cores I
have, even with depth=1. With depth=2 I did not get a run that could finish executing.

2. All the work in shards other than the “correct” one is wasted - we know they are never
going to find the best solution. Unlike in the successful approach above, good
explorations are not prioritized when the problem is divided at the top level. A* generally
works by prioritizing exploration of good states rather than treating every state equally.

3. Execution is bottlenecked by the slowest spark, since every spark needs to finish before
comparing solutions. Figure x below shows this mechanism happening (i.e. core 3 is first
to finish, but core 0 needs to be waited on).

Repo
https://github.com/adelebai/a-star-tsp-haskell

Resources used:
- https://www.redblobgames.com/pathfinding/a-star/implementation.html to understand A*

search in general
- https://www.public.asu.edu/~huanliu/AI04S/project1.htm to understand how to apply A*

to TSP, and learning about MST heuristic
- https://en.wikipedia.org/wiki/Kruskal%27s_algorithm for reminder about how to

implement Kruskal’s algorithm

Code

https://github.com/adelebai/a-star-tsp-haskell
https://www.redblobgames.com/pathfinding/a-star/implementation.html
https://www.public.asu.edu/~huanliu/AI04S/project1.htm
https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

Parallel Implementation (ParQueueProcessing.hs)

Serial Implementation (Serial.hs)

A-Star Functions (AStarLib.hs)

Heuristic (AStarLib.hs)

Data structures (structures.hs)

