Parallelizing Word-Search-2

COMS W4995: Parallel Functional Programming

Ardrian Wong (UNI:aaw2179), Keith Lo (UNI:k13695), Sean Zhang
(UNI:srz2116)

Introduction:

For our project, we aim to parallelize the word search 2 problem on Leetcode.' In our problem,
we are given a board of characters as well as a list of strings (words), and we must return all
words that are found on the board. A word can be formed on the board by a series of adjacent
characters, where a character is adjacent to another if it is vertically or horizontally neighboring.
Furthermore, character cells may not be repeated within the same word. We give an example
input, solution, and visualization:

Input: board — [["O","a","a","Il"],["e","t","a","e"],["i","h","k","r"],["i","f","l","V"]], WOI'dS —
nn

["oath","pea","eat","rain"]
Output: ["eat","oath"]

X
q

=h

Vv

We first solved this problem using a sequential algorithm, which we will present in the following
section. Our next steps were to improve the speed of our solution by attempting three different
methods of parallelizing portions of our sequential algorithm, to varying degrees of success. We
will present all three methods along with their results and a comparison to the results of the
sequential solution.

" Word Search Il. LeetCode, from https://leetcode.com/problems/word-search-ii/description

Sequential Algorithm:

Our sequential algorithm utilizes a trie and DFS to solve the word search problem. We first store
all target strings in a trie, which is an efficient data structure for prefix matching.

data Trie = Trie {
children :: Map.Map Char Trie,
isEnd :: Bool

} deriving (Show)

emptyTrie :: Trie
emptyTrie = Trie Map.empty False

insertWord :: String —> Trie — Trie
insertWord "" trie = trie { isEnd = True }
insertWord (c:cs) trie =
let childTrie = fromMaybe emptyTrie (Map.lookup ¢ (children trie))
newChild = insertWord cs childTrie
in trie { children = Map.insert c newChild (children trie) }

Building a trie: we use foldr with insertWord, an emptyTrie, and our list of target strings.

Once we have our trie, we can begin searching the board, initiating DFS from each cell. We
search in every valid direction from the current cell, comparing the characters of the neighboring
cells to the children of the current trie node to see if our current path is the prefix of a target
string, or if we can end the DFS branch early. We must also mark cells as visited so we don’t
revisit already used cells. We can also prune the trie once a word has been found to avoid
searching for words we have already found on the board. Finally, we must unmark the visited
cells once we have finished searching along a path, so they can be visited through searches from
different paths/cells.

findWords :: [[Char]] —> [String]l —> [String]

findWords board targetWords = nub $ concatMap (\(r,c) —>
searchFromCell board trie r ¢ []
) [(r,¢) | r <— [0..rows-1]1, ¢ <- [0..cols-1]]

where

rows = length board
cols = length (head board)
trie = foldr insertWord emptyTrie targetWords

searchFromCell :: [[Char]] —> Trie —> Int —> Int —> String —> [String]
searchFromCell board trie row col currWord
row < @ || row>= rows || col < @ || col >= cols = []

board !! row !! col == 'x' = []
not (Map.member curr (children trie)) = [I]
otherwise =
let newTrie = fromMaybe emptyTrie (Map.lookup curr (children trie))
newWord = currWord ++ [curr]
foundWords = [newWord | isEnd newTriel]
markedBoard = markCell board row col
nextWords = concatMap (\(dr,dc) ->
searchFromCell markedBoard newTrie (row+dr) (col+dc) newWord
) [(e,1), (1,0), (0,-1), (-1,0)]
foundWords ++ nextWords
where
rows length board
cols = length (head board)
curr = board !! row !! col

findWords initiates searchFromCell from each cell in the board and concatenates the results.

Parallelism:

In order to speed up performance of our sequential algorithm, we attempt to introduce
parallelism to our sequential algorithm via three different methods:

e Parallelize the search for each individual target word

e Parallelizing DFS branches set to a configurable depth

e Parallelize DFS by breaking up the word grid into a configurable number of subgrids

ParallelWords

The ParallelWords algorithm works by parallelizing the search of each target word. The
algorithm uses similar logic to the sequential algorithm, except that within a single DFS call, it
cannot find any word except the target word it is parallelized to search for. We modify the
function searchFromCell to enable this behavior. Like in the sequential version, we store all the
target words in a trie. Next, we use parMap to create a spark for each target word which will run

the function searchSingleWord to initiate the DFS. rdeepseq is used to ensure that each spark is

fully evaluated.

findwWords :: [[Char]] —> [String]l -> [Stringl
findWords board targetWords =
let trie = foldr insertWord emptyTrie targetWords

results = parMap rdeepseq (searchSingleWord board trie) targetWords
in nub (concat results)

searchSingleWord :: [[Char]] -> Trie —> String —> [String]
searchSingleWord board trie word =
searchUntilFound Set.empty [(r,c) | r <- [@..rows-1], c <- [0..cols-1]]
where
rows length board
cols = length (head board)

searchUntilFound _ [] = []
searchUntilFound visited ((r,c):rest) =
case searchFromCell board trie r ¢ [] word Set.empty of
[l —> searchUntilFound visited rest
found —> found

searchFromCell :: [[Char]] —> Trie —> Int -> Int -> String —-> String —> Set.Set Pos -> [String]
searchFromCell board trie row col currWord targetWord visited
| row <@ || row >= rows || col < @ || col >= cols = []
| Set.member (row, col) visited = [I]
| not (Map.member curr (children trie)) = []
| otherwise =
let newTrie = fromMaybe emptyTrie (Map.lookup curr (children trie))
newWord = currWord ++ [curr]
foundWords = [newWord | isEnd newTrie && newWord == targetWord]
newVisited = Set.insert (row, col) visited
nextWords = concatMap (\(dr,dc) —
searchFromCell board newTrie (row+dr) (col+dc) newWord targetWord newVisited
) [(e,1), (1,0), (0,-1), (-1,0)]
foundWords ++ nextWords

length board
length (head board)
board !! row !! col

ParallelDepth

The ParallelDepth algorithm works by using parallel processing while performing DFS that is
limited by the depth. The depth control then limits how deep the DFS can go and explore before
cutting it off from searching on that path. This prevents the search from becoming too
computationally expensive for larger grids.

The algorithm uses a trie to store the target words and a visited set as in the sequential algorithm
to facilitate DFS.

As the DFS starts exploring, the algorithm uses parMap and rseq to explore neighboring cells at
the same time at each level of the recursion. parMap splits the recursive search into parallel tasks
and allows for the multiple neighbors to be explored simultaneously. Rseq ensures that the
results from these parallel evaluations are done immediately so that lazy evaluation does not
occur.

findWords :: Int -> [[Char]] -> [Stringl -> [String]

findwWords depth board targetWords =
nub $ concat $ parMap rseq (\(r, c) -> searchFromCell board trie Set.empty r c [] depth @ rows cols)
[(r, ¢) | r <- [0..rows-1], c <- [@..cols-1]]

where

rows = length board

length (head board)

foldr insertWord emptyTrie targetWords

cols

trie

searchFromCell :: [[Char]] -> Trie -> Set (Int, Int) -> Int -> Int -> String -> Int -> Int —> Int —> Int -> [Stringl
searchFromCell board trie visited row col currWord depth level rows cols
row < © || row >= rows || col < @ || col >= cols = []
Set.member (row, col) visited = []
not (Mah.member curr (children trie)) = []
otherwise =
let newTrie = fromMaybe emptyTrie (Map.lookup curr (children trie))
newWord = currWord ++ [curr]
foundWords = [newWord | isEnd newTriel
newVisited = Set.insert (row, col) visited

nextWords = if level < depth
then concat $ parMap rseq (\(r, c) -> searchFromCell board newTrie newVisited r c newWord depth (level + 1) rows cols)
[(row+1, col), (row, col+l), (row-1, col), (row, col-1)]
else concatMap (\(r, c) -> searchFromCell board newTrie newVisited r c newWord depth (level + 1) rows cols)
[(row+1, col), (row, col+l), (row-1, col), (row, col-1)]
in foundWords ++ nextWords

where

curr = board !! row !! col

findWords has an extra parameter to control the recursion depth during the DFS. searchFromCell searches
neighboring cells at the same time recursively, but stops early if the level of recursion exceeds the depth that is set.

ParallelSubgrids

The ParallelSubgrids algorithm works by first splitting the original board into a configurable
number of subgrids (but always a square number. Ie: an input of 1 splits the original board into 1
subgrid, so it remains the same. An input of 2 splits the original board evenly into 4 subgrids, 3
splits into 9 subgrids, and so on), and sparks a search to be carried out in each of those subgrids.
Any target strings found in each of the subgrids are then concatenated into a single list,
producing the same result as the sequential search algorithm.

It is key to understand that “searching a subgrid” means searching for all strings that start in that
subgrid, not just searching for strings that exist entirely within that subgrid. This means that a
DFS path that starts in one subgrid can end in another. An initial misunderstanding of this
concept in the code was the cause of a bug which resulted in extremely fast search times but also
incomplete solutions, because the DFS paths terminated prematurely whenever they hit the
boundaries of a subgrid.

ParallelSubgrids borrows the same trie data structure and DFS algorithm from our sequential
solution. It also introduces a new function to split the board into subgrids, which returns the
coordinate bounds of each subgrid.

splitBoard :: Int —> [[Char]l] -> [(Int, Int, Int, Int)]
splitBoard n board
n<=1=[(0, rows, @, cols)]
n>=rows = [(r, r+1, ¢, ¢+ 1) | r <- [0..rows-1], ¢ <— [0..min rows cols-1]]
n>=cols =[(r, r+1, c, c+ 1) | r <- [0..min rows cols-1], ¢ <- [@..cols-1]]
otherwise =
[(r % subRows, (r + 1) * subRows, ¢ * subCols, (c + 1) * subCols)

| r<- [0..n-1], ¢ <- [0..n-1]]
where
rows = length board
cols = length (head board)
subRows = rows "div' n
subCols = cols "div' n

splitBoard expects an Int representing the square root of the total number of subgrids to produce and the original
board, and returns a list of 4-Int tuples, each representing a corner boundary of a subgrid.

These bounds are then used to define the individual coordinates of each cell within the subgrid
that we need to initiate DFS from. Finally, we have a wrapper function that utilizes parMap with
deepseq as the strategy to spark and force evaluation of the searches of the subgrids in parallel.
We also create a trie in this wrapper function to avoid constructing copies of the trie in each
subgrid search, as is the case with the findWords function in our sequential algorithm.

findWordsSubgrids :: Int -> [[Char]] —> [String]l —> [String]
findWordsSubgrids splits board wordsList =
let subBoards = splitBoard splits board
trie = foldr SequentialSearch.insertWord SequentialSearch.emptyTrie wordsList

results = parMap rdeepseq (\subBoard —> findWordsTrie board trie subBoard) subBoards
in nub (concat results)

findWordsTrie :: [[Char]] —> SequentialSearch.Trie —> (Int, Int, Int, Int)-> [String]

findWordsTrie board trie (rStart, rEnd, cStart, cEnd) =
nub $ concatMap (\(r,c) —>
SequentialSearch.searchFromCell board trie r c []
) [(r,c) | r <= [rStart..min rEnd (rows-1)], ¢ <- [cStart..min cEnd (cols-1)]]
where
rows length board
cols = length (head board)

findWordsSubgrids generates the subgrid bounds, constructs the trie to be used in all subsequent parallel subgrid
searches, and sparks parallel evaluation of the subgrid searches, before concatenating and returning results from
each subgrid search. findWordsTrie initiates DFS from each cell to search for strings within the given bounds,
similarly to findWords from the sequential solution.

Challenges:

One challenge we encountered was generating suitable data for testing. Leetcode's hardest test
cases proved too small to adequately test our parallelized algorithms, and word search generators
couldn't create grids with target words that snake around. To solve this, we wrote a custom test
case generation script. It generates grids of random letters and produces a configurable number
of target words using a randomized depth-first search, resulting in more varied and challenging
test cases. We set word sizes to be between eight to fifteen characters long.

We also encountered a challenge with parallelization itself. Initially we tried to utilize par and
pseq from Control.Parallel, but encountered issues with our results array not being fully
evaluated in parallel and filled with thunks, so the evaluation would still just occur sequentially
when the found target words were eventually printed out. Therefore we utilized parMap, rpar,
rseq, and rdeepseq from Control.Parallel.Strategies in order to be able to force evaluation.

Hardware:

All testing was conducted on a 2022 Macbook Air with an Apple M2 chip, 8 cores and 8
hardware threads.

Algorithm Evaluation:

We benchmark performance on the following the following three test cases:
e 100x100 grid with 10 target words
e 500x500 grid with 20 target words
e 1000x1000 grid with 30 target words

We first parse the input from disk and then time the execution of the algorithm itself. This
approach ensures that we exclude I/O time from our benchmarks.

Note: Target word length ranges from 8-15 characters.

Benchmark Results and Observations:

Benchmark Performance Overview

Runtime for Different Algorithms Searching a 1000x1000 Board

150

100 - .

Time (s)

50

0 [] B

Sequential ParallelWords ParallelDepth ~ ParallelSubgrids

All parallel algorithms were run with 8 threads. ParallelDepth has depth 8 and ParallelSubgrids has 196 subgrids.

We experienced varying levels of success reducing runtime with our three parallel algorithms.
ParallelWords took about 2.5x as long to run as the sequential algorithm on the largest board,
even when using the maximum number of available threads. ParallelDepth and ParallelSubgrids
were both much more successful attempts at parallelizing our word search algorithm, with both
of them yielding runtimes about 6x faster than the sequential algorithm when used with the
maximum number of available threads and optimal settings (that were encountered in our
testing)

Sequential Algorithm

| Board Size
| 100x100 500x500 1000x1000
Time (s) | 0.02597 5.491277 65.772943

Table 1: Sequential algorithm runtimes.

Performance for the sequential algorithm significantly increases across test cases as the grid size
becomes larger and there are more target words to find.

ParallelWords
Threads ‘ Board Size

‘ 100x100 500x500 1000x1000
1 0.068571 25.964812 842.595844
2 0.042393 14.382055 460.157849
3 0.032634 11.135458 305.842003
4 0.025253 8.376221 257.679208
5 0.025845 7.921799 205.091986
6 0.020172 7.079879 192.660891
7 0.019657 6.866078 163.534461
8 0.021034 6.735405 162.122001

Table 2: ParallelWords runtimes (in seconds).

0Os 50s | 100s

Converted | Overflowed |Dud |GCed (Fizzled
HECO O
HEC 1 30
HEC 2
HEC 3
HEC 4
HEC 5
HEC 6
HEC7 0 5 0 0 0

© o o o o
O O O O~ T S
©O 0o o oo =~ o o

ParallelWords threadscope graph and spark stats for 1000x1000 board, -N8.

The ParallelWords algorithm does not create that many sparks relative to our other methods of
parallelization, so almost all sparks are converted.

ParallelWords Speedup vs. Thread Count

1 2 3 4 5 6 7 8
Thread Count

—&—100x100 500x500 —=— 1000x1000

Figure 1: Speedup for varying thread counts across different board sizes.

The Paralle]lWords relative to itself does see a speed up as we add more cores up to our
machine’s level of parallelism and as the grid size increases.

Overall from the graphs above, the ParallelWords algorithm performs the most poorly, being
more than 2x slower than the sequential algorithm.
This is due to the following factors:

e Poor method of parallelization: A spark is generated for each target word, and each spark
is only able to search for its target word, unlike in the sequential algorithm where any
target word can be found during a DFS call. We may have to traverse redundant paths for
similar target words. Further, performance is greatly affected by the number of target
words relative to the number of hardware threads. If all threads are busy, sparks created
for other target words must wait to be run.

e [Imbalanced workloads: Each target word can vary in length as well as in difficulty to
find, hence in the threadscope plot we see that some cores have to do significantly more
work than others.

ParallelDepth

Threads |

Depth

1

2

3

4

5

6

7

8

QW 3O Ol WK

0.011322
0.005653
0.005386
0.005150
0.005276
0.003883
0.003335
0.003247

0.008303
0.006023
0.004665
0.004027
0.004489
0.004574
0.004316
0.003345

0.008536
0.005975
0.005009
0.005055
0.004071
0.004072
0.004705
0.003188

0.008033
0.005881
0.004220
0.003764
0.003365
0.003841
0.002976
0.002966

0.007537
0.005636
0.004296
0.004427
0.003793
0.003716
0.003273
0.002966

0.008134
0.005456
0.005503
0.003619
0.004183
0.003658
0.003236
0.003227

0.008045
0.005758
0.004584
0.003592
0.003475
0.003434
0.003327
0.003143

0.008056
0.005735
0.004349
0.003517
0.003655
0.003916
0.003888
0.003054

Table 3: ParallelDepth runtimes (in seconds) for a 100x100 board.

Threads

Depth

1

2

3

4

5

6

7

8

GO~ O O i W=

0.991254
0.994696
0.973599
1.017879
1.042388
1.059077
1.055391
1.042492

1.029463
0.969331
1.053631
0.983769
1.052232
1.050075
1.081520
1.033371

1.054374
1.029407
1.005478
1.032793
1.004388
1.023931
1.013213
1.043631

1.025064
0.981233
0.990769
1.025403
1.021215
1.042896
1.038237
1.050237

1.016329
0.979413
1.111675
1.005702
1.004454
1.041506
1.064888
1.036543

1.026675
1.006443
1.031081
1.011490
1.073756
1.019629
1.088402
1.054486

1.011514
1.009403
1.027112
0.983962
1.003388
1.017971
1.044566
1.052909

1.027848
0.989883
1.044589
1.000132
1.053224
0.999466
1.090042
1.054817

Table 4: ParallelDepth runtimes (in seconds) for a 500x500 board.

Threads |

Depth

1

2

3

4

5

6

7

8

00 =IO T W=

11.70577 12.113667

11.28168
11.907646

12.60596
12.11129

11.485883 11.072132

11.684131

11.83232

11.37276 12.003249
11.954613 11.941797

11.671538 11.944176

13.801015
11.886404

12.81159

11.509928
11.658778
11.371989
12.601917
11.662381

12.34687
12.59457
11.322576
11.482786
11.768344
12.191675
12.127493
11.772531

11.565189
11.249191
12.4556
11.998397
12.078482
12.297596
11.678604
11.695728

11.279337
12.183987
11.543598
11.600105
11.875231
11.051718
11.495271
11.620753

11.866786
11.441741
12.298782
11.861788
12.134167
11.889646
11.818165
13.652866

11.241193
11.525345
11.504465
11.005588
11.808079
11.54167

11.987016
12.189594

Table 5: ParallelDepth runtimes (in seconds) for a 1000x1000 board.

ParallelDepth Speedup vs. Depth

1.1 T T T

1r N
o
=
g 0.9 -
o,
w2

0.8

0.7 | | | ! | | | | =

1 2 3 4 5 6 7 8
Depth
—=— 100x100 500x500 —e— 1000x1000

Figure 2: Speedup for varying depth across different board sizes, -IN8.

ParallelDepth Speedup vs. Thread Count

Speedup

1 2 3 4
Thread Count

—=— 100x100 500x500 —e— 1000x1000

Figure 3: Speedup for varying thread count across different board sizes, depth 8.

ParallelDepth performed the second best of the algorithms that we tested. From Figure 2 we saw
that the depth does not really affect the performance of the DFS across the 3 boards. In Figure 3,
changing the thread count for the smallest board increased the speedup sharply and then steadily
decreased. The thread count does not really affect the performance of the larger boards. This may
be due to the fact that as we added in the initial extra threads, the overhead needed to manage the
threads is relatively small as compared to when more threads were added later on. The lower
amount of threads means that it can also handle memory access more efficiently as well. This
may also be the reason why the thread count does not really affect the performance of the mid

and large sized boards since they are 25 and 100 times larger (respectively) than the smallest
board.

0Os 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s 11s

..L—-.—-——-—————

e i
. A 0000 OO0 0 000 00O 000 0 0O

HEC 2
I I

- O OO0 0O OO0 OO OO
"E“ 0000 000 OO
- 00O 00O 0O
- i

L s i

HEC |Total Converted |Overflowed |Dud | GCed |Fizzled

Total 4547676 24752 1053762 698930 2303288

HEC 0 6272 3558 0 0 3 133695
HEC 1 7736 3878 0 0 4 136728
HEC 2 4499552 15 1053762 O 698683 118

HEC 3 7296 3901 0 0 34 578039
HEC 4 7232 3641 0 0 44 506654
HECS5 8184 4056 0 0 55 605699
HEC 6 5104 2490 0 0 51 171990

HEC 7 6300 3213 0 0 56 170365
ParallelDepth threadscope graph and spark stats for 1000x1000 board, depth 8, -N8.
ParallelDepth creates a lot of sparks as the board increases in size. This can overwhelm the

number of threads that we are running with. In previous iterations, we also tried to sequentially
traverse the grid without the use of parMap, but it still created many sparks that fizzled.

ParallelSubgrids

Threads |

Subgrids

1

4

16

36

64

100

144

196

256

10000

0.024479
0.025297
0.025024
0.025199
0.025344
0.025693
0.025376
0.026029

00 1 S O s Wb~

0.02539%4
0.017083
0.013823
0.012065
0.012343
0.011762
0.011391
0.012216

0.026255
0.015871
0.012235
0.010920
0.009682
0.009317
0.008821
0.008822

0.025326
0.015709
0.012123
0.009399
0.008915
0.007954
0.008109
0.007067

0.028618
0.015880
0.011854
0.010206
0.009125
0.008712
0.008055
0.007051

0.029674
0.018148
0.013303
0.010670
0.009867
0.009308
0.007972
0.007374

0.028398
0.017909
0.012689
0.010137
0.009661
0.008532
0.007843
0.007796

0.031161
0.018792
0.013752
0.011543
0.011878
0.009205
0.008088
0.007573

0.031018
0.018752
0.013382
0.010811
0.009865
0.009066
0.007939
0.007233

0.100272
0.066717
0.054323
0.046213
0.043245
0.042134
0.039518
0.037288

Table 6: ParallelSubgrids runtimes (in seconds) for a 100x100 board.

Threads ‘

Subgrids

1

4

16

36

64

100

144

196

256

250000

5.287914
5.157888
5.270334
5.403939
5.319036
5.262596
5.358119
5.385506

0O =1 O U b= W o~

5.274163
3.463677
2.762326
1.908469
1.925707
1.918358
1.922741
1.926112

5.532518
3.163879
2.099948
1.718607
1.485665
1.395577
1.333493
1.173612

5.365108
2.809433
2.145811
1.574695
1.406676
1.265433
1.188606
1.102894

5.368514
3.101689
1.980316
1.636697
1.410876
1.224612
1.118327
1.061973

5.556007
3.057095
2.001097
1.578234
1.390942
1.217723
1.118669
1.044060

5.346388
2.944736
1.959838
1.492481
1.307516
1.21675
1.091671
0.990113

5.330809
2.877457
1.966364
1.456364
1.310828
1.172789
1.084218
0.992282

5.6630563
2.663584
2.014911
1.526854
1.340352
1.235272
1.192155
1.032097

18.613967
17.433022
17.597134
17.840008
18.974303
21.056172
17.953054
18.358832

Table 7: ParallelSubgrids runtimes (in seconds) for a 500x500 board.

Threads |

Subgrids

1

4

16

36

64

100

144

196

256

1000000

65.801883
64.714528
65.622570
67.589009
66.191874
66.546687
66.201424
67.099902

GO =1 S O = o

65.945074
37.785980
34.679536
21.303343
21.598264
21.820648
22.373584
22.044958

66.799887
36.057934
27.001564
20.879299
18.539671
15.904608
15.098906
12.315757

66.388034
35.417008
25.326437
19.191283
16.277188
14.798572
13.849142
12.435074

67.485956
35.813678
25.149757
18.958903
16.005820
14.075356
12.851644
11.946892

67.299456
35.300202
24.586220
18.670745
16.318601
14.538098
13.162786
11.677746

67.051436
35.437499
24.508003
18.48981
16.025915
14.106605
12.713559
11.468487

67.883795
35.487171
24.854055
18.772108
15.863053
13.942253
12.491494
10.809685

67.056246
35.627685
25.193567
18.509092
15.930072
13.983451
12.521412
11.501718

310.392841
257.808374
240.548454
237.812547
231.578546
242.619650
245.427277
244.793032

Table 8: ParallelSubgrids runtimes (in seconds) for a 1000x1000 board.

ParallelSubgrids yields improved results compared to our sequential algorithm across all board

sizes. As a sanity check, we test ParallelSubgrids with just 1 subgrid, as that should be equivalent
to the sequential algorithm. We also include results for the maximum number of subgrids for
each board, which represents running DFS from every single cell in parallel. However, at those
settings, runtime is actually slower than the sequential algorithm. At all other settings in
between, ParallelSubgrids shows an improvement in runtime compared to the sequential
algorithm, with significant improvements being seen as the number of subgrids initially
increases, and diminishing returns as the number of subgrids increases further.

ParallelSubgrids Speedup vs. Number of Subgrids

Speedup

1 1 |

| |
416 36 64 100 144 196 256
Number of Subgrids

—a— 100x100 500x500 —=— 1000x1000

Figure 4: Speedup for varying numbers of subgrids for different board sizes, -N8.

Speedup relative to the number of subgrids shows a sharp increase up until around 16 subgrids
and diminishing returns past that. We hypothesize that the speedup doesn’t show much
significant improvement past 16 subgrids as parallel execution becomes more and more
bottlenecked by the number of threads we have available on our benchmark machine (8).

ParallelSubgrids Speedup vs. Thread Count

Speedup

I | I |

1 2 3 4 5 6 7 8
Thread Count

—&—100x100 500x500 —= 1000x1000

Figure 5: Speedup for varying thread counts for different board sizes, each split into 196 subgrids.

Speedup relative to the thread count increases relatively linearly. It also seems with both subgrid
and thread counts, that the ParallelSubgrids method actually scales better with larger board sizes.
Smaller boards may have too little work in each subgrid, making the creation of new sparks less
efficient due to the overhead costs outweighing the benefits of parallelism.

5 0 0 ORI
E A 0 A O 0 R R
g O 00 0O A R
B 0 0 A AR E MR
5 O 0 O R R
g O 0 O 0 A A AR

5 R L T L R R TR R
- O 0 O ARR A IR

0 E
HECO 0 25 0 0 0
HEC1 196 22 0 9 0 0
HEC2 0 25 0 o o0 1
HEC3 0 24 0 9.0 0
HEC4 0 25 0 o 0 0
HEC5 0 25 0 0.0 0
HEC6 0 25 0 9. 0 0
HEC7 0 24 0 0. 0 0

ParallelSubgrids threadscope graph and spark stats for 1000x1000 board, 196 subgrids, -N8.

Parallel load balancing is quite even up to 196 subgrids, with all but 1 of those 196 sparks being
converted.

HEC |Total Converted |Overflowed |Dud |GCed |Fizzled

Total 1000000 704813 0

HEC 0 0 1206 0 o 0 o
HEC1 0 1239 0 0 0 0
HEC 2 0 1166 0 0 0. 0
HEC 3 0 1169 0 g 0 0
HEC 4 1000000 0 J04815 6 00
HEC 5 0 1271 0 6 0 0
HEC 6 0 1229 0 0.0 0
HEC 7 0 1187 0 o 0 0

ParallelSubgrids threadscope graph and spark stats for 1000x1000 board, 1 million subgrids, -N8.

The spark stats for 1 million subgrids are much less promising. Far too many sparks are created
at once, leading to over 70% of them overflowing.

Conclusion & Future Work:

Overall, the word search 2 problem was a decent candidate for parallelism.
While Paralle]lWords performed poorly, ParallelDepth and ParallelSubgrids showed significant
performance increases over our sequential algorithm.

A few possible directions to explore in future work:
e Test performance on machine with high hardware thread count
e Tune test cases to get more granular performance results of our algorithms given our
current hardware setup
e Investigate if there are other algorithms that could be used for more efficient parallelism

Code Listing:
Main.hs:

module Main (main) where

import qualified SequentialSearch
import qualified ParallelDepthSearch
import qualified ParallelWordsSearch
qualified ParallelSubgridSearch
r(d, pa S)

import InputParser
import System.Environment (getArgs)
Data.Time.Clock (getCurrentTime, diffUTCTime)

impor

main :: IO ()
main = do
args <- getArgs
e args of
[filename, solution] -> processFile filename solution Nothing
[filename, solution, paramStr] ->
case reads paramStr :: [(Int, String)] of
> 0 processFile filename solution (Just n)
_ valid input for number of subgrid / depth: please provide a positive integer."
_ —> putStrLn "Usage: ./wordsearch <filename> <solution> <optional: number of subgrid / depth>"

processFile :: FilePath —> String -> Maybe Int -> I0 ()
processFile filename solution param = do
contents <- readFile filename
case lines contents of
[boardStr, wordsStr] —> do
let board = parseBoard boardStr
wordsList = parseWords wordsStr

putStrLn "Parsed Board:"
mapM_ print board
putStrLn "Parsed Words:"
print wordsList

if null board || any null board
then putStrLn "Error: Invalid board format"

else do

start <- getCurrentTime

let results = runSolution solution board wordsList param

results “d " return ()

mapM_ putStrLn results

end <- getCurrentTime

putStrLn $ "Time taken: " ++ show (diffUTCTime end start)
_ —> putStrLn "Error: Input file must contain exactly two lines"

runSolution :: String —> [[Char]] -> [String] -> Maybe Int -> [String]
runSolution solution board wordsList param =
e solution of
"sequential" SequentialSearch.findwWords board wordsList
"parallelwords' ParallelWordsSearch. findwWords board wordsList
"paralleldepth" —
case param of
Just n —> ParallelDepthSearch. findWords n board wordsList
Nothing —> error "Missing depth argument for 'paralleldepth' solution."
"parallelsubgrids"
case param of
Just n —> ParallelSubgridSearch. findWordsSubgrids n board wordsList
Nothing error "Missing subgrids argument for 'parallelsubgrids' solution."
_ —= error "Invalid solution argument."

InputParser.hs

module InputParser (parseBoard, parseWords) where

import Data.Char (isAlpha)

parseCell :: String —> Char
parseCell s =
case filter isAlpha s of
(c:_) —=c
[l —> error $ "Invalid cell content: " ++ s

parseBoard :: String —> [[Char]]
parseBoard input =
let content = init $ tail input
rows = splitRows content
parsedRows = map parseRow rows
in parsedRows
where
splitRows :: String —> [String]
splitRows [] = []
splitRows s =
let (row, rest) = break (=='l1") (dropwhile (/='[") s)
in if null rest
then []
else (tail row) : splitRows (tail rest)

parseRow :: String -> [Char]
parseRow s = map parseCell (splitCells s)

splitCells :: String —> [String]
splitCells [] = []
splitCells s =
let (cell, rest) = break (==',') (dropWhile (not . isAlpha) s)
in if null cell
then splitCells rest
else cell : splitCells rest

parseWords :: String —= [String]
parseWords input =
let content = init $ tail input
wordsList = splitWords content
in map (filter isAlpha) wordsList
where
splitWords :: String —> [String]
splitWords [] = []
splitWords s =
let (word, rest) = break (==',') (dropWhile (not . isAlpha) s)
in if null word
then splitWords rest
else word : splitWords rest

SequentialSearch.hs

module SequentialSearch (findWords, insertWord, Trie(..), emptyTrie, searchFromCell) where

import qualified Data.Map as Map
import Data.Maybe (fromMaybe)
import Data.List (nub)

data Trie = Trie {
children :: Map.Map Char Trie,
isEnd :: Bool

} deriving (Show)

emptyTrie :: Trie
emptyTrie = Trie Map.empty False

insertwWord :: String -> Trie -> Trie
insertWord "" trie = trie { isEnd = True }
insertWord (c:cs) trie =
let childTrie = fromMaybe emptyTrie (Map.lookup c (children trie))
newChild = insertWord cs childTrie
in trie { children = Map.insert c newChild (children trie) }

findWords :: [[Char]] —> [String] —> [String]

findWords board targetWords = nub $ concatMap (\(r,c) —
searchFromCell board trie r c []
) [{r,e) | r <= [0..rows-1], ¢ <- [0..cols-1]

where

rows = length board
cols = length (head board)
trie = foldr insertWord emptyTrie targetWords

searchFromCell :: [[Char]] -> Trie —> Int —> Int -> String —> [String]
searchFromCell board trie row col currWord
| row =@ || row >= rows || col <@ || col >= cols = []
board !! row !! col == 'x' = []
not (Map.member curr (children trie)) = []
otherwise =
let newTrie = fromMaybe emptyTrie (Map.lookup curr (children trie))
newWord = currWord ++ [curr]
foundWords = [newWord | isEnd newTrie]
markedBoard = markCell board row col
nextWords = concatMap (\(dr,dc) -=>
searchFromCell markedBoard newTrie (row+dr) (col+dc) newWord
) [(e,1), (1,0), (0,-1), (-1,0)]
in foundwWords ++ nextWords
where
rows = length board
cols = length (head board)
curr = board !! row !! col

markCell :: [[Char]] —> Int —> Int —> [[Char]]

markCell board row col =
take row board ++
[take col (board !! row) ++ ['#'] ++ drop (col+1l) (board !! row)] ++
drop (row+1) board

ParallelWordsSearch.hs

le ParallelWordsSearch (findWords, searchSingleWord, searchFromCell) wher

import qualified Data.Map as Map
import qualified Data.Set Set
import Data.Maybe (fromMaybe)
t Data.List (nub)
parMap,

rt Control.Parallel.Strategies

data Trie = Trie {

children :: Map.Map Char Trie,
isEnd :: 1
riving (Show)

emptyTrie :: Trie
emptyTrie = Trie Map.empty False

insertWord :: String —> Trie — Trie
insertWord "" trie = trie { isEnd = True }
insertWord (c:cs) trie =
let childTrie = fromMaybe emptyTrie (Map.lookup c (children trie))
newChild = insertWord cs childTrie
in trie { children = Map.insert ¢ newChild (children trie) }

type Pos = (Int, Int)

findWords :: [[Char]] — [String] —> [String]
findWords board targetWords =
let trie = foldr insertWord emptyTrie targetWords

results = parMap rdeepseq (searchSingleWord board trie) targetWords
in nub (concat results)

searchSingleWord :: [[Char]] —> Trie -> String -> [String]
searchSingleword board trie word =
searchUntilFound Set.empty [(r,c) | r <— [@..rows-1], ¢ <— [@..cols-1]
where
rows = length board
cols = length (head board)

searchUntilFound _ [] = []
searchUntilFound visited ((r,c):rest) =
se searchFromCell board trie r c [] word Set.empty of
[1 - searchUntilFound visited rest
found —> found

searchFromCell :: [[Char]] —> Trie —> Int —> Int —> String —> String -> Set.Set Pos —> [String]
searchFromCell board trie row col currWord targetWord visited
| row <@ || row>=rows || col <@ || col >= cols = []
| Set.member (row, col) visited = []
| not (Map.member curr (children trie)) = []
| otherwise =
let newTrie = fromMaybe emptyTrie (Map.lookup curr (children trie))
newWord = currWord ++ [curr
foundwWords = [newWord | isEnd newTrie && newWord == targetWord]
newVisited = Set.insert (row, col) visited
nextWords = concatMap (\(dr,dc) ->
searchFromCell board newTrie (row+dr) (col+dc) newWord targetWord newVisited
) [{e,1), (1,0), (@,-1), (-1,0)]
in foundwWords ++ nextWords
where
rows = length board
cols = length (head board)
curr = board !! row !! col

ParallelDepthSearch.hs

module ParallelDepthSearch (findWords, insertWord, Trie(..), emptyTrie, searchFromCell} where

import qualified Data.Map Map
rt Data.Maybe (fromMaybe)
rt Data.List (nub)
t Data.Set (Set)
qualified Data.Set Set
import Control.Parallel.Strategies (parMap, rseq)

data Trie = Trie {
children :: Map.
isEnd :: Bool
riving (Show)

emptyTrie Tr
emptyTrie = Trie Map.empty False

insertWord :: String Trie Trie
insertWord "" trie = trie { isEnd = True }
insertWord (c:cs) trie =
let childTrie = fromMaybe emptyTrie (Map.lookup ¢ (children trie))
newChild = insertWord cs childTrie
in trie { children = Map.insert ¢ newChild (children trie) }

findWords In [[Char]] —> [Stri -> [String]

findWords depth board targetWords =
nub $ concat $ parMap rseq r, c¢) —> searchFromCell board trie Set.empty r c [] depth @ rows cols)
[(r, ¢) | r [0..rows-1], ¢ <~ [0..cols-1]]
where
rows = length board
cols = length (head board)
trie = foldr insertWord emptyTrie targetWords

searchFromCell :: [[Char]] —> Trie et (Int, Int) -> Int -> Int —> String -> Int -> Int —> Int —> Int —> [String]
searchFromCell board trie visited row col currWord depth level rows cols
row < @ || row >= rows || col <@ || col >= cols = []
Set.member (row, col) visited = []
not (Map.member curr (children trie)) = []
otherwise =
let newTrie = fromMaybe emptyTrie (Map.lookup curr (children trie))
newWord = curriWord ++ [curr]
foundWords = [newWord | isEnd newTrie]
newVisited = Set.insert (row, col) visited

nextWords = if level < depth
then concat $ parMap rseq (\(r, c¢) —> searchFromCell board newTrie newVisited r c¢ newWord depth (level + 1) rows cols)
[(row+1, col), (row, col+l), (row-1, col), (row, col-1)]
concatMap (\(r, searchFromCell board newTrie newVisited r ¢ newWord depth (level + 1) rows cols)
[(row+1, (row, col+1), (row-1, col), (row, col-1)]
in foundwWords ++ nextWords

curr = board !! row !! col

ParallelSubgridSearch.hs
module ParallelSubgridSearch (findWordsSubgrids) where

rt Data.List (nub)
trol. Pz at s (
.Parallel.Strategies

import qualified SequentialSearch

findWordsSubgrids :: Int —> [[Char]] —> [String]l -> [String]
findWordsSubgrids splits board wordsList =
let subBoards = splitBoard splits board
trie = foldr SequentialSearch. insertWord SequentialSearch.emptyTrie wordsList
results = parMap rdeepseq (\subBoard —> findWordsTrie board trie subBoard) subBoards
in nub (concat results)

findWordsTrie :: [[Char]] -> SequentialSearch.Trie —> (Int, Int, Int, Int)—> [String]
findWordsTrie board trie (rStart, rEnd, cStart, cEnd) =
nub $ concatMap (\(r,c) —=
SequentialSearch.searchFromCell board trie r ¢ []

) [{r,c) | r <= [rStart..min rEnd (rows-1)], ¢ <- [cStart..min cEnd (cols-1)]]
where

rows = length board

cols = length (head board)

splitBoard :: Int —> [[Char]] —= [(Int, Int, Int, Int)]
splitBoard n board
| n <=1 = [(8, rows, 0, cols)]
| n>=rows = [(r, r+1, ¢, ¢ +1) | r <= [@..rows-1], ¢ <- [0..min rows cols-1]]
| n>=cols = [{r, r+1, ¢, ¢ +1) | r <= [0..min rows cols-1], c <- [0..cols-1]]
| otherwise =
[{r * subRows, (r + 1) * subRows, ¢ * subCols, (c + 1) * subCols)
| r <= [0..n-1], ¢ <- [0..n-1]]
where
rows = length board
cols = length (head board)
subRows = rows “div' n
subCols = cols "div n

