A* Search for TSP

Adele Bai (ayb2121)
Vincent Mutolo (vm2724)

Traveling Salesman

e Given cities i and distances between them d(i,j)
o Note: we do not assume a metric space

e Goal: find shortest tour through all the cities. l.e. find
a permutation of [0, n) representing the order of cities
visited that minimizes the total distance travelled

e TSP is NP-hard
o No metric, so can’t even use 2-approximation

o Naive solution requires O(n!) time because n!
permutations

o Dynamic programming in general requires
O(n"2 x 2"n) time

https://en.wikipedia.org/wiki/Travelling_salesman_problem

Serial Solution; A*

A* overview

V' \
1 1
1 1
N = |
a[[_
aliningiasniiniiniinie \
1 1
1 1
> 3|
—[[

Priority Queue of States

A* state
AN

City,

[City],
Distance,
Distance

data Node = Node {
city %
path ::
gCost ::
tCost 3
} deriving (Show)

Parallelization approach

General approach - process more items
from the queue in parallel.

In the diagram, step (2) and (3) can be
easily parallelized since they are
operations on lists.

Used the Control.Parallel.Strategies
library since it had convenient methods
like:

e ParListChunk
e rdeepseq

HEAD

HEAD

O
1 - Pop next batch of nodes off the PQ
<
/ " 2 - Filter out already-visited nodes

R
'/ 3 - Generate successors of unseen nodes

4 - Merge successors back onto PQ

Parallelization approach (challenges and solutions)

1. Correctness - the visited states check

instance NFData Node where

must now be a HashMap to store the best rnf (Node c p g f) = rnf c rnf p rnf g rnf f
cost equivalent states.
2. Forcing deepseq evaluation of lambdas Unset
every iteration. areiiat e ik ety e (aril o Borteiomy| |
INIT time 6.809s (©0.833s elapsed)
3. Control number of sparks (10k-20k) by i S
tuning batch size and list chunk size L i S Adhe (24705 aimasd) Before (4MB alloc)
a. Without heuristic 2400/200 split worked best
b. With heuristic 600/10 split worked best l

4. Improving parallel GC throughput by using
-A32m ﬂag (default |S 4MB) JLack run 'data/17_cities_edges.csv' 'parattempt3’' -- +RTS -N8 -s -A32m

Parallel GC work balance: 95.13% (serial 8%, perfect 180%)

INIT time 0.807s (0.028s elapsed)
MUT time 33.893s (16.267s elapsed)
GC time 13.885s (2.162s elapsed)
EXIT time 0.844s (0.007s elapsed) After (32MB alloc)

Total time 47.929s (18.464s elapsed)

Initial parallelization results

Verdict: It’s fine, could be better.

Beats serial implementation by 25% at N=3

Struggles to hit 2x scaling

Bottlenecked by HashMap lookup (visited

states check)

Sparse core utilization on threadscope

Speedup

@® Speedup == N

@ Time(s) == Serial Time (s)

Os S50ms 0.1s 0.15s

Activity

EHHE T Ty A e et (VI ik
Heco = THEI MW W mnwn (0 nw immy 10 tnme IIII_
HECL IIIIIIIIIIIIIIIIIIIII\IIIIIIIII\IIII\I_
Hec2 InE e iIingI ernnirnnl IIIIIIIII_
HECS IIIIIIIIIIIIII|II[II|lIIIIIIII_
Hecs III!IIIIIIIIIIIIIIIIIIIIII|IIII_
HECS O AT 001 TN (5 TDUDA) TR (00600 T AR (L IIIIII_
HECE [T mnrrninl IIIIIIIIIIIIIIII_
HEC R 0 BT B AT | T o ol 1 |] IIIIIIII_
el (RO W [1 AN ORI A | | v B o [FIEE II_
HECS; I mijrnriiial | R {01 | I | \I_
Hec1o (I G | Do A 0 A |4 [I |EEEE 0T (G0] I1
HEC 1L 1N SN I VONCNT ANV N A 0 NN O O -III-III-I-I-IIIII_I

Cost Centers Profiling summary

Function, Type, % time (including inherited)
lookup#, Data.HashMap.Internal, 48.9%
splitAt, Data.PQueue.Min, 25.6%

hasVisitedBefore.element, ParQueueProcessing, 14.7% (this is allocating

elements of the HashMap)
misc 10% (other stuff like rnf/rdeepseq)

Improvement idea: MST heuristic

MST must be a lower bound for remaining
tour cost because it visits every node once,
but isn’t restricted in in/out degree

If we use MST heuristic, every exploration
will begin by calculating MST of the
remaining nodes

o This is relatively expensive, so it will
shift bottleneck to MST

o Good because different MST
calculations are done in parallel

https://en.wikipedia.org/wiki/Minimum_spanning_tree

Impact of adding Heuristic?

More work to generate successors, BUT:

Better PQ ordering (less nodes
explored overall)

HashMap.lookup no longer the
bottleneck

Overall 2-4x execution speedup.

Better scaling and core utilization (see
threadscope chart)

Cost Centers Profiling summary

COST CENTRE MODULE SRC %time %alloc
mstCost.sortedEdges AStarlLib.hs:81:5-77 42.3 36.7
kruskal AStarLib.hs:(97,1)-(185,48) 14.2 2:7
find AStarLib.hs:(169,1)-(113,33) 12.0 0.8
getEdgesBetween.collectEdges AStarlLib.hs:(92,5)-(94,41) 8.1 15.2

geLEdgesBeLweIenAedges AStarLib.hs:91:5-54 3.6 13.2

Timeline

HECO

HEC1

HEC2

HEC 3

HEC 4

HECS

HEC 6

HEC7

HEC 8

HEC9

HEC10

HEC11

N0 WO N N KD D RO NONED ORI INANIOE 01 E
A A A N AN RTION EOIORD NOOED OO OO D OO DRI
A1 AR 0 AR N OO 1 O R O 0 1
BB) A O A A0 W AN D UL (NOR1 00 OO O
N R 0 OO 0N ONARORD O N 0 6 0 OO
(RN NN R N I OO U ORDNRIEE (ONRD RO WO OO 1L
OB R O 0 OSOROR RO WIORN AUAARID AN A W10 0 1 OO
R R) O R N O AUAVOR Y EORY WORAD WO WRONRND O WO
e i e e o B o
I A W R R OB WO D WOE |

N A 0O D OO | N Y O 00 DO

(R ONET A D N) A NV A AR R AT N0 ORI A

Improvement: MST heuristic

e 4x Speedup for serial Effect of Heuristic
2.5 1
e Much better scaling
o 0.5N for h=MST, 5 201
N=1 5 rlfl —— parallel, h=0
'5 1.5 4 —— parallel, h=MST
e “Saturation scale” is ~=- Serial, h=0
> ——= Serial, h=MST
better S ok /o Pysicalcoes E
o 2.5x with MST &
0.5 4
o 1.2xw/o MST)
-

1 3 5 7 9 11 13 15 17 19
n cores

Tried: Generating successors of depth k + heuristic added

Scale Factor

@ k=1speedup @ k=2 speedup

10

12

Seconds

30

20

® k=1 @ k=2

serial

With heuristic, we're able to hit ~3.5x scaling.

With more depth, we get similar scaling but worse

performance than single-depth exploration.

Other approaches that didn’'t work - Naive Sharding

Shard the problem at the top-level, depth=1:

e Small number of long-running sparks
generated

e Scaled well, but much slower than serial
execution

e Key issue: all sparks are ‘equal’ so
most of them are wasted.

o)

Time l Heap | GC | Spark stats | Spark sizes | Process info [Raw events |

Total time: 46.162s
Mutator time: 34.467s

ime: 6955
Productivity: 74.7% of mutator vs total

HEAD

HEAD

/\

1 - Pop next batch of nodes off the PQ

2 - Filter out already-visited nodes

3 - Generate successors of unseen nodes

I

I

4 - Merge successors back onto PQ

VisitedSet
data Node = Node {

city :: City, Set{2,4} 1
path :: [City],

gCost :: Distance, -- Cost so far Set{7,8} 3
fCost :: Distance -- (gCost + heuristic)

derivi Sh
} deriving (Show) Set{1,2,5} |8

