
Parallelizing Word-Search-2
COMS W4995: Parallel Functional Programming

Ardrian Wong (UNI:aaw2179), Keith Lo (UNI:kl3695), Sean Zhang
(UNI:srz2116)

Introduction:
For our project, we aim to parallelize the word search 2 problem on Leetcode.1 In our problem,
we are given a board of characters as well as a list of strings (words), and we must return all
words that are found on the board. A word can be formed on the board by a series of adjacent
characters, where a character is adjacent to another if it is vertically or horizontally neighboring.
Furthermore, character cells may not be repeated within the same word. We give an example
input, solution, and visualization:

Input: board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words =
["oath","pea","eat","rain"]
Output: ["eat","oath"]

We first solved this problem using a sequential algorithm, which we will present in the following
section. Our next steps were to improve the speed of our solution by attempting three different
methods of parallelizing portions of our sequential algorithm, to varying degrees of success. We
will present all three methods along with their results and a comparison to the results of the
sequential solution.

1 Word Search II. LeetCode, from https://leetcode.com/problems/word-search-ii/description



Sequential Algorithm:
Our sequential algorithm utilizes a trie and DFS to solve the word search problem. We first store
all target strings in a trie, which is an efficient data structure for prefix matching.

Building a trie: we use foldr with insertWord, an emptyTrie, and our list of target strings.

Once we have our trie, we can begin searching the board, initiating DFS from each cell. We
search in every valid direction from the current cell, comparing the characters of the neighboring
cells to the children of the current trie node to see if our current path is the prefix of a target
string, or if we can end the DFS branch early. We must also mark cells as visited so we don’t
revisit already used cells. We can also prune the trie once a word has been found to avoid
searching for words we have already found on the board. Finally, we must unmark the visited
cells once we have finished searching along a path, so they can be visited through searches from
different paths/cells.



findWords initiates searchFromCell from each cell in the board and concatenates the results.

Parallelism:
In order to speed up performance of our sequential algorithm, we attempt to introduce
parallelism to our sequential algorithm via three different methods:

● Parallelize the search for each individual target word
● Parallelizing DFS branches set to a configurable depth
● Parallelize DFS by breaking up the word grid into a configurable number of subgrids

ParallelWords
The ParallelWords algorithm works by parallelizing the search of each target word. The
algorithm uses similar logic to the sequential algorithm, except that within a single DFS call, it
cannot find any word except the target word it is parallelized to search for. We modify the
function searchFromCell to enable this behavior. Like in the sequential version, we store all the
target words in a trie. Next, we use parMap to create a spark for each target word which will run



the function searchSingleWord to initiate the DFS. rdeepseq is used to ensure that each spark is
fully evaluated.

ParallelDepth
The ParallelDepth algorithm works by using parallel processing while performing DFS that is
limited by the depth. The depth control then limits how deep the DFS can go and explore before
cutting it off from searching on that path. This prevents the search from becoming too
computationally expensive for larger grids.



The algorithm uses a trie to store the target words and a visited set as in the sequential algorithm
to facilitate DFS.

As the DFS starts exploring, the algorithm uses parMap and rseq to explore neighboring cells at
the same time at each level of the recursion. parMap splits the recursive search into parallel tasks
and allows for the multiple neighbors to be explored simultaneously. Rseq ensures that the
results from these parallel evaluations are done immediately so that lazy evaluation does not
occur.

findWords has an extra parameter to control the recursion depth during the DFS. searchFromCell searches
neighboring cells at the same time recursively, but stops early if the level of recursion exceeds the depth that is set.

ParallelSubgrids
The ParallelSubgrids algorithm works by first splitting the original board into a configurable
number of subgrids (but always a square number. Ie: an input of 1 splits the original board into 1
subgrid, so it remains the same. An input of 2 splits the original board evenly into 4 subgrids, 3
splits into 9 subgrids, and so on), and sparks a search to be carried out in each of those subgrids.
Any target strings found in each of the subgrids are then concatenated into a single list,
producing the same result as the sequential search algorithm.

It is key to understand that “searching a subgrid” means searching for all strings that start in that
subgrid, not just searching for strings that exist entirely within that subgrid. This means that a
DFS path that starts in one subgrid can end in another. An initial misunderstanding of this
concept in the code was the cause of a bug which resulted in extremely fast search times but also
incomplete solutions, because the DFS paths terminated prematurely whenever they hit the
boundaries of a subgrid.



ParallelSubgrids borrows the same trie data structure and DFS algorithm from our sequential
solution. It also introduces a new function to split the board into subgrids, which returns the
coordinate bounds of each subgrid.

splitBoard expects an Int representing the square root of the total number of subgrids to produce and the original
board, and returns a list of 4-Int tuples, each representing a corner boundary of a subgrid.

These bounds are then used to define the individual coordinates of each cell within the subgrid
that we need to initiate DFS from. Finally, we have a wrapper function that utilizes parMap with
deepseq as the strategy to spark and force evaluation of the searches of the subgrids in parallel.
We also create a trie in this wrapper function to avoid constructing copies of the trie in each
subgrid search, as is the case with the findWords function in our sequential algorithm.

findWordsSubgrids generates the subgrid bounds, constructs the trie to be used in all subsequent parallel subgrid
searches, and sparks parallel evaluation of the subgrid searches, before concatenating and returning results from
each subgrid search. findWordsTrie initiates DFS from each cell to search for strings within the given bounds,

similarly to findWords from the sequential solution.



Challenges:
One challenge we encountered was generating suitable data for testing. Leetcode's hardest test
cases proved too small to adequately test our parallelized algorithms, and word search generators
couldn't create grids with target words that snake around. To solve this, we wrote a custom test
case generation script. It generates grids of random letters and produces a configurable number
of target words using a randomized depth-first search, resulting in more varied and challenging
test cases. We set word sizes to be between eight to fifteen characters long.

We also encountered a challenge with parallelization itself. Initially we tried to utilize par and
pseq from Control.Parallel, but encountered issues with our results array not being fully
evaluated in parallel and filled with thunks, so the evaluation would still just occur sequentially
when the found target words were eventually printed out. Therefore we utilized parMap, rpar,
rseq, and rdeepseq from Control.Parallel.Strategies in order to be able to force evaluation.

Hardware:
All testing was conducted on a 2022 Macbook Air with an Apple M2 chip, 8 cores and 8
hardware threads.

Algorithm Evaluation:
We benchmark performance on the following the following three test cases:

● 100x100 grid with 10 target words
● 500x500 grid with 20 target words
● 1000x1000 grid with 30 target words

We first parse the input from disk and then time the execution of the algorithm itself. This
approach ensures that we exclude I/O time from our benchmarks.

Note: Target word length ranges from 8-15 characters.



Benchmark Results and Observations:

Benchmark Performance Overview

All parallel algorithms were run with 8 threads. ParallelDepth has depth 8 and ParallelSubgrids has 196 subgrids.

We experienced varying levels of success reducing runtime with our three parallel algorithms.
ParallelWords took about 2.5x as long to run as the sequential algorithm on the largest board,
even when using the maximum number of available threads. ParallelDepth and ParallelSubgrids
were both much more successful attempts at parallelizing our word search algorithm, with both
of them yielding runtimes about 6x faster than the sequential algorithm when used with the
maximum number of available threads and optimal settings (that were encountered in our
testing)



Sequential Algorithm

Performance for the sequential algorithm significantly increases across test cases as the grid size
becomes larger and there are more target words to find.

ParallelWords



ParallelWords threadscope graph and spark stats for 1000x1000 board, -N8.

The ParallelWords algorithm does not create that many sparks relative to our other methods of
parallelization, so almost all sparks are converted.



The ParallelWords relative to itself does see a speed up as we add more cores up to our
machine’s level of parallelism and as the grid size increases.

Overall from the graphs above, the ParallelWords algorithm performs the most poorly, being
more than 2x slower than the sequential algorithm.
This is due to the following factors:

● Poor method of parallelization: A spark is generated for each target word, and each spark
is only able to search for its target word, unlike in the sequential algorithm where any
target word can be found during a DFS call. We may have to traverse redundant paths for
similar target words. Further, performance is greatly affected by the number of target
words relative to the number of hardware threads. If all threads are busy, sparks created
for other target words must wait to be run.

● Imbalanced workloads: Each target word can vary in length as well as in difficulty to
find, hence in the threadscope plot we see that some cores have to do significantly more
work than others.



ParallelDepth





ParallelDepth performed the second best of the algorithms that we tested. From Figure 2 we saw
that the depth does not really affect the performance of the DFS across the 3 boards. In Figure 3,
changing the thread count for the smallest board increased the speedup sharply and then steadily
decreased. The thread count does not really affect the performance of the larger boards. This may
be due to the fact that as we added in the initial extra threads, the overhead needed to manage the
threads is relatively small as compared to when more threads were added later on. The lower
amount of threads means that it can also handle memory access more efficiently as well. This
may also be the reason why the thread count does not really affect the performance of the mid
and large sized boards since they are 25 and 100 times larger (respectively) than the smallest
board.



ParallelDepth threadscope graph and spark stats for 1000x1000 board, depth 8, -N8.

ParallelDepth creates a lot of sparks as the board increases in size. This can overwhelm the
number of threads that we are running with. In previous iterations, we also tried to sequentially
traverse the grid without the use of parMap, but it still created many sparks that fizzled.



ParallelSubgrids

ParallelSubgrids yields improved results compared to our sequential algorithm across all board
sizes. As a sanity check, we test ParallelSubgrids with just 1 subgrid, as that should be equivalent
to the sequential algorithm. We also include results for the maximum number of subgrids for
each board, which represents running DFS from every single cell in parallel. However, at those
settings, runtime is actually slower than the sequential algorithm. At all other settings in
between, ParallelSubgrids shows an improvement in runtime compared to the sequential
algorithm, with significant improvements being seen as the number of subgrids initially
increases, and diminishing returns as the number of subgrids increases further.



Speedup relative to the number of subgrids shows a sharp increase up until around 16 subgrids
and diminishing returns past that. We hypothesize that the speedup doesn’t show much
significant improvement past 16 subgrids as parallel execution becomes more and more
bottlenecked by the number of threads we have available on our benchmark machine (8).



Speedup relative to the thread count increases relatively linearly. It also seems with both subgrid
and thread counts, that the ParallelSubgrids method actually scales better with larger board sizes.
Smaller boards may have too little work in each subgrid, making the creation of new sparks less
efficient due to the overhead costs outweighing the benefits of parallelism.



ParallelSubgrids threadscope graph and spark stats for 1000x1000 board, 196 subgrids, -N8.

Parallel load balancing is quite even up to 196 subgrids, with all but 1 of those 196 sparks being
converted.



ParallelSubgrids threadscope graph and spark stats for 1000x1000 board, 1 million subgrids, -N8.

The spark stats for 1 million subgrids are much less promising. Far too many sparks are created
at once, leading to over 70% of them overflowing.



Conclusion & Future Work:
Overall, the word search 2 problem was a decent candidate for parallelism.
While ParallelWords performed poorly, ParallelDepth and ParallelSubgrids showed significant
performance increases over our sequential algorithm.

A few possible directions to explore in future work:
● Test performance on machine with high hardware thread count
● Tune test cases to get more granular performance results of our algorithms given our

current hardware setup
● Investigate if there are other algorithms that could be used for more efficient parallelism



Code Listing:
Main.hs:



InputParser.hs



SequentialSearch.hs



ParallelWordsSearch.hs



ParallelDepthSearch.hs



ParallelSubgridSearch.hs


